This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

1	Revision 1
2	Transition metal cation site preferences in forsterite (Mg ₂ SiO ₄) determined from
3	paramagnetically shifted NMR resonances.
4	Ryan J. McCarty ¹ *, Aaron C. Palke ¹ **, Jonathan F. Stebbins ¹ , J. Stephen Hartman ²
5	¹ Department of Geological and Environmental Sciences, Stanford University, Stanford, CA
6	94305, USA
7	² Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3Al Canada
8	*corresponding author, ryanjm@stanford.edu
9	**current address: Gemological Institute of America, Carlsbad, CA 92008, USA
10	Abstract
11	In marked contrast to the single, narrow 29 Si MAS NMR resonance for pure forsterite (Mg ₂ SiO ₄),
12	the spectra for synthetic forsterite containing 0.05 to 5 % of the Mg^{2+} replaced with Ni^{2+} , Co^{2+} ,
13	or Fe ²⁺ display between 4 and 26 additional, small, paramagnetically shifted peaks that are
14	caused by interactions of the unpaired electron spins on the transition metal cations and the
15	nuclear spins. Analyses of these relative peak areas, their numbers, and comparison of their
16	positions to those in spectra of synthetic monticellites (CaMgSiO ₄) containing similar levels of
17	transition metals, allows at least partial assignment to the effects of cations in either the M1
18	octahedral site only, or to both M1 and M2 sites. More detailed analyses indicate that in
19	
	forsterite, Ni ²⁺ occupies only M1, Fe ²⁺ occupies M1 and M2 roughly equally, and Co ²⁺ occupies

12/16

12/16

21	with expectations from previous studies by other methods (e.g. XRD) of olivines with much
22	higher transition metal cation contents. However, even low concentrations of Mn^{2+} (e.g. 0.1%),
23	as well as higher Fe ²⁺ contents (e.g. in natural San Carlos olivine) can broaden NMR peaks
24	sufficiently to greatly reduce this kind of information content in spectra.
25	Keywords: Forsterite, olivine, NMR, transition metal cations, paramagnetic shift, site
26	preference.
27	Introduction
28	Forsterite (Mg ₂ SiO ₄) is the magnesium end member of olivine, a common mineral found
29	in basaltic rocks and a major constituent of the earth's upper mantle (Harris et al. 1967).
30	Significant research efforts have been invested in better understanding transition metal cation
31	incorporation in forsterite, which can potentially refine partition coefficients used in numerous
32	geothermometric and geobarometeric methods (Canil 1994; Loucks 1996; Wu and Zhao 2007).
33	The structure of forsterite is well defined in the space group Pbnm, consisting of isolated silica
34	tetrahedra connected by a network of octahedral Mg sites, M1 and M2. The latter provide two
35	unique substitution environments for compatible, divalent transition metal cations, with the
36	M1 site being smaller and more distorted than the M2 site (Brown 1980).
37	Multiple studies have converged on similar results for the site occupancies of divalent
38	transition metal cations at high concentrations in olivines, providing a foundation for
39	investigation of concentrations that approach minor to trace element levels. The review
40	chapter by Brown (1980) provides a comprehensive summary of the early efforts on this
41	problem. X-ray diffraction has been a primary tool when concentrations are high enough to

42	measurably affect the long-range crystal structure, such as the finding of the strong ${\sf Ni}^{2+}$
43	preference for the M1 site (Rajamani et al. 1975). Similarly, Co ²⁺ has also been found to prefer
44	the M1 site, though to a lesser degree than the Ni ²⁺ preference (Ghose and Wan 1974). Varying
45	results from different methods place bounds on the distribution of Fe ²⁺ , which is usually found
46	to occupy the two sites almost equally (Brown 1980). These distributions are largely
47	determined by the greater crystal field stabilization energy for the M1 site, although the M2
48	site is increasingly favored as ionic radii increase (Brown 1980).
49	Further spectroscopic studies have confirmed and characterized these distributions. An
50	EXAFS study of Ni-bearing forsterite outlined the changes in distribution with temperature and
51	found an M1 site preference as well as a suggestion of clustering of Ni ²⁺ into adjacent M1 sites
52	(Henderson et al. 2001). The work of Taftø and Spence (1982) on natural San Carlos olivine
53	samples (approximately 10% Fe $_2$ SiO $_4$ component), using an electron-microscopic X-ray emission
54	technique, determined that Fe ²⁺ entered the two sites almost equally. A Mössbauer study on
55	synthetic crystals with equal concentrations of ${\sf Mg}^{2+}$ and Fe $^{2+}$ determined that at 500 °C, Fe
56	slightly prefers the M1 site, a preference which increases as temperature rises to 800 $^\circ$ C
57	(Morozov et al. 2006). The Rietveld refinement of Müller-Sommer et al. (1997) on synthetic Co-
58	rich forsterite indicated a distribution of Co ²⁺ between the two sites with an M1 site preference.
59	Polarized optical absorption spectroscopy results additionally agree on the M1 preference of
60	this cation (Taran and Rossman 2001). Confirmation of the M2 site preference of Mn ²⁺ has been
61	provided by channeling-enhanced X-ray emission spectroscopy (McCormick et al. 1987). The
62	effects of temperature on transition metal site occupancies in olivines have been extensively
63	studied by XRD and other methods for samples typically in the range of about 10 to 50 % of the

64	non-forsterite component, and have been analyzed thermodynamically, demonstrating
65	systematically increasing M1 preference from Fe^{2+} to Co^{2+} to Ni^{2+} (Kroll et al. 2006; Morozov et
66	al. 2006; Heinemann et al. 2007). The behavior of transition metal cations in forsterite at minor
67	to trace element concentrations (below detection limits of many methods) is less well
68	characterized, although as a first approximation they are predicted to behave similarly as at
69	higher concentrations. In this paper we describe a novel application of Nuclear Magnetic
70	Resonance (NMR) to this problem.

71 NMR is an element-specific spectroscopic method highly sensitive to coordination, bond 72 length and ordering in solids, and is best known in structural studies of major elements in 73 materials that are essentially free of ions with unpaired electron spins (Stebbins and Xue 2014). 74 In many materials with high concentrations of transition metal or rare earth element cations, 75 the intense local magnetic fields of the associated unpaired electrons can cause problematic NMR peak broadening and loss of structural information, although useful spectra have been 76 recently obtained in systems such as cations sorbed on iron oxyhydroxides (Nielsen et al. 2005) 77 and even for Mn and Fe phosphate battery materials (Grey and Dupré 2004). Early ²⁹Si MAS 78 NMR studies noted severe peak broadening for synthetic olivines with 1 to 5 % Fe_2SiO_4 79 80 component, and even "no signal" for a natural olivine with 9% Fe₂SiO₄ (Grimmer et al. 1983). In 81 a unique and detailed study of spin-lattice relaxation of sol-gel forsterites containing about 0.2 82 to 9% Ni, Co, and Cu, the effects of heterogeneity on non-exponential relaxation were documented, as well as significant peak broadening at higher Co contents (Hartman et al. 83 84 2007).

12/16

85 Recently, it has been found that in some silicate and phosphate minerals containing up 86 to several % of such paramagnetic cations, well-resolved extra NMR peaks can be detected that 87 are often shifted far outside the range of normal, diamagnetic "chemical" shifts (Bégaudeau et 88 al. 2012; Stebbins and Xue 2014). These extra peaks are "paramagnetically shifted" (i.e. NMR 89 frequency shifts that can be either positive or negative, caused by unpaired electrons of 90 paramagnetic cations) and are due to either through-space dipolar couplings from an asymmetric cation site ("pseudo-contact shift") and/or to through-bond transfer of unpaired 91 92 electron spin density to the observed nuclide ("Fermi contact shift") (Grey et al. 1989, 1990). 93 These effects are highly sensitive to interatomic distances and to electron distributions, and hence on structural details such as bond distances and angles (Lee et al. 1998; Middlemiss et al. 94 95 2013), and have been clearly detected in first and in some cases second cation shells, i.e. up to four bonds away from an observed NMR nuclide such as ²⁹Si, ³¹P, or ²⁷Al in phases such as 96 97 zircon, garnets, pyroxenes, MgSiO₃ perovskites, and monazites/xenotimes (Bégaudeau et al. 98 2009, 2012; Stebbins and Kelsey 2009; Palke and Stebbins 2011a, 2011b; Palke et al. 2012, 2013, in press). Although it remains difficult to predict the magnitude and even the sign of 99 100 paramagnetic frequency shifts from a hypothesized structure (e.g. a distribution of 101 paramagnetic cations), geometric relations, relative frequency shifts, and observed peak areas can provide useful clues as to at least partial assignment of such peaks to given structural 102 103 configurations. Such frequency shifts depend strongly on temperature (Bertini et al. 2002; Palke 104 and Stebbins 2011a; Palke and Stebbins 2011b), providing a convenient method to distinguish them from ordinary chemical shifts. 105

106	Paramagnetic shifts were first described in olivine through observation of numerous
107	unexpected, small, "extra" resonances in an unusually high-quality ²⁹ Si NMR spectrum of
108	isotopically-enriched forsterite bearing about 0.1% Co^{2+} (Stebbins et al. 2009b). In this paper,
109	we describe a systematic study of paramagnetically shifted peaks in ²⁹ Si MAS NMR spectra of
110	forsterite with 0.05 to 5 cation % Ni ²⁺ , Co ²⁺ , Fe ²⁺ , and Mn ²⁺ , following up on preliminary studies
111	(McCarty et al. 2012, 2014). Such spectra can be quite complex, with more than two dozen
112	resolvable resonances caused by a single paramagnetic species, in marked contrast to the single
113	resonance of pure Mg_2SiO_4 . We use the symmetry elements in the crystal structure, coupled
114	with probabilistic predictions, to limit the possible configurations of transition metal cations
115	relative to Si, and produce quantitative and bounded descriptions of the site occupancies. We
116	also investigate synthetic monticellite (CaMgSiO $_4$) bearing the same cations, as their expected
117	lack of M2 site occupancy helps to identify M1 features in the corresponding forsterite spectra,
118	increasing the confidence of the derived site distributions. Observed relative peak areas
119	ultimately correspond to transition metal cation site distributions, which are reported for Ni, Fe
120	and Co. We also show the limits of this method in olivine, as some minor cations in even low
121	concentrations (e.g. Mn ²⁺), and geologically interesting concentrations of more common
122	constituents (e.g. Fe ²⁺ in San Carlos olivine) can cause severe NMR peak broadening.

