This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4929

1	Revision 2
2	
3	Insights into the structure of mixed CO ₂ /CH ₄ in gas hydrates
4	
5	S. Michelle Everett ^{1,*} , Claudia J. Rawn ^{1,2,†} , Bryan C. Chakoumakos ³ , David J. Keffer ¹ , Ashfia
6	Huq ³ , and Tommy J. Phelps ⁴
7	
8	¹ Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN
9	37996-2100, U.S.A.
10	² Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN
11	37831-6475, U.S.A.
12	³ Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-
13	6475, U.S.A.
14	⁴ Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6475, U.S.A.
15	[*] S.M. Everett is now a member of the Scientific Activities Division, European Spallation Source,
16	Lund, Sweden, michelle.everett@esss.se
17	[†] Corresponding author: crawn@utk.edu
18	
19	ABSTRACT
20	The exchange of carbon dioxide for methane in natural gas hydrates is an attractive approach to
21	harvesting CH ₄ for energy production while simultaneously sequestering CO ₂ . In addition to the
22	energy and environmental implications, the solid solution of clathrate hydrate $(CH_4)_{1-x}(CO_2)_x$ •
23	$5.75H_2O$ provides a model system to study how the distinct bonding and shapes of CH_4 and CO_2

24	influence the structure and properties of the compound. High-resolution neutron diffraction was
25	used to examine mixed CO ₂ /CH ₄ gas hydrates. CO ₂ -rich hydrates had smaller lattice parameters,
26	which were attributed to the higher affinity of the CO ₂ molecule interacting with H ₂ O molecules
27	that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental
28	nuclear scattering densities illustrate how the cage occupants and energy landscape change with
29	composition. These results provide important insights on the impact and mechanisms for the
30	structure of mixed CH ₄ /CO ₂ gas hydrate.
31	
32	KEYWORDS
33	Neutron diffraction, methane hydrate, carbon dioxide/methane exchange, Fourier density maps
34	
35	INTRODUCTION
36	The search for energy sources to ease environmental and political issues of conventional
37	sources has encouraged scientists to look to the sun, the plants, and the ocean for answers.
38	Found at moderate pressure, low temperature conditions such as the ocean floor and subsurface
39	permafrost regions, natural gas hydrates constitute a valuable potential source of methane (Koh
40	and Sloan 2007, Makogon 2007). The amount of carbon stored in natural gas hydrates is
41	estimated to be twice that of all other carbon sources combined (Suess et al. 1999). Over the past
42	15 years the idea of harvesting methane from natural hydrate deposits while simultaneously
43	sequestering industrially produced CO ₂ has been tantalizing (Brewer et al. 1999, Lee et al. 2003,
44	Qi et al. 2011, Ripmeester and Ratcliffe 1998, Ohgaki et al. 1996, Ota et al. 2005). As
45	envisioned, CO_2 is pumped deep into the sediment layers where natural hydrates are found. The
46	CO ₂ replaces CH ₄ in the hydrate structure, and CH ₄ is released. This conceptually simple

47 process involves great engineering challenges, and a detailed understanding of the 48 crystallographic response to the mixture of CO_2 and CH_4 molecules in gas hydrate formation is 49 key to understanding the implications of a large-scale adoption of this strategy.

50 Gas hydrates are structures comprised of differently shaped cages formed from water 51 molecules, which are stabilized by encapsulated gas molecules. Methane hydrate most 52 commonly adopts cubic structure type I (sI) (Schicks and Ripmeester 2004), as does CO_2 . Two 53 small cages and six large cages of hydrogen-bonded water molecules make up the sI clathrate 54 hydrate unit cell. The ideal ratio is 8 gas molecules to 46 water molecules, but may not 55 necessarily be the case due to the fact that they are nonstoichiometric compounds. Figure 1 56 shows how a large and small cage fit together. CO_2 hydrate is more thermodynamically stable at 57 temperatures below 283 K (Ohgaki et al. 1996, Anderson et al. 2003, Kang et al. 1998) than CH₄ 58 hydrate, and the stability of CO_2 hydrate requires less pressure at a given temperature than CH_4 59 (~2 MPa at 277 K vs. ~4 MPa for CH₄ hydrate (Adisamito et al. 1991, Adisamito and Sloan 60 (1992)). Molecular dynamics simulation found the Gibbs free energy for CO_2 gas exchange in 61 CH_4 hydrate is negative (Yezdimer et al. 2002), indicating it is thermodynamically favorable to 62 replace CH_4 with CO_2 in gas hydrate (Geng et al. 2009). Yuan et al. (2012) proposed that CO_2 63 exchange takes place by a reconstructive transformation, whereby the CH₄ hydrate first 64 dissociates, and then the water reforms hydrate choosing from the dissolved mixture of CO_2/CH_4 65 gas. Shicks et al. (2011) reported the process was a decomposing and reforming process, which 66 is driven by the chemical potential gradient between gas phase and hydrate phase. The placement 67 and cage occupancy of the gas molecules during this process dictates the change in structure, 68 which is relevant for seafloor stability prediction.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4929

