1 Revision 2

2	Dependence of R fluorescence lines of rubies on Cr ³⁺
3	concentration at various temperatures
4 5	Gao Rong ^{1, 2, *} , Li Heping ^{1, #} , Zhao Jingtai ^{2, 3}
6	
7	¹ Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior,
8	Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou Province,
9	550002, P. R. China
10	² Key Laboratory of Transparent Opto-Functional Inorganic Materials, Shanghai
11	Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
12	³ School of Materials Science and Engineering, Shanghai University, Shanghai 200072,
13	P. R. China
14	* Now at Shanghai Institute of Ceramics, Chinese Academy of Sciences
15	[#] E-mail: liheping@vip.gyig.ac.cn
16	
17	
18	Abstract
19	The R fluorescence lines of rubies that contain 0.022, 0.068, 0.211, 0.279, 0.556,
20	1.221 and 1.676 wt% of $\rm Cr_2O_3$ were measured at temperatures of 100-600 K and at
21	atmospheric pressure. The R_1 line wavenumbers of all of the ruby samples shifted

22	linearly as the temperature increased from 298 to 600 K at atmospheric pressure, and
23	the temperature dependence increased from -0.157 \pm 0.001 cm $^{-1}\!/K$ to -0.149 \pm 0.001
24	$cm^{\text{-}1}\!/\!K$ as the Cr_2O_3 content in the rubies increased from 0.022 wt% to 1.676 wt%,
25	which suggests a significant dependence on Cr^{3+} concentration. At room temperature
26	and atmospheric pressure, the full width at half maximum (FWHM) of the peak height
27	of the R lines also appears to be linearly related to the Cr^{3+} concentration. The relative
28	intensity ratios of the R ₂ to R ₁ lines (I_2/I_1) of ruby samples with different Cr ³⁺
29	concentrations show several non-linear variations with temperature from 100 to 600 K,
30	and the maximum values, $(I_2/I_1)_{max}$, occur near room temperature. The effect of Cr^{3+}
31	doping on the temperature dependence of the R line wavenumbers should be
32	considered when rubies are used to calibrate the pressure or temperature in
33	high-pressure and high-temperature experiments.

Keywords: R fluorescence lines; pressure calibration; temperature correction; ruby;
 Cr₂O₃ content

36

37

Introduction

Rubies are important photonic crystals, and their R fluorescence lines vary with pressure and temperature. The variations of the wavenumbers of R lines with pressure are commonly used to calibrate the pressure in diamond anvil cells (DACs) (Forman et al. 1972; Mao et al. 1986). The variations in the intensity of R lines have also been used to calibrate temperature in scientific research (Weinstein 1986). Because the R lines are caused by the excitation of the 3d electrons in their ground states and their

44	subsequent de-excitation from their excitation states and because there are inevitable
45	interactions between Cr^{3+} in the ruby lattice, the concentration of Cr^{3+} in rubies may
46	affect both the pressure and temperature dependence of the R lines at high
47	temperature and high pressure conditions. Therefore, the quantitative investigation of
48	the effect of Cr^{3+} doping on the pressure and temperature behaviors of R lines is
49	important for the accuracy of pressure and temperature calibrations in simultaneous
50	high pressure and high temperature DAC experiments, which are often used to study
51	the Earth's interior (Chou 2003) and in other high-pressure sciences, such as
52	high-pressure physics, chemistry, life science and material science.

53 Variations in the peak position and the width and intensity of the ruby R_1 line as a function of temperature have been analyzed in several studies, but the results vary 54 widely (Kokhanenko and Antipov 1969; Barnett et al. 1973; Yamaoka et al. 1980; 55 Wunder and Schoen 1981; Ragan et al. 1992; Yen and Nicol 1992; Goncharov et al. 56 57 2005). For example, Ragan et al. (1992) determined a temperature dependence of 0.158 cm⁻¹/K from 390-600 K for the R_1 line wavenumber, which was approximately 58 11% greater than the value of 0.0068 nm/K (equivalent to approximately 0.141 59 cm^{-1}/K) that was reported by Barnett et al. (1973) and Yamaoka et al. (1980). When 60 calibrating the pressure or temperature in a heating DAC experiment from 300 to 600 61 K using the R_1 line, this difference would lead to a maximum temperature discrepancy 62 63 of 34 K or a maximum pressure discrepancy of 675 MPa. In fact, the reference contents of Cr₂O₃ in rubies used by previous researchers (0.062 wt%, 0.5 wt%, ~1 64 wt%, and 2 wt% Cr₂O₃ by Yen and Nicol 1992; Barnett et al. 1973; Yamaoka et al. 65

66	1980; and Wunder and Schoen 1981, respectively) were not the same. Does the
67	concentration of Cr ³⁺ contribute to this discrepancy? This study attempts to answer
68	this question by measuring the temperature variations of the R lines of rubies with
69	varying Cr ³⁺ concentrations at atmospheric pressure.

