1/7

222 Rn and 220 Rn emanations as a function of the absorbed α -doses 1 from select metamict minerals 2 **REVISION 1** 3 4 Dariusz Malczewski 5 Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland 6 e-mail: dariusz.malczewski@us.edu.pl 7 Maria Dziurowicz 8 Faculty of Earth Sciences, University of Silesia, Bedzinska 60, 41-200 Sosnowiec, Poland 9 e-mail: maria.dziurowicz@us.edu.pl 10

11 ABSTRACT

Metamict minerals contain uranium and thorium, which contribute to physical 12 degradation or metamictization of their crystal structures over geologic time. The 13 damage occurs primarily through progressive overlapping recoil nuclei collision 14 cascades from $\alpha\text{-decay}$ of $^{238}\text{U},~^{232}\text{Th},~^{235}\text{U}$ and their daughter products. We 15 measured ²²²Rn and ²²⁰Rn emanations from metamict samples of nine oxides 16 (brannerite, davidite, fergusonites, pyrochlores, samarskites and uraninite), two 17 phosphates (monazites), and eight silicates (cerite, gadolinites, perrierite, rinkite, 18 thorite, turkestanite and vesuvianite). The total absorbed α -doses ranged from 1.4 x 19 10^{15} to 6.1 x 10^{18} α -decay mg⁻¹ for cerite and uraninite, respectively. The ²²²Rn 20 emanation coefficients varied from 5 x 10^{-5} % (uraninite) to 2.5 % (turkestanite). The 21 ²²⁰Rn emanation coefficients varied from 7 x 10⁻³% (gadolinite Ytterby) to 6.2% 22 (gadolinite Marysin). The lowest ²²²Rn emanation coefficients occurred among 23 metamict minerals containing the highest concentrations of ²³⁸U (i.e., uraninite, 24 samarskites and brannerite). Overall, the ²²²Rn and ²²⁰Rn emanation coefficients 25 observed in this study fall significantly below previously reported values. 26

27

28 INTRODUCTION

Metamict minerals develop from initially crystalline phases that experience physical damage to their crystal lattices due to the decay of radioactive elements. Metamictization (amorphization) is primarily caused by progressive overlapping nuclear recoil collision cascades from α -decay of ²³⁸U, ²³²Th, ²³⁵U and their daughter products (Ewing et al. 2000). Age, as well as ²³⁸U and ²³²Th concentrations, determine the degree to which minerals undergo metamictization. The radon isotopes

 222 Rn (T_{1/2} = 3.64 d) and 220 Rn (referred to as 'thoron', T_{1/2} = 55.6 s) belong to the 35 ²³⁸U and ²³²Th decay series, and occur as inert gases that are detectible in U- and 36 Th-bearing mineral phases. The α -decay of ²²⁶Ra (E_{α} = 4.77 MeV) is accompanied 37 by recoil of the ²²²Rn nucleus with an energy of 86 keV. The α -decay of ²²⁴Ra (E $_{\alpha}$ = 38 5.67 MeV) is accompanied by recoil of the ²²⁰Rn nucleus with an energy of 103 keV. 39 The estimated direct recoil lengths of ²²²Rn and ²²⁰Rn within the relevant solid 40 materials typically range from 30 - 50 nm. Sakoda et al. (2010a) for example, 41 reported a ²²²Rn recoil length of 34 nm for quartz (SiO₂). 42

Emanation coefficients (expressed in percentage) measure the number of 43 radon or thoron atoms released per the number of radon or thoron atoms produced 44 within the decay series for a given mineral. This ratio provides a quantitative measure 45 46 of the quality of the sample's internal structure. Six fundamental mechanisms have 47 been proposed to account for radon isotope emanations from solids. These include 48 direct recoil, diffusion through the material, indirect recoil, the knock-out effect, penetrating recoil and radium distribution (Semkov 1990, 1991; Morawska and 49 Phillips 1992). Moisture content and grain size also affect radon emanations from 50 these phases (Semkov 1991; Barillon et al. 2005; Sakoda et al. 2010a). The ²²²Rn 51 52 emanation coefficients reported for rock forming minerals and certain rock compositions typically range from about 1% to 25% (Krishnaswani and Seidemann, 53 1988; Sakoda et al. 2011). Extremely high emanation coefficients (~40%) were 54 reported for minerals associated with weathered granitic soil (Sakoda et al. 2010b). 55

Literature sources have often used different mineral preparation methods to 56 analyze emanations and thus report inconsistent results. Systematic studies that 57 were strictly devoted to five metamict minerals crushed to grain sizes ranged from 63 58 to 2000 μ m, were done by Garver and Baskaran (2004). The results obtained in that 59 work and those reported by Landa (1987) for three types of uranium ores are given in 60 Tab. 1. Table 1 lists previously reported radon emanation coefficients for metamict 61 minerals, ranging from 0.53% (uraninite) to 17% (cerite). The mass emanation rates 62 varied from 10 to 1860 atoms g^{-1} min⁻¹ for monazite and uraninite, respectively. 63 Estimated radon emanation coefficients for uranium ores ranged between 2% 64 (autunite) to 19% (carnotite). 65

The purpose of this work is to determine the relationship between ²²²Rn and ²²⁰Rn emanations and absorbed α-doses for a representative group of metamict

2

1/7

68 minerals. This paper provides experimental data concerning ²²²Rn and ²²⁰Rn 69 emanations for metamict oxides, silicates and phosphates.

70

71 MATERIALS and METHODS

Nineteen samples of metamict minerals were collected from many different 72 global locations. Table 2 lists basic physical characteristics and ages of samples 73 74 analyzed. The surface area of each mineral was accurately determined and the 75 projecting method was used to calculate it. Each mineral face was carefully projected onto graph paper. The squared meshes were added up. All of the larger irregularities 76 such as cracks, concavity or convexity were taken into account. Quantitative 77 measurements of the smallest irregularities were not feasible. The surface emanation 78 rates presented here should thus be regarded as the upper limits of emanations. 79 The samples differ in terms of mass and surface area (e.g., m = 0.242 g and S = 1.82 80 cm^2 for turkestanite, to m = 160.595 g and S = 62.29 cm² for uraninite), and range in 81 age from 270 Ma (davidite) to 2660 Ma (fergusonite Mukinbudin). Mineral samples 82 were analyzed for their X-ray diffraction (XRD) patterns using a PHILIPS X'Pert 83 diffractometer in the Θ - Θ system and CuK α radiation in scan mode with step size of 84 0.02°. Sample XRD patterns are shown in Figure 1. 85

