1	Revision 2
2	
3	
4	
5	
6	$Yusupovite, Na_2Zr(Si_6O_{15})(H_2O)_3, a \ new \ mineral \ species \ from \ the \ Darai-Pioz \ alkaline \ massif \ and \ its \ and \ and \ its \ and \ its \ and \ an$
7	implications as a new microporous filter for large ions
8	
9	Atali A. Agakhanov ^{1,2} , Leonid A. Pautov ² , Vladimir Y. Karpenko ² , Elena Sokolova ^{3,*} , Yassir A. Abdu ³ ,
10	Frank C. Hawthorne ³ , Igor V. Pekov ⁴ and Oleg I. Siidra ¹
11	
12	¹ Department of Crystallography, St. Petersburg State University, University Embankment 7/9,
13	119034 St. Petersburg, Russia
14	² Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskii Pr-kt, 18-2,
15	119071 Moscow, Russia
16	³ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba,
17	Canada R3T2N2
18	⁴ Department of Mineralogy, Moscow State University, Vorob'ovy Gory, 119991 Moscow, Russia
19	
20	
21	* Corresponding author, email: elena_sokolova@umanitoba.ca
22	
23	

24 ABSTRACT

25 Yusupovite, ideally Na₂Zr(Si₆O₁₅)(H₂O)₃, is a new silicate mineral from the Darai-Pioz alkaline 26 massif in the upper reaches of the Darai-Pioz river, area of the joint Turkestansky, Zeravshansky and 27 Alaisky ridges, Tajikistan. Yusupovite was found in a pegmatite composed mainly of reedmergnerite, 28 aegirine, microcline and polylithionite. It occurs as prismatic grains about 2 mm in size embedded in 29 reedmergnerite; associated minerals are quartz, pectolite, zeravshanite, mendeleevite-(Ce), fluorite, 30 leucosphenite, a pyrochlore-group mineral, neptunite, telyushenkoite, moskvinite-(Y) and shibkovite. 31 Yusupovite is colorless, transparent with a white streak, has a vitreous luster, and does not fluoresce 32 under ultraviolet light. Cleavage is perfect on {110}, parting was not observed. Mohs hardness is 5. 33 Yusupovite is brittle with a splintery fracture. The measured and calculated densities are 2.69(2) and 34 2.713 g/cm³, respectively. Yusupovite is optically biaxial (+) with refractive indices ($\lambda = 589$ nm) $\alpha =$ 35 1.563(2), $\beta = 1.565(2)$, $\gamma = 1.577(2)$; $2V_{meas.} = 42(3)^{\circ}$, $2V_{calc.} = 45^{\circ}$, strong dispersion: r > v. Yusupovite is monoclinic, C2/m, a 14.5975(4), b 14.1100(4), c 14.4394(4) Å, β 90.0399(4)°, V 2974.1(3) Å³. The six 36 37 strongest reflections in the X-ray powder diffraction data [d(A), I, (h k l)] are 7.05, 100, (020); 3.24, 96, 38 (420); 3.10, 69, $(241, \overline{2}41)$; 5.13, 53, $(202, \overline{2}02)$; 6.51, 42, $(201, \overline{2}01)$; 3.17, 34, (042). The chemical 39 composition (electron microprobe) is: Nb₂O₅ 0.39, SiO₂ 58.84, ZrO2 16.55, HfO₂ 0.30, FeO 0.01, Y₂O₃ 40 3.05, Cs₂O 2.58, K₂O 0.95, Na₂O 8.91, H₂O_{calc}, 7.40, total 98.98 wt%, with H₂O calculated from structure 41 refinement. The empirical formula (based on 17.5 O apfu) is $(Na_{1.76}K_{0.12}Cs_{0.11})_{\Sigma 1.99}$ 42 $(Zr_{0.82}Y_{0.17}Nb_{0.02}Hf_{0.01})_{\Sigma_{1.02}}(Si_{6.01}O_{14.98})(H_2O)_{2.52}, Z = 8$. The crystal structure of yusupovite was refined to 43 $R_1 = 3.51\%$ based on 4428 observed reflections. In the crystal structure, there are six Si sites occupied by 44 Si, two M sites occupied mainly by Zr with minor Y and Hf. Si tetrahedra form an epididymite Si₆O₁₅ 45 ribbon along [010]. Epididymite ribbons and Zr-dominant M octahedra share common vertices to form a 46 heteropolyhedral Si-Zr-O framework. There are six interstitial sites partly occupied by alkali cations Na, 47 K and Cs. The three [7]-coordinated Na sites are occupied by Na at 95, 84 and 78%. The three A sites are 48 occupied by K and Cs at 12, 18 and 16%. There are 10 W sites occupied by H₂O groups at 18-84%. Due

49	to (K,Cs), Na and H ₂ O disorder, the symmetry of yusupovite decreases from orthorhombic, space group
50	Pbcm (elpidite), to monoclinic, space group $C2/m$, and the b unit-cell parameter of yusupovite is doubled
51	compared to the corresponding cell parameter in elpidite, $b_{yus} = 2a_{elp}$. Yusupovite, ideally
52	Na ₂ Zr(Si ₆ O ₁₅)(H ₂ O) ₃ , is a dimorph of elpidite, Na ₂ Zr(Si ₆ O ₁₅)(H ₂ O) ₃ .
53	
54	Keywords: Yusupovite, new mineral species, silicate, Darai-Pioz massif, Tajikistan, electron microprobe
55	analysis, X-ray powder diffraction data, elpidite, crystal structure, alkaline pegmatite
56	

57 Introduction

Yusupovite is a new mineral found in the moraine of the Darai-Pioz glacier in the upper reaches of the Darai-Pioz River, the Alaisky mountain ridge, Tien-Shan Mountains, Tajikistan. The new mineral species and its name were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2014-022). The mineral is named *yusupovite* (Cyrillic: *rocynosum*) after Rustam Gumirovich Yusupov (born 1935), a prominent Uzbek mineralogist and a curator at the Geological Museum, Tashkent, Uzbekistan. The holotype specimen has been deposited in the mineral collection of the Fersman Mineralogical Museum, Moscow, Russia, registration # 4543/1. We describe here this new Zr silicate and report its crystal structure.