- 70
- 71

Experimental methods

Pink to blood red synthetic rubies were cut into disks that were ~ 0.5 mm in diameter 72 and ~0.2 mm thick and then polished. The concentrations of Cr^{3+} in the rubies were 73 measured using an EPMA-1600 type electron probe (beam size 10 um) with WDS 74 (wavelength-dispersive spectroscopy) 75 mode and an Atomic Absorption 76 Spectrophotometer (AAS). Three to five spots were measured in each sample. The average values are listed in Table 1. The Cr_2O_3 contents in rubies were from 0.022 to 77 1.676 wt%. 78

79 In the fluorescence measurement experiments that were conducted at high temperatures and atmospheric pressure, the samples were heated and cooled in a 80 Linkam heating stage with a liquid nitrogen flowing system. The temperature was 81 82 increased by 15 K/min and measured with a thermocouple. The precision of the temperature measurements was ± 0.1 K. The fluorescence spectra of the samples were 83 excited and recorded using a con-focal Renishaw inVia Micro-Raman Spectroscopy 84 85 system. The system uses a 514.5 nm laser beam, which is produced by a Spectra Physics 2017 2 W argon ion laser and is focused on a spot on the sample by a Leica 86 microscope system, as the excitation light source of the fluorescence. A 87

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5110

88	high-resolution white light image of the samples that covers the sampling spot can be
89	displayed on a screen of the Leica microscope system. In our experiments, (1) the
90	silicon 520 cm ⁻¹ peak calibration was performed before the fluorescence spectra were
91	collected, and the accuracy of the spectrum collection was up to ± 0.01 cm ⁻¹ ; (2) the
92	excitation laser powers ranged from 0.0002 mW to 0.05 mW; (3) a 20X Olympus
93	ULWD objective was used for the Leica microscope system, so the excitation laser
94	beam was focused onto a ~2- μ m-diameter spot; and (4) all of the fluorescence spectra
95	were collected near the spots where the electron microprobe measurements were
96	made.
97	In the fluorescence measurement experiments that were conducted at high pressures
98	and room temperature, the fluorescence spectra of each ruby sample were measured at
99	pressures of 0-2.0 GPa using the fluorescence measurement system described above
100	and a DAC. The anvil culets of the DAC were approximately 500 μ m in diameter. The
101	T301 stainless steel gasket (300 μm thick with a sample hole that was 280 μm in
102	diameter) and a mixture of methanol, ethanol and water at 16:3:1 volume proportions

103 were used as the sample chamber and pressure medium, respectively, and could

104 maintain a hydrostatic pressures up to ~10.5 GPa at room temperature (Angel et al.

105 2007). The pressures in the cell were measured using the wavenumber shift of the R_1

fluorescence peak of ruby #5, which contained 0.556 wt% of Cr₂O₃. The uncertainty

107 of this technique below 2.0 GPa was estimated to be \pm 50 MPa (Schmidt and Ziemann

108 2000).

109	The wavenumber of each fluorescence peak was obtained using the peak fitting
110	program of the WIRE 3.1 software package from Renishaw Co. The R1 line generally
111	had a Lorentzian-type shape, but the R_2 line at high temperature was fit better by a
112	Voigt type line that included Gaussian and Lorentzian components, and the Gaussian
113	proportion increased with increasing temperature and Cr ³⁺ concentration in the ruby
114	samples.
115	Finally, the electron densities of state (DOS) of the Cr^{3+} 3d band in the rubies at
116	ambient pressure and 10 GPa were calculated by the first principle calculation method
117	using the crystal structure data of $Al_{1.98}Cr_{0.02}O_3$, $Al_{1.92}Cr_{0.08}O_3$, $Al_{1.896}Cr_{0.104}O_3$ and
118	$Al_{1.54}Cr_{0.46}O_3$ in the ICSD database. The calculations used the Generalized Gradient
119	Approximation (GGA) method, the PBE exchange-correlation function (Perdew et al.
120	1996) and ultra-soft potentials, and a $3 \times 3 \times 3$ k-point mesh and 300 eV cut-off energy
121	were chosen.