- 123
- 124

Experimental Methods

125 Samples

We initially studied a series of forsterite samples synthesized by a sol-gel/low 126 127 temperature sintering process, containing up to about 5% Co, Mn, or Ni, which were the subject 128 of a previous report on the effects of heterogeneous paramagnetic cation distributions on spin-129 lattice relaxation (Hartman et al. 2007). We attempted to increase the homogeneity of these 130 samples by sintering at 1500 °C for 2 to 4 days with intermediate grinding and pellet pressing 131 steps. However, grain growth was slow under these conditions, resulting in loose aggregates of mostly sub-micron particles with a few larger crystals. EPMA data (see below) showed no areas 132 133 with high transition metal concentrations, but did suggest considerable heterogeneity as well as 134 up to about 10% excess MgO, suggesting the presence of this "impurity" phase which may have somehow inhibited recrystallization. Preliminary ²⁹Si MAS NMR on these samples identified 135 136 relatively high contents of enstatite in many, further suggesting heterogeneity, but were useful 137 in indicating the ranges of concentration where each transition metal would yield relatively well-resolved spectra. The difficulty in homogenizing these materials led us to synthesize a new 138 139 group of forsterites from high temperature sintered oxide powders. All data shown here are from this latter group. 140

Reagent grade SiO₂ (dehydrated silica gel), MgO, CaCO₃, NiO, FeO, Co₃O₄, MnCO₃ and CuO were used for the high temperature powder syntheses. For forsterite, an excess of approximately 1 wt% MgO was added to otherwise on-composition mixtures to reduce the chance of formation of unwanted silicates such as pyroxene. Monticellite was produced from stoichiometric mixtures. Samples are labeled by the mole percent of the added transition metal cation (M) that replaces Mg in forsterite (Mg_{2-2x}M_{2x}SiO₄) or Mg+Ca in monticellite (CaMg₁. _{2x}M_{2x}SiO₄), as determined by electron microprobe analyses (Table 1). For instance, a Fe-

12/16

148	monticellite sample with the formula $CaMg_{0.998}Fe_{0.002}SiO_4$ is labeled "0.1% Fe-monticellite." This
149	notation allows an easy comparison between both forsterite and monticellite sample
150	concentrations and spectra. Compositions are also given in dopant atoms per formula unit
151	(apfu), i.e. $2x$ in the notation used here and 0.002 Fe atoms per [Ca(Mg,Fe)SiO ₄] unit in this
152	specific example.

153

154 Ni-, Co-, and Mn-forsterite were produced by grinding reagents together with isopropyl alcohol in an agate mortar and then heating for 2 to 4 days in a platinum crucible at 1500 °C 155 156 with 2 to 4 intermediate grinding steps. After the initial heating, some samples were pressed 157 into pellets at 9 metric tons and heated again; however, pressed and un-pressed samples showed no significant difference with respect to sample homogeneity. Unlike the sol-gel 158 159 forsterites, relatively rapid grain growth in sequential heat treatments was evident by the 160 formation of hard ceramic-like pellets and average grain sizes between 5 to 25 µm with some 161 crystals as large as 250 μ m. Fe-forsterite was produced by buffering the oxygen pressure with iron metal. For the 0.4% Fe sample, a drying step was added after grinding, and the sample was 162 163 heated to 1400 °C within a vacuum-sealed silica glass tube containing a piece of iron metal foil. 164 For the 0.05% Fe forsterite, a platinum-wrapped pellet of the starting material was heated to 1400 °C on a ceramic disk in a closed mild steel tube which self-sealed during heating in argon, 165 remaining unoxidized inside. Ni-, Co-, and Mn- cooling rates from 1500 °C to room temperature 166 167 range between 200 to 400 °C per hour. Fe- samples were guenched from 1400 °C to below 900

168	°C within 4 minutes. Samples bearing higher concentrations of Ni ²⁺ displayed a light green hue,
169	lower concentration Co- and Fe-bearing samples appeared white.
170	Monticellite samples were synthesized by heating oxide mixtures between 1500 to 1600
171	°C for 4 to 6 hours followed by removal from the furnace and quenching in air to produce
172	crystal-glass mixtures. Samples were then ground with isopropyl alcohol in an agate mortar,
173	pressed into pellets at 9 metric tons and heated to 1300 $^\circ$ C for 2 to 4 days with 2 to 3
174	intermediate grinding steps. Low concentration Fe-monticellite was produced as described
175	above with an added heating to 1300 $^\circ$ C in a vacuum-sealed silica glass tube containing an iron
176	foil oxygen fugacity buffer.
177	In addition, we collected new spectra on a Co-bearing, 95% ²⁹ Si-enriched forsterite
178	originally synthesized from oxide powders for studies of high pressure phases (Stebbins et al.
179	2009a, 2009b) and a sample of natural olivine from a mantle peridotite nodule (San Carlos, NM,
180	approximately $[Mg_{1.8}Fe_{0.2}]SiO_4$).
181	The samples grown by high temperature sintering of oxides were characterized in detail.
182	The JEOL JXA-8230 electron microprobe at Stanford University was used to determine sample
183	homogeneity and resulting sample compositions, using synthetic forsterite, wollastonite, metal
184	and oxide standards. NMR, EPMA and high-contrast backscattered electron images were used
185	to identify and characterize silicon-bearing impurity phases. All of these forsterite samples are
186	assumed to have a minor amount of periclase. Monticellite samples contain minor amounts of
187	one or more impurity phases, including akermanite, and possibly merwinite or forsterite. Some

188 samples were determined to have minor heterogeneities in transition metal concentrations,

189	but for the results shown here these are not significant, as minor compositional variations from
190	grain to grain will not affect conclusions about overall site occupancies and we are not
191	attempting to deduce details of localized transition metal ion clustering. Table 1 reports
192	average compositions based on 8 to 18 EPMA points with one standard deviation indicated in
193	parentheses. The higher temperature synthesis of the Ni^{2+} and Co^{2+} forsterites resulted in very
194	homogeneous samples. The sample synthesis conditions of the Fe ²⁺ samples made it difficult to
195	consistently produce homogeneous samples. The NMR results of the least homogeneous
196	sample (0.4% Fe-forsterite) are reported here only for comparison with the data for the lower
197	concentration sample, although both spectra look similar. Despite the observation of additional
198	phases, monticellite transition metal concentrations are close to homogenous, due in part to
199	the initial high temperature heating step.

201 NMR

²⁹Si MAS NMR spectra were collected with a Varian Unity/Inova spectrometer at 14.1 202 203 Tesla (119.1 MHz) and a Varian Infinity Plus spectrometer at 9.4 Tesla (79.4 MHz), using Varian/Chemagnetics "T3" probes with 3.2 mm zirconia rotors. Simple one pulse acquisitions 204 205 were used for almost all spectra with radiofrequency (RF) power levels of about 133 kHz and a 206 typical RF tip angle of 30°. For the San Carlos sample, the rapid signal decay necessitated the use of a spin-echo pulse sequence (90° - 180°) with an echo delay of 100 μ s, which may have 207 208 excluded some of the broadest components of the spectrum. Spinning speeds of 9 to 20 kHz 209 were used as shown in the figures; the slower speed reduced air frictional heating enough to

210	cause readily detectable changes in the positions of paramagnetically shifted peaks. From
211	previous studies (Palke and Stebbins 2011b) we estimate that sample temperatures at 20 kHz
212	spinning speed are about 40 to 50 $^\circ$ C, and close to room temperature at 9 kHz. On the 9.4 Tesla
213	spectrometer a similar probe with 4 mm rotors and 9-15 kHz spinning speeds with variable
214	temperature capabilities (25 to 150 $^\circ$ C) was also used. Paramagnetically shifted peaks were
215	found to relax fully with short pulse delays of 0.05 s, which allowed high signal-to-noise spectra
216	to be collected for these small features, each of which often had less than 0.8 % of the total
217	NMR signal. Peak areas are reported relative to those obtained for the fully relaxed, unshifted
218	central peaks, which required delay times of up to 3600 s to measure. Areas were obtained by
219	fitting with mixed Gaussian/Lorentzian line shapes (Table 1), with spinning sideband areas
220	included when observable.