The activity concentrations of ²³⁸U and ²³²Th were determined for each mineral based on the gamma-ray activities of ²¹⁴Pb and ²¹⁴Bi (²³⁸U), and ²²⁸Ac (²³²Th). The activity concentrations of ²³⁵U were calculated based on the natural abundance of ²³⁸U/²³⁵U = 137.88. The activities of the radionuclides were calculated from the following gamma transitions (energy in keV): ²¹⁴Pb (242.9, 295.2 and 351.9), ²¹⁴Bi (609.3, 786.3, 1120.3 and 1764.5) and ²²⁸Ac (338.3, 911.6, 964.5 and 969.1)

92 Gamma-ray spectra were recorded using a GX3020 system consisting of a coaxial HPGe detector (32% efficiency, crystal length 59 mm and diameter 56.6 mm) 93 94 in a lead and copper shield (60 mm) with a multichannel buffer (InSpector 2000 DSP). The detector bias voltage was 4000 V and the energy resolution was 0.8 keV 95 at 122 keV and 1.7 keV at 1.33 MeV. Two software packages were used for the 96 efficiency calibration and the determination of radionuclides: LabSOCS (Laboratory 97 Sourceless Calibration Software) and Genie 2000 v.3. The total duration of a single 98 measurement varied from about 3 to 7 days. Since γ -emitters in both uranium series 99 $(^{234m}Pa \rightarrow ^{226}Ra \rightarrow ^{214}Pb \rightarrow ^{214}Bi)$ and thorium series $(^{228}Ac \rightarrow ^{224}Ra \rightarrow ^{212}Pb \rightarrow ^{212}Bi)$ 100 \rightarrow ²⁰⁸TI) were found in radioactive equilibrium for each mineral, we assumed that 101

activity concentrations of ²²²Rn and ²²⁰Rn were the same as those for ²³⁸U and ²³²Th. The ²³⁸U activity concentrations for these minerals exhibit an extremely wide range from 0.36 Bqg⁻¹ (cerite) to 9465 Bqg⁻¹ (uraninite). The ²³²Th activity concentrations for these minerals range from 5.1 Bqg⁻¹ (uraninite) to 1054 Bqg⁻¹ (thorite). These activity concentrations corresponded to a calculated total absorbed α -dose range of 1.36 x 10¹⁵ α -decay mg⁻¹ (cerite) to 6.09 x 10¹⁸ α -decay mg⁻¹ (uraninite). Table 3 lists the integrated α -doses for each of the mineral samples analyzed.

We used a RAD7 radon system (Durridge Company, Inc.) to measure 109 ²²²Rn and ²²⁰Rn emanations. The system contains a solid-state ion-implanted planar 110 silicon detector and a built-in pump with a flow rate of 1 Lmin⁻¹. It has a desiccant 111 (CaSO₄) unit and inlet filters (pore size 1 µm). The RAD7's internal sample cell is a 112 0.7 L conducting hemisphere with a 2200 V potential relative to the detector that is 113 placed at the center of the hemisphere. The detector operates in internal humidities 114 of 0% to 10% with a sensitivity of 4 Bgm⁻³ and an upper linear detection limit of 800 115 kBqm⁻³ (8 MBqm⁻³ using additional extender). The detector was manufactured with a 116 calibration accuracy of ± 5%. The spectra are in 200 channels and grouped into 8 117 windows of energy ranges. A, B, C, and D are the major windows and E, F, G and H 118 are the diagnostic windows. Window A covers the energy range from 5.40 to 6.40 119 MeV, showing the total counts from 6.00 MeV α particles from the 3-minute ²¹⁸Po 120 decay (daughter of ²²²Rn). Window B covers the region 6.40 MeV to 7.40 MeV, 121 showing the total counts of the 6.78 MeV α particles from the 0.15-second ²¹⁶Po 122 $(^{220}$ Rn daughter). Window C represents the total counts of the 7.69 MeV α particles 123 from ²¹⁴Po (the fourth nuclide in the ²²²Rn decay chain), while window D represents 124 the total counts of the 8.78 MeV α particles from the decay of ²¹²Po (the fourth 125 nuclide in the ²²⁰Rn decay chain). The measurements presented here were carried 126 out in sniff mode. Sniff mode means that the RAD7 calculates ²²²Rn concentrations 127 from the data in window A only and ²²⁰Rn concentrations from the data in window B, 128 while the data from windows C and D are ignored. In this mode, the built-in pump 129 runs continuously. The mineral sample was placed in a stainless steel cylinder ($\phi = 8$ 130 cm, h = 3 cm) with two inlets on opposing sides. Following sample insertion, the 131 cylinder was firmly affixed and the inlets were connected to a desiccant chamber and 132 to the RAD7 inlet (Fig. 2). The drying unit remained open to the ambient environment 133 (open loop mode). Measurements consisted of a 15 minute analysis repeated over 134

ten cycles for a 150 minute run time. Tabulated results represent the average of these three measurement runs. Temperatures ranged from 21 - 23 °C during analytical runs and external relative humidity ranged from 13 - 15%. The ambient ²²²Rn background level ranged from 4.6 to 6.8 Bqm⁻³, whereas ²²⁰Rn background levels fell below detection limits. Radiometric measurements were performed at the Laboratory of Natural Radioactivity (Faculty of Earth Sciences, University of Silesia).

141 Total emission rates for 222 Rn (E₂₂₂) and 220 Rn (E₂₂₀) from the mineral samples 142 were calculated in atoms s⁻¹ according to the following equations:

143
$$\mathsf{E}_{222} = \frac{\mathsf{C}_{222} \cdot \mathsf{v}}{6 \cdot 10^4 \cdot \lambda_{222}}$$

144 and

145
$$\mathsf{E}_{220} = \frac{1.28 \cdot \mathsf{C}_{220} \cdot \mathsf{v}}{6 \cdot 10^4 \cdot \lambda_{220}}$$

where C₂₂₂, C₂₂₀ are the ²²²Rn and ²²⁰Rn concentrations minus ambient concentrations (Bqm⁻³); v = 1 Lmin⁻¹ is the flow rate; $\lambda_{222} = 2.1 \times 10^{-6} \text{ s}^{-1}$ and $\lambda_{220} =$ 0.012 s⁻¹ are the decay constants of ²²²Rn and ²²⁰Rn. Our experimental set-up (Fig. 2) included a 20 s delay between emission and measurement by the RAD7 unit. The C₂₂₀ term is therefore multiplied by 1.28. The mass and surface emanation rates of ²²²Rn and ²²⁰Rn for each mineral were calculated as:

152
$$\mathbf{e}_{m222} = \frac{\mathbf{E}_{222}}{\mathbf{m}}, \ \mathbf{e}_{s222} = \frac{\mathbf{E}_{222}}{\mathbf{S}}$$

153 and

154
$$\mathbf{e}_{m220} = \frac{\mathbf{E}_{220}}{\mathbf{m}}, \ \mathbf{e}_{s220} = \frac{\mathbf{E}_{220}}{\mathbf{S}}$$

where e_{m222} and e_{m220} are the respective ²²²Rn and ²²⁰Rn mass emanation rates, e_{s222} and e_{s220} are the surface emanation rates of ²²²Rn and ²²⁰Rn, and m and S respectively refer to the mass and the surface area of the sample.