122

123

Results and discussions

124 **1. Fluorescence peaks and their positions**

The fluorescence spectra and the Raman spectra of the ruby samples with the lowest and highest Cr_2O_3 contents used in this study are shown in Figure 1. In addition to the well-known R₁ and R₂ peaks, several new peaks were present in the fluorescence spectra of rubies with Cr^{3+} concentrations greater than 0.5 wt%, and the relative intensities of the new peaks increased with increasing Cr_2O_3 content. A high Cr^{3+} concentration would lead to strong $Cr^{3+}-Cr^{3+}$ interactions, which change the electron structure of the Cr^{3+} . Thus, the new peaks might be attributed to $Cr^{3+}-Cr^{3+}$ interactions in the ruby lattice because the fluorescence spectra of rubies originate from the excitation of the 3d electrons in their ground states and their subsequent de-excitation from their respective excitation states. However, because the Raman spectra were similar, the increase of Cr^{3+} concentration likely does not cause the separation of a new phase from the ruby matrix.

Significantly varying shifts of the wavenumber positions of the R lines with Cr³⁺ 137 concentration were observed at room temperature and atmospheric pressure. As 138 shown in Figures 2a and 2b, the wavenumbers of the R1 and R2 lines decreased with 139 increasing Cr_2O_3 content up to 0.3 wt%, whereas a reversal of this trend occurred at 140 141 Cr₂O₃ contents greater than 0.3 wt%. The latter observation might be attributed to the fact that the ionic radius of Cr^{3+} is larger than that of Al^{3+} . The behavior at Cr_2O_3 142 contents below approximately 0.3 wt% is not fully understood, but it might be related 143 144 to the internal stress that commonly remains in ruby samples because we did not 145 attempt to eliminate the residual stress in our samples before making the fluorescence 146 measurements.

From 300 to 600 K and at atmospheric pressure, the R lines red-shifted linearly with increasing temperature. The relationship between the slope of the R_1 shift with temperature and Cr_2O_3 content is shown in Figure 3a. The absolute values of the slopes decrease with increasing Cr_2O_3 content. The corresponding relationship for R_2 is shown in Figure 3b. In this case, the absolute values of the slopes of the wavenumber shift with temperature also decrease with increasing Cr_2O_3 content 153 below 1.2 wt% content of Cr_2O_3 but recover at higher contents.

154	Rangan et al. (1992) observed slopes of the R_1 and R_2 shifts with temperature of
155	-0.158 cm ⁻¹ /K and -0.162 cm ⁻¹ /K from 300-600 K, respectively, with an unknown Cr^{3+}
156	concentration. They attributed the discrepancy between their results and those of other
157	researchers (-0.14 \mbox{cm}^{-1}/\mbox{K} for R_1 measured by Barnett et al. 1973; -0.153 \mbox{cm}^{-1}/\mbox{K} for
158	R_1 by Yen and Nicol 1992) to the different methods used to determine the peak
159	positions in the spectra fitting. Spectrum fitting to a double Lorentzian line can allow
160	us to accurately separate the $R_1 \mbox{ and } R_2$ components from overlapping R lines and
161	thereby obtain precise line positions, while obtaining the peak positions by eye (as in
162	Barnett et al. 1973 and Yen and Nicol 1992) will give a R_1 position that does not shift
163	as fast as it should because at high temperatures, the R_1 and R_2 lines overlap and yield
164	a visual R_1 peak that is located at a higher frequency than the line's true resonant
165	frequency. However, significant differences are still present in the slopes of the R line
166	shift among the samples in this study (see Table 2 and Figures 3 (a) and (b)) even
167	though the wavenumber positions of the R lines were obtained by fitting the spectrum
168	to a double Lorentzian line using high-precision software. Therefore, the
169	discrepancies in the slopes of the R line shift with temperature between various
170	studies cannot be fully explained by the difference in the methods of determining the
171	peak positions. We believe that the major factor was the difference in the Cr^{3+}
172	concentrations in the ruby samples used in this study. The mechanism is discussed in a
173	subsequent section. The anomalous slope of $R_{\rm 2}$ in sample #1006 and #8 might be
174	attributed to the crystal orientation (Shen and Gupta 1993). The relative intensity of