69 Studies were performed where CH₄ hydrate was exposed to CO₂ and the recovery results 70 reported, which indicated it was a slow process (Lee et al. 2003, Schicks et al. 2011, Hirohama 71 1996, Park et al. 2006). It is conceivable to envision that a solid solution range develops during 72 this replacement process affecting the structure of the formation. In this study, we examined the 73 structural changes of sI gas hydrates as compared to each end-member via high-resolution 74 neutron diffraction over a CH₄/CO₂ hydrate solid solution series. Samples were synthesized from 75 liquid water and CO_2 and CH_4 gas. Using this synthesis route, the preference of the two cage 76 types for one gas or the other could be established in the hydrate formation process. Samples of 77 each end-member as well as 3:1, 1:1, and 1:3 CH_4/CO_2 target ratios were synthesized and studied 78 to establish a comparison across the composition range. 79 80 **EXPERIMENTAL** 81 Sample synthesis 10 mL of liquid D₂O (Sigma Aldrich 99.9%) was mixed with 1 mg of Snomax,[®] an ice 82 83 nucleating protein made from Pseudomonas syringae 31a, previously reported to decrease the 84 formation pressure (McCallum et al. 2007). This solution was then placed in a 450 mL Parr 85 vessel with steel bars used for milling media. The vessel was sealed and evacuated. Each 86 sample was pressurized with gas to 4.13 MPa (600 psi). There were 5 samples with initial gas 87 mixtures of 100% CH₄, 75% CH₄/25% CO₂, 50% CH₄/50% CO₂, 25% CH₄/75% CO₂, and 100% 88 CO₂. In the mixed samples CO₂ was introduced first to 1.03, 2.07, and 3.10 MPa (150, 300, and 89 450 psi), immediately followed by CH_4 to achieve a total pressure of 4.13 MPa. The pressure 90 vessel was stored in a cold room at 275 K on a tumbler and was tumbled constantly for ~5 days 91 at 30 RPM. For the 100% CO₂ sample at 275 K and 4.13 MPa the CO₂ would be liquid. The

92 pressure drop associated with hydrate formation was monitored and hydrate formation was 93 assumed to be complete when the pressure stopped dropping. Samples were then stored at 253 K 94 until they were depressurized, quenched in liquid nitrogen, harvested, and stored in liquid 95 nitrogen. While the samples were synthesized using D_2O , the CH_4 was not deuterated (i.e. not 96 CD_4) and was isotopically natural. This choice creates a natural contrast in the measurements; 97 the atomic scattering density for H has an opposite sign from the atomic scattering density for O, 98 creating a strong contrast between CH_4 from CO_2 as guest occupants.

99

100 Neutron data collection

101 Samples were loaded into vanadium cans (OD = 10 mm). Neutron powder diffraction 102 data were collected at the Spallation Neutron Source at Oak Ridge National Laboratory on the 103 POWGEN time-of-flight diffractometer. Data were collected using wavelength bands centered 104 at 1.333 Å and 2.665 Å providing a range from 0.42 to 6.18 Å in d-spacing. In attempt to 105 decrease the molecular motion and atomic vibrations and to collect data at ambient pressure 106 without any complications associated with decomposition, data were collected at 10 K. To avoid 107 solid N₂ at this temperature, the V cans were evacuated and backfilled with chilled He, 3 to 4 108 times. It was successful for 4 of the 5 samples. In the one sample solid N_2 was present at < 7109 wt% of the total sample.

POWGEN was chosen for its high-resolution capabilities along with the availability of high Q data. High Q data are imperative for resolving low d-spacing peaks, which are needed to model nearly freely rotating gas molecules with no primary chemical bonding to the crystalline lattice, and to determine details including occupant types, abundance of occupants, and atomic displacement parameters (ADPs). Figure 2 shows the observed data, calculated neutron powder 115 diffraction pattern and the difference pattern for the 50% CH₄ sample. A low d-spacing section 116 is shown illustrating the high-resolution. Inelastic neutron scattering has previously shown that 117 the methane molecules in methane hydrate are almost freely rotating (Gutt et al. 1999, 118 Kamiyama et al. 2006, Tse et al. 1997) and neutron powder diffraction has shown that CO_2 119 molecules in CO₂ hydrate have a restricted but unresolved libration and large displacements 120 (Ikeda et al. 1999). This study shows real-space, static depictions of distributions of the nuclear 121 scattering densities in both the large and small cages by way of Fourier transforms of the 122 diffraction data, and the extended Q-range data from POWGEN ensures high fidelity. 123 Experimental specifics are given in Table 1.