REVIEW OF THE RELEVANT LITERATURE

Yusupovite, ideally $Na_2Zr(Si_6O_{15})(H_2O)_3$, is a dimorph of elpidite, $Na_2Zr(Si_6O_{15})(H_2O)_3$ (Table 1). The crystal structure of elpidite was first solved on a heavily twinned crystal from Lovozero, Kola Peninsula, Russia, by Neronova and Belov (1963): space group *Pbmm*, a = 7.4, b = 14.4, c = 7.05 Å. They described the Zr-Si-O heteropolyhedral framework which consists of epididymite Si_6O_{15} ribbons [described in epididymite by Pobedimskaya and Belov (1960)] connected by isolated Zr octahedra with Na atoms and H_2O groups occupying the interstitial space within the Zr-Si-O framework, and gave the formula of elpidite as $Na_2Zr(Si_6O_{15})\cdot 3H_2O$, Z = 2. Dissatisfied with their results, Neronova and Belov (1965) lowered the symmetry to P2cm in order to explain certain features of the electron-density map. Cannillo et al. (1973) refined the crystal structure of elpidite on perfect single crystals from Mt. St. Hilaire, Quebec, Canada, in space group Pbcm, a = 7.14, b = 14.68, c = 14.65 Å, Z = 4, and found an overall agreement with the topology of the structure of Neronova and Belov (1963). Grigor'eva et al. (2011) refined the crystal structures of elpidite from Khan Bongo (Mongolia), which is in accord with Cannillo et al. (1973), and its cation-exchanged forms that were obtained on heating up to 90 and 150°C. They reported orthorhombic symmetry for all high-temperature Rb- and K-exchanged forms of elpidite: the same unit-cell parameters and space group Pbcm for the Rb-exchanged form (90°C) and doubling of

the *a* unit-cell parameter and space group Cmca for the Rb-exchanged form (150°C) and two K-exchanged forms (90 and 150°C). For the cation-exchanged forms of elpidite, they reported depletion of Na at the Na sites and drastic decrease in the water content due to the occurrence of K and Rb at the W (= H_2O) sites of elpidite.

SAMPLE PROVENANCE

Yusupovite was found in rock samples from the Upper Darai-Pioz alkaline massif collected in the moraine of the Darai-Pioz glacier, located in the Rasht (formerly Garm) district, Tajikistan. The massif is situated near the watershed on the southern slope of the Alaisky mountain range (N 39° 27′, E 70° 43′). In plan, the Darai-Pioz massif is equant and covers an area of ~16 km². The massif has a multiphase structure; the root is granite and the central part of the massif is composed of aegirine quartz-bearing and quartz-free syenites. A small stock of cancrinite syenite occurs in the southwestern part of the massif. In the massif, there is a variety of granitic, alkaline granitic and syenitic pegmatites, various metasomatic rocks (albitites, fenites) and carbonatites. Abundant and various mineralization of Cs, Li, B, Zr, REE, Ti, and Ba is related to the rocks of the massif. The most complete description of the geology and mineralogy of the massif was given by Dusmatov (1968, 1971). Specific details of the mineralogy and geochemistry of the Darai-Pioz massif have been discussed in numerous publications (Ganzeyev et al. 1969; Semenov and Dusmatov 1975; Efimov 1983; Belakovskiy 1991; Grew et al. 1993; Reguir et al. 1999).

In the Darai-Pioz massif, seven Cs minerals have been described to date (excluding Cs-bearing yusupovite): kupletskite-(Cs) (Yefimov et al. 1971), telyushenkoite (Agakhanov et al. 2003), sokolovaite (Pautov et al. 2006), zeravshanite (Pautov et al. 2004), senkevichite (Agakhanov et al. 2005), kirchhoffite (Agakhanov et al. 2012) and mendeleevite-(Ce) (Pautov et al. 2013). Yusupovite was found in a pegmatite composed mainly of reedmergnerite, aegirine, microcline and polylithionite. Other associated minerals are quartz, pectolite, fluorite, zeravshanite, mendeleevite-(Ce), leucosphenite, a pyrochlore-group mineral, neptunite, telyushenkoite, moskvinite-(Y) and shibkovite.

PHYSICAL PROPERTIES

Yusupovite occurs as colorless prismatic grains about 2 mm in size embedded in reedmergnerite (Figs. 1, 2). It is transparent with a white streak and vitreous luster, and does not fluoresce under ultraviolet light. It is brittle with a splintery fracture. It has perfect cleavage on {110}, parting was not observed. Mohs hardness is 5. The measured (by flotation in CHBr₃/ C_3 H₇ON) and calculated densities are 2.69(2) and 2.713 g/cm³, respectively. Yusupovite is optically biaxial (+) with refractive indices (λ = 589 nm) α = 1.563(2), β = 1.565(2), γ = 1.577(2); 2V_{meas.} = 42(3)°, 2V_{calc.} = 45°. Dispersion is strong: r > v. A Gladstone-Dale calculation gives a compatibility index of 0.017, which is rated as superior.

CHEMICAL COMPOSITION

Crystals were analyzed with a JEOL Superprobe JCXA-733 electron microprobe operating in energy-dispersive mode with an accelerating voltage of 20 kV, a beam current of 2 nA, and a beam diameter of 5 μ m. The following standards were used: microcline USNM143966 (Si, K), omphacite USNM110607 (Na), LiNbO₃ (Nb), ZrO₂ (Zr), HfO₂ (Hf), ilmenite USNM96189 (Fe), Y₂O₃ (Y) and CsHo(PO₃)₄ (Cs). The data were reduced and corrected using the *PAP* method of Pouchou and Pichoir (1985). Table 2 gives the chemical composition (which is the mean of ten point analyses) and the empirical formula based on 17.5 O atoms per formula unit (apfu), the content of H₂O was calculated from structure refinement. The empirical formula is $(Na_{1.76}K_{0.12}Cs_{0.11})_{\Sigma 1.99}(Zr_{0.82}Y_{0.17}Nb_{0.02}Hf_{0.01})_{\Sigma 1.02}(Si_{6.01}O_{14.98})$ (H₂O)_{2.52}, Z = 8; the ideal formula is $Na_2Zr(Si_6O_{15})(H_2O)_3$.

INFRARED SPECTROSCOPY

The FTIR spectrum of a randomly oriented single crystal of yusupovite was collected using a Bruker Hyperion 2000 IR microscope equipped with a liquid-nitrogen-cooled MCT detector. Data over the range 4000-650 cm⁻¹ were obtained by averaging 100 scans with a resolution of 4 cm⁻¹. Base-line correction was done using OPUS spectroscopic software (Bruker Optic GmbH). In the principal OH-stretching region (4000-3000 cm⁻¹) (Fig. 3a), there is a peak at 3615 cm⁻¹ and a broad peak (with fine

structure) centered at \sim 3470 cm⁻¹; both are attributed to O-H stretching vibrations of H₂O groups in the structure of yusupovite. The peak at 1635 cm⁻¹, with shoulders at \sim 1660 and 1610 cm⁻¹, is due to H₂O bending vibrations. The OH-stretching region of the yusupovite spectrum (Fig. 3a) is somewhat similar to that of partially dehydrated elpidite (Zubkova et al. 2011) and Rb-exchanged elpidite (Grigor'eva et al. 2011). They all show an additional peak at \sim 3600 cm⁻¹, not seen in the FTIR spectrum of elpidite which shows a triplet at 3551, 3505, and 3453 cm⁻¹ (Grigor'eva et al. 2011). This peak may be assigned to an H₂O group with weaker hydrogen bonds than those of the H₂O groups in elpidite (Zubkova et al. 2011). Furthermore, the spectra of yusupovite, partially-dehydrated elpidite and Rb-exhanged elpidite generally show a reduction in OH-stretching peak resolution compared to that of elpidite, and this is ascribed to dehydration during ion exchange (Grigor'eva et al. 2011). For yusupovite, this decrease in resolution could be due to disorder and depletion of H₂O at the W sites as a result of the occurrence of K and Cs cations at the A sites.