175	R_1 and R_2 can reflect the crystal orientations in the rubies to some extent. The shifts of
176	the slopes of the R_2 lines with temperature were more closely related to the intensity
177	ratios of R_2 and $R_1 (I_2/I_1)$ (see Figures 3c and 3d), which is consistent with the greater
178	dependence on the crystal orientation of the R_2 line shift than the R_1 line shift (Shen
179	and Gupta 1993). Moreover, of all the samples, sample #1006 and #8 had the higher
180	I_2/I_1 value (Table 2). In sample #1006 and #8, the fast shift of the R ₂ line indicates that
181	the crystal orientation might be closer to the crystal's c axis. However, the anomalous
182	fast shift of the R_1 line in sample $\#1006\mbox{ might}$ be attributed to the lower \mbox{Cr}^{3+}
183	concentration, the crystal orientation and the internal stress.
184	In the high pressure DAC experiments (0-2.0 GPa), we found no significant pressure
185	difference in the cell when we used the ruby samples with different Cr_2O_3 contents as
186	pressure calibrants. Figure 4 shows the differences between the pressure that was
187	measured using sample #5 and used as the reference pressure in our high pressure
188	experiments and the pressures measured using the other ruby samples with different
189	Cr_2O_3 contents. All of the differences between the reference pressure and the other
190	measured pressures are within \pm 50 MPa, which is a commonly-used uncertainty for
191	pressure calibrations when rubies are used as a pressure calibrant in hydrostatic DACs
192	below 2 GPa (Schmidt and Ziemann 2000).

193 **2.** Additional discussion of the impact of Cr³⁺ concentration on the R line shift

Temperature and pressure both have significant impacts on the red-shift of R lines due to the Cr^{3+} doping in rubies. In this study, we found that the Cr^{3+} concentration in a ruby also has an important impact on shift of the R lines. This impact can be summarized as a decrease of the $(d\nu/dT)$ value of the R lines and a blue-shifting of the R lines with increasing Cr^{3+} concentration in a ruby.

McCumber and Sturge (1963) theoretically interpreted the shift of the R_1 line with temperature. Based on Equation (3a) of McCumber and Sturge, we calculated the derivative of the wavenumber of the R_1 line with respect to temperature as follows,

202
$$\frac{dv_1(T)}{dT} = a \cdot \left[4 \times \frac{T^3}{T_D} \int_0^{T_D/T} dx \frac{x^3}{e^x - 1} - \frac{1}{T(e^{T_D/T} - 1)^2}\right] (1),$$

where a is the electron-phonon coupling constant, and T_D is the effective Debye 203 temperature. McCumber and Sturge (1963) found that using a = -400 cm⁻¹ and $T_D =$ 204 760 K provided a good fit to the experimental results for 0-700 K. However, Yen and 205 Nicol (1992) found that $a = 400 \text{ cm}^{-1}$ gives good results for this temperature range. 206 Table 3 shows the values of the constant a that provided the best fits to the 207 measurement results in this study. The rates of the wavenumber shift of the R lines 208 with temperature are closely related to the electron-phonon coupling constant, and the 209 electron-phonon coupling constant a decreases monotonously with increasing Cr^{3+} 210 concentration. According to McCumber and Sturge (1963), the electron-phonon 211 coupling constant *a* measures the probability of the scattering of phonons from the 3d 212 electrons of Cr^{3+} ; the larger the value of a, the smaller the probability of scattering. In 213 our case, an increase of the Cr³⁺ concentration in the ruby samples indicates an 214 increase of the density of the scattering center, Cr^{3+} , for the phonon. As a result, the 215 216 probability of scattering would increase, and the value of the phonon-electron coupling constant a decreases with increasing Cr^{3+} concentration. Therefore, our 217 218 experimental results are consistent with the theoretical model of McCumber and

219	Sturge (1963) of the impact of Cr^{3+} concentration on the value of $(d\nu/dT)$ of R lines.
220	To theoretically explain the blue-shift of ruby R lines with increasing Cr^{3+}
221	concentration, we used the first principle calculation method and conducted a series of
222	calculations of the electronic density of state (DOS) of the Cr^{3+} 3d band for rubies
223	with different Cr ³⁺ concentrations at room temperature and atmospheric pressure and
224	at room temperature and 10 GPa. The results (Figures 5 and 6) show that the peaks of
225	the DOS of the Cr^{3+} 3d electrons are blue-shifted with increasing Cr^{3+} concentration at
226	room temperature and atmospheric pressure and red-shifted with increasing pressure
227	at room temperature and a constant Cr ³⁺ concentration. Moreover, with increasing
228	Cr^{3+} concentration at room temperature, the amplitude of the pressure-induced
229	red-shift of the DOS peaks increased when the pressure increased from atmospheric
230	pressure to 10 GPa. Because the red-shift of the DOS peaks of the Cr^{3+} 3d electrons
231	with increasing pressure is a well-known mechanism for the red-shift of ruby R lines
232	with pressure (Xie 2004), the blue-shift of the DOS peaks of the Cr^{3+} 3d electrons
233	with increasing Cr^{3+} concentration should also be the mechanism for the blue-shift of
234	the ruby R lines with increasing Cr^{3+} concentration. This behavior was observed from
235	the experimental results in this study.