124

125 **Rietveld refinements**

126 GSAS (Larson and Von Dreele 1994) along with EXPGUI (Toby 2001) were used for 127 Rietveld refinements of the data. In the refinements, a rigid body treatment of the gas molecules 128 was employed. A rigid body fixes the atoms of a molecule to be bound together at certain bond 129 lengths and angles allowing the molecule to be treated as a discrete unit (Lake and Toby 2011). 130 This is beneficial for reducing the number of refineable parameters, resulting in refinements less 131 influenced by statistical uncertainty. The movement of the molecule was then handled by TLS 132 tenors (translation, libration, and screw) instead of individual vectors for each atom of the 133 molecule. The high symmetry of sI hydrate's space group, Pm-3n (223), further reduced the 134 number of TLS elements. Once the rigid bodies were defined, the occupancies of the rigid 135 bodies were refined. At first the occupancies were constrained to hold the cages fully occupied 136 in a 3:1 ratio LC:SC. Subsequently the site occupancy factor was refined; the restraint was relaxed to allow for determination of vacancies and the residuals decreased. Specifics on therefinements can be found in Table 2.

- 139
- 140

RESULTS AND DISCUSSION

141 The results from Fourier difference analysis were exported for use in VESTA (Momma 142 and Izumi 2011) to provide graphical visualizations of the gas molecules. For the visualizations, 143 the host lattice was accounted for in the refinement model while the gas molecules were removed 144 from the model, so that the Fourier difference map revealed the nuclear scattering density 145 distributions within the cages (Fig. 3a,b). These maps represent a time average of the nuclear 146 density of the molecules inside the clathrate structure over the collection time, which is a real 147 space approach (Takeya et al. 2011) to hydrate analysis through gas visualization. The C and O 148 atoms both have positive bound coherent scattering lengths, while the H scattering length is 149 negative (6.6460(12), 5.803(4), -3.7390(11) fm (Sears 1992), respectively). The density maps, 150 with positive scattering density in yellow and negative in blue, clearly indicate the occupants in 151 the large cages and the small cages, and verify that for the end-member samples only CO_2 or 152 CH_4 exist in the cages. The nuclear density maps for the end-member samples provide reference 153 points of comparison for the three mixed-gas samples. A blending of the mixed gases and their 154 decreasing CH₄ content is evident in the morphing of the nuclear density maps from one end-155 member to the other. Gas molecules are superimposed on the nuclear density maps to give a 156 spatial sense of the map relationship to the molecules themselves. The large cages appeared to 157 confine CO_2 molecules to {010} planes of motion due to cage shape, size and surface potential 158 restrictions, but the more symmetrical small cage allowed the CO_2 molecule to move equally in 159 all directions. Methane appeared to be free to oscillate isotropically in either size cage, which is

160 expected given its smaller molecular van der Waals radius and tetrahedral shape (Sloan and Koh161 2007).

162 The density maps show little evidence of CH_4 in the large cage of the nominal 25% CH_4 163 sample. By comparing the maps side by side it can be seen that the large cages of all mixed 164 samples show reduced CH₄, while the small cages show less CO₂. This is explained by the tight 165 fit of CO₂ in the small cage (Lee et al. 2003), making CH₄ more favorable to the small cage and 166 CO_2 more favorable to the large cage. Table 3 contains the refinement results of the site 167 occupancies for the guest molecules, supporting the visually identified gas mixtures and cage 168 occupants. Overall greater percentages of CH_4 are in the small cages and greater percentages of 169 CO_2 are in the large ones. These results also confirm that not all cages are completely filled 170 throughout the structure resulting in hydration numbers, determined by $n = 46/(6\theta_L + 2\theta_S)$ where 171 θ is the cage occupancy (Qin and Kuhs 2013), of 7.19(4), 8.21(4), 6.93(4), 6.12(3), 5.75(3) for 172 100% CH₄, 75% CH₄, 50% CH₄, 25% CH₄, and 100% CO₂ respectively. The 100% occupancy 173 for the 100% CO_2 sample could be due to the CO_2 synthesis occurring with the CO_2 in the liquid 174 state, when cooled down to 275 K and 4.13 MPa, as compared to the gaseous state for the mixed 175 samples. Vacancies in both sized cages, and evidence of a higher percentage of CO_2 in the 176 smaller cage than expected, illustrate structural changes that could occur in the hydrate reservoir 177 during gas exchange. Additionally, these results have important implications for computational 178 studies of gas hydrates since the amount and location of the gas molecules are important starting 179 parameters for theoretical models.

From thermodynamics, one can model the mixed CH_4 - CO_2 hydrate as an azeotropic system (Bakker, 1998). This model illustrates that under specific conditions the gas hydrate is enriched in CO_2 compared to the gas mixture, but there are also conditions where the reversed

183 behavior occurs. However, this approach cannot predict the distribution of gas molecules 184 between the small and large cages. The CSMHYD software (Sloan 1998) can and was used to 185 predict site occupancies using the quench temperature of 253 K and the results are given in Table 186 4. Comparing the predicted site occupancies (Table 4) with the experimentally refined site 187 occupancies (Table 3) show that CSMHYD (Sloan 1998) always predicts a higher site 188 occupancy for the CH₄ content in the larger cages and a higher CH₄ content overall as compared 189 to the experimental results. For the 100%, 75%, and 50% CH_4 samples the experimentally 190 determined amount of total cages occupied is significantly lower while the experimental 191 determined amount of total cages occupied for the 25% and 0% CH₄ samples are within 1σ of 192 the values predicted by CSMHYD (Sloan 1998). Factors that could have contributed to the 193 difference between the experimentally refined and predicted site occupancies include changes 194 that could have occurred while the samples were being stored at atmospheric pressure and 77 K 195 and contributions from incoherent scattering for the samples with higher hydrogen content. Other 196 reports have shown higher cage occupancies in methane hydrate as well, $\sim 95 - 97\%$ (Lee et al. 197 2003, Qin and Kuhs 2013, Ripmeester and Ratcliffe 1988). Sum et al. (1997) reported a higher 198 occupancy of CH₄ in both large and small cages as temperatures increased, possibly explaining 199 the lower occupancy seen here at 10 K. The predicted stability pressures, also shown in Table 4, 200 are well below the 4.13 MPa used to synthesize the samples.