222

Results

223 NMR spectra of the Ni-forsterite (Fig. 1), Fe-forsterite (Fig. 2), and Co-forsterite (Fig. 3) 224 samples each display a major, unshifted peak at the expected position of -61.8 ±0.2 ppm for 225 pure Mg_2SiO_4 forsterite, consistent with previous studies (Mägi et al. 1984), in addition to a 226 number of small, paramagnetically shifted peaks, many of which are at frequencies above -60 227 ppm and thus outside of the known range of chemical shifts in silicates. The latter vary in 228 number from approximately 4 in Ni-forsterite, 16 in Fe-forsterite and 26 in Co-forsterite, and all shift inward with the slightly higher temperature resulting from a faster spinning speed (Fig. 2), 229 230 confirming their origin. In some instances comparison of spectra collected at 25 °C and 75 or

231	150 °C with the variable temperature probe was convenient to initially identify subtle
232	paramagnetically shifted features. Such peaks are related to SiO $_4$ tetrahedra with paramagnetic
233	Ni ²⁺ , Fe ²⁺ , or Co ²⁺ in their first or second cation coordination shells, i.e. within 7 Å. In Figure 1,
234	the intensity of these peaks can be seen to increase with Ni^{2+} concentration while peak
235	positions remain unchanged. All paramagnetically shifted peaks are fully relaxed with a 0.05 s
236	pulse delay, although the main unshifted peaks are often only partially relaxed at this pulse
237	delay, especially for samples with lower dopant concentrations (Table 1). The widths of the
238	unshifted peaks tend to increase with increasing transition metal concentration, with a greater
239	Lorentzian component to the line shape (Table 1). A detailed study of the ²⁹ Si spin-lattice
240	relaxation of Co-bearing forsterite, including the ²⁹ Si-enriched sample described here, was
241	reported earlier (Stebbins et al. 2009a), documenting the effects of transition metal cation
242	concentration and the "stretched exponential" form of the relaxation curve.
243	Spectra for Ni ²⁺ -, Co ²⁺ -, and Fe ²⁺ -bearing monticellite (Figs. 4, 5 and 6) contain the main,
244	unshifted monticellite peak at -65.5 \pm 0.5 ppm, as well as signals from low abundance impurity
245	phases akermanite (-73.7 ppm) and possibly merwinite or forsterite (-61.8 ppm). These spectra
246	contain fewer paramagnetically shifted peaks, which are closer to the primary monticellite peak
247	than the corresponding forsterite spectra. Visible paramagnetically shifted peaks are clearly

associated with the monticellite phase, not with these impurities, as they converge on the

249 unshifted monticellite peak positon with increasing temperature. No paramagnetically shifted

250 peaks could be obviously associated with the impurity phases. The unshifted akermanite peaks

relaxed somewhat more slowly than the main monticellite peaks, suggesting lower transition

252 metal contents in the former.

254	Paramagnetically shifted peaks are simply numbered from higher to lower frequencies,
255	and positions and areas are given in Tables 2-7 for each sample. Hereafter, paramagnetically
256	shifted peak positions are reported relative to those of the unshifted central resonances, i.e.
257	the chemical shifts. In many cases, the main unshifted peak cannot be fit well with a single
258	component and seems to contain low-intensity shoulders which likely are due to additional
259	unresolved peaks with smaller paramagnetic shifts. The fitted intensities of these shoulders are
260	reported; however, the significance of these values is unclear as their uncertainties are large.
261	Reported peak area values are averages of spectra collected at two different magnetic fields
262	and/or different spinning speeds; peak positions are reported from single spectra. The precision
263	of peak area measurements are reported individually for each set of data. An overall accuracy
264	of ±22% relative is estimated, resulting from the NMR experimental conditions and data
265	processing.
266	Ni-containing samples
267	Figure 1 displays the ²⁹ Si NMR spectra of three forsterites with Ni ²⁺ concentrations of
268	0.25, 1 and 5 % (Table 2). The spectra each display four small paramagnetic shifted peaks with

equal areas, labeled as 7, 9, 10 and 11. Peak 7 is shifted +20.8 ppm to higher frequency, peaks

- 9 and 10 are close together at +8.4 ppm and +5.8 ppm, respectively, and peak 11 is shifted
- 271 down in frequency -6.4 ppm. The multiple peak positions indicate the various possible
- geometric relationships (bond paths, distances, etc.) of Ni²⁺ and Si and the equal area of these
- 273 peaks is consistent with identical lattice sites.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

For the highest concentration sample, 5% Ni-forsterite, the four peaks described above are joined by additional smaller paramagnetically shifted peaks numbered 1, 2, 3, 4, 5, 6 and 8 (peaks 5, 6 and 8 are also barely visible in the 1% Ni sample). As discussed in detail below, their positions and their appearance only at higher concentrations indicate that these low intensity features result from Si in sites with two or even three Ni²⁺ cation neighbors. A peak area detection limit of about 0.1 % is possible in the 5% sample, setting an upper bound on possible unresolvable peak areas.

In Figure 4 the spectrum of 1% Ni-monticellite (Table 3) presents 3 paramagnetically 281 shifted peaks, peaks 1 and 2 at the higher frequencies of +14.2 ppm and +3.1 ppm respectively, 282 and peak 3 at -3.1 ppm. Peaks 1 and 3 have comparable areas but 2 has slightly more than 283 twice this area. When compared to the Ni-forsterite spectra, peak positions have the same 284 285 relative locations with Ni-monticellite peak 2 apparently being the sum of overlapping peaks corresponding to Ni-forsterite peaks 9 and 10. A peak at the known chemical shift of 286 akermanite at -73.6 ppm (Stebbins 1995) is present as well as a shoulder from an unidentified 287 288 impurity phase at -72.4 ppm. In addition to the clearly identifiable paramagnetically shifted peaks, several low-intensity features near the limit of detection in this sample (>0.1%) are 289 290 observed and are likely to be of similar origin. However, these less well-defined features are not 291 important in the following discussion. NMR spectra of the Ni-bearing sol-gel forsterites showed 292 many of the same paramagnetically shifted peaks, but are not shown here and were not analyzed in detail because of concerns about heterogeneity 293

294

295 Fe-containing samples

296	Figure 2 displays the ²⁹ Si NMR spectra of 0.05% Fe-forsterite (Table 4) at two spinning
297	speeds. 16 paramagnetically shifted peaks are observed. 9 peaks are shifted to higher
298	frequencies and 7 to lower frequencies, many of which are overlapping. Peak areas vary
299	somewhat. Peak 9 is difficult to resolve in the central transition, but is clearly distinguished in
300	the spinning sidebands, where the contribution from the central, unshifted peak is often
301	relatively much smaller (Fig. 7). Areas of peaks 6 through 11 are difficult to constrain due to
302	significant overlap with the main, unshifted peak. Due to variations in sideband intensities for
303	the paramagnetically shifted peaks, it was necessary to carefully fit the sideband manifolds and
304	include these in the reported intensities. For example, peak 14 in the 12 kHz spectrum is
305	noticeably smaller than in the 20 kHz spectrum, a result of the reduction in its sideband
306	intensities at higher spinning speeds. Peak areas for the 0.4% Fe-forsterite (Table 4) sample are
307	reported but no spectrum is presented as it resembles that of the 0.05% sample .
308	The spectrum of 0.1% Fe-monticellite (Fig. 5, Table 5) displays 7 paramagnetically
309	shifted peaks. The peaks have similar line shapes and widths and nearly equal areas within
310	experimental uncertainty. Four peaks appear at higher frequencies, peak 1 isolated at +22.3
311	ppm, peaks 2 and 3 slightly overlapping at +11.4 ppm and +8.8 ppm respectively, and peak 4
312	forming a shoulder on the main peak at +3.2 ppm. At lower frequencies, peaks 7 and 6 are
313	clearly separated at -28.5 ppm and -19.6 ppm respectively, and peak 5 is at -6.1 ppm, between
314	the resonance for the akermanite impurity and the unshifted monticellite peak.

315 **Co-containing samples**

316	Figure 3 shows the ²⁹ Si NMR spectrum of ²⁹ Si-enriched, 0.1% Co-forsterite (Table 6)
317	which exhibits 26 paramagnetically shifted peaks. This sample was reported on previously in
318	Stebbins et al. (2009a,b) as "Fo-1", but new, higher quality data were collected to better resolve
319	the shifted peaks. The ²⁹ Si enrichment gives a much higher signal to noise ratio in which a peak
320	with 0.04% intensity should be detectable. 14 peaks are shifted up in frequency by as much as
321	+36.8 ppm and 12 are shifted down in frequency as much as -61.7 ppm, exceeding the
322	maximum shifts seen in the Fe-spectra. Peak areas are not as evenly distributed as in the
323	spectra for the Fe-forsterite, with some range of peak sizes. Figure 6 displays the spectrum of
324	isotopically normal 0.65% Co-forsterite, shifted by -4.1 ppm to allow more direct comparison
325	with Co-monticellite data. There are approximately 7 peaks visible and multiple shoulders. At
326	this higher concentration the broadening caused by the Co ²⁺ obscures the fine features of the
327	individual paramagnetically shifted peaks and at even higher concentrations (greater than 1%
328	Co) the remaining features become unresolvable. As for Ni-containing samples, the spectra of
329	the Co-bearing, sol-gel forsterites showed parmagnetically shifted peaks that were similar to
330	those described here for the higher-Co samples made by sintering of oxides, but were not
331	analyzed in detail because of heterogeneity.

Figure 6 also displays the 0.25% Co-monticellite spectrum (Table 7) which contains 3 labeled paramagnetically shifted peaks. The two higher frequency peaks at +17.6 ppm and +10.5 ppm overlap significantly with the unshifted peak due to their relative inward shift and to peak broadening. Peak 3 is shifted far down in frequency, by -44.3 ppm. An unshifted akermanite impurity peak is again present at -72.0 ppm.