The analysis presented above indicates that the Cr^{3+} concentration might have a significant influence on the R line shift of rubies in addition to the important factors of temperature and pressure. It is possible that with increasing Cr^{3+} concentration, there could be increasingly important coupling effects of the influences of temperature, pressure and Cr^{3+} concentration on the ruby R line shift because the Cr^{3+} - Cr^{3+} 241 interactions in the ruby lattice would become stronger (Ohnishi and Sugano 1982;

242 Winter et al. 1990).

243 **3. Full width at half maximum** (*FWHM*) of the R lines

244	The full width at half maximum of the R_1 line (<i>FWHM</i> ₁) at atmospheric pressure and
245	temperature increased significantly with increasing Cr ³⁺ concentration, whereas the
246	full width at half maximum of the R_2 line (<i>FWHM</i> ₂) increased moderately (Figure 7).
247	By linear fits to the experimental data for the R_1 and R_2 lines, we obtained $FWHM_1$
248	$(cm^{-1}) = 11.44348 + 2.33563 \times Cr_2O_3 \text{ (wt%)}$ with a r^2 value of 0.9978 and <i>FWHM</i> ₂
249	$(cm^{-1}) = 8.94403 + 1.1267 \times Cr_2O_3$ (wt%) with a r^2 value of 0.9986. In contrast,
250	Ragan et al. (1992) reported that the FWHM values of the R lines of rubies that
251	contained 0.12% and 0.5% \mbox{Cr}^{3+} were nearly identical. Theoretically, if two 3d
252	electrons are located in the same type of orbit but belong to two different Cr^{3+} in the
253	ruby lattice, there is always a slight difference in their energy levels due to subtle
254	differences in the electromagnetic environments in which the two Cr^{3+} are located.
255	The difference in energy level changes the energy level into an energy band. With
256	increasing Cr^{3+} concentration in rubies, the energy bands of both the ground states and
257	the excited states of the 3d electrons of Cr^{3+} would widen, and the <i>FWHM</i> s of the
258	ruby R lines that originate from the excitation of 3d electrons from their respective
259	ground states and the subsequent de-excitation from their corresponding excitation
260	states of Cr^{3+} would also widen. As shown in Figure 7, both <i>FWHM</i> ₁ and <i>FWHM</i> ₂
261	show significant linear increases with Cr^{3+} concentration in the range of 0.022-1.67
262	wt%. Our experimental results are consistent with the theoretical analysis presented

above.

264	At high temperatures and ambient pressure, $FWHM_1$ increased with temperature from
265	298-600 K (Figure 8). These results are consistent with common knowledge. However,
266	two interesting phenomena in our results are worth noting. First, the increasing width
267	of the <i>FWHM</i> s of the R lines with increasing Cr^{3+} concentration observed at room
268	temperature (Figure 7) was also observed for the R_1 line at higher temperatures.
269	Second, the positive dependence of $FWHM_1$ on temperature became stronger with
270	increasing temperature.
271	4. Relative intensity ratios of R_2 to $R_1 (I_2/I_1)$
272	Similar to the results described above, the relative intensities of the R_1 and R_2 lines of
273	all of the ruby samples in this study decreased with increasing temperature at
274	atmospheric pressure. However, the relative intensity of the R_2 line (I_2) decreased
275	more slowly than that of the R_1 line (I_1) at temperatures from 100 K to approximately
276	298 K and subsequently decreased faster than I_1 until 600 K, which indicates a
277	significant temperature dependence of I_2/I_1 (Figure 9a in the supplement information).
278	Moreover, the maximum I_2/I_1 values, $(I_2/I_1)_{max}$, occurred at different temperatures in
279	samples with different Cr ₂ O ₃ contents, and the values of $(I_2/I_1)_{\text{max}}$ and I_2/I_1 at 298 K,
280	i.e., $(I_2/I_1)_0$, were both related to the Cr ₂ O ₃ contents in the samples. As shown in
281	Figure 9b in the supplement information, the temperatures that correspond to the
282	values of $(I_2/I_1)_{max}$ were inversely related to the Cr ₂ O ₃ content. However, it is
283	interesting to note that the relationship between $(I_2/I_1)_{max}$ and the Cr ₂ O ₃ content was
284	weaker than that between $(I_2/I_1)_0$ and the Cr ₂ O ₃ content at atmospheric pressure. By