Figure 4a shows the variations of lattice parameters with the experimentally refined CH_4 composition. The lattice parameter decreases with a Vegard's Law type behavior as the CH_4 content decreases, resulting in a 0.25% reduction in unit cell volume from the CH_4 hydrate endmember to the CO_2 hydrate end-member, contrary to the expectation that the lattice parameters would increase as the amount of the larger CO_2 molecule increased, when considering the van

206 der Waals radii of these two gases (Sloan and Koh 2007). One plausible explanation for this 207 anomalous behavior could be attributed to greater atomic displacement parameters, ADPs, for 208 the smaller, lighter molecule. Due to a smaller molecular mass and tetrahedral shape, the CH_4 209 molecule should be able to move more freely (Kuhs 1992) and to push on the structure causing it 210 to expand. Again an anomalous behavior was observed, and larger ADPs were refined for the 211 CO_2 hydrate end-member (Fig. 4b). The refined ADPs for the CO_2 molecules occluded in the 212 large cages are significantly larger than the ADPs refined for the CH₄ molecules contained in 213 either the large cage or small cage. At the same time, the refined ADPs for the CO_2 molecules in 214 the small cages are only slightly larger than those refined for the CH₄ molecules contained in 215 either the large cages or small cages.

216 ADPs are highly correlated with both site occupancy and absorption correction. Disorder 217 can be an additional complicating consideration in these systems especially considering the 218 random 50% occupation of the D atoms in the host lattice and the almost freely rotating gas 219 molecules of mixed gases. By comparing the refined ADPs of the large cage and the percentage 220 of cages that are full, the large cage ADPs decrease from the CO_2 hydrate end-member to 75% 221 $CO_2/25\%$ CH₄ nominal composition, as does the overall cage occupancy, from 100(6)% -222 70(3)%. However, both the refined ADPs and cage occupancies start to increase for the CH_4 223 hydrate end-member, indicating the strong relation between ADPs and molecular movement in 224 the structure.

The claim that the ADPs are influencing the lattice parameters is based on entropic arguments in which the energy landscape within the cage is relatively constant, allowing the occluded species to explore the entirety of the cage volume. This assumption is valid for CH₄, which is a non-polar molecule, resulting in weak energetic interactions with the framework water molecules. Consequently, the shape of the adsorption site for CH_4 (Fig. 3c) is approximately spherical, mimicking the shape of the cage. The same assumption is not valid for CO_2 , which has a permanent quadrupole, resulting in a non-negligible energetic interaction with the framework. Moreover, previous work has shown that a significant portion of the large displacement of the CO_2 molecule is due to its positional disorder in the large cage (Circone et al. 2003).

235 When energetics are important, the ADPs are not only guided by molecular weight or 236 cage size, but are dominated by adsorption site size, defined by the energy landscape within the 237 cage. This behavior can be seen in the nuclear density maps (Fig. 3c). The CO_2 nuclear density 238 volumes in the large cages are anisotropic and do not mimic the shape of the cage. As the 239 isosurface level is increased to the point that only the energy maxima sites are shown, one 240 observes that for CO_2 the ADP is averaging localization in 4 distinct sites. The anisotropy of the 241 CO_2 molecule is evident in the multiple views, where it exhibits a disc type probability 242 distribution. On the other hand, the CH₄ is much more spherical and shows no preferred sites, 243 thus explaining the larger ADP of the CO₂. The electrostatic attraction between CO₂ and H₂O 244 may also serve to reduce the lattice constant for the CO_2 hydrate, pulling in the water matrix as it 245 bounces between the 4 maxima. The energy landscape in the small cage is not as influential, 246 because both CO₂ and CH₄ are isotropic in that site. Another interesting anomaly is that the 247 volumes of large cages and small cages do not increase uniformly with increasing lattice size. 248 Large cage volume increases with increasing CH₄ content, while small cage volume decreases 249 (Fig. 4c, d). Small cages have the largest volume in the CO_2 hydrate end-member sample, again 250 pointing to the tight fit of CO_2 , and large cages have the largest volume when they contain the 251 smaller CH₄ molecule. Klapproth et al. (2003) reported an overall larger cage volume ratio