337 Undoped, Cu- and Mn-bearing forsterite and San Carlos olivine

338	Spectra of Mn-bearing forsterites, even at the 0.1% concentration level, display drastic
339	peak broadening (10 to 20 times that of comparable levels of Ni, Co or Fe ²⁺), which prevented
340	the identification of any paramagnetically shifted peaks (Fig. 8). This is probably the result of an
341	unusually large effect on relaxation: unlike the other samples, the entire observed peak was
342	fully relaxed at the short pulse delay of 0.05 s (Table 1), with no improvement in resolution at
343	longer delays. Unfortunately, this severe broadening prevents any analysis of Mn ²⁺ site
344	occupancies, which are expected to be different from other cations described here.
345	Our attempts to add significant concentrations of Cu ²⁺ to forsterite were unsuccessful,
346	yielding undetectable dopant levels and no effects on NMR spectra, presumably due to the
347	ease of reduction of this cation to Cu^{1+} (diamagnetic) and even Cu^0 at high temperature
348	synthesis conditions.
349	Spectra of undoped forsterite samples also presented very small paramagnetically
350	shifted peaks at the same positions as some of those observed in Co- and Ni-bearing samples,
351	most likely the result of minor cross-contamination from Pt crucibles, which can readily alloy
352	with these metals. This same scenario is likely the source of Co contamination identified (via the
353	observation of tiny paramagnetically shifted peaks) in the "Fo-unen" and "Fo-noCo" samples of
354	Stebbins et al. (2009a,b).
355	As already described in the early days of high resolution, solid state NMR (Grimmer et
356	al. 1983), the ²⁹ Si spectrum of San Carlos olivine is so severely broadened by its high Fe ²⁺

357 content (about 10% Fe in the notation used here, or approximately Fo₉₀) as to be difficult to

observe, with little structurally useful information (Fig. 8). Only the broad (55 ppm) central
 resonance is shown here, not the accompanying wide manifold of spinning sidebands, which is
 particularly intense for this sample.

Discussion

361

The positions of the paramagnetically shifted peaks observed in the ²⁹Si NMR spectra 362 are expected to be highly sensitive to variations in geometric relationships (number of 363 separating bonds, distances, angles, and accompanying changes in electronic structure) 364 between the paramagnetic transition metal cation and the ²⁹Si nucleus (Grey et al. 1989, 1990; 365 Palke and Stebbins 2011a, 2011b). Multiple peaks are present due to the various possible 366 367 configurations. In order to make sense of the observed peak shifts, we must carefully examine the well-known forsterite structure. Table 8 lists M1 and M2 sites that are 2 bonds (first cation 368 369 shell) or 4 bonds (second cation shell) away from a central silicon site, as well as the M1-Si or M2-Si distances (Fujino et al. 1981). The expected relative areas of shifted peaks resulting from 370 the substitution of paramagnetic cations into each configuration, based simply on the numbers 371 of geometrically equivalent sites, are also given. The Si atom lies on a mirror plane; the first and 372 373 second neighbor M1 sites are all off the mirror plane and occur in groups (e.g. the first neighbor, edge shared site at 2.695 Å or the second neighbor site at 4.412 Å) each with two 374 symmetrically equivalent M1-Si configurations. Therefore, transition metal cations occupying 375 M1 sites should produce several peaks of equal area. The first- and second-neighbor M2 sites to 376 the Si can be either off or on the mirror plane and thus occur in groups each with either one or 377 378 two symmetrically equivalent M2-Si configurations. This will produce paramagnetically shifted

379 peaks of *unequal* area with some having twice the intensity as others. The peak area for a given 380 M1-Si or M2-Si configuration will be proportional to the concentration of the transition metal 381 cation on the M1 or M2 sites, denoted X or Y, respectively. Peak areas are then dependent on 382 whether the M site lies on the same mirror plane as Si. For example, a shifted peak related to an off-mirror plane M2 site will have an intensity of 2Y while the on-mirror plane M2 site will 383 384 have an intensity of Y (Table 8). Measured peak areas can be compared to this tabulation and thus yield information about the site preference of the paramagnetic cation for M1 or M2. As a 385 first approximation, a paramagnetic cation closer to the observed silicon should produce a 386 387 frequency shift with a greater magnitude (possibly either up or down in frequency), although a simple proportionality between distance and shift is not expected if the through-bond "Fermi 388 389 contact shift" mechanism is predominant.

We note that the distributions of transition metal cations on the M1 and M2 sites in olivine are known to depend on temperature (Heinemann et al. 2007), although detection of such effects by the methods described here would require especially high-quality spectra. The rate-dependent "closure temperatures" for ordering of cations during cooling, at which site occupancies are quenched in, may be well below the synthesis temperatures used here, but are not precisely known, especially for Co- and Ni-containing olivines.

396 **Ni-forsterite and monticellite**

The uniform intensities of peaks 7, 9, 10 and 11 in the spectra for the Ni-forsterite samples agree well with an M1-only site occupancy, and thus requires paramagnetic shift contributions from at least some sites that are 4 bonds away as there are only two distinct M1-

400	Si configurations within 2 bonds. Similar conclusions were reached in our recent studies of
401	pyrope-rich garnets (Palke et al., submitted). From Table 8, nine paramagnetically shifted peaks
402	might be expected from sites within this range. While only four shifted peaks are clearly
403	resolved, additional peaks are likely to contribute to the spectra but may be shifted such small
404	distances that they cannot be resolved from the main, unshifted peak (e.g. a shoulder seen just
405	above peak 11 in the 0.25% Ni-forsterite). For example, the four M1 second-neighbor sites at
406	distances greater than 6 Å might be expected to give especially small shifts. The
407	paramagnetically shifted peaks seen in the Ni-forsterite spectra have corresponding locations in
408	the 1% Ni-monticellite spectra (Fig. 4). The correlation between the peak positions in the two
409	phases is near linear, a trend that is not necessarily anticipated for paramagnetic shifts, but is
410	likely to be related to the larger unit cell and longer average bond distances in monticellite (Fig.
411	9) . Ni-monticellite peak 2 appears to be the result of two overlapping peaks corresponding to
412	Ni-forsterite peaks 9 and 10. Its area is 30% larger than expected using peaks 1 and 3 as
413	references, but this is probably within experimental error, based on comparisons of nominally
414	"equal area" peaks in other spectra. Due to the large difference in ionic radii between Ni^{2+} and
415	Ca ²⁺ , Ni ²⁺ is expected to occupy only the M1 site in monticellite with full occupation of M2 by
416	Ca. Therefore, the similarity of the monticellite and forsterite spectra confirm that Ni ²⁺ in
417	forsterite occupies solely the M1 site. Most importantly, the assumption that the monticellite
418	spectrum should closely match the forsterite M1 features seems robust, which proves very
419	useful for the analysis of the Fe- and Co-forsterites below.

The additional paramagnetically shifted peaks for the 5% Ni-Forsterite sample (peaks 15, 8, Fig. 1) match the expected locations and peak areas of combination peaks for Si sites with

422	two or three Ni ²⁺ cation M1 neighbors. These combination peaks should be found at positions
423	approximately equal to the sum of the two or three individual shifts, and with areas
424	proportional to the probability of having two or three such neighbors (Grey et al. 1989, 1990;
425	Palke and Stebbins 2011b; Palke et al. submitted). Assuming a random distribution of Ni ²⁺ on
426	M1 sites, the probability of various Ni-Si configurations can be predicted. Peaks 7, 9 10, and 11
427	are each due to a single Ni ²⁺ cation neighbor, as evidenced by their presence in the spectrum
428	for the lowest Ni ²⁺ concentration, allowing the location of double- and triple-neighbor shifted
429	peaks to be calculated as sums of these single neighbor positions. The expected peak areas and
430	locations are in good agreement with the measured spectrum (Figure 10, discussed below).
431	The largest deviation between the prediction and observation is for peak 8, which is 4% larger
432	than predicted from the overlap of combination peaks 7+11 and 9+10 that add up to make this
433	combination resonance. The peak locations of the farthest-shifted double and triple
434	combination peaks deviate somewhat from the prediction, such as peak 3 which is shifted by
435	+1.7 ppm further than predicted by the sum of shifts for 7 and 7 (44.0 vs. 42.3). This is likely
436	because the incorporation of two Ni ²⁺ cations in adjacent sites causes small structural distortion
437	resulting in changes to the paramagnetic shifts.

To illustrate this approach for the 1% and 5% Ni-forsterites, we have simulated spectra assuming random distributions of Ni²⁺ (on M1 sites only) to predict relative areas of shifted peaks. We fit peak widths and positions to those of the singly-shifted resonances, then predict the doubly-and triply-shifted peaks with areas proportional to the probabilities of two or three Ni²⁺ neighbors and shifts that are sums of corresponding single shifts. Results are shown in Figure 10, and match the experimental spectra remarkably well. Triply-shifted peaks are in

444	general too small for ready detection, as are some doubly-shifted peaks, but in total are a
445	significant part of the overall intensity, accounting for roughly 7%. The absence of any obvious
446	deviations from peak intensities given by this random model prediction suggest that strong
447	localized clustering of Ni ²⁺ or significant Ni ²⁺ occupancy of M2 are unlikely.
448	As mentioned in the introduction and discussed at some length in recent studies of
449	garnets and monazites (Palke and Stebbins 2011a; Palke and Stebbins 2011b, Palke et al. 2013;
450	Palke et al., submitted), as well as in pioneering earlier work on yttrium and tin-containing
451	pyrochlore phases (Grey et al. 1989, 1990), both through-bond electronic structure effects
452	(Fermi contact shift) and through space dipolar couplings from asymmetric sites (not fully
453	averaged in MAS NMR, the "pseudo-contact" shift) can result in paramagnetic shifts of NMR
454	resonances. Both can contribute significantly, but distinguishing between the two mechanisms
455	can be difficult. Fortunately, detailed studies of a Ni-bearing forsterite single crystal yielded a
456	quantitative description of the angular dependence and asymmetry of the EPR spectrum
457	resulting from its unpaired electron spins (the "g-tensor"), as well as confirming the M1 site
458	occupancy (Rager et al. 1988). This information, and the equations for calculating
459	pseudocontact shifts given by Bertini et al. (2002) were used to estimate the maximum range of
460	possible pseudocontact shifts. If only the latter peaks were present, the maximum shift distance
461	would be only 2.1 to -0.6 ppm, which would make them unresolvable from the main unshifted
462	peak. This indicates that the resolvable paramagnetically shifted peaks in the spectra of the Ni-
463	forsterites described here must be primarily the products of the Fermi contact interaction.