further linear fitting, we obtained a relationship between $(I_2/I_1)_{\text{max}}$ and $(I_2/I_1)_0$, which can be expressed as $(I_2/I_1)_{\text{max}} = -0.02036 + 1.04067 \times (I_2/I_1)_0$ with a r^2 value of 0.997 (Figure 9c in the supplement information).

288

289

Implications

Pressure calibration is of primary importance for high pressure experiments. Ruby is 290 the most commonly used pressure calibrant, especially in high pressure DAC 291 experiments. Temperature corrections in ruby pressure calibrations are especially 292 293 important at elevated temperatures. The results of this study show that the wavenumber shifts of ruby R lines are related not only to variations of pressure and 294 temperature but also to variations in the Cr^{3+} concentrations of the rubies. Moreover, 295 the three influential factors, temperature, pressure and Cr³⁺ concentration, have 296 important coupled effects on the wavenumber shifts of the ruby R lines. At room 297 298 temperature and pressures of 0-2.0 GPa, the results of our DAC experiments show that the differences in the cell pressures calibrated by the ruby samples with different 299 Cr^{3+} concentrations were less than \pm 50 MPa, which is a commonly accepted pressure 300 301 calibration uncertainty for a ruby calibrant in hydrostatic DACs below 2.0 GPa (Schmidt and Ziemann 2000). However, this does not mean that the differences would 302 be within \pm 50 MPa at higher temperatures and/or pressures. For example, if we 303 304 conduct a heating DAC experiment from 300 to 600 K and calibrate the temperature or pressure using the temperature shift rates of the R_1 line wavenumber of samples 305 #1006 and #8 (Table 2), the maximum temperature and pressure differences would be 306

307	16 K and 315 MPa, respectively. We conclude that before conducting a DAC
308	experiment, it is important to know the dependence of the ruby R line shift on the
309	temperature, pressure and Cr^{3+} concentration if rubies are used as the temperature or
310	pressure calibrant. The precision of the ruby temperature or pressure calibration could
311	be improved significantly if these dependences are known in detail. However, a large
312	number of experiments at higher pressures and/or temperatures should be conducted
313	in the future to completely resolve the complicated coupled effects of temperature,
314	pressure, and Cr ³⁺ concentration on the wavenumber shifts of the R lines of rubies.
315	

316 **Ref**

References

- Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D., and Jacobsen, S.D. (2007) Effective hydrostatic
 limits of pressure media for high-pressure crystallographic studies. Journal of Applied
 Crystallography, 40, 26-32.
- Barnett, J.D., Block, S., and Piermarini, G.J. (1973) An optical fluorescence system for
 quantitative pressure measurement in the diamond-anvil cell. Review of Scientific
 Instruments, 44, 1-9.
- 323 Chou, I.M. (2003) Hydrothermal diamond-anvil cell: application to studies of geologic fluids.
- 324 Acta Petrologica Sinica, 19, 213-220.
- 325 Debiasi, R.S. and Rodrigues, D.C.S. (1981) Influence of chromium concentration and particle size
- 326 on the ESR linewidth of Al_2O_3 : Cr^{3+} powders. Journal of Materials Science, 16, 968-972.
- 327 Forman, R.A., Piermarini, G.J., Barnett, J.D. and Block, S. (1972) Pressure measurement made by
- the utilization of ruby sharp-line luminescence. Science, 176, 284-285.