The IR spectrum of yusupovite in the range 1500 – 400 cm⁻¹ was collected from the powder in KBr microtablet using a double-beam Specord 75-IR Carl Zeiss spectrometer (Fig. 3b). The spectrum is similar to that of elpidite but has lower peak resolution compared to that of elpidite. The strongest absorbance is observed in the region of the Si-O stretching vibrations: a broad peak at 1032 cm⁻¹ and a poorly resolved doublet at 1130 and 1150 cm⁻¹. Several peaks about 790 cm⁻¹ can be attributed to Zr-O stretching vibrations in ZrO₆ octahedra, and poorly resolved peaks at 652, 642 and 430 cm⁻¹ to bending vibrations of SiO₄ groups.

X-RAY POWDER DIFFRACTION

X-ray powder-diffraction data were collected with a Rigaku R-AXIS Rapid II single-crystal diffractometer ($CoK\alpha$) equipped with a cylindrical image plate detector and using Debye-Sherrer geometry (D=127.4 mm). The X-ray powder-diffraction data for yusupovite are given in Table 3. Unit cell parameters refined from the powder data are as follows: a=14.5981(5), b=14.1077(6), c=14.4455(6) Å, $\beta=90.169(5)^\circ$, V=2975.0(4) Å³.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

CRYSTAL STRUCTURE

Data collection and structure refinement

Single-crystal X-ray data for yusupovite were collected with a Bruker APEX II ULTRA diffractometer with a rotating-anode generator ($MoK\alpha$), multilayer optics and an APEX II 4K CCD detector. A total of 17349 reflections was measured out to 60° 2θ using 30 s per 0.2° frame. Unit-cell dimensions were determined by least-squares refinement of 9572 reflections with $I > 10\sigma I$, and are given in Table 4, together with other miscellaneous information on data collection and structure refinement. An absorption correction was done using the SADABS program (Sheldrick 2008). All calculations were done with the Bruker SHELXTL version 5.1 system of programs (Sheldrick 2008). The diffraction data were merged in four different ways to test the symmetry of the data. For orthorhombic symmetry, R_{int} (the measure of agreement of symmetry-equivalent reflections) is 6.1%. For monoclinic symmetry, R_{int} is 6.1, 0.91 and 6.1% for the three different possible choices of the unique monoclinic axis. The data thus indicate monoclinic symmetry with the unique monoclinic axis along [010] (see Table 4), and systematic absences in the single-crystal X-ray diffraction data are consistent with the space group C2/m. The crystal structure was refined in space group C2/m to an R_1 index of 3.51%. Scattering curves for neutral atoms were taken from the International Tables for Crystallography (Wilson 1992). The site occupancies for the M, Na, A and W sites were refined with the scattering parameters of Zr, Na, Cs and O. Final atom coordinates and anisotropic-displacement parameters are listed in Table 5, selected interatomic distances and framework angles are given in Table 6, and refined site-scattering and assigned site-population for selected cation sites values are given in Table 7. The CIF is on deposit and available as listed below.¹

183

¹ Deposit item AM-XX-XXX, CIF, is stored on the MSA web site and available via the American Mineralogist Table of Contents. Find the article in the table of contents at GSW (ammin.geoscienceworld.org) or MSA (www.minsocam.org), and then click on the deposit link.

Structure description

In the crystal structure of yusupovite, there are six Si sites occupied by Si, tetrahedrally coordinated by O atoms with <Si-O> = 1.613 Å (Tables 5, 6). There are two M sites occupied mainly by Zr with minor Y and Hf; ideally they give 1 Zr apfu (Table 7). The M(1,2) sites are octahedrally coordinated by O atoms, with <M-O> = 2.114 and 2.103 Å, respectively. Si tetrahedra share vertices to form an epididymite Si₆O₁₅ ribbon along [010]. Epididymite ribbons and Zr-dominant *M* octahedra share common vertices to form a heteropolyhedral framework (Figs. 4a, 4b).

There are six interstitial sites occupied by the alkali cations Na, K and Cs. There are three [7]-coordinated Na sites partly occupied by Na. The Na1 site is occupied by Na at 95% and is coordinated by O atoms, with <Na1-O> = 2.567 Å (Tables 6, 7). The Na2 and Na3 sites are occupied by Na at 84 and 78%, respectively, and they are coordinated by O atoms and H₂O groups which occur at the W sites, with <Na2- $\varphi>$ = 2.555 and <Na3- $\varphi>$ = 2.575 Å ($\varphi=$ O, H₂O). These three Na sites give Na_{1.76} $\square_{0.24}$ or ideally 2 Na apfu. There are three A sites partly occupied by K and Cs (c.f. analogous sites in Rb-exchanged elpidite, 90°C). The A sites occur at short distances from the Na sites. A1-Na2 = 2.648, A2-Na3 = 1.617 and A3-Na3 = 2.637 Å (Table 6), and hence the A and Na sites cannot be locally occupied. The A1, A2 and A3 sites are occupied by (K + Cs) at 12, 18 and 16%, respectively (Table 7). The A1-A3 sites give $K_{0.12}Cs_{0.11}$ apfu. Ideally, the composition of the A1-A3 sites is $\square_{1.5}$ pfu. The Na and A sites sum to Na₂ + $\square_{1.5}$ = Na₂ apfu. There are 10 W sites occupied by H₂O groups at 18-84% (Table 5); the W1-W10 sites give (H₂O)_{2.52} pfu, ideally (H₂O)₃ pfu.

COMPARISON OF YUSUPOVITE AND ELPIDITE

The crystal structure of yusupovite, ideally Na₂Zr(Si₆O₁₅)(H₂O)₃, monoclinic, space group *C*2/*m*, is a superstructure of elpidite, Na₂Zr(Si₆O₁₅)(H₂O)₃, orthorhombic, space group *Pbcm* (Figs. 4c, 4d; Table 1). In yusupovite, (1) the Na2 site of elpidite (Figs. 4c, 4d) is split into two sites, Na2 and Na3 (Figs. 4a, 4b), and (2) the two W1 and W2 sites (fully occupied by H₂O groups) of elpidite (Cannillo et al. 1973) are split into ten W1-W10 sites partly occupied by H₂O groups (Table 5). In the crystal structure of

yusupovite, the occurrence of the interstitial alkali cations K and Cs at the A sites results in the disorder and depletion of Na at the Na sites and disorder and depletion of H₂O at the W sites.

Due to the (K,Cs), Na and H₂O disorder, the symmetry of yusupovite decreases from orthorhombic, space group Pbcm (elpidite) to monoclinic, space group C2/m and the b cell parameter of yusupovite is doubled when compared to the corresponding cell parameter in elpidite, $b_{yus} = 2a_{elp}$. We conclude that yusupovite, ideally Na₂Zr(Si₆O₁₅)(H₂O)₃, is a dimorph of elpidite, Na₂Zr(Si₆O₁₅)(H₂O)₃.

It is tempting to suggest that the $(Na,Cs)_2Zr(Si_6O_{15})(H_2O)_3$ structure undergoes a compositionally induced ferroelastic transition with only minor incorporation of Cs into the elpidite structure.