464 **Fe-forsterite and monticellite**

484

465	The number of observed peaks in the spectra of Fe-forsterite samples is dramatically
466	greater than for the Ni-forsterites and immediately indicates a different site distribution for
467	Fe ²⁺ . The relatively large variations in peak areas suggests as well that M2 sites are occupied as
468	well as M1, as the former can vary depending on local symmetry (Table 8). Peaks 6, 7, 8, 9, 10,
469	and 11 overlap with the unshifted peak or with each other, and their peak areas cannot be well
470	constrained, making them unsuitable for use in an analysis of site occupancies. In contrast,
471	peaks 1, 2, 3, 4, 5, 12, 13 14, 15 and 16 can be resolved and fit with a higher degree of certainty.
472	However, the areas of even this subset of peaks cannot be easily divided into groups, so
473	identifying site occupancy based on peak areas is difficult. Additionally, if there is a nearly equal
474	ratio of Fe ²⁺ on M1 to M2, as expected from previous studies of Fe-rich olivines, peaks in the
475	silicon spectrum resulting from M1 and M2 occupancies would not be readily distinguishable
476	(i.e. X and Y in Table 8 would have similar values).
477	However, comparison of Fe-forsterite to Fe-monticellite (Fig. 5) does allow some
478	separation of M1 or M2 peaks in the forsterite spectrum. Monticellite peaks 6 and 7 appear to
479	closely correlate to forsterite peaks 15 and 16. Indeed, a plot of the Fe-forsterite vs. Fe-
480	monticellite peak positions again shows a strong linear correlation between Fe-forsterite peaks
481	3, 5, 8, 15, and 16 and Fe-monticellite peaks 1, 3, 4, 6, and 7. Additionally, Fe-forsterite peaks 4
482	and 12 linked to Fe-monticellite peaks 2 and 5 lie close to this linear trend. Figure 9 plots the
483	identified corresponding peaks of the Ni ²⁺ , Fe ²⁺ , and Co ²⁺ illustrating the linear relationship

485 determining peak assignments can be developed by considering peak areas. At the expected

between the forsterite and monticellite M1 paramagnetic shifts. An additional method of

486	positions of Fe-forsterite peaks 1, 2 and 3 only one peak can be found in the Fe-monticellite
487	spectrum indicating that two of these are caused by Fe^{2+} in M2 in the former. Since some of the
488	M2 sites lie on the same mirror plane as the Si and some are off the plane, we expect two
489	groups of peaks for Fe ²⁺ in M2, with some peaks having half the area of the others. Fe-
490	forsterite peak 1 is close to half the size of peaks 2 or 3, and the presence of only one
491	monticellite peak in this region of the spectrum indicates that peaks 2 and 3 must correspond
492	to silicon sites with neighboring occupied M1 and M2 off-mirror plane sites. Using areas of Fe-
493	forsterite peaks 1, 2 and 3 the distribution was determined as 48±23% M1, which closely
494	matches the roughly 1:1 distribution expected from data on high Fe olivines.
495	Peak areas were predicted using Fe concentrations given by EPMA and the assumption
496	of a 1:1, random distribution of Fe^{2+} on M1 and M2. In the 0.05% Fe-forsterite, M1 and M2 off-
497	mirror plane peaks should each have areas of 0.2% and M2 on-mirror plane peaks should have
498	areas of 0.1%. There are some peaks near each of these predicted areas, but the majority of the
499	peaks are between the two predicted values, suggesting that experimental precision is not
500	good enough to make this distinction. In the 0.4% Fe-forsterite sample, M1 and M2 off-mirror
501	planes area predictions are 1.2% and M2 on-mirror plane peak areas are 0.6%, which are again
502	similar to the observed range of areas.
503	Although the Fe-bearing samples were not as homogeneous and their spectra were not
504	as well resolved as the Ni-bearing samples and spectra, attribution of features in the silicon
505	spectra to M1 or M2 site occupation is still possible and is consistent with expectations from Fe-

rich olivines. While measured peak areas do not fit completely with the peak assignment model

507	developed above, probably because of experimental imprecision, two lines of research could
508	confirm this analysis. As discussed by Middlemiss et al. (2013), DFT calculations are beginning
509	to provide insights into specific peak assignments to interactions between paramagnetic cations
510	and NMR nuclides. Additionally, ²⁹ Si-enriched samples could increase signal to noise in the
511	spectra and improve the precision of measured intensities of the paramagnetically shifted
512	peaks

513 **Co forsterite and monticellite**

The analysis of the ²⁹Si NMR spectrum of the 0.1% Co-forsterite is made more precise by 514 the higher signal to noise ratio resulting from its isotopic enrichment, yielding more complete 515 information about Co²⁺ site preference. This spectrum displays a large number of peaks 516 indicating that Co^{2+} is present (in some ratio) on both M1 and M2 sites, as in Fe-forsterite. 517 518 These can be separated into groups based on their relative areas (Table 6): group A with the smallest areas ranging from 0.01 to 0.018% (peaks 1, 4, 7, 8, 22, 23, and 24), group B with 519 distinctly larger areas from 0.027% to 0.055% (peaks 2, 5, 18, 21, and 25), group C ranging from 520 521 0.086% to 0.114% (peaks 3, 6, 17, 19, 20, and 26), and group D comprising those with areas above 0.135% (peaks 10, 12, 13, 14, 15, and 16). Several studies of olivines with much higher Co 522 523 concentrations have suggested a significant, but not exclusive, preference for M1 over M2 (Müller-Sommer et al. 1997; Taran and Rossman 2001). A similar site distribution at low Co²⁺ 524 concentrations would suggest that paramagnetically shifted peaks related to Co²⁺ in M1 should 525 be systematically larger than those related to M2. Group A can therefore be expected to 526 contain the shifts caused by Co^{2+} in M2 on the mirror plane with Si. The average area of the 527 528 group B peaks is approximately twice that for group A, so group B may represent the signals

from Co²⁺ in off-mirror plane M2 sites. The much larger peaks in group C then are likely to be
contributions from Co²⁺ in M1 sites.

531	These assignments can be at least partially corroborated by comparing the spectrum of
532	Co-monticellite to that of 0.65% Co-forsterite, where peak numbers correspond to those in the
533	lower-dopant sample (Fig. 6). Here, the paramagnetically shifted peaks for the Co-monticellite
534	can be assumed to be caused by Co^{2+} in the M1 sites only. Co-forsterite peak 26 appears to
535	correspond to Co-monticellite peak 3 since there is little else in this region of the spectra, and
536	peaks 1 and 2 for the Co-monticellite appear to correspond to Co-forsterite peaks 3 and 6 (Fig.
537	6, dashed lines). As for Fe-forsterite and monticellite, there is rough linear correlation between
538	the shifts of the observable, corresponding M1 peaks in the Co-forsterite and Co-monticellite,
539	with systematically smaller shifts in the latter (Fig. 9). In the higher-resolution spectrum for the
540	0.1% Co-forsterite (Fig. 3), the areas of peaks of 3, 6 and 26, are all of similar area and are larger
541	than other neighboring peaks. Thus peaks 3, 6 and 26 are assigned as signals resulting from
542	silicon sites with neighboring Co ²⁺ in M1. This analysis thus also supports our assumption that
543	the small area peaks, group A and group B, in the 0.1% Co-forsterite spectrum are caused by
544	Co ²⁺ in M2.The larger-area group D peaks, which are the least shifted and least well-resolved,
545	probably each contain multiple overlapped contributions and cannot readily be assigned: single
546	peaks of much larger areas than those in group C are not expected from our analysis of the
547	structure. However, with multiple, clearly identified contributions from Co ²⁺ in both M1 and M2
548	sites, averages of the peak areas for groups A, B and C can be compared to determine the site
549	preference for Co ²⁺ . Using the symmetry-constrained relationship between intensities for on-
550	mirror-plane M1 and M2 site peaks, 2X and 2Y, respectively, a 76±12% M1 site preference can

556	Implications
555	preference is predicted by their results, which agrees well with our determined value.
554	within two minutes. At the Co^{2+} concentrations of our forsterite samples, an 84% M1 site
553	$(Co_{0.13}Mg_{0.87})_2SiO_4$ to Co_2SiO_4 , all equilibrated at 1200 °C and cooled to room temperature
552	preference for the M1 site with an X-ray Rietveld analysis of a series of olivines ranging from
551	be determined for Co ²⁺ in forsterite. Müller-Sommer et al. (1997) determined the Co ²⁺

The ²⁹Si spectra of forsterite containing 0.05 to 5% of Ni²⁺, Co²⁺, and Fe²⁺ display large 557 numbers (4 to 26 or more) of resolvable resonances caused by interactions of unpaired electron 558 spins with nuclear spins. These potentially contain a wealth of information about site 559 occupancies, short range order/disorder, and substitution mechanisms, as has begun to be 560 561 reported for other minerals such as garnets and REE phosphates. Although we cannot yet fully analyze these spectra (a task that probably awaits the development and application of 562 advanced theoretical methods), partial analysis gives reasonable assignments of peaks to each 563 different cation in either exclusively M1 sites (Ni²⁺), roughly equal occupancy in both M1 and 564 M2 (Fe²⁺), or both sites with a strong preference for M1 (Co²⁺). Comparison to analogous Ni-565 566 bearing monticellite samples, where M1-only occupancies are expected, helps confirm these assignments. These site preferences agree well with those predicted by previous studies of 567 olivines with higher transition metal cation concentrations, suggesting some simplicity to 568 controlling mechanisms of solution. Future NMR studies seeking to investigate the effects of 569 temperature and composition on M1/M2 ordering in olivines with relatively low transition 570 metal cation contents would require high quality spectra to tightly constrain peak areas.²⁹Si 571