- 329 Kokhanenko, P.N. and Antipov, A.B. (1969) Possible determination of the emission wavelength of
- active ruby from its temperature. II. Russian Physics Journal, 12, 37-40.
- 331 Goncharov, A.F., Zaug, J.M., and Crowhurst, J.C. (2005) Optical calibration of pressure sensors
- for high pressures and temperatures. Journal of Applied Physics, 97, 094917-094917-5.
- 333 Goossens, R.J.G., Dijkhuis, J.I. and Wijn, H.W.de. (1985) Relaxation of 29 cm⁻¹ phonons in ruby.
- 334 Physical Review B, 32, 7065-7075.
- 335 Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under
- 336 quasi-hydrostatic conditions. Journal of Geophysical Research, 91, 4673-4676.
- 337 McCumber, D.E. and Sturge, M.D. (1963) Linewidth and temperature shift of the R lines in ruby.
- Journal of Applied Physics, 34, 1682-1684.
- 339 Ohnishi, S. and Sugano, S. (1982) Theoretical studies of high-pressure effects on optical
- 340 properties of ruby. Japanese Journal of Applied Physics, 21, L309-L311.
- 341 Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized gradient approximation mad simple.
- 342 Physical Review Letters, 77, 3865-3868.
- Ragan, D.D., Gustavsen, R. and Schiferl, D. (1992) Calibration of the ruby R₁ and R₂ fluorescence
- shifts as a function of temperature from 0 to 600K. Journal of Applied Physics, 72,
 5539-5544.
- 346 Schmidt, C. and Ziemann, M.A. (2000) In-situ Raman spectroscopy of quartz: A pressure sensor
- for hydrothermal diamond-anvil cell experiments at elevated temperatures. American
 Mineralogist, 85, 1725-1734.
- 349 Shen, X.A. And Gupta, Y.M. (1993) Effect of crystal orientation on ruby R-line shifts under shock
- 350 compression and tension. Physical Review B, 48, 2929-2940.

- 351 Szabo, A. (1971) Observation of the optical analog of the mossbauer effect in ruby. Physical
- 352 Review Letters, 27, 323-326.
- 353 Weinstein, B.A. (1986) Ruby thermometer for cryobaric diamond-anvil cell. Review of Scientific
- 354 Instruments, 57, 910-913.
- 355 Winter, N.W., Ross, M. and Pitzer, R.M. (1990) Calculation of the pressure shifts of the quartet
- 356 states of ruby. Journal of Physical Chemistry, 94, 1172-1174.
- 357 Wunder, S.L. and Schoen, P.E. (1981) Pressure measurement at high temperatures in the diamond
- anvil cell. Journal of Applied Physics, 52, 3772-3775.
- 359 Xie, Y.L. (2004) High temperature high pressure study of the R1 ruby fluorescence line, 41-46 p.
- 360 Master. thesis, Jilin University, Changchun.
- 361 Yamaoka, S., Shimomura, O. and Fukunaga, O. (1980) Simultaneous measurements of
- 362 temperature and pressure by the ruby fluorescence line. Proceedings of the Japan Academy.
- 363 Ser. B: Physical and Biological Sciences, 56, 103-107.
- 364 Yen, J. and Nicol, M. (1992) Temperature dependence of the ruby luminescence method for
- 365 masuring high pressure. Journal of Applied Physics, 72, 5535-5538.
- 366

367 Tables

368

Table 1. Weight percentages of major and trace elements in the ruby samples.

Sample No.	1006	4	3	2	5	7	8
Cr ₂ O ₃	0.022*	0.068	0.211	0.279	0.556	1.221	1.676
Fe ₂ O ₃	-	0.002	0.001	0.002	0.011	0.024	0.004
TiO ₂	-	0.002	0.005	0.003	0.005	0.039	0.043
NiO	-	0.006	0.006	0.001	0.007	0.004	0.011
MnO	-	0.008	0.012	0.002	0.015	0.005	0.000
SiO ₂	-	0.012	0.096	0.016	0.016	0.017	0.033
Na ₂ O	-	0.000	0.019	0.008	0.002	0.001	0.000
MgO	-	0.000	0.000	0.000	0.013	0.001	0.000
CaO	-	0.003	0.001	0.000	0.010	0.003	0.000
K ₂ O	-	0.004	0.003	0.010	0.011	0.003	0.004
Al_2O_3	-	99.796	98.541	99.524	98.737	97.122	98.029
Total	-	99.904	98.895	99.845	99.396	98.440	99.800

 $*Cr_2O_3$ wt% of sample #1006 was measured by AAS, and the other data were measured by electron microprobe.