252	V_{SC}/V_{LC} for CO ₂ over CH ₄ , explained by the larger small cage of CO ₂ , where we find them to be
253	approximately the same, 0.69 for CH ₄ and 0.70 for CO ₂ , due to the large cage compensation
254	Large cages dominate the structure by a 3:1 ratio, so their increase in volume dictates the overall
255	increase of the lattice parameters as the CH ₄ content increases.
256	The occupants of the cages play a role in the density of the structure (Fig. 4e). The hydrate
257	becomes denser than seawater at ~30% CH ₄ when calculated using the formula weight
258	determined from the refined site occupancies and the refined unit cell volumes. Using a
259	Vegard's law extrapolation of the lattice parameters to estimate volume of a completely filled
260	H_2O structure, the transition occurs at a much higher percentage of CH_4 , ~70%. This outcome
261	indicates that the vacancies of the cages and the preference for CO_2 in the structure are
262	significant structural factors when estimating the resulting physical behavior during exchange.
263	The experimental densities indicate that the solid solution is denser than seawater at a much
264	smaller CO_2 content than would be expected for the ideal solution with full cage occupancies.
265	These structural changes must be anticipated and considered when dealing with changing
266	properties of large amounts of hydrate in the seafloor.
267	
268	IMPLICATIONS
269	In this synthesis, where mixed hydrates were formed with liquid water and CO ₂ /CH ₄ in

270 gas phase, the D_2O host network can select gas molecules from the headspace during hydrate 271 formation, suggesting a strong preference of gas occupants based on the gas mixture present at 272 the time of formation. These occupants set the tone for the overall structure. Significant 273 deviations from an ideal solid solution are found. The behavior of CO_2 and CH_4 in the large 274 cage are quite different due to both energetic and entropic effects. Energetically, the permanent 275 quadrupole of CO₂ results in a stronger guest-host interaction. Entropically, CO₂ exhibits a 276 distinctly non-spherical adsorption site within the large cage. These factors impact not only the 277 relative occupancies of CH₄ and CO₂ but the hydrate lattice parameters and unit cell volume as 278 well. This study and future studies similar to it will facilitate better exchange models for 279 predicting outcomes when recovering CH_4 from natural gas hydrates and exchanging the CH_4 280 molecules with CO₂ molecules for CO₂ sequestering. This method of synthesis and neutron 281 diffraction characterization provide a powerful combination to vary composition and temperature 282 of mixed gas hydrates for solid solution determinations and structural, volumetric physical 283 property changes, thus paving the way for successful exchange that allows utilization of natural 284 gas hydrates for CO₂ sequestration and clean energy production.

- 285
- 286

ACKNOWLEDGMENTS

SME was supported by National Science Foundation Grant No. DGE0801470, "Sustainable Technology through Advanced Interdisciplinary Research" (STAIR), awarded to the University of Tennessee Knoxville. Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the US Department of Energy, which provided support of the Spallation Neutron Source through the Scientific User Facilities Division, Office of Basic Energy Sciences, and additional support by the Office of Fossil Energy through Field Work Proposal FEAB111 "Hydrate Formation and Dissociation in Simulated and Field Samples."

- 294
- 295

REFERENCES

Adisasmito, S., Frank, R.J., and Sloan, E.D. (1991) Hydrates of carbon dioxide and methane
mixtures. Journal of Chemical & Engineering Data, 36, 68-71.

- Adisasmito, S. and Sloan, E.D. (1992) Hydrates of hydrocarbon gases containing carbon dioxide.
- 299Journal of Chemical & Engineering Data, 37, 343-349.
- 300 Anderson, R., Llamedo, M., Tohidi, B., and Burgass, R.W. (2003) Experimental measurement of
- 301 methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica. Journal of
- 302 Physical Chemistry B, 107, 3507-3515.
- 303 Bakker, R.J. (1998) Improvements in clathrate modeling II: the H2O-CO2-CH4-N2-C2N6 fluid
- 304 system. Geological Society, London, Special Publications, 137, 75-104.
- Brewer, P.G., Friederich, C., Peltzer, E.T., and Orr, F.M. (1999) Direct experiments on the ocean
 floor disposal of fossil fuel CO₂. Science, 284, 943-945.
- 307 Circone, S., Stern, L.A., Kirby, S.H., Durham, W.B., Chakoumakos, B.C., Rawn, C.J.,
- 308 Rondinone, A.J., and Ishii, Y. (2003) CO₂ hydrate: synthesis, composition, structure,
- 309 dissociation behavior, and a comparison to structure I CH4 hydrate. Journal of Physical
- 310 Chemistry B, 107, 5529-5539.
- 311 Geng, C.Y., Wen, H., and Zhou, H. (2009) Molecular simulation of the potential of methane
- reoccupation during the replacement of methane hydrate by CO₂. Journal of Physical
 Chemistry A, 113, 5463-5469.
- 314 Gutt, C., Asmussen, B., Press, W., Merkl, C., Casalta, H., Greinert, J., Bohrmann, G., Tse, J.S.,
- and Huller, A. (1999) Quantum rotations in natural methane clathrates from the Pacific
 seafloor. Europhysics Letters, 48, 269-275.
- Hirohama, S., Shimoyama, Y., Wakabayashi, A., Tatsuta, S., and Nishida, N. (1996) Conversion
 of CH₄ hydrate to CO₂ hydrate in liquid CO₂. Journal of Chemical Engineering of Japan,
 29, 1014-1020.