572	enriched samples would be very useful in detecting small (approximate 5% or less) changes in
573	paramagnetically shifted peak areas anticipated by the findings and analysis of higher
574	concentration studies (Kroll et al. 2006; Morozov et al. 2006; Heinemann et al. 2007). If
575	detectable, these results could be important complements to existing data from XRD and other
576	methods on samples with higher concentrations, to better refine solution models.
577	The approach chosen here of keeping magnetic dopant ion levels low enough to avoid
578	problematic line broadening, as well as comparing effects of cations expected to have different
579	site occupancies, suggests the possibility of application to other problems of short-range
580	structure in silicate and other minerals and related technological materials; the documentation
581	of shifted NMR peaks for one, two, and even three paramagnetic cation neighbors provides
582	prospects for unique opportunities to detect cation clustering, as was noted in early studies of
583	pyrochlore phases (Grey et al. 1989, 1990). In minerals such as forsterite that can have very
584	narrow NMR peaks, effects of paramagnetic cations can be detected at very low concentrations
585	(< 0.1%) even in isotopically normal samples, if experiments are done with very rapid pulsing to
586	enhance these fast-relaxing signals. ²⁹ Si enrichment can increase this sensitivity even more.
587	Broadening effects, as shown here for low concentrations of Mn ²⁺ and high
588	concentrations of Fe ²⁺ in olivine, may still produce NMR spectra that are unresolved and which
589	appear to retain little structural information. However, results presented here suggest that
590	even in such systems, future NMR studies could prove interesting, perhaps if conducted with
591	very rapid sample spinning rates (now possible up to >100 kHz in some cases) or at low

12/16

592	temperatures where separation due to paramagnetic shifts may be much greater and
593	relaxation times altered.
594	
595	Acknowledgements
596	This research was supported by NSF grant EAR-1019596 to J.F.S. We thank Suzie S. Rigby (Brock
597	University) who synthesized the sol-gel samples with financial support by the Natural Sciences
598	and Engineering Research Council of Canada (NSERC), and Bob Jones (Stanford) for assistance
599	with EPMA analyses.

602	References
603	Bégaudeau, K., Morizet, Y., Paris, M., Florian, P., Léveque, F., and Mercier, J.C. (2009)
604	Quantitative analysis of hydroxyl ions in pyroxenes from Kilbourne Hole peridotites (New
605	Mexico): an FTIR and NMR study. American Geophysical Union, Fall Meeting, abstract
606	MR43A–1868.
607	Bégaudeau, K., Morizet, Y., Florian, P., Paris, M., and Mercier, JC. (2012) Solid-state NMR
608	analysis of Fe-bearing minerals: implications and applications for Earth sciences. European
609	Journal of Mineralogy, 24, 535–550.
610	Bertini, I., Luchinat, C., and Parigi, G. (2002) Magnetic susceptibility in paramagnetic NMR.
611	Progress in Nuclear Magnetic Resonance Spectroscopy, 40, 249–273.
612	Brown, G.E. (1980) Olivines and Silicate spinels. In: Reviews in Mineralogy and Geochemistry,
613	Vol. 5, pp. 275–381.
614 615	Canil, D. (1994) An experimental calibration of the "Nickel in Garnet" geothermometer with applications. Contributions to Mineralogy and Petrology, 117, 410–420.
616	Fujino, K., Sasaki, S., Takéuchi, Y., and Sadanaga, R. (1981) X-ray determination of electron
617	distributions in forsterite, fayalite and tephroite. Acta Crystallographica, B37, 513–518.
618	Ghose, S., and Wan, C. (1974) Strong site preference of Co ²⁺ in olivine, Co _{1. 10} Mg _{0. 90} SiO ₄ .
619	Contributions to Mineralogy and Petrology, 47, 131–140.
620 621	Grey, C.P., and Dupré, N. (2004) NMR studies of cathode materials for lithium-ion rechargeable batteries. Chemical Reviews, 104, 4493–4512.
622	Grey, C.P., Dobson, C.M., Cheetham, A.K., and Jakeman, R.J.B. (1989) Studies of rare-earth
623	stannates by tin-119 MAS NMR. The use of paramagnetic shift probes in the solid state.
624	Journal of the American Chemical Society, 111, 505–511.
625	Grey, C.P., Smith, M.E., Cheetham, A.K., Dobson, C.M., and Dupree, R. (1990) Yttrium-89 MAS
626	NMR study of rare-earth pyrochlores: paramagnetic shifts in the solid state. Journal of the
627	American Chemical Society, 112, 4670–4675.
628 629	Grimmer, A.R., von Lampe, F., Magi, M., and Lippmaa, E. (1983) High resolution ²⁹ Si NMR of solid silicates: influence of Fe ²⁺ in olivines. Zeitschrift fur Chemie, 23, 343–344.

630 631	Harris, P.G., Reay, A., and White, I.G. (1967) Chemical composition of the upper mantle. Journal of Geophysical Research, 72, 6359–6369.
632 633 634 635	Hartman, J.S., Narayanan, A., Rigby, S.S., Sliwinski, D.R., Halden, N.M., and Bain, A.D. (2007) Heterogeneities in sol-gel-derived paramagnetics-doped forsterites and willemites – Electron microprobe analysis and stretched-exponential ²⁹ Si MAS NMR spin-lattice relaxation studies. Canadian Journal of Chemistry, 65, 56–65.
636 637 638	Heinemann, R., Kroll, H., Kirfel, A., and Barbier, B. (2007) Order and anti-order in olivine III: Variation of the cation distribution in the Fe,Mg olivine solid solution series with temperature and composition. European Journal of Mineralogy, 19, 15–27.
639 640 641 642	Henderson, C.M.B., Redfern, S.A.T., Smith, R.I., Knight, K.S., and Charnock, J.M. (2001) Composition and temperature dependence of cation ordering in Ni-Mg olivine solid solutions: a time-of-flight neutron powder diffraction and EXAFS study. American Mineralogist, 86, 1170–1187.
643 644	Kroll, H., Kirfel, A., and Heinemann, R. (2006) Order and anti-order in olivine II: Thermodynamic analysis and crystal-chemical modelling. European Journal of Mineralogy, 18, 691–704.
645 646	Lee, Y.J., Wang, F., and Grey, C.P. (1998) ⁶ Li and ⁷ Li MAS NMR studies of lithium manganate cathode materials. Journal of the American Chemical Society, 120, 12601–12613.
647 648	Loucks, R.R. (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. Contributions to Mineralogy and Petrology, 125, 140–150.
649 650 651	Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G., and Grimmer, A.R. (1984) Solid-state high- resolution silicon-29 chemical shifts in silicates. The Journal of Physical Chemistry, 88, 1518–1522.
652 653 654	McCarty, R.J., Palke, A.C., Stebbins, J.F., and Hartman, J.S. (2012) A ²⁹ Si MAS-NMR study of transition metal site occupancy in forsterite. American Geophysical Union, Fall Meeting, abstract MR11A–2470.
655 656 657	McCarty, R.J., Palke, A.C., and Stebbins, J.F. (2014) The site preference and distribution of low concentration elements in forsterite as determined by NMR. 2014 Goldschmidt Conference, Abstracts, 1638.
658 659 660	McCormick, T.C., Smyth, J.R., and Lofgren, G.E. (1987) Site occupancies of minor elements in synthetic olivines as determined by channeling-enhanced X-ray emission. Physics and Chemistry of Minerals, 14, 368–372.
661 662	Middlemiss, D.S., Ilott, A.J., Clément, R.J., Strobridge, F.C., and Grey, C.P. (2013) Density functional theory-based bond pathway decompositions of hyperfine shifts: Equipping

663	solid-state NMR to characterize atomic environments in paramagnetic materials.
664	Chemistry of Materials, 25, 1723–1734.
665	Morozov, M., Brinkmann, C., Grodzicki, M., Lottermoser, W., Tippelt, G., Amthauer, G., and
666	Kroll, H. (2006) Octahedral cation partitioning in Mg,Fe ²⁺ -olivine. Mössbauer spectroscopic
667	study of synthetic (Mg _{0.5} Fe ²⁺ _{0.5}) ₂ SiO ₄ (Fa ₅₀). Hyperfine Interactions, 166, 573–578.
668	Müller-Sommer, M., Hock, R., and Kirfel, A. (1997) Rietveld refinement study of the cation
669	distribution in (Co, Mg)-olivine solid solution. Physics and Chemistry of Minerals, 24, 17–
670	23.
671	Nielsen, U.G., Paik, Y., Julmis, K., Schoonen, M.A., Reeder, R.J., and Grey, C.P. (2005)
672	Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy:
673	a ⁶ Li MAS NMR study of adsorption and absorption on goethite. The Journal of Physical
674	Chemistry. B, 109, 18310–18315.
675 676 677	Palke, A.C., and Stebbins, J.F. (2011a) Paramagnetic interactions in the ³¹ P NMR spectroscopy of rare earth element orthophosphate (REPO ₄ , monazite/xenotime) solid solutions. American Mineralogist, 96, 1343–1353.
678	——— (2011b) Variable-temperature ²⁷ Al and ²⁹ Si NMR studies of synthetic forsterite and Fe-
679	bearing Dora Maira pyrope garnet: Temperature dependence and mechanisms of
680	paramagnetically shifted peaks. American Mineralogist, 96, 1090–1099.
681 682 683	Palke, A.C., Stebbins, J.F., Frost, D.J., and McCammon, C.A. (2012) Incorporation of Fe and Al in MgSiO₃ perovskite: An investigation by ²⁷ Al and ²⁹ Si NMR spectroscopy. American Mineralogist, 97, 1955–1964.
684	Palke, A.C., Stebbins, J.F., and Boatner, L.A. (2013) ³¹ P magic angle spinning NMR study of flux-
685	grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: evidence
686	of random cation distribution from paramagnetically shifted NMR resonances. Inorganic
687	chemistry, 52, 12605–12615.
688	Palke, A.C., Stebbins, J.F., Geiger, C.A., and Tippelt, G. (in press) Cation order-disorder in Fe-
689	bearing pyrope and grossular garnets: An ²⁷ Al and ²⁹ Si MAS NMR and ⁵⁷ Fe Mössbauer
690	spectroscopy study. American Mineralogist.
691 692 693	Rager, H., Hosoya, S., and Weiser, G. (1988) Electron paramagnetic resonance and polarized optical absorption spectra of Ni ²⁺ in synthetic forsterite. Physics and Chemistry of Minerals, 15, 383–389.
694	Rajamani, V., Brown, G.E., and Prewitt, C.T. (1975) Cation Ordering in Ni-Mg Olivine. American
695	Mineralogist, 60, 292–299.