The surface area of each mineral was accurately determined but quantitative measurements of cracks and irregularities were not feasible. Surface emanation rates presented here should thus be regarded as upper limits of emanations. The ²²²Rn and ²²⁰Rn emanation coefficients (e₂₂₂ and e₂₂₀, respectively) were calculated
 as the ratio of the ²²²Rn and ²²⁰Rn atoms emitted from a mineral (min⁻¹) and the total
 amount of ²²²Rn and ²²⁰Rn produced inside the mineral:

164
$$e_{222} = \frac{E_{222}}{N_{222}}$$

165 and

166
$$e_{220} = \frac{E_{220}}{N_{220}}$$

where N₂₂₂ and N₂₂₀ represent the production rate (atom s⁻¹) of ²²²Rn and ²²⁰Rn nuclei in the samples, assuming radioactive equilibrium conditions within the ²³⁸U and ²³²Th decay series. In these equations E_{222} and E_{220} are expressed in atom min⁻¹ in order to compare e_{222} and e_{220} with the results reported by Garver and Baskaran (2004).

172 **RESULTS**

Table 4 lists emissions, mass and surface emanation rates, and calculated ²²²Rn and ²²⁰Rn emanation coefficients for all 19 samples. Tables 5 and 6 list correlation matrix values for ²²²Rn and ²²⁰Rn emanations, and other calculated variables for metamict oxides and silicates, respectively.

As shown in Table 4 and Figure 3, turkestanite, cerite, monazite Petaca and thorite gave the highest e_{222} values. Uraninite, samarskites and fergusonite Madawaska gave the lowest e_{222} values. The ²²²Rn emanation coefficients varied over five orders of magnitude from 4.9×10^{-5} % (uraninite) to 2.49 % (turkestanite).

Gadolinite Marysin, thorite, turkestanite and rinkite gave the highest e_{220} values for ²²⁰Rn, whereas gadolinite Ytterby, samarskite Centennial Cone, uraninite and vesuvianite gave the lowest e_{220} values (Fig. 4). The ²²⁰Rn emanation coefficients varied within three orders of magnitude from 0.007% in gadolinite Ytterby to 6.24% in gadolinite Marysin. This latter sample represents an intermediate state between a highly metamict and crystalline morphology for gadolinite, and was also subjected to hydrothermal alteration over geological time (Janeczek and Eby 1993).

The calculated ²²²Rn mass emanation rates (e_{m222}) ranged from 3 to 2910 188 atoms $g^{-1} s^{-1}$ (Fig. 5a, Table 4). Samples THO, MPE and TUR gave the highest e_{m222} 189 values (2910 - 1540 atoms g⁻¹ s⁻¹), whereas samples GYT, SCC and MBU gave the 190 lowest values (3 - 15 atoms g⁻¹ s⁻¹; Fig. 5a). The ²²²Rn (e_{s222}) surface emanation 191 rates varied from 2 to 1460 atoms cm⁻² s⁻¹ (Fig. 5b). Samples MPE, THO and TUR 192 gave the highest e_{s222} values (1460 - 207 atoms cm⁻² s⁻¹) whereas samples GYT, 193 SCC and CER gave the lowest values (2 - 9 atoms cm⁻² s⁻¹). The majority of e_{m222} 194 (12) and e_{s222} (13) observations fell within the range of 10-100 atoms $g^{-1} s^{-1}$ or atoms 195 $cm^{-2} s^{-1}$ (respectively). Three samples exhibited values for e_{m222} in excess of 1000 196 atoms q^{-1} s⁻¹ and two samples gave mass emanations below 10 atoms q^{-1} s⁻¹. 197 Conversely, two samples gave e_{s222} in excess of 1000 atoms cm⁻² s⁻¹ and three 198 samples gave surface emanations below 10 atoms $\text{cm}^{-2} \text{ s}^{-1}$ (Fig. 5a and b). 199

As expected, ²²⁰Rn emanation rates fell below those observed for ²²²Rn (Fig. 200 6a and b). The calculated ²²⁰Rn mass emanation rates (e_{m220}) ranged from 0.001 to 201 79 atoms g⁻¹ s⁻¹ (Fig. 6a). Similar to ²²²Rn, samples THO, MPE and TUR gave the 202 highest em220 values (79 - 12 atoms g⁻¹ s⁻¹). Samples GYT, URA and VES gave the 203 lowest e_{m220} values (0.001 - 0.02 atom g⁻¹ s⁻¹). The calculated ²²⁰Rn surface 204 emanation rates (e_{s220}) varied from 8 x 10⁻⁴ to 38 atoms cm⁻² s⁻¹ (Fig 6b). Samples 205 THO, MPE and TUR again gave the highest e_{s220} values (38 - 2 atoms cm⁻² s⁻¹) and 206 samples GYT, VES and URA gave the lowest ²²⁰Rn surface emanations (8 x 10⁻⁴ -207 0.013 atom cm⁻² s⁻¹) (Fig. 6b). The majority of both e_{m220} (11) and e_{s220} (14) 208 observations fell within the ranges of 0.01 to 1 atom g^{-1} s⁻¹ and atom cm⁻² s⁻¹, 209 respectively. In the case of e_{m220} , six observations fell within the 1 to 100 atoms g^{-1} s⁻ 210 ¹ range whereas three observations fell within the 1 to 100 atoms cm⁻² s⁻¹ range for 211 e_{s220} . As shown in Figure 6a and 6b, two observations for both e_{m220} and e_{s220} fell 212 below 0.001 atom $g^{-1} s^{-1}$ and atom $cm^{-2} s^{-1}$, respectively. 213

214 Correlations

215 Oxides

Table 5 shows that the total α -dose, D_T, and D₂₃₈ are perfectly correlated (D_T -D₂₃₈, r = 1), whereas D_T and D₂₃₂ are uncorrelated (D_T - D₂₃₂, r = 0.03) for metamict oxides. This indicates that α -decay within the ²³⁸U series provides the dominant contribution to the total α -dose, evident in similar relationships between the D_T and