219 IMPLICATIONS

210

211

212

213

214

215

216

217

218

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Yusupovite and elpidite are heteropolyhedral-framework structures, materials that have been the subject of extensive examination over the last fifteen years because of their potential use as industrial microporous materials; they have great potential use as ion-exchange materials and highly selective molecular sieves, catalysts and ion conductors (Krivovichev 2012). Of particular interest with regard to yusupovite are the ion-exchange experiments of Grigor'eva et al. (2011) on elpidite. They showed that elpidite, Na₂Zr(Si₆O₁₅)(H₂O)₃, easily exchanges Na for K and Rb at relatively low temperature (90 and 150°C) in aqueous solutions enriched in K and Rb. Detailed work by Zubkova et al. (2011) showed that the structure of elpidite contracts considerably on heating-induced dehydration, accompanied by doubling of the a cell-dimension. The chemical composition of yusupovite is characterised by the presence of a small amount of Cs₂O: 2.58 wt%, 0.11 apfu. Obviously the elpidite structure can accommodate large alkali cations (K, Rb, Cs) at low temperature, making it an attractive potential atomic-scale container for these elements, particularly for low-temperature waste-water filtration (Popa and Pavela 2012). This capability seems of obvious significance to the potential encapsulation of ¹³⁷Cs from radiogenic waste. The framework structure of elpidite contracts on dehydration at fairly modest temperature ($\leq 300^{\circ}$ C; Zubkova et al. 2011), suggesting that dehydration of Cs-exchanged elpidite may help "seal" the exchanged Cs in the contracted dehydrated structure.

237 ACKNOWLEDGEMENTS

We are grateful to P. Bayliss for useful comments, an anonymous reviewer for comments on CIF, and Associate Editor B. Hofmann for handling the manuscript. We thank M.A. Cooper for collection of the single-crystal X-ray data for yusupovite. AAA and OIS acknowledge financial support by the St. Petersburg State University internal grant 3.50.2099.2013, AAA, LAP and VYK acknowledge financial support by the grant 12-05-00911-a from the Russian Foundation for Basic Research, and IVP acknowledges financial support by the grant 13-05-12021_ofi_m from the Russian Foundation for Basic Research. This work was also supported by a Canada Research Chair in Crystallography and Mineralogy and by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada and by Innovation Grants from the Canada Foundation for Innovation to FCH.

248	REFERENCES
249	Agakhanov, A.A., Pautov, L.A., Belakovskii, D.I., Sokolova, E., and Hawthorne, F.C. (2003)
250	Telyushenkoite, $CsNa_6[Be_2(Si,A1,Zn)_{18}O_{39}F_2]$, a new cesium mineral of the leifite group. New
251	Data on Minerals, 38, 5-8.
252	Agakhanov, A.A., Pautov L.A., Uvarova, Yu.A., Sokolova E.V., Hawthorne, F.C., and Karpenko, V.Yu.
253	(2005) Senkevichite, CsKNaCa ₂ TiO[Si ₇ O ₁₈ (OH)], a new mineral. New Data on Minerals, 40, 17-
254	22.
255	Agakhanov, A.A., Pautov, L.A., Karpenko, V.Yu., Sokolova, E., and Hawthorne, F.C. (2012)
256	Kirchhoffite, CsBSi ₂ O ₆ , a new mineral from the Darai-Pioz alkaline massif, Tajikistan:
257	description and crystal structure. The Canadian Mineralogist, 50, 523-529.
258	Belakovskiy, D.I. (1991) Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans. Lapis,
259	16(12), 42-48.
260	Cannillo, E., Rossi, G., and Ungaretti, L. (1973) The crystal structure of elpidite. American Mineralogist,
261	58, 106-109.
262	Dusmatov, V.D. (1968) On geochemistry and mineralogy in alkaline rocks (Southern Tien-Shan). 2 nd
263	Republican scientific conference of Tajikskoi SSR, Dushanbe, Abstracts, 147-148 (in Russian).
264	— (1971) Mineralogy of the Darai-Pioz alkaline massif (southern Tien-Shan), 18 p. Extended abstract of
265	PhD dissertation. Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements
266	Moscow (in Russian).
267	Efimov, A.F. (1983) Typomorphism of Rock-Forming Melanocratic Minerals of Alkaline Rocks, 256 p.
268	Nauka, Moscow (in Russian).
269	Ganzeyev, A.A., Efimov, A.F., and Semenova, N.G. (1969) Isomorphism of alkali elements in the
270	astrophyllite-group minerals. Geokhimiya, 1969(4), 235-240 (in Russian).
271	Grew, E.S., Belakovskiy, D.I., Fleet, M.E., Yates, M.G., McGee, J.J., and Marquez, N. (1993)
272	Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien-
273	Shan, Tajikistan. European Journal of Mineralogy, 5, 971-984.

274	Grigor'eva, A.A., Zubkova, N.V., Pekov, I.V., Kolitsch, U., Pushcharovsky, D.Y., Vigasina, M.F.,
275	Giester, G., Dordevic, T., Tillmanns, E., and Chukanov, N.V. (2011) Crystal chemistry of elpidite
276	from Khan Bogdo (Mongolia) and its K- and Rb-exchanged forms. Crystallography Reports, 56,
277	832-841.
278	Krivovichev, S.V., Ed. (2012) Minerals as Advanced Materials II, 427 p. Springer Verlag.
279	Neronova, N.N., and Belov, N.V. (1963) The crystal structure of elpidite. Dimorphism of dimetasilicate
280	radicals. Doklady Akademii Nauk SSSR, 150(3), 642-645 (in Russian).
281	— (1965) Crystal structure of elpidite, Na ₂ Zr[Si ₆ O ₁₅]·3H ₂ O. Soviet Physics - Crystallography, 9, 700-705.
282	Pautov, L.A., Agakhanov, A.A., Uvarova, Y.A., Sokolova, E.V., and Hawthorne, F.C. (2004)
283	Zeravshanite, Cs ₄ Na ₂ Zr ₃ (Si ₁₈ O ₄₅)(H ₂ O) ₂ , new cesium mineral from Dara-i-Pioz massif
284	(Tajikistan). New Data on Minerals, 39, 20-25.
285	$Pautov,L.A.,Agakhanov.A.A.,andBekenova,G.K.(2006)Sokolova iteCsLi_2AlSi_4O_{10}F_2\text{ - a new}$
286	mineral species of the mica group. New Data on Minerals, 41, 5-13.
287	Pautov, L.A., Agakhanov, A.A., Karpenko, V.Yu., Sokolova, E., and Hawthorne, F.C. (2013)
288	$Mendeleevite-(Ce), (Cs,\square)_6(\square,Cs)_6(\square,K)_6(REE,Ca,\square)_{30}(Si_{70}O_{175})(H_2O,OH,F,\square)_{35} \colon a \text{ new}$
289	mineral from the Darai-Pioz massif, Tajikistan. Doklady Earth Sciences, 452(2), 1023-1026.
290	Pobedimskaya, E.A., and Belov, N.V. (1960) The crystal structure of epididymite $NaBeSi_3O_7(OH)$: a new
291	type of (Si_6O_{15}) chain. Zhurnal Strukturnoi Khimii, $1(1)$, $51-63$ (in Russian).
292	Popa, K., and Pavela, C.C. (2012) Radioactive wastewaters purification using titanosilicates materials:
293	State of the art and perspectives. Desalination, 293, 78-86.
294	Pouchou, J.L., and Pichoir, F. (1985) "PAP" ($\phi \rho Z$) procedure for improved quantitative microanalysis. In
295	J.T. Armstrong, Ed., Microbeam Analysis, p. 104-106. San Francisco Press, California.
296	Reguir, E.P., Chakhmouradian, A.R., and Evdokimov, M.D. (1999) The mineralogy of a unique
297	baratovite- and miserite-bearing quartz – albite – aegirine rock from the Dara-i-Pioz complex,
298	northern Tajikistan. The Canadian Mineralogist, 37, 1369-1384.