696 Stebbins, J.F. (1995) Nuclear magnetic resonance spectroscopy of silicates and oxides in geochemistry and geophysics. In: Ahrens, T. (Ed.) A Handbook of Physical Constants, AGU 697 698 Reference Shelf 2 pp. 303–331. American Geophysical Union. Stebbins, J.F., and Kelsey, K. (2009) Anomalous resonances in ²⁹Si and ²⁷Al NMR spectra of 699 pyrope (Mg₃Al₂Si₃O₁₂) garnets: effects of paramagnetic cations. Physical Chemistry 700 701 Chemical Physics, 11, 6906–6917. Stebbins, J.F., and Xue, X. (2014) NMR Spectroscopy of Inorganic Earth Materials. Reviews in 702 703 Mineralogy and Geochemistry, 78, 605–653. Stebbins, J.F., Smyth, J.R., Panero, W.R., and Frost, D.J. (2009a) Forsterite, hydrous and 704 anhydrous wadsleyite and ringwoodite (Mg₂SiO₄): ²⁹Si NMR results for chemical shift 705 anisotropy, spin-lattice relaxation, and mechanism of hydration. American Mineralogist, 706 94, 905-915. 707 Stebbins, J.F., Panero, W.R., Smyth, J.R., and Frost, D.J. (2009b) Forsterite, wadsleyite, and 708 ringwoodite (Mg₂SiO₄): ²⁹Si NMR constraints on structural disorder and effects of 709 paramagnetic impurity ions. American Mineralogist, 94, 626–629. 710 711 Taftø, J., and Spence, J.C. (1982) Crystal site location of iron and trace elements in a 712 magnesium-iron olivine by a new crystallographic technique. Science, 218, 49–51. Taran, M., and Rossman, G. (2001) Optical spectra of Co²⁺ in three synthetic silicate minerals. 713 714 American Mineralogist, 86, 889–895. Wu, C.M., and Zhao, G.C. (2007) A recalibration of the garnet-olivine geothermometer and a 715 new geobarometer for garnet peridotites and garnet-olivine-plagioclase-bearing 716

granulites. Journal of Metamorphic Geology, 25, 497–505.

718

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

719 List of figure captions Figure 1. ²⁹Si MAS NMR spectra at 9.4 T (5% and 0.25%) or 14.1 T (1%), 0.05 s pulse delay, of 720 721 forsterite with three different Ni concentrations, with spinning speeds 15 kHz (5% and 0.25%) 722 and 20 kHz (1%). The lower three spectra are repeated above with their vertical scales enlarged as indicated. Dashed lines are drawn between corresponding double neighbor 723 paramagnetically shifted peaks for samples with different Ni concentrations. * marks unknown 724 725 impurity phase. Here and in all other figures except Figure 7, all spinning sidebands are well 726 outside of the frequency range shown. Figure 2. ²⁹Si MAS NMR spectra (14.1 T, 0.05 s pulse delay) of Fe-forsterite at two spinning 727 728 speeds as shown, illustrating effects of air frictional heating on positions of paramagnetically 729 shifted peaks. Figure 3. ²⁹Si MAS NMR spectrum (14.1 T, 0.05 s pulse delay) of ²⁹Si enriched forsterite with 730 731 0.1% Co at 20 kHz spinning speed. Figure 4. ²⁹Si MAS NMR spectra (9.4 T, 0.05 s pulse delay) of 1% Ni-monticellite and 1% Ni-732 733 forsterite both at 15 kHz spinning speed. In the former, the akermanite impurity is labeled with "ak" and an unknown impurity phase with an asterisk. The Ni-forsterite spectrum is shifted -4.1 734 735 ppm to align with the unshifted peak of the Ni-monticellite. Dashed lines are drawn between 736 corresponding peaks.

Figure 5. ²⁹Si MAS NMR spectra (14.1 T, 0.05 s pulse delay) of Fe-monticellite and Fe-forsterite 737 at spinning speeds of 20 kHz. In the Fe-monticellite, the akermanite impurity is labeled as "ak". 738

739	The Fe-forsterite spectrum is shifted -4.1 ppm to align with the unshifted peak of the Fe-
740	monticellite peak. Dashed lines are drawn between corresponding peaks.
741	Figure 6. ²⁹ Si MAS NMR spectra (14.1 T, 0.05 s pulse delay, 20 kHz spinning speed) of Co-
742	monticellite and Co-forsterite. The akermanite impurity phase is labeled as "ak". The Co-
743	forsterite spectrum is shifted -4.1 ppm to align with the unshifted Co-monticellite peak. Dashed
744	lines mark corresponding peaks.
745	Figure 7. ²⁹ Si MAS NMR spectrum of 0.05% Fe-forsterite (as in Fig. 1), comparing the central
746	band of peaks to the first group of spinning side bands to higher frequency, shifted in frequency
747	by -101 ppm. Note the greatly reduced relative intensity of the unshifted resonance in the
748	latter, allowing improved resolution of at least one close-in shifted peak (#9).
749	Figure 8. ²⁹ Si MAS NMR spectrum (14.1 T, 0.05 s pulse delay) of Mn-forsterite, showing severe
750	line broadening effects of Mn ²⁺ . A spin-echo MAS spectrum of San Carlos olivine (9.4 T, 10 kHz
751	spinning speed) is shown to illustrate broadening caused by a much higher Fe ²⁺ content. In the
752	latter, the spike at 0 ppm is an artifact, and the inner edges of the first spinning sidebands can
753	be seen in the baseline.
754	Figure 9. A plot of paramagnetic shifts, relative to the central resonance, for peaks in
755	transition-metal containing forsterite and the corresponding ones in monticellite. Data shown
756	are from spectra collected at 14.1 T and 20 kHz spinning speed.

Figure 10. Observed ²⁹Si MAS NMR spectrum of 5% Ni-forsterite (as in Fig. 1), compared with
 model that assumes random distribution of Ni²⁺ on M1 sites only.

Table 1. Sample compositions and data on ²⁹Si MAS NMR spectra of main, unshifted peaks.

Name ^a	Dopant conc. (apfu) ^b	FWHM (ppm)	Line shape ^d	% relaxed ^e
0.1% Mn-forsterite	0.002 ^c	27.3	-	100%
0.05% Fe-forsterite	0.001 (1)	2.1	0.30	14%
0.4% Fe-forsterite	0.008 (24)	2.2	0.40	51%
San Carlos Olivine	0.20 (2)	55	-	100%
0.1% Fe-monticellite	0.002 (1)	1.1	0.00	11%
0.1% Co-forsterite	0.002 (0)	0.8	0.20	15%
0.65% Co-forsterite	0.013 (4)	1.1	0.00	17%
0.25% Co-monticellite	0.005 (2)	3.8	0.40	20%
0.25%Ni-forsterite	0.005 (1)	0.8	0.88	73%
1% Ni-forsterite	0.020 (0)	0.8	0.50	84%
5% Ni-forsterite	0.100 (3)	1.8	0.43	100%
1% Ni-monticellite	0.020 (3)	0.9	0.50	89%

761

^a Based on $(Mg_{2-2x}M_{2x}SiO_4)$ for forsterite, and $(CaMg_{1-2x}M_{2x}SiO_4)$ for monticellite.

^b Based on EPMA data, atoms per formula unit. Figures in parentheses show standard deviation
 in analyses and indicate degree of sample homogeneity.

^c Not analyzed, estimated by synthesis values.

^d 1=100% Gaussian, 0=100% Lorentzian line shape for central, unshifted peak.

^e % relaxation of unshifted peak at 0.05 s pulse delay, relative to full relaxation at long delays.

- 769 **Table 2.** Peak positions and areas for Ni-containing forsterite samples. "Source" shows origins
- of peaks that result from two or three Ni cations in sites that product the indicated single
- 771 peaks.

0.25%Ni-							
	forsterite		1%Ni-forsterite		5%Ni-forsterite		
	Shift	Area	Shift	Area	Shift	$\Lambda rop (%)^{c}$	
Peak	(ppm)	(%) ^a	(ppm)	(%) ^b	(ppm)	Alea (70)	Peak source
1	-	-	-	-	51.9	0.1	7+7+9
2	-	-	-	-	48.8	0.1	7+7+10
3	-	-	-	-	44.0	0.4	7+7
4	-	-	-	-	35.6	0.3	7+9+10
5	-	-	-	-	29.6	1.7	7+9
6	-	-	-	-	26.7	1.3	7+10
7	20.8	0.8	21.6	3.2	20.9	9.9	-
							7+11, and
8	-	-	-	-	14.4	4.1	9+10
9	8.4	0.7	8.6	3.3	8.4	9.5	-
10	5.8	0.7	6.0	3.4	5.8	9.0	-
Unshifted	0	97	0	87	0.0	47	-
11	-6.4	0.9	-6.9	3.3	-6.7	10.2	-

^a uncertainty in area is about 26% relative.

^b uncertainty in area is about 8% relative.