1/7

D₂₃₈ parameters for other mineral classes within the sample suite. The ²²²Rn mass 220 emanation rates (e_{m222}) show a significant correlation with ²³²Th series α -dose (e_{m222}) 221 - D_{232} , r = 0.87). The highest coefficient associated with e_{s222} exists between D_{238} and 222 D_T (r = 0.92). The e_{m220} and D_{232} parameters also had a higher correlation coefficient 223 (r = 0.94), which contrasts with the weaker relationship observed between e_{s220} and 224 D_{232} (r = 0.69). Values for e_{220} exhibited a noteworthy negative correlation with D_{238} (-225 0.46) and D_{232} (-0.25). For metamict oxides, the e_{222} and e_{220} emanation coefficients 226 exhibit strong correlation (r = 0.85). The 220 Rn emanation correlates with e_{222} but not 227 with e_{m222} , e_{m220} and e_{s220} (Table 5). 228

229

230 Silicates

As shown in Table 6 for metamict silicates, the total α -dose, D_T, perfectly 231 correlates with D_{238} and D_{232} (r = 0.99 and 1, respectively). This indicates that the 232 total absorbed α -dose is equally distributed between D₂₃₈ and D₂₃₂. The strong 233 relationship between D_{238} and D_{232} (r = 0.99) indicates that these doses contribute 234 the same degree of α -dose in the samples examined. The emanation rates e_{m222} . 235 e_{s222} , e_{m220} and e_{s220} correlate strongly with D_T, and have r values ranging from 0.9 to 236 1.0. In contrast to those of oxide samples, the e₂₂₂ and e₂₂₀ emanation coefficients for 237 metamict silicates do not correlate (r = -0.02). Mass and surface emanations for both 238 ²²²Rn and ²²⁰Rn showed a high degree of correlation, evident as r values of 0.94 239 240 $(e_{m222} - e_{m220})$ and 1 $(e_{s222} - e_{m220})$. The e_{s222} showed a weak correlation with e_{m222} (r = 0.38). Correlation coefficients between e_{220} and parameters other than e_{222} varied 241 within the narrow range of 0.52 (e₂₂₀-D₂₃₈) to 0.57 (e₂₂₀-e_{s222} and e₂₂₀-e_{m220}) (Table 6). 242

243

244 **DISCUSSION**

Emanation coefficients for ²²²Rn generally decrease with increasing total α -245 dose, D_T (Fig. 3 and Table 4). Metamict oxides showed the lowest ²²²Rn emanation 246 coefficients for the highest absorbed α -dose. The oxide samples with a total dose D_T 247 < 10^{17} for α -decay mg⁻¹ (DAV, PDF and PLF) generally exhibited higher emanation 248 249 coefficients than oxides with the highest D_T . Surprisingly, among the silicate samples, the fully metamict gadolinite from Ytterby showed the lowest e_{222} values (10⁻⁴%). 250 Oxides consist of close packed, ionically bonded structures that typically have fewer 251 cation sites than those available in silicate phases, which are characterized by more 252 253 open and complex lattice structure (Ewing and Haaker 1980). A uraninite sample

gave the lowest emanation coefficient (10⁻⁵%) in spite of having the highest ²³⁸U 254 concentrations and absorbed α -dose. Among the minerals analyzed, uraninite has 255 the simplest structure and chemical composition. The structure of the URA sample 256 shows a significant degree of crystallinity (long range order). The condition of the 257 258 sample and its compact structure explain the apparently independent relationship between emanation coefficients and α -dose observations. The structure of uraninite 259 is also practically dose independent due to its high rate of self-annealing process 260 261 (Janeczek et al. 1996). Wang et al. (1998) observed similar patterns among simple oxides phases irradiated by ion beams. 262

With the exception of the brannerite sample (BRA), the oxide samples exhibiting the lowest e₂₂₂ values (SCC, SRM and FMA) were completely metamict. Vitrification resulting from the metamictization process can occlude void spaces in the structure and thus hinder gas permeability in altered samples.

The e₂₂₂ values for cerite, monazite, uraninite and thorite resemble those 267 reported by Garver and Baskaran (1993). Their research reported an e₂₂₂ value of 268 0.98% for a monazite Petaca, which resembled the 0.73% value reported here for a 269 similar sample. Garver and Baskaran (1993) also reported emanation coefficients of 270 17 - 23%, 0.53%, and 5.38% for cerite, uraninite and thorite, respectively. Their 271 coefficients are markedly higher than those reported here (0.79%, 4.9 x 10^{-5} % and 272 0.30% for cerite, uraninite and thorite, respectively). Landa (1987) reported 273 274 significantly higher e₂₂₂ values for uranium-bearing minerals, autunite (2 - 4%), carnotite (12 - 19%), and uraninite (12 - 15%; Table 1). 275

Figure 3 shows that ²²²Rn emanations produce visible peaks for metamict phases having ²³²Th concentrations in excess of 2.8 wt.% and $D_{232} > 26 \times 10^{15} \alpha$ decay mg⁻¹ (TUR, FMA, BRA, MPE, and THO; Tables 2 and 3). Excluding these observations, the relationship between e₂₂₂ and total dose (D_T) values can be fitted by the exponential function:

281 $e_{222}(\%) = a_0 + a_1 \exp(-D_T b_1) + a_2 \exp(-D_T b_2) + a_3 \exp(-D_T b_3)$

where $a_0 = 5.14 \times 10^{-5}$, $a_1 = 1.63 \times 10^{-3}$, $a_2 = 0.29$, $a_3 = 6.82$, $b_1 = 5.83 \times 10^{-18}$, $b_2 = 4.96 \times 10^{-16}$ and $b_3 = 1.78 \times 10^{-15}$.

Sample SRM was the only evident outlier relative to the fitted curve. For $D_T < 10^{15} \alpha$ -decay mg⁻¹, e₂₂₂ approaches 7.1%, and for $D_T > 10^{19} \alpha$ -decay mg⁻¹, e₂₂₂ behaves as a constant equal to 5.14 x 10⁻⁵ %.