299	Semenov, E.I., and Dusmatov, V.D. (1975) On mineralogy of the Darat-Ploz alkaline massif (Central
300	Tajikistan). Doklady Akademii Nauk Tajikskoi SSR, 18(11), 39-41 (in Russian).
301	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
302	Tikhonenkov, I.P., Semenov, E.I., and Kazakova, M.E. (1957) The first finding of elpidite in the Soviet
303	Union. Doklady Akademii Nauk SSSR, 114(5), 1101-1103 (in Russian).
304	Wilson, A.J.C., Ed. (1992) International Tables for Crystallography. Volume C: Mathematical, physical
305	and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.
306	Yefimov, A.F., Dusmatov, V.D., Ganzeyev, A.A., and Katayeva, Z.T. (1971) Cesium kupletskite, a new
307	mineral. Doklady of the Academy of Sciences U.S.S.R., Earth Sciences, 197, 140-143.
308	Zubkova, N.V., Ksenofontov, D.A., Kabalov, Yu.K., Chukanov, N.V., Nedel'ko, V.V., Pekov, I.V., and
309	Pushcharovsky, D.Yu. (2011) Dehydration-induced structural transformations of the microporous
310	zirconosilicate elpidite. Inorganic Materials, 47(5), 506-512.
311	
312	
313	

)14	FIGURE CAPTIONS
315	Figure 1. BSE image of a (broken) crystal of yusupovite (yus) cemented by quartz (Q), with
316	zeravshanite (zer), reedmergnerite (reed) and fluorite (flu).
317	
318	Figure 2. BSE image of an intergrowth of yusupovite (white) and quartz (grey), and X-ray maps
319	of the distribution of Si, Na, Zr, Cs and K.
320	
321	Figure 3. The FTIR spectra of a randomly oriented single crystal of yusupovite (4000-1350 cm ⁻¹)
322	(a) and a powder sample of yusupovite $(1500 - 400 \text{ cm}^{-1})$ (b).
323	
324	Figure 4. The crystal structures of yusupovite (a, b) and elpidite (c,d, after Cannillo et al. 1973).
325	Zr and Si polyhedra are green and lilac, Na atoms and H ₂ O groups are shown as blue and red spheres,
326	(K,Cs) atoms at the A sites in yusupovite are shown as yellow spheres. Unit cells are shown with thin
327	black lines.

TABLE 1. Comparison of yusupovite and elpidite

	Yusupovite	Elpidite*
Formula	$Na_2Zr(Si_6O_{15})(H_2O)_3$	Na ₂ Zr(Si ₆ O ₁₅)(H ₂ O) ₃
Symmetry	monoclinic	orthorhombic
Space group	C2/m	Pbcm
a (Å)	14.5975(4) (belp)	7.14(2)
b	14.1100(4) (2 a _{elp})	14.68(1)
С	14.4394(4) (C _{elp})	14.65(1)
α (°)	90	90
β	90.0399(4)	90
γ	90	90
Z	8	4
Strongest reflections in the powder data, $d_{\text{obs.}}(\text{Å})(\text{I})$	7.05(100), 3.24(96) 3.10(69), 5.13(53), 6.51(42), 3.17(34) 2.941(27)	3.271(100), 3.124(90), 7.11(90), 5.18(85), 6.56(85), 2.546(75), 2.965(75)
Colour	colourless	colourless, white
Lustre	vitreous	vitreous
D _{meas.} , g/cm ³	2.69(2)	2.615
D _{calc.} , g/cm ³	2.713	2.573
Hardness (Mohs')	5	5
Optical sign	Biaxial (+)	Biaxial (+)
2 <i>V</i> (°)	42 (3)	84
α	1.563(2)	1.563
β	1.565(2)	1.569
γ	1.577(2)	1.577

^{*} crystallographic data (Cannillo et al. 1973); $D_{\rm calc.}$ (Grigor'eva et al. 2011); powder pattern (PDF-2#50-223); colour, lustre, $D_{\rm meas.}$, hardness and optical properties (Tikhonenkov et al. 1957).

TABLE 2. Chemical analysis and unit formula for yusupovite

		,		,	•
Constituent	Average	Range	Esd.	Unit	formula
		wt.%			apfu
Nb ₂ O ₅	0.39	0.22-0.69	0.13	Nb	0.02
SiO ₂	58.84	57.98-59.45	0.39	Si	6.01
ZrO_2	16.55	15.30-17.35	0.60	Zr	0.82
HfO ₂	0.30	0.07-0.67	0.21	Hf	0.01
FeO	0.01	0.00-0.07	0.03	Fe	0
Y_2O_3	3.05	2.24-3.56	0.38	Υ	0.17
Cs ₂ O	2.58	2.15-3.31	0.41	Cs	0.11
K ₂ O	0.95	0.61-1.31	0.24	K	0.12
Na ₂ O	8.91	8.25-9.51	0.41	Na	1.76
H ₂ O**	7.40			H⁺	5.04
Total	98.98	98.47-99.42			

^{*} the formula was calculated on the basis of 17.50 O apfu, Z = 8.

^{**} H₂O calculated from structure refinement.