- 320 Ikeda, T., Yamamuro, O., Matsuo, T., Mori, K., Torii, S. Kamiyama, T., Izumi, F., Ikeda, S., and
- 321 Mae, S. (1999) Neutron diffraction study of carbon dioxide clathrate hydrate. Journal of
- 322 Physics and Chemistry of Solids, 60, 1527-1529.
- 323 Kamiyama, T., Seki, N., Iwasa, H., Uchida, T., Ebinuma, T., Narita, H., Igawa, N., Ishii, Y.,
- Bennington, S.M., and Kiyanagi, Y. (2006) Methane molecular motion in clathrate
 hydrate host framework. Physica B Condensed Matter, 385, 202-204.
- 326 Kang, S.P., Chun, M.K., and Lee, H. (1998) Phase equilibria of methane and carbon dioxide
- 327 hydrates in the aqueous MgCl₂ solutions. Fluid Phase Equilibria, 147, 229-238.
- 328 Klapproth, A., Goreshnik, E., Staykova, D., Klein, H., and Kuhs, W.F. (2003) Structural studies
- 329 of gas hydrates. Canadian Journal of Physics, 81, 503-518.
- 330 Koh, C.A. and Sloan, E.D. (2007) Natural gas hydrates: Recent advances and challenges in
- energy and environmental applications. AIChE Journal, 53, 1636-1643.
- Kuhs, W.F. (1992) Generalized atomic displacements in crystallographic structure analysis. Acta
 Crystallographica Section A: Foundations of Crystallography, 48, 80-98.
- 334 Lake, C.H. and Toby, B.H. (2011) Rigid body refinements in GSAS/EXPGUI. Powder
- 335 Diffraction, 26, S13-S21.
- 336Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los
- 337 Alamos National Laboratory Report, LAUR 86-748.
- 338 Lee, H., Seo Y., Seo, Y.T., Moudrakovski, I.L., and Ripmeester, J.A. (2003) Recovering
- methane from solid methane hydrate with carbon dioxide. Angewandte Chemie-
- 340 International Edition, 42, 5048-5051.

341	Makogon, Y., Holditch, S.A., and Makogon, T.Y. (2007) Natural gas hydrates - A potential
342	energy source for the 21 st century. Journal of Petroleum Science and Engineering, 56, 14-
343	31.
344	McCallum, S.D., Riestenberg, D.E., Zatsepina, O.Y., and Phelps, T.J. (2007) Effect of pressure
345	vessel size on the formation of gas hydrates. Journal of Petroleum Science and
346	Engineering, 56, 54-64.
347	Momma, K. and Izumi, F (2011) VESTA 3 for three-dimensional visualization of crystal,
348	volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
349	Ohgaki, K., Takano, K., Sangawa, H., Matsubara T., and Nakano, S. (1996) Methane
350	exploitation by carbon dioxide from gas hydrates – Phase equilibria for $CO_2 - CH_4$ mixed
351	hydrate system. Journal of Chemical Engineering of Japan, 29, 478-483.
352	Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith, R.L., and Inomata, H. (2005)
353	Replacement of CH ₄ in the hydrate by use of liquid CO ₂ . Energy Conversion and
354	Management, 46, 1680-1691.
355	Park, Y., Kim, D.Y., Lee, J.W., Huh, D.G., Park, K.P., Lee, J., and Lee, H. (2006) Sequestering
356	carbon dioxide into complex structures of naturally occurring gas hydrates. Proceedings
357	of the National Academy of Sciences of the United States of America, 103, 12690-12694.
358	Qi, Y.X., Ota, M., and Zhang, H. (2011) Molecular dynamics simulation of replacement of CH ₄
359	in hydrate with CO ₂ . Energy Conversion and Management, 52, 2682-2687.
360	Qin, J.F. and Kuhs, W.F. (2013) Quantitative analysis of gas hydrates using Raman
361	spectroscopy. AIChE Journal, 59, 2155-2167.

362	Ripmeester, J.A. and Radcliffe, C.I. (1988) Low-temperature cross-polarization/magic angle
363	spinning carbon-13 NMR of solid methane hydrates: Structure, cage occupancy, and
364	hydration number. The Journal of Physical Chemistry, 92, 337-339.
365	Ripmeester, J.A. and Ratcliffe, C.I. (1998) The diverse nature of dodecahedral cages in clathrate
366	hydrates as revealed by Xe-129 and C-13 NMR spectroscopy: CO ₂ as a small-cage guest.
367	Energy & Fuels, 12, 197-200.
368	Schicks, J.M. and Ripmeester, J.A. (2004) The coexistence of two different methane hydrate
369	phases under moderate pressure and temperature conditions: Kinetic versus
370	thermodynamic products. Angwwandte Chemie-International Edition, 43, 3310-3313.
371	Schicks, J.M., Luzi, M., and Beeskow-Strauch, B. (2011) The conversion process of
372	hydrocarbon hydrates into CO ₂ hydrates and vice-versa: Thermodynamic considerations.
373	Journal of Physical Chemistry A, 115, 13324-13331.
374	Sears, V.F. (1992) Neutron scattering lengths and cross sections. Neutron News, 3, 26-37.
375	Sloan, E.D. and Koh, C.A. (2007) Clathrate Hydrates of Natural Gases, 3rd ed. Taylor & Francis
376	CRC Press, Boca Raton, FL.