9

Samples TUR, MPE, THO, FMU and BRA form a distinct group deviating from 287 the fitted relationship, and justifying their exclusion from it. The weighted average 288 energy of recoil nuclei in the ²³²Th and ²³⁸U decay series explains their variation 289 relative to other samples. The weighted average α particle energy of 6.18 MeV, and 290 the weighted average energy of recoil nuclei of 114 keV were calculated for the ²³²Th 291 decay series using standard nuclide reference sources (Firestone, 1996). These 292 values exceed those for the ²³⁸U decay series (5.34 MeV and 98 keV, respectively). 293 Recoil nuclei from the ²³²Th decay series can therefore potentially cause greater 294 radiation damage than those from the ²³⁸U series, creating linked microcracks that 295 penetrate the mineral structure more deeply than is possible given the direct recoil 296 length of 222 Rn and 220 Rn (i.e., ~ 40 nm). 297

The impact of α -decay from the ²³²Th series is particularly evident in mass and 298 surface emission rates (Fig. 5 and 6). Silicate samples with the highest ²³²Th 299 concentrations (THO, MPE and TUR) gave the highest values both for ²²⁰Rn and 300 ²²²Rn mass and surface emission rates. The effect of ²³²Th series α -decay on ²²²Rn 301 emanations also appears to influence metamict oxides, contributing to an em222 - D232 302 correlation coefficient of 0.87. This indicates that both the surface ($e_{s222} - D_{238}$, r = 303 0.92) and deeper layers of the minerals contribute to ²²²Rn emanations as a result of 304 ²³²Th series α -decays. 305

Unlike ²²²Rn, the ²²⁰Rn emanation coefficients were apparently independent of D_T for all of the investigated minerals (Fig. 4). Samples with the most glassy appearance (gadolinite from Ytterby and samarskite from the Centennial Cone) exhibited the lowest e_{220} values (7·10⁻³ and 0.02%, respectively). For other minerals, e_{220} values varied within a relatively narrow range of 0.1 - 10% (Fig. 4).

Two significant differences exist between metamict oxides and silicates with 311 respect to ²²²Rn and ²²⁰Rn emanations. For metamict oxides, ²²⁰Rn emanation 312 coefficients are about two orders of magnitude higher than ²²²Rn emanations (Fig. 313 8a). This observation likely arises from the lower production rate of ²²⁰Rn atoms 314 relative to ²²²Rn atoms (3-4 orders of magnitude) in uranium-rich oxides. Closed 315 system behavior of ²²⁰Rn leads to a relatively high ratio of ²²⁰Rn_{escaped} relative to total 316 ²²⁰Rn within the sample (Eq. 3). Semkov (1991) reported an empirically derived 317 e220/e222 ratio of 1.84 for pitchblende. This ratio, 1.84, was explained by ²²⁰Rn's 318 broader physical range relative to ²²²Rn, which allows the former to penetrate surface 319

1/7

irregularities to a greater degree, thus producing more emanation channels. Among
 metamict silicates, e₂₂₂ and e₂₂₀ values are comparable but uncorrelated (Fig. 8b).
 The two samples of monazites analyzed differed markedly in terms of their ²²²Rn and
 ²²⁰Rn emanations. The partially metamict MPE sample exhibited an e₂₂₂ value about

three times higher and an e₂₂₀ value about 15 times higher than those of MBU, a 324 highly crystalline sample with few irregularities. Mass and surface emission rates for 325 326 MPE were also much higher than those of MBU (Fig. 5 and 6). These differences may arise from the significant age differences and 327 thorium and uranium concentrations between the two samples. Consequently, the total absorbed α -dose in 328 MPE exceeds that of MBU by about two orders of magnitude. Gadolinites exhibited 329 the opposite trend wherein the fully metamict GYT sample showed definitely lower 330 331 e₂₂₂ and e₂₂₀ values than those observed for the partially metamict GMA sample. Different oxide samples of the same mineral phase (PDF and PLF; SCC and SRM) 332 subjected to comparable absorbed α -doses, for example, exhibited similar emanation 333 coefficients (Fig. 3). The emanation properties of thorium-rich minerals having 334 varying degrees of metamictization require further analysis and interpretation. 335

For the most part, the emanation results presented here can be explained by Semkov's (1991) fractal model of radon emanation from solids. The model emphasizes the salient effects of the fractal dimensions of the mineral surface on radon emanations. A comprehensive model of ²²²Rn and ²²⁰Rn emanations from metamict minerals should also consider the internal transport of ²²²Rn and ²²⁰Rn within microcracks. This mechanism seems to be especially important for silicates with high concentrations of Th.

343

344 IMPLICATIONS

Changes in the emanation coefficients and emanation rates of ²²²Rn and ²²⁰Rn for metamict minerals are significant for assessing open- and closed- system behavior for minerals whose internal structure is affected by α -decay in the ²³⁸U, ²³²Th and ²³⁵U decay series. These constraints on alteration can thus help to determine which minerals are suitable analytical targets for Pb/U and Th geochronology. The results presented here can also help to assess the material suitability for high-level nuclear waste (HLW) forms.

352

353 ACKNOWLEDGMENTS

The authors thank I. Pekov and S. Southworth for providing age data concerning

355 rinkite and samarskite (SRM) samples.

356	
357	
358	
359	REFERENCES
360	
361	Barillon, R., Özgümüs, A., and Chambaudet, A. (2005) Direct recoil radon emanation
362	from crystalline phase. Influence of moisture content. Geochimica et Cosmochimica
363	Acta, 69, 2735-2744.
364	
365	Blight, D.F., Chin, R.J., and Smith, R.A. (1984) 1:250 000 map sheet, Geological
366	Series, Explanatory Notes, Geological Survey of Western Australia.
367	
368	Bryant, B., McGrew, L.W., and Wobus, R.A. (1981) Geologic map of the Denver 1 x 2
369	degree quadrangle, north-central Colorado: U.S. Geological Survey Miscellaneous
370	Investigations Map I-1163, scale 1:250,000.
371	
372	Carr. S.D., Easton, R.M., Jamieson, R.A., and Culshaw, N.G. (2000) Geologic
373	transect across the Grenville Orogen of Ontario and New York. Canadian Journal of
374	Earth Sciences, 37, 193-216.
375	
376	Easton, R.M. (1992) The Grenville Province. In Geology of Ontario, Chapter 19,
377	Ontario Geological Survey Special Volume 4 Part 2 713-904
378	
379	Ewing R.C. and Haaker R.F. (1980) The metamict state: implications for radiation
380	damage in crystalline waste form Nuclear and Chemical Waste Management 1 51-
381	57
382	
383	Ewing R.C. Meldrum A. Wang I.M. and Wang S.X. (2000) Radiation-induced
384	amorphization In Redfern SAT and Carpenter MA (eds) Reviews in Mineralogy
385	and Geochemistry 39 319-361
386	
387	Firestone R.B. (ed) (1996) Table of isotones. Wiley-Interscience, Lawrence Berkeley.
388	National Laboratory
380	National Eaboratory.
200	Garver E and Baskaran M (2004) Effects of beating on the emanation rates of
201	radon 222 from a suite of natural minorale. Applied Padiation and Isotopos, 61, 1477
202	
392	1405.
393	Januarak L and Eby D.K. (1002) Annabing of radiation domage in allegite and
394	Janeczek, J., and Eby, R.K. (1993) Annealing of radiation damage in aliantie and
395	gadolinite. Physics and Chemistry of Minerals, 19, 343-356.
396	Janaszah I. Ewisz, D.C. Oversky, VM, and Warres, I.O. (1990) Unarisite and
397	Janeczek, J., Ewing, R.C., Oversby, V.M., and Werme, L.O. (1996) Uraninite and
398	UU_2 in spent nuclear fuel: a comparison. Journal of Nuclear Materials, 238, 121-130.
399	
400	Kabalov, YU.K., Sokolova, E.V., Pautov, L.A., and Schneider, J. (1998) Crystal
401	structure of a new mineral turkestanite: a calcium analogue of steacyite.
402	Crystallography Reports, 43, 584-588.