TABLE 3. X-ray powder diffraction data for yusupovite

							-	•				
	I	dobs.(Å)	d _{calc.} (Å)	h	k	1	I	dobs.(Å)	d _{calc.} (Å)	h	k	I
	3	8.31	8.30	1	1	1	3	2.120	2.121	1	3	6
	15	7.21	7.22	0	0	2	9	2.074	2.075	$\frac{4}{4}$	4 4	4 4
	100	7.05	7.05	0	2	0	4	2.015	2.016	6 6	0	4
	42	6.51	6.51	$\frac{2}{2}$	0	1 1	7	2.004	2.003	6		
	53	5.13	5.13	$\frac{2}{2}$	0	2	3	1.968	1.970	0	6	4
	19	4.78	4.79	$\frac{2}{2}$	2	1 1	10	1.936	1.938	$\frac{6}{6}$	2 2	4 4
	12	4.15	4.15	$\frac{2}{2}$	2	2	8	1.903	1.905	$\frac{4}{4}$	4 4	5 5
	6	3.88	3.88	$\frac{3}{3}$	1 1	2	4	1.863	1.864	$\frac{3}{3}$	5 5	5 5
	14	3.61	3.61	0	0	4	3	1.825	1.825	8	0	0
	2	3.53	3.53	0	4	0	3	1.803	1.805	0	0	8
	4	3.40	3.40	$\frac{1}{1}$	1 1	4 4	7	1.764	1.764	0	8	0
	96	3.24	3.24	4	2	0	9	1.748	1.749	0	2	8
	34	3.17	3.17	0	4	2	4	1.734	1.735	4 4	6 6	4 4
	69	3.10	3.10	$\frac{2}{2}$	4 4	1 1	2	1.714	1.714	2	8	0
	27	2.941	2.941	$\frac{2}{2}$	2	4 4	2	1.704	1.702	2	2	8
	9	2.907	2.907	2 2	4 4	2 2	7	1.690	1.691	6	6	0
	6	2.838	2.840	$\frac{3}{3}$	1 1	4 4	6	1.681	1.681	0	6	6
	2	2.719	2.719	1	5	1	3	1.663	1.668	2	8	2
	4	2.686	2.686		0	5 5	8	1.580	1.581		4 4	2 2
	3	2.650	2.651	2 2	4 4	3 3	5	1.549	1.549	$\frac{2}{2}$	8 8	4 4
	4	2.567	2.265	4	0	4 4	3	1.478	1.478	$\frac{8}{8}$	4 4	4 4
	15	2.534	2.535	4	4	0	6	1.453	1.453	$\frac{4}{4}$	8 8	4 4
	11	2.522	2.523	0	4		3	1.430	1.430	10	2	0
	2	2.446	2.446	1	3	5	3	1.420	1.421	$\frac{6}{6}$	8 8	1 1
	7	2.399	2.399	6	0	1 1	2	1.401	1.400	5	1	
	6	2.386	2.386	2	4	4	3	1.388	1.388	$\frac{2}{2}$		10
	5	2.300	2.301	6	2	0	5	1.349	1.349	10	4	0
	5	2.240	2.241	5	1	4	4	1.341	1.340	8	6	4
	4	2.172	2.171	6 6	0	3 3	3	1.315	1.314	$\frac{2}{2}$		10 10
_	5	2.136	2.137	$\frac{2}{2}$	6 6	2 2						
												_

TABLE 4. Miscellaneous re	efinement data* for yusupovite			
a (Å)	14.5975(4)			
b	14.1100(4)			
С	14.4394(4)			
β (°)	90.0399(4)			
$V(A^3)$	2974.1(3)			
Space group	C2/m			
Z	8			
Absorption coefficient (mm ⁻¹)	2.29			
F(000)	2381.6			
$D_{\text{calc.}}$ (g/cm ³)	2.713			
Crystal size (mm)	0.100 x 0.040 x 0.025			
Radiation/monochromator	Mo <i>K</i> α/graphite			
2θ-range for data collection (°)	60.14			
R(int) (%)	0.91			
Reflections collected	17349			
Independent reflections $F_0 > 4\sigma F$	4519 4428			
Refinement method	Full-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_0^2$			
No. of refined parameters	267			
Final R(obs) (%)				
$[F_{\rm o} > 4\sigma F]$	3.46			
R_1	3.51			
wR_2	8.94			
Highest peak, deepest hole (e Å ⁻³)	1.37 -3.44			
Goodness of fit on F ²	1.117			

TABLE 5. Atom coordinates and displacement parameters (\mathring{A}^2) for yusupovite

Atom	Sof (%)*	X	У	Z	<i>U</i> ₁₁	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂	$U_{\rm eq}^{**}$
M1	100	1/4	1/4	1/2	0.00725(14)	0.00838(15)	0.00689(14)	-0.00052(10)	-0.00024(10)	0.00023(10)	0.00751(8)
M2	100	1/4	1/4	0	0.00717(14)	0.00861(15)	0.00707(14)	-0.00066(10)	-0.00020(10)	-0.00039(10)	0.00762(8)
Na1	95	0.26322(10)	0.24852(14)	0.75107(12)	0.0149(6)	0.0579(12)	0.0316(9)	0.0113(7)	-0.0016(6)	-0.0004(6)	0.0348(4)
Na2	84	0.2658(2)	0	0.9641(2)	0.0508(17)	0.0182(12)	0.0571(19)	0	-0.0361(15)	0	0.0421(8)
Na3	78	0.2289(3)	0	0.4604(3)	0.067(2)	0.0198(14)	0.072(2)	0	0.052(2)	0	0.0532(11)
Si1	100	0.40226(5)	0.10964(5)	0.12184(5)	0.0117(3)	0.0082(3)	0.0109(3)	0.0003(2)	-0.0016(2)	-0.0010(2)	0.01024(13)
Si2	100	0.09773(5)	0.10957(5)	0.62292(5)	0.0118(3)	0.0082(3)	0.0105(3)	0.0003(2)	0.0010(2)	0.0012(2)	0.01015(13)
Si3	100	0.11967(5)	0.11179(5)	0.83638(5)	0.0130(3)	0.0071(3)	0.0119(3)	-0.0005(2)	-0.0035(2)	0.0002(2)	0.01068(14)
Si4	100	0.37685(5)	0.11193(5)	0.33527(5)	0.0138(3)	0.0073(3)	0.0120(3)	-0.0007(2)	0.0036(2)	-0.0002(2)	0.01102(14)
Si5	100	0.04951(5)	0.23600(5)	0.14315(5)	0.0087(3)	0.0125(3)	0.0108(3)	0.0005(3)	0.0012(2)	0.0014(2)	0.01065(14)
Si6	100	0.45223(5)	0.23339(5)	0.64091(5)	0.0088(3)	0.0129(3)	0.0107(3)	-0.0000(3)	-0.0015(2)	-0.0018(2)	0.01080(14)
A1	12	0.1546(4)	0	0.1072(5)	0.035(3)	0.0176(17)	0.067(4)	0	0.004(2)	0	0.0400(13)
A2	18	0.1454(3)	0	0.3871(4)	0.0294(16)	0.0308(16)	0.108(4)	0	0.0073(19)	0	0.0562(12)
A3	16	0.3490(4)	0	0.5975(5)	0.052(3)	0.038(2)	0.081(5)	0	-0.004(3)	0	0.05703
01	100	0.42304(16)	0.24713(18)	0.74887(15)	0.0177(10)	0.0377(14)	0.0108(9)	-0.0013(8)	-0.0004(7)	-0.0004(9)	0.0221(5)
O2	100	0.1271(2)	0	0.8579(2)	0.0290(16)	0.0059(12)	0.0271(16)	0	-0.0072(13)	0	0.0207(6)
О3	100	0.32442(14)	0.13087(15)	0.04805(14)	0.0172(9)	0.0170(10)	0.0163(9)	0.0007(8)	-0.0057(7)	-0.0005(8)	0.0169(4)
04	100	0.14180(14)	0.21603(16)	0.08931(15)	0.01459(9)	0.0212(10)	0.0206(10)	0.0006(8)	0.0061(8)	0.0050(8)	0.0187(4)
O5	100	0.36157(15)	0.21273(17)	0.58484(15)	0.0153(9)	0.0245(11)	0.0208(10)	0.0004(9)	-0.0075(8)	-0.0056(8)	0.0202(4)
O6	100	0.3689(2)	0	0.3565(2)	0.0307(17)	0.0065(12)	0.0277(16)	0	0.0054(13)	0	0.0216(6)
07	100	0.4357(2)	0	0.1189(2)	0.0214(14)	0.0074(12)	0.0312(17)	0	-0.0025(12)	0	0.0200(6)
08	100	-0.00603(15)	0.32790(16)	0.10747(16)	0.0175(9)	0.0179(10)	0.0232(10)	0.0022(8)	0.0009(8)	0.0072(8)	0.0195(4)
O9	100	0.01651(15)	0.14345(16)	0.86301(17)	0.0160(9)	0.0168(10)	0.0322(12)	0.0006(9)	0.0023(8)	0.0040(8)	0.0216(4)
O10	100	0.17591(14)	0.13037(15)	0.54935(14)	0.0179(9)	0.0177(10)	0.0162(9)	0.0004(8)	0.0041(7)	-0.0002(8)	0.0173(4)
011	100	0.0636(2)	0	0.6197(2)	0.0213(14)	0.0083(12)	0.0292(16)	0	0.0006(12)	0	0.0196(6)
012	100	0.50610(15)	0.32775(16)	0.60866(16)	0.0176(10)	0.0176(10)	0.0245(11)	0.0015(8)	-0.0015(8)	-0.0073(8)	0.0199(4)
O13	100	0.52078(15)	0.14284(17)	0.63442(17)	0.0181(10)	0.0186(10)	0.0290(11)	-0.0017(9)	-0.0030(8)	0.0048(8)	0.0219(4)
O14	100	0.36265(16)	0.13228(17)	0.22537(14)	0.0251(11)	0.0252(11)	0.0117(9)	-0.0001(8)	0.0019(8)	0.0033(9)	0.0206(4)
O15	100	0.13732(16)	0.13192(17)	0.72676(14)	0.0266(11)	0.0237(11)	0.0117(9)	-0.0009(8)	-0.0021(8)	-0.0026(9)	0.0207(4)
O16	100	0.19624(15)	0.16703(16)	0.89243(15)	0.0211(10)	0.0163(10)	0.0199(10)	-0.0029(8)	-0.0082(8)	-0.0037(8)	0.0191(4)
O17	100	0.29891(15)	0.16735(16)	0.38874(15)	0.0228(10)	0.0157(10)	0.0222(10)	-0.0022(8)	0.0093(8)	0.0039(8)	0.0202(4)