- 377 Sloan, E.D. (1998) Clathrate Hydrates of Natural Gases. Marcel Dekker, New York.
- 378 Suess, E., Bohrmann, G., Greinert, J., and Lausch, E. (1999) Flammable Ice. Scientific
- 379 American, 281, 76-83.
- 380 Sum, K.A., Burruss, R.C., and Sloan, E.D. (1997) Measurement of clathrate hydrates via Raman
- 381 spectroscopy. Journal of Physical Chemistry B, 101, 7371-7377.
- 382 Takeya, S., Yoneyama, A., Ueda, K., Hyodo, K., Takeda, T., Mimachi, H., Takahashi, M.,
- 383 Iwasaki, T., Sano, K., Yamawaki, H., and Gotoh, Y. (2011) Nondestructive imaging of

384	anomalously preserved methane clathrate hydrate by phase contrast x-ray imaging.
385	Journal of Physical Chemistry C, 115, 16193-16199.
386	Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
387	Crystallography, 34, 210-213.
388	Tse, J.S., Ratcliffe, C.I., Powell, B.M., Sears, V.F., and Handa, Y.P. (1997) Rotational and
389	translational motions of trapped methane: Incoherent inelastic neutron scattering of
390	methane hydrate. Journal of Physical Chemistry A, 101, 4491-4495.
391	Yezdimer, E.M., Cummings, P.P., and Chialvo, A.A. (2002) Determination of the Gibbs free
392	energy of gas replacement in sI clathrate hydrates by molecular simulation. Journal of
393	Physical Chemistry A, 106, 7982-7987.
394	Yuan, Q., Sun, C.Y., Yang, X., Ma, P.C., Ma, Z.W., Liu, B., Ma, Q.L., Yang, L.Y., and Chen
395	G.J. (2012) Recovery of methane from hydrate reservoir with gaseous carbon dioxide
396	using a three-dimensional middle-size reactor. Energy, 40, 47-58.

398

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

- 399 Table 1. Experimental information for neutron powder data collected on five hydrate samples
- 400 with nominal gas amounts of 100% CH₄, 75% CH₄/25% CO₂, 50% CH₄/50% CO₂, 25%

401 CH₄/75%CO₂, 100% CO₂.

Refined Chemical Formula	0.79(CH₄) 7.19H₂O	0.36(CH ₄) 0.34(CO ₂) 8.21H ₂ O	0.2(CH ₄) 0.63(CO ₂) 6.93H ₂ O	0.08(CH ₄) 0.85(CO ₂) 6.12H ₂ O	(CO ₂) 5.75H ₂ O
Crystal system	cubic	cubic	cubic	cubic	cubic
Space group	Pm3n	Pm3n	Pm3n	Pm3n	Pm3n
a (Å)	11.83210(8)	11.82699(4)	11.82487(6)	11.82427(7)	11.82216(9)
Volume (ų)	1656.48	1654.34	1653.44	1653.19	1652.31
ρ _{calc} (g/cm³)	0.93	1.00	1.08	1.14	1.19
Temperature (K)	10	10	10	10	10
Phases	97% hyd, 3% ice l	90% hyd, 10% ice I	92% hyd, 8% ice I	90% hyd, 7% ice I, 3% $\rm N_2$	99% hyd, 1% ice I

402

403

- 404 Table 2. Crystallographic goodness of fit information for neutron powder data collected on five
- 405 hydrate samples with nominal gas amounts of 100% CH₄, 75% CH₄/25% CO₂, 50% CH₄/50%
- 406 CO₂, 25% CH₄/75% CO₂, 100% CO₂.

Refined Chemical Formula	0.79(CH ₄) 7.19H ₂ O		0.36(CH ₄) 8.21	0.34(CO ₂) H ₂ O	0.2(CH ₄) 0.63(CO ₂) 6.93H ₂ O		
Center wavelength	1.333	2.665	1.333	2.665	1.333	2.665	
d-spacing range	0.57-3.59	1.23-6.16	0.66-3.59	1.15-6.16	0.66-3.59	1.15-6.16	
Rp	0.009	0.011	0.022	0.032	0.025	0.034	
Rwp	0.010	0.012	0.022	0.032	0.024	0.035	
Rexp	0.002	0.003	0.003	0.004	0.003	0.004	
χ ²	5.72 3.81		7.10	7.69	9.38	8.16	
Combined Rp	0.0	010	0.0	28	0.0)30	
Combined Rwp	0.011		0.0	26	0.028		
Variables	36		4	7	47		
Refined Chemical Formula	0.08(CH ₄) 0.85(CO ₂) 6.12H ₂ O		(CO ₂) 5.75H ₂ O				
Center wavelength	1.333	2.665	1.333	2.665			
d-spacing range	0.57-3.59	1.23-6.16	0.66-3.59	1.15-6.16			
Rp	0.009	0.011	0.022	0.032			
Rwp	0.010	0.012	0.022	0.032			
Rexp	0.002	0.003	0.003	0.004			
χ ²	5.72	3.81	7.10	7.69			
Combined Rp	0.0	010	0.0	28			
Combined Rwp	0.0)11	0.0	26			
Combined Rwp	36		4	7			