403 Krishnaswami, S., and Seidemann, D.E. (1988) Comparative study of ²²²Rn, ⁴⁰Ar, 404 ³⁹Ar and ³⁷Ar leakage from rocks and minerals: implications for the role of nanopores 405 in gas transport through natural silicates. Geochimica et Cosmochimica Acta, 52, 406 655-658. 407 408 Landa, E.R. (1987) Influence of ore type and milling procession ²²²Rn emanation 409 coefficients of U mill tailings. Health Physics, 53, 679-683. 410 411 Leech, M.L., and Stockli, D.F. (2000) The late exhumation history of the ultrahigh-412 pressure Maksyutov Complex, south Ural Mountains, from new apatite fission track 413 data. Tectonics, 19, 153-167. 414 415 Ludwig, K.R., and Cooper, J.A. (1984) Geochronology of Precambrian granites and 416 associated U-Ti-Th mineralisation, northern Olary province, South Australia. 417 Contributions to Mineralogy and Petrology, 86, 298-308. 418 419 Lumpkin, G.R., and Ewing, R.C. (1988) Alpha-decay damage in minerals of the 420 pyrochlore group. Physics and Chemistry of Minerals, 16, 2-20. 421 422 Morawska, L., and Phillips, C.R. (1993) Dependence of the radon emanation 423 coefficient on radium distribution and internal structure of the material. Geochimica et 424 Cosmochimica Acta, 57, 1783-1797. 425 426 Pin, H., Mierzejewski, M.P., and Duthou, J.L. (1987) Age of Karkonosze Mts. Granite 427 dated by isochrome Rb/Sr and its initial 87Sr/86Sr value. Przegląd Geologiczny, 10, 428 429 512-517 (in Polish). 430 Reznitskii, L.Z., Kotov, A.B., Sal'nikova, E.B., Vasil'ev, E.P., Yakovleva, S.Z., Kovach, 431 V.P., and Fedoseenko, A.M. (2000) The Age and Time Span of the Origin of 432 Phlogopite and Lazurite Deposits in the Southwestern Baikal Area: U-Pb 433 Geochronology. Petrology, 8, 74-86 (in Russian). 434 435 Romer, R.L., and Smeds, S.A. (1994) Implications of U-Pb ages of columbite-436 tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90-1.85 437 Ga magmatic arcs to the Baltic Shield. Precambrian Research, 67, 141-158. 438 439 Sakoda, A., Hanamoto, K., Ishimori, Y., Kataoka, T., Kawabe, A., and Yamaoka, K. 440 (2010a) First model of the effect of grain size on radon emanation. Applied Radiation 441 and Isotopes, 68, 1169-1172. 442 443 Sakoda, A., Ishimori, Y., and Yamaoka, K. (2011) A comprehensive review of radon 444 emanation measurements for mineral, rock, soil, mill tailing and fly ash. Applied 445 Radiation and Isotopes, 69, 1422-1435. 446 447 Sakoda, A., Nishiyama, Y., Hanamoto, K., Ishimori, Y., Yamamoto, Y., Kataoka, T., 448 Kawabe, A., and Yamaoka, K. (2010b) Differences of natural radioactivity and radon 449 emanation fraction among constituent minerals of rock or soil. Applied Radiation and 450 Isotopes, 68, 1180-1184. 451 452

- 453 Semkow, T.M. (1990) Recoil-emanation theory applied to radon release from mineral
- 454 grains. Geochimica et Cosmochimica Acta, 54, 425-440.
- 455
 456 Semkow, T.M. (1991) Fractal model of radon emanation from solids. Physical Review
 457 Letters, 66, 3012–3015.
- Wang, S.X., Wang, L.M., Ewing, RC., and Doremus, RH. (1998) Ion beam-induced
 amorphization in MgO-Al₂O₃-SiO₂. I. Experimental and theoretical basis. Journal of
 Non-Crystalline Solids, 238, 198-213.
- 462
- 463464 FIGURE CAPTIONS
- 465
- 466 **FIGURE 1.**
- 467 X-ray diffraction (XRD) patterns of mineral samples analyzed for radon emanations.
- 468 **FIGURE 2.**
- 469 Experimental apparatus for measuring ²²²Rn and ²²⁰Rn emanations.
- 470 **FIGURE 3.**
- 471 ²²²Rn emanation coefficients (e₂₂₂) for metamict samples vs. total absorbed α-dose.
- 472 **FIGURE 4.**
- ²²⁰Rn emanation coefficients (e_{220}) for metamict samples vs. total absorbed α -dose.

474 **FIGURE 5.**

- 475 **(a)** Mass (e_{m222}) and **(b)** surface $(e_{s222})^{222}$ Rn emanation rates for metamict samples 476 analyzed. Estimates of ²²²Rn atoms emitted are noted above bars for each sample.
- 477 **FIGURE 6.**
- 478 **(a)** Mass (e_{m220}) and **(b)** surface $(e_{s220})^{220}$ Rn emanation rates for metamict samples 479 analyzed. Estimates of ²²⁰Rn atoms emitted are noted above bars for each sample.
- 480 **FIGURE 7.**

Emanation coefficients for ²²²Rn vs. total absorbed α -dose, excluding samples BRA, FMU, MPE, THO and TUR. The solid line represents fitted exponential function described by Eq. 4.The multiple regression coefficient is 0.74.

484 **FIGURE 8.**

485 Comparison of (a) e_{222} vs. absorbed total α-dose for metamict oxides and (b) e_{220} vs. 486 absorbed total α-dose for metamict silicates. $●^{222}$ Rn; $■^{220}$ Rn.

487

1/7

Sample

RAD 7 Detector

RADZ

TABLE 1.

Previously reported radon emanation rates and coefficients for metamict minerals and uranium ores as measured at room temperature.