TABLE	5.	continued			
Atom	Sof (%)*	Х	У	Z	${U_{\sf eq}}^{^{**}}$
W1	50	0.5181(7)	0	0.4851(8)	0.05
W2	42	0.3534(6)	0.0249(6)	0.8096(6)	0.05
W3	50	0.3552(8)	0	0.8995(8)	0.05
W4	78	0.1438(5)	0	0.3120(5)	0.05
W5	48	0.3556(8)	0	0.8599(9)	0.05
W6	84	0.1386(6)	0	0.0775(6)	0.05
W7	28	0	0	0	0.05
W8	40	0.3708(11)	0	0.5575(11)	0.05
W9	36	0.3338(14)	0	0.6338(13)	0.05
W10	18	0.173(3)	0.017(3)	0.156(3)	0.05

W = O atom of an H_2O group.

^{*} site-occupancy factor.

^{**} U_{iso} for W(1-10) where $U_{iso} = 0.05 \text{ Å}^2$ (fixed).

TABLE 6.	Selected interatomic distances (Å) and angles (°) in yusupovite*				
M1-O5	2.104(2) x2	M2-O4	2.095(2) x2		
M1-O17	2.110(2) x2	M2-O16a	2.097(2) x2		
M1-O10	2.128(2) x2	M2-O3	2.118(2) x2		
<m1-o></m1-o>	2.114	<m2-o></m2-o>	2.103		
Na1-O1	2.333(3)	Na2-O3c	2.369(3) x2		
Na1-O15	2.491(3)	Na2-W6c	2.48(1)		
Na1-O17b	2.511(3)	Na2-O2	2.539(4)		
Na1-O14b	2.514(3)	Na2-W2	2.596(9) x2		
Na1-O16 Na1-O4b Na1-O5 <na1-o></na1-o>	2.539(3) 2.735(3) 2.843(3) 2.567	Na2-O16 <na2-φ></na2-φ>	2.767(3) x2 2.555		
Na3-O10 Na3-W4 Na3-W8 Na3-O6 Na3-O17 Na3-W9 <na3-φ></na3-φ>	2.374(3) x2 2.477(9) 2.50(2) 2.536(5) 2.773(3) X2 2.93(2) 2.575	Short dista Na2-A1c Na3-A2 Na3-A3	nces 2.648(9) 1.617(7) 2.637(9)		
Si1-O3	1.586(2)	Si2-O10	1.587(2)		
Si1-O8d	1.616(2)	Si2-O12e	1.617(2)		
Si1-O7	1.623(1)	Si2-O11	1.625(1)		
Si1-O14	1.635(2)	Si2-O15	1.637(2)		
<si1-o></si1-o>	1.615	<si2-o></si2-o>	1.617		
Si3-O16	1.585(2)	Si4-O17	1.582(2)		
Si3-O2	1.611(1)	Si4-O6	1.613(1)		
Si3-O9	1.617(2)	Si4-O13f	1.617(3)		
Si3-O15	1.629(2)	Si4-O14	1.626(2)		
<si3-o></si3-o>	1.611	<si4-o></si4-o>	1.610		
Si5-O4	1.581(2)	Si6-O5	1.578(2)		
Si5-O8	1.614(2)	Si6-O12	1.615(2)		
Si5-O9g	1.625(3)	Si6-O13	1.626(3)		
Si5-O1b	1.627(2)	Si6-O1	1.628(2)		
<si5-o></si5-o>	1.612	<si6-o></si6-o>	1.612		
A1-W7	2.736(6)	A2-O10	3.011(5) x2		
A1-W4	2.96(1)	A2-O11h	3.053(5)		
A1-O4	3.065(3) x2	A2-O17	3.255(3) x2		
A1-O3	3.208(5) x2	A2-O12i	3.287(3) x2		
A1-O9	3.249(6) x2	A2-O6	3.212(5)		
A1-O2	3.244(4)	A2-W10	3.37(4) x2		
<a1-o></a1-o>	3.109	A2-O11 <a2-φ></a2-φ>	3.565(7) 3.231		

TABLE 6.	continued		
A3-W1	2.96(1)	Si5b-O1-Si6	150.5(2)
A3-O5	3.013(2) x2	Si3-O2-Si3j	156.5(2)
A3-W2	3.08(1) x2	Si4-O6-Si4j	156.5(2)
A3-O10	3.202(6) x2	Si1-O7-Si1j	144.8(2)
A3-O13	3.261(6) x2	Si1e-O8-Si5	144.4(2)
A3-O6	3.493(8)	Si2-O11-Si2j	144.2(2)
Α3-φ	3.165	Si2d-O12-Si6	144.8(2)
		Si4f-O13-Si6	139.9(2)
		Si1-O14-Si4	144.4(2)
		Si2-O15-Si3	143.2(2)
		<si-o-si></si-o-si>	146.9

 $[\]varphi = O, H_2O.$

Symmetry operators: a: x, y, z-1; b: -x+1/2, -y+1/2, -z+1; c: x, y, z+1; d: x+1/2, -y+1/2, z; e: x-1/2, -y+1/2, z; f: -x+1, y, -z+1; g: -x, y, -z+1; h: -x, -y, -z+1; i: -x+1/2, y-1/2, -z+1; j: x, -y, z

^{*} due to partial occupancy of Na2, A2, A3, W2 and W10 sites and short-range-order (SRO) arrangements between them, [Na2-W2], [A2-W10] and [A3-W2] bond-lengths are taken into account at 50% (see text).