Table 2. Relative intensity ratios of R_2 to R_1 at room temperature and atmospheric pressure $((I_2/I_1)_0)$

and the slopes of the wavenumber shifts of R_1 and R_2 with temperature $(dv_1/dT, dv_2/dT)$ at

5	aunospherie j				
	Sample No.	Cr ₂ O ₃ (wt%)	$(I_2/I_1)_0$	$\mathrm{d}v_l/\mathrm{d}T(\mathrm{cm}^{-1}/\mathrm{K}^{-1})$	$dv_2/dT (cm^{-1}/K^{-1})$
	1006	0.022	0.856 ± 0.003	$\textbf{-0.1574} \pm 0.0011$	-0.1561 ± 0.0015
	4	0.068	0.678 ± 0.011	$\textbf{-0.1533} \pm 0.0010$	-0.1542 ± 0.0010
	3	0.211	0.620 ± 0.012	$\textbf{-0.1530} \pm 0.0008$	-0.1541 ± 0.0012
	2	0.279	0.626 ± 0.007	-0.1525 ± 0.0007	-0.1543 ± 0.0014

 0.651 ± 0.009

 0.611 ± 0.001

 0.748 ± 0.005

375 atmospheric pressure for ruby samples with different Cr₂O₃ contents

376

5

7

8

Table 3. Calculated values of the electron-phonon coupling constant *a* for ruby samples with

378 different contents of Cr_2O_3 ($T_D = 760$ K, T = 298.15 K).

0.556

1.221

1.676

Sample No.	1006	4	3	2	5	7	8
Cr ₂ O ₃ (wt%)	0.022	0.068	0.211	0.279	0.556	1.221	1.676
$a (\mathrm{cm}^{-1})$	257.2 ± 1.6	250.4 ± 1.5	250.7 ± 1.1	250.7 ± 1.0	248.2 ± 1.1	245.4 ± 1.8	244.3 ± 1.6

 $\textbf{-0.1519} \pm 0.0008$

 -0.1501 ± 0.0012

 $\textbf{-}0.1495 \pm 0.0011$

 -0.1522 ± 0.0014

 -0.1494 ± 0.0021

 -0.1560 ± 0.0013

³⁷²

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5110

Figures 380

382 Figure 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5110

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5110

2/4

411 Figure captions

412

- 413 Figure 1. (a) Fluorescence spectra of rubies at 298 K and atmospheric pressure, and (b) Raman
- 414 spectra of rubies at room temperature and atmospheric pressure.
- 415 Figure 2. Wavenumber values of R lines at room temperature and atmospheric pressure versus
- 416 Cr_2O_3 contents in ruby samples, (a) line R_1 and (b) line R_2 .
- 417 Figure 3. Slopes of the wavenumber shift of (a) line R_1 and (b) line R_2 with temperature at

418 atmospheric pressure versus the Cr₂O₃ contents of different ruby samples, and slopes of the

- 419 wavenumber shifts of (c) line R_1 and (d) line R_2 with temperature versus the relative intensity
- 420 ratios of R₂ to R₁ for different ruby samples at room temperature and atmospheric pressure.
- 421 Figure 4. Pressure differences between the reference pressure calibrated using ruby sample #5 and
- 422 those calibrated using the other ruby samples with different Cr_2O_3 contents at 2.0 GPa and room 423 temperature.
- 1
- 424 Figure 5. Electronic densities of state (DOS) of the Cr^{3+} 3d band in rubies with different Cr_2O_3
- 425 contents at room temperature and atmospheric pressure.
- 426 Figure 6. Electronic densities of state (DOS) of the Cr^{3+} 3d band in rubies with different Cr_2O_3
- 427 contents at room temperature and 10 GPa.
- 428 Figure 7. Variations of the full width at half maximum (FWHM) of ruby R lines with Cr₂O₃
- 429 contents in different ruby samples at atmospheric pressure and room temperature.
- 430 **Figure 8.** Variations of the full width at half maximum of the R₁ line (*FWHM*₁) of different ruby
- 431 samples at atmospheric pressure and a temperature range of 298-600 K.
- 432
- 433

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5110

Figure 9. (a) Variations of the relative intensity ratio of R_2 to $R_1 (I_2/I_1)$ at temperatures from 100-600 K at atmospheric pressure for different ruby samples. (b) Plot of the temperatures at which the maximum I_2/I_1 values, $(I_2/I_1)_{max}$ occurred at ambient pressure versus the Cr_2O_3 contents of the ruby samples. (c) Relationship between $(I_2/I_1)_{max}$ at atmospheric pressure and $(I_2/I_1)_0$, the relative intensity ratio of R_2 to R_1 at room temperature and atmospheric pressure, for ruby samples with different Cr_2O_3 contents.