Mineral*	Fraction (μm)	²²⁶ Ra (Bqg⁻¹)	Mean emanation rate (atoms g ⁻¹ min ⁻¹)	Emanation coefficient (%)
Cerite	< 63	42.7 ± 0.5	430 ± 1	16.8 ± 0.2
Monazite	< 63 1000-2000	17.6 ± 0.4 17.6 ± 0.4	21.7 ± 0.3 10.4 ± 0.2	2.05 ± 0.03 0.98 ± 0.02
Thorite	< 63	104 ± 2	336.7 ± 1	5.38 ± 0.08
Uraninite	< 63 1000-2000	5829 ± 69 5829 ± 69	1842 ± 4 1860 ± 5	0.53 ± 0.01 0.53 ± 0.01
Zircon	<63 1000-2000	50 ± 0.5 50 ± 0.5	31.4 ± 0.2 14.1 ± 0.1	1.04 ± 0.01 0.47 ± 0.01
Uranium ore [†]				
Autunite	149-530	209-216		2-4
Carnotite	149-530	9.4-10.2		12-19
Uraninite	149-530	302-322		12-15

*Garver and Baskaran (2004). [†] Landa (1987).

TABLE 2

Locality, U and Th activity concentrations, and ages of the samples analyzed. Sample abbreviation tags are given in parentheses next to the phase name.

Mineral	Chemical formula	Locality	²³⁸ U (Bqg⁻¹)	²³² Th (Bqg⁻¹)	Age (10 ⁶ year)
Oxides					
Brannerite (BRA)	UTi ₂ O ₆	Crokers Well Granite, South Australia	3639(108)	335(4)	1579.2(15)*
Davidite (DAV)	(La,Ce,Ca)(Y,U)(Ti,Fe ³⁺) ₂₀ O ₃₈	massif Bektau-Ata, Kazakhstan	103(6)	10.1(3)	251-299
Fergusonite Madawaska (FMA)	YNbO ₄	Pegmatites, John Cole Quarry, Madawaska, Ontario, Canada Pegmatites, Mukiphudin	832(23)	53.9(5)	1050-1090 [#]
Fergusonite Mukinbudin (FMU)		Quarry, Western Australia	386(12)	114(2)	2657-2675 ^{\$}
Pyrochlore (dark fraction) (PDF)	$A_{2\text{-m}}B_2X_6Y_{1\text{-n}}\cdot pH_2O$	Pegmatites, South Ural, Russia	315(8)	24.4(2)	315-375 ^{&}
Pyrochlore (light fraction) (PLF)	A = Na, Ca, U, Th, Y, REE; B = Nb, Ta, Ti, Fe ³⁺ , Zr; X=O; Y = O, OH, F; REE = rare earth elements	Pegmatites, South Ural, Russia	609(15)	13.2(1)	315-375 ^{&}
Samarskite Centennial Cone (SCC)	ABO ₄	Pegmatites, Centennial Cone, Jefferson Co., Colorado, USA	1303(50)	74.2(7)	1400-1700 [†]
Samarskite Ross Mine (SRM)	A = Ca, Ti, Fe ²⁺ , Fe ³⁺ , REE, U, Th; B = Nb, Ta	Metamorphic rocks, Ross Mine, Yancy Co., North Carolina, USA	2503(97)	22.2(3)	1000-1200 [‡]
Uraninite (URA)	UO ₂	Sandstones Oklo, Gabon	9465(216)	5.1(2)	1968(50) [¥]
Phosphates					
Monazite Petaca (MPE)	(Ce,La,Nd,Th)PO ₄	Pegmatites, Petaca, Rio Arriba Co., New Mexico, USA	26.7(8)	637(5)	1400(200) [§]
Monazite Buenopolis (MBU)		Pegmatites, Buenopolis, Minas Gerais, Brazil	0.74(4)	15.1(2)	700(35) ^Σ

Silicates					
Cerite (CER)	$REE_9(Fe^{3+},Mg)(SiO_4)_6(SiO_3OH)(OH)_3$	Pegmatites, South Ural, Russia	0.36(2)	20.0(2)	315-375 ^{&}
Gadolinite Marvsin (GMA)	REE ₂ Fe ²⁺ Be ₂ Si ₂ O ₁₀	Pegmatites, near Szklarska Poreba, SW	31.6(8)	25.8(3)	328(12) [±]
		Poland	0(0)	_0.0(0)	020(12)
Gadolinite Ytterby (GYT)		Pegmatites, Ytterby, Sweden	12.0(4)	10.6(1)	1795(2) [≠]
	$D = E_{-2^{+}}(E_{-3^{+}} \wedge V) = O_{-2^{+}}(O_{-2^{+}} \wedge V)$	Granitoids near	0.4(0)	40.0(4)	4000 4000 [±]
Pemente (PER)	REE_4Fe (Fe ,AI) ₂ TI ₂ O ₈ (SI ₂ O ₇) ₂	Amnerst, Bedford Co., Virginia USA	3.4(3)	10.8(1)	1000-1200
		Pegmatites, Khibiny			
Rinkite (RIN)	$(Ti,Nb,Al,Zr)(Na,Ca)_3(Ca,Ce)_4(Si_2O_7)_2(O,F)_4$	massif, Kola Peninsula,	11.7(5)	50.4(5)	362(17) [£]
		Russia Regratites Komp			
Thorite (THO)	(Th.U)SiO₄	Uranium Prospect.	120(9)	1054(22)	1250-1340 [@]
		Cardiff Twp., Canada	- (-)		
Turkestanite (TUR)	$Th(Ca,Na)_2(K_{1-x} \ x)Si_8O_{20}$	Sandy shales, Dzhelisu massif, Kyrgyzstan	7.8(4)	452(4)	299-306 [€]
	Cavo(Al Mo Fe Ti Mn)vo(B Al ⊡)o -SivoOoo	Pegmatite vein,			6
Vesuvianite (VES)	(O,OH,F) ₉	Sludyanka, Baikal, Russia	27.3(7)	15.9(3)	447.3(24) [©]
* Ludwig and Caspan (1004)	$\frac{1}{2}$ Corrected (2000) $\frac{1}{2}$ Directed at al (4004) $\frac{1}{2}$ Least	and Otackii (2000) Tomore	+ + + + / / / 004	+ 14	<u>Y</u>

* Ludwig and Cooper (1984). [#] Carr et al (2000). ⁵ Blight et al (1984). [&] Leech and Stockli (2000). ^TBryant et al (1981). [‡] Mesoproterozoic age. ^{*} Janeczek et al (1996). [§] Garver and Baskaran (2004). ^Σ Lumpkin and Ewing (1988). [±]Pin et al (1987). [≠] Romer and Smeds (1994). [£]Age of the Lovozero complex. [@] Easton (1992). [€] Kabalov et al (1998). [©] Reznitskii at al (2000)

TABLE 3.