TABLE 7. Refined site-scattering and assigned site-population for *y*usupovite

Site	Refined site-scattering (epfu)	Site population (apfu)	Calculated site-scattering (epfu)	< X-φ> _{obs} * ng (Å)
^[6] M1	20.8(5)	0.41 Zr + 0.08 Y + 0.01 Hf	20.24	2.114
^[6] M2	20.6(5)	0.41 Zr + 0.09 Y	19.93	2.103
ΣM(1,2)	41.4	0.82 Zr + 0.17 Y + 0.01 Hf	40.17	
^[7] Na1	10.45(8)	0.95 Na + 0.05 □	10.45	2.567
^[7] Na2	4.62(6)	0.42 Na + 0.08 □	4.62	2.555
^[7] Na3	4.29(6)	0.39 Na + 0.11 □	4.29	2.575
ΣNa(1-3)	19.39	1.76 Na + 0.24 □	19.36	
^[9] A1	2.26(9)	0.03 Cs + 0.03 K + 0.44 □	2.22	3.109
^[10] A2	3.19(7)	0.05 K + 0.04 Cs + 0.41 □	3.15	3.231
^[9] A3	2.7(1)	0.04 Cs + 0.04 K + 0.42 □	2.96	3.165
ΣA(1-3)	8.15	0.12 K + 0.11 Cs + 1.27 □	8.33	

^{*}X = cation, φ = anion.

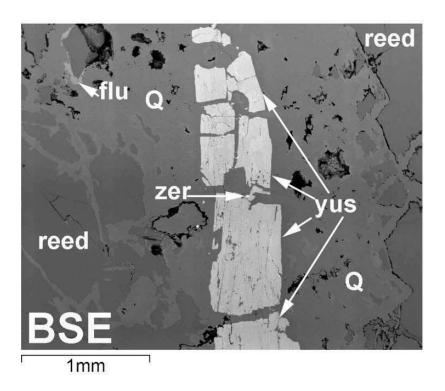


Fig. 1

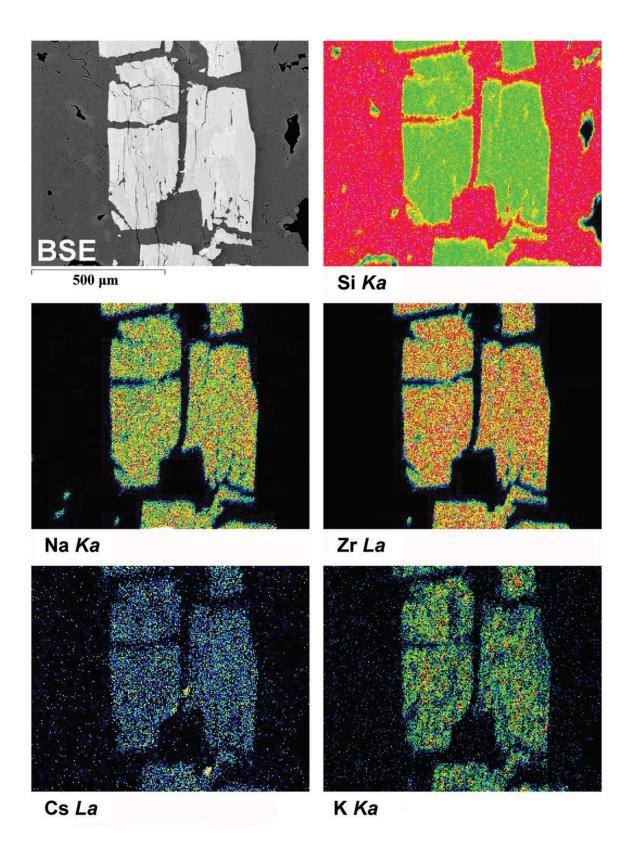
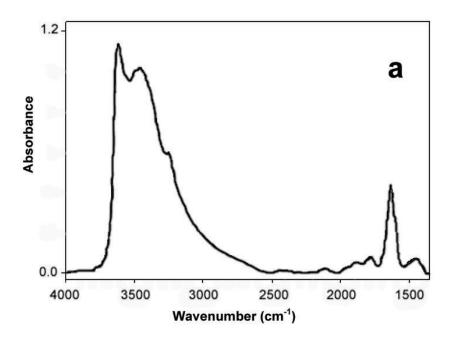



Fig. 2

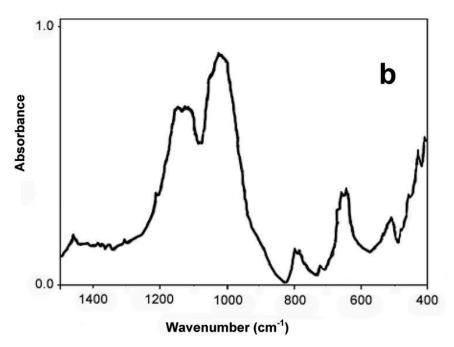


Fig. 3

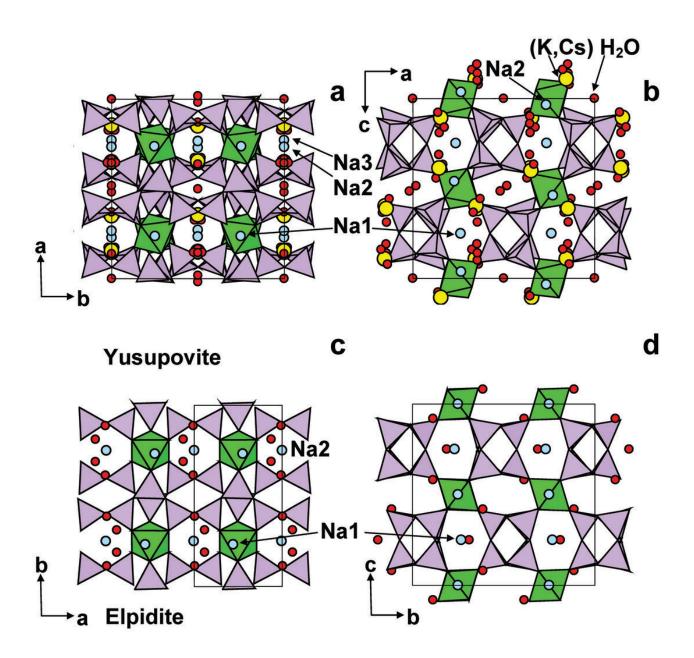


Fig. 4