408

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4929

- 410 Table 3. Refined cage occupancies are shown for each molecule and each cage with nominal gas
- 411 amounts of 100% CH₄, 75% CH₄/25% CO₂, 50% CH₄/50% CO₂, 25% CH₄/75% CO₂, 100%
- 412 CO₂. The refined cage occupancies are applied to the 2 small cages and 6 large cages to
- 413 calculate the percent of each gas present. The final column shows the percentage of all cages
- 414 filled.

Target	Large Ca	age Occ.	Small Ca	ige Occ.	Conte	% Cages	
Composition	CH ₄ CO ₂		n CH ₄ CO ₂ CH ₄ CO ₂		CH₄	CO ₂	Full
100% CH₄	0.73(3)	-	0.93(5)	-	79(4)	-	79(4)
75% CH4	0.28(2)	0.42(1)	0.59(3)	0.09(2)	36(2)	34(1)	70(3)
50% CH4	0.08(3)	0.77(1)	0.54(4)	0.21(2)	20(3)	63(1)	83(5)
25% CH4	0.00(2)	0.98(2)	0.33(4)	0.47(3)	8(3)	85(2)	94(5)
0% CH4	-	1.00(6)	-	1.00(4)	-	100(6)	100(6)

415

416

- 417 Table 4. Cage occupancies as predicted using CSMHYD (Sloan 1998) for samples with nominal
- 418 gas amounts of 100% CH₄, 75% CH₄/25% CO₂, 50% CH₄/50% CO₂, 25% CH₄/75% CO₂, 100%
- 419 CO₂. The predicted cage occupancies are applied to the 2 small cages and 6 large cages in order
- 420 to calculate the percent of each gas present. The final column shows the minimum pressure at
- 421 which the structure would be stable.

Composition	Large Cage Occ.		Small Cage Occ.		Content %		% Cages	Pressure
Composition	CH₄	CO ₂	CH₄	CO ₂	CH₄	CO ₂	Full	(kPa)
100% CH₄	0.98	-	0.90	-	96	-	96	1401
75% CH4	0.46	0.52	0.67	0.19	51	44	95	975
50% CH4	0.23	0.76	0.45	0.37	29	66	95	762
25% CH4	0.09	0.89	0.22	0.56	12	81	93	632
0% CH4	-	0.98	-	0.75	-	92	92	544

425

426

427 Figure 1. Two polyhedral cages (large cage on left, small cage on right) defined by the

428 hydrogen bonded water network in sI hydrate VESTA (Momma and Izumi 2011). The vertices

- 429 are the locations of the oxygen atoms (red) and the edges are hydrogen sites (white) randomly
- 430 half occupied.

431

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

433 Figure 2. Observed, calculated, and difference neutron powder diffraction patterns for

the low d-spacing range.

436

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4929

439 Figure 3. Nuclear densities of large and small cages as determined by Fourier difference 440 analysis of CO₂/CH₄ gas hydrate created in VESTA (Momma and Izumi 2011). Large cages depicted on the left (a) and small cages on the right (b). The isosurface level is $1.5 \text{ fm/}\text{\AA}^3$ for last 441 442 four samples (nominal compositions of 75% CH₄, 50% CH₄, 25% CH₄, and 100% CO₂), and 2.2 fm/Å³ for nominal composition 100% CH₄ (to eliminate extra noise created by high incoherent 443 444 scattering from hydrogen). Positive nuclear scattering (oxygen and carbon) is shown in yellow, 445 negative (hydrogen) in blue. A single CO₂ and/or CH₄ molecule is superimposed to give a 446 spatial sense of the molecule compared to the observed nuclear density. Energy maxima determined from the nuclear density for the large cage (c) with isosurface level 3 fm/Å³; CO₂ 447 448 top, CH_4 bottom, shown along both the {010} and {100} projections in the large cage to 449 demonstrate the extent of the anisotropy of CO₂ distribution on this site.

451	Figure 4.	Refined lattice	parameters	(a) and	refined	atomic	displacement	parameters ((b).	
-----	-----------	-----------------	------------	---------	---------	--------	--------------	--------------	------	--

452 Volumes of the small cages (c) and large cages (d) calculated from refined atomic coordinates.

- 453 The top legend denotes the sample names as they correspond to the nominal feed gas
- 454 composition. Experimental densities determined from the refined occupancies and calculated
- 455 densities for the nominal compositions (e) comparing how the density changes based on the
- 456 guest molecule. Error bars in a, b, c, and d are 3σ and the errors were propagated to obtain the
- 457 error bars for e.