^c Uncertainty in area is about 18% relative. Using the random model (see text), areas of doubly-

and triply-shifted peaks within 35.5 to -6.7 ppm were estimated and account for 6.6%

additional intensity, but are not listed individually.

	1% Ni-monticellite		corresponding
		Area	
Peak	Shift (ppm)	(%) ^a	peak
1	14.2	3.3	7
2	3.1	7.9	9 and 10
Unshifted	0	86	
3	-3.1	2.7	11

Table 3. Peak positions and areas for 1% Ni monticellite.

^a uncertainty in area is about 20% relative.

	0.05% Fe-forsterite		0.4% Fe-forsterite		
Peak	Shift (ppm)	Area (%)ª	Shift (ppm)	Area (%) ^c	Site ^d
1	38.7	0.13	35.2	0.5	M2
2	35.0	0.19	31.5	0.9	M2
3	30.3	0.18	27.5	0.9	M1
4	15.1	0.14	w/peak 5		M1
5	13.0	0.13	13.2	1.6	M1
6	9.7	0.40	w/peak 7		M2
7	8.2	0.12	8.3	4.1	M2
8	5.0	0.39	w/shoulder	r	M1
9	1.9	0.63 ^b	w/shoulder	r	?
shoulder	ca. 1	0.10^{b}	ca. 1	7.8	
unshifted	0	96	0	73	
shoulder	ca1.5	0.21 ^b	ca1.5	5.8	
10	-5.2	0.09 ^b	w/shoulder	r	?
11	-7.2	0.12 ^b	w/shoulder	r	?
12	-10.4	0.17	-9.0	1.1	M1
13	-13.8	0.14	-12.4	0.7	M2
14	-19.2	0.13	-18.4	0.8	M2
15	-27.3	0.09	-22.8	0.9	M1
16	-39.1	0.19	-34.7	1.0	M1

Table 4. Peak positions and areas for Fe²⁺-containing forsterites.

^a uncertainty in area is about 25% relative except as noted.

^b less-resolved peak, uncertainty in area may be 25-50% relative.

^c uncertainty in areas is about 17% relative.

^d most likely location of Fe^{2+} cation responsible for observed peak.

	0.1% Fe-mor	corresponding	
Peak	Shift (ppm)	area (%)ª	Fe-forsterite peak
1	22.3	0.4	3
2	11.4	0.3	4
3	8.8	0.5	5
4	3.2	0.5 ^b	8
shoulder	ca. 1.5	2.0 ^b	
unshifted	0	94	
shoulder	c.a2.5	1.0 ^b	
5	-6.1	0.4 ^b	12
6	-19.6	0.4	15
7	-28.5	0.5	16

Table 5. Peak positions and areas for 0.1% Fe-monticellite.

^a uncertainty in areas 21% relative, except as noted.

^b less-resolved peaks, uncertainties 21-50% relative.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

789

Table 6. Peak positions and areas for 0.1% Co-forsterite (95% ²⁹Si).

	0.1% Co-forsterit	e	
		Area	
Peak	Shift (ppm)	(%) ^a	Site
1	36.8	0.010	M2-on-mirror
2	33.1	0.045	M2-off-mirror
3	31.0	0.113	M1
4	28.7	0.017	M2-on-mirror
5	21.7	0.027	M2-off-mirror
6	17.4	0.086	M1
7	14.3	0.014	M2-on-mirror
8	12.3	0.015	M2-on-mirror
9	10.2	0.05 ^b	?
10	9.2	0.16 ^b	?
11	7.7	0.01 ^b	?
12	5.0	0.39 ^b	?
13	3.9	0.17 ^b	?
14	1.5	0.48 ^b	?
unshifted	0	97.5	
15	-3.2	0.23 ^b	?
16	-4.6	0.14 ^b	?
17	-5.6	0.096	M1
18	-9.6	0.027	M2-off-mirror
19	-10.9	0.114	M1
20	-12.3	0.090	M1
21	-18.5	0.055	M2-off-mirror
22	-21.5	0.013	M2-on-mirror
23	-23.1	0.018	M2-on-mirror
24	-25.5	0.012	M2-on-mirror
25	-36.7	0.030	M2-off-mirror
26	-61.7	0.094	M1

^a Uncertainty in area is about 9% relative except as noted.

^bless-resolved peaks, uncertainties about 10-30%.

	0.25% Co-mont	icellite	
Peak	Shift (ppm)	Area (%)ª	Co-forsterite peak
1	17.6	0.7	3
2	10.5	1.4	6
shoulder	c.a. 2	2.9	
unshifted	0	94	
3	-44.3	0.6	26

Table 7. Peak positions and areas for 0.25% Co-monticellite.

^a uncertainty in area is about 10% relative except as noted.

796

797

800 Table 8. M sites within 4 bonds of the silicon site in forsterite (Fujino et al. 1981), and the

801	expected scaling of the areas of	f associated paramagnetically shifted pea	aks.
-----	----------------------------------	---	------

C '1	Distance	Bonds ^a	Equivalent	Area scale
Site	to Si (A)		sites	factor
M1	2.695	2	2	2X
M1	3.253	2	2	2X
M1	4.412	4	2	2X
M1	5.013	4	2	2X
M1	5.334	4	2	2X
M1	6.111	4	2	2X
M1	6.224	4	2	2X
M1	6.245	4	2	2X
M1	6.737	4	2	2X
M2	2.786	2	1	Y
M2	3.250	2	1	Y
M2	3.273	2	1	Y
M2	3.278	2	2	2Y
M2	5.216	4	2	2Y
M2	5.428	4	1	Y
M2	5.513	4	2	2Y
M2	5.560	4	2	2Y
M2	6.024	4	2	2Y
M2	6.071	4	1	Y
M2	6.596	4	2	2Y
M2	6.815	4	2	2Y

802

^a number of bonds separating M and Si sites, e.g. 4 bonds for M1-O-M2-O-Si.

^b factor by which peak area will be scaled for M1 occupancy of X% and M2 occupancy of Y%.

806 **Figure 1**. ²⁹Si MAS NMR spectra at 9.4 T (5% and 0.25%) or 14.1 T (1%), 0.05 s pulse delay, of

- 807 forsterite with three different Ni concentrations, with spinning speeds 15 kHz (5% and 0.25%)
- and 20 kHz (1%). The lower three spectra are repeated above with their vertical scales enlarged
- 809 as indicated. Dashed lines are drawn between corresponding double neighbor
- 810 paramagnetically shifted peaks for samples with different Ni concentrations. * marks unknown
- 811 impurity phase. Here and in all other figures except Figure 7, all spinning sidebands are well
- 812 outside of the frequency range shown.

- **Figure 2**. ²⁹Si MAS NMR spectra (14.1 T, 0.05 s pulse delay) of Fe-forsterite at two spinning
- speeds as shown, illustrating effects of air frictional heating on positions of paramagnetically
- 817 shifted peaks.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

821 0.1% Co at 20 kHz spinning speed.

824

Figure 4. ²⁹Si MAS NMR spectra (9.4 T, 0.05 s pulse delay) of 1% Ni-monticellite and 1% Ni-825

826 forsterite both at 15 kHz spinning speed. In the former, the akermanite impurity is labeled with

"ak" and an unknown impurity phase with an asterisk. The Ni-forsterite spectrum is shifted -4.1 827

828 ppm to align with the unshifted peak of the Ni-monticellite. Dashed lines are drawn between

829 corresponding peaks.

Figure 5. ²⁹Si MAS NMR spectra (14.1 T, 0.05 s pulse delay) of Fe-monticellite and Fe-forsterite

at spinning speeds of 20 kHz. In the Fe-monticellite, the akermanite impurity is labeled as "ak".

834 The Fe-forsterite spectrum is shifted -4.1 ppm to align with the unshifted peak of the Fe-

835 monticellite peak. Dashed lines are drawn between corresponding peaks.

836

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

- **Figure 6**. ²⁹Si MAS NMR spectra (14.1 T, 0.05 s pulse delay, 20 kHz spinning speed) of Co-
- 840 monticellite and Co-forsterite. The akermanite impurity phase is labeled as "ak". The Co-
- 841 forsterite spectrum is shifted -4.1 ppm to align with the unshifted Co-monticellite peak. Dashed
- 842 lines mark corresponding peaks.

12/16

Figure 7.²⁹Si MAS NMR spectrum of 0.05% Fe-forsterite (as in Fig. 1), comparing the central

- 846 band of peaks to the first group of spinning side bands to higher frequency, shifted in frequency
- by -101 ppm. Note the greatly reduced relative intensity of the unshifted resonance in the
- 848 latter, allowing improved resolution of at least one close-in shifted peak (#9).

849

850

851

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5150

Figure 8. ²⁹Si MAS NMR spectrum (14.1 T, 0.05 s pulse delay) of Mn-forsterite, showing severe line broadening effects of Mn²⁺. A spin-echo MAS spectrum of San Carlos olivine (9.4 T, 10 kHz spinning speed) is shown to illustrate broadening caused by a much higher Fe²⁺ content. In the latter, the spike at 0 ppm is an artifact, and the inner edges of the first spinning sidebands can be seen in the baseline.

×Ni²⁺ ♦Fe²⁺ ■Co²⁺ 20 monticellite peak (ppm) ₀°■× 000 0 √x -20 ٥ ٥ -40 -60 40 -20 0 20 40 forsterite peak (ppm)

862 Figure 9. A plot of paramagnetic shifts, relative to the central resonance, for peaks in

- transition-metal containing forsterite and the corresponding ones in monticellite. Data shown
- are from spectra collected at 14.1 T and 20 kHz spinning speed.

865

861

12/16

- 868 **Figure 10.** Observed ²⁹Si MAS NMR spectrum of 5% Ni-forsterite (as in Fig. 1), compared with
- 869 model that assumes random distribution of Ni²⁺ on M1 sites only.