Sample	D ₂₃₈	D ₂₃₅	D ₂₃₂	D_{T}		
	(10 ¹³ α-decay mg ⁻¹)	(10 ¹³ α-decay mg ⁻¹)	(10 ^{1°} α-decay mg ⁻¹)	(10 ^{1°} α-decay mg ⁻¹)		
Oxides						
BRA	1640	142	104	1886(54)		
DAV	7.2	0.33	0.52	8.1(8)		
FMA	244	16.3	11.2	272(9)		
FMU	322	51.7	62	436(13)		
PDF	28	1.3	1.6	31(3)		
PLF	54	2.6	0.87	58(5)		
SCC	577	49.7	23	650(78)		
SRM	758	51.5	4.8	814(89)		
URA	5500	589	2.00	6091(274)		
Phosphates						
MPE	10.5	0.8	175	186(14)		
MBU	0.14	0.008	2.0	2.2(1)		
Silicates						
CER	0.032	0.002	1.3	1.36(12)		
GMA	2.7	0.126	1.62	4.4(2)		
GYT	6.3	0.61	3.78	10.7(3)		
PER	1.0	0.07	2.3	3.4(4)		
RIN	1.10	0.052	3.5	4.7(2)		
THO	44	3.3	269	316(15)		
TUR	0.61	0.028	26.2	26.8(5)		
VES	3.19	0.16	1.37	4.7(1)		

Calculated α -doses for metamict mineral samples analyzed in this study.

Doses were calculated as: $D_{238} = 8 \times N_{238}(e^{t\lambda 238} - 1)$, $D_{235} = 7 \times N_{235}(e^{t\lambda 235} - 1)$, $D_{232} = 6 \times N_{232}(e^{t\lambda 232} - 1)$ and $D_T = D_{238} + D_{235} + D_{232}$. N_{238} , N_{235} and N_{232} are the present number of atoms of ²³⁸U, ²³⁵U and ²³²Th per milligram, λ_{238} , λ_{235} and λ_{232} are the decay constants of ²³⁸U, ²³⁵U and ²³²Th (respectively), and t is the geologic age. The absorbed ²³⁵U α -doses were calculated assuming a natural atomic abundance of ²³⁸U/²³⁵U = 137.88.

TABLE 4.

Total emission rates, mass and surface emanation rates, and ²²²Rn and ²²⁰Rn emanation coefficients for the metamict minerals analyzed.

Sample	N ₂₂₂ (10 ⁷ atom s ⁻¹)	E ₂₂₂ (atom s ⁻¹)	e _{m222} (atom s ⁻¹ g ⁻¹)	e _{s222} (atom s ⁻¹ cm ⁻²)	e ₂₂₂ (%)	N ₂₂₀ (10 ³ atom s ⁻¹)	E ₂₂₀ (atom s ⁻¹)	e _{m220} (atom s ⁻¹ g ⁻¹)	e _{s220} (atom s ⁻¹ cm ⁻²)	e ₂₂₀ (%)
Oxides										
BRA	69	143	360	53	0.0012	11.1	0.62	1.56	0.23	0.33
DAV	5.65	85.2	73.9	30.2	0.009	0.97	0.28	0.24	0.098	1.73
FMA	689	478	27.6	30.4	0.00042	77.8	2.4	0.14	0.15	0.18
FMU	20.8	112	98.9	41.4	0.0032	10.8	0.95	0.84	0.35	0.53
PDF	83.4	218	39.2	22.6	0.0016	10.4	1.55	0.28	0.16	0.89
PLF	73.7	135	52.9	28.2	0.0011	2.8	0.48	0.19	0.1	1.03
SCC	828	106	7.91	7.07	0.000077	82.5	0.32	0.024	0.022	0.023
SRM	292	136	55.4	44.8	0.00028	4.53	0.12	0.05	0.04	0.16
URA	72400	5900	36.8	94.8	0.000049	68.3	0.82	0.005	0.0132	0.072
Phosphates										
MPE	8.32	10200	1560	1460	0.74	347	89.3	13.7	12.8	1.54
MBU	0.15	54.6	12.7	11.5	0.22	5.4	0.094	0.022	0.02	0.10
Silicates										
CER	0.156	205	22.5	9.17	0.79	15.2	3.48	0.38	0.156	1.37
GMA	85.9	130	227	40.1	0.091	1.23	1.28	2.24	0.39	6.24
GYT	6	27.7	2.64	2.19	0.0028	9.28	0.011	0.001	0.00084	0.0071
PER	0.61	85.2	22.7	16.4	0.084	3.37	0.92	0.25	0.18	1.64
RIN	2.12	274	71.8	48.2	0.077	16	4.8	1.26	0.85	1.80
ТНО	32.1	16300	2910	1400	0.30	493	442	78.7	37.7	5.38
TUR	0.091	377	1540	207	2.49	9.19	3.03	12.4	1.67	1.98
VES	1.27	45.8	47	16.9	0.022	1.29	0.02	0.02	0.0073	0.093

TABLE 5.

Correlation matrix for 222 Rn and 220 Rn emanations and α -dose parameters from metamict oxides.

	D ₂₃₈							
D ₂₃₂	0.02	D ₂₃₂						
DT	1.00	0.03	DT					
e _{m222}	0.08	0.87	0.09	e _{m222}				
e _{s222}	0.92	0.12	0.92	0.23	e _{s222}			
e ₂₂₂ (%)	-0.33	-0.06	-0.33	0.07	-0.19	e ₂₂₂ (%)		
e _{m220}	-0.06	0.94	-0.04	0.94	0.12	0.11	e _{m220}	
e _{s220}	-0.35	0.69	-0.34	0.49	-0.13	0.21	0.75	e _{s220}
e ₂₂₀ (%)	-0.45	-0.25	-0.46	-0.02	-0.33	0.85	0.01	0.13

TABLE 6.

Correlation matrix for 222 Rn and 220 Rn emanations and α -dose parameters from metamict silicates.

D ₂₃₂ D _T	D₂₃₈ 0.98 0.99	D₂₃₂ 1.00	DT					
e _{m222}	0.84	0.91	0.90	e _{m222}				
e _{s222}	0.97	1.00	1.00	0.93	e _{s222}			
e ₂₂₂ (%)	-0.14	0.00	-0.02	0.38	0.04	e ₂₂₂ (%)		
e _{m220}	0.97	1.00	1.00	0.94	1.00	0.06	e _{m220}	
e _{s220}	0.99	1.00	1.00	0.89	1.00	-0.05	0.99	e _{s220}
e ₂₂₀ (%)	0.52	0.55	0.55	0.55	0.57	-0.02	0.57	0.56