11/12

1	Very large differences in intramolecular D-H partitioning in hydrated
2	silicate melts synthesized at upper mantle pressures and temperatures
3	[Revision 1]
4	
5	Ying Wang, Samantha X. Cody, Dionysis Foustoukos,
6	Bjorn O. Mysen, George D. Cody*
7	Geophysical Laboratory, Carnegie Institution of Washington
8	
9	Corresponding Author Contact Information: George D. Cody Geophysical Laboratory,
10	Carnegie Insitution of Washington, 5251 Broad Branch Rd., NW, Washington, DC
11	20015, gcody@ciw.edu
12	
13	
14	Abstract
15	
16	Hydrated (with D_2O and H_2O) sodium tetrasilicate glasses, quenched from melts at
17	1400°C and 1.5 GPa, are studied using ¹ H, ² H and ²⁹ Si solid state Nuclear Magnetic
18	Resonance (NMR) Spectroscopy. Whereas D ₂ O and H ₂ O depolymerize the silicate melt
19	to similar degrees, protium and deuterium intramolecular partitioning between different
20	molecular sites within the glasses is very different and exemplified by a strong
21	preferential association of deuterons to sites with short O-DO distances. This
22	preference is independent of total water content and D/H ratio. Substantially different
23	intramolecular D-H partitioning is also observed in a glass with a model hydrous basalt

24	composition. Such large differences in isotope partitioning cannot result from classic
25	equilibrium fractionation because of the high synthesis temperature. Potential kinetic
26	isotope effects are excluded via a slow quench experiment. The apparent fractionation is
27	likely governed by density/molar volume isotope effects, where deuterium prefers sites
28	with smaller molar volume. Large diffences in intramolecular site partitioning in melts
29	could lead to significant differences in D-H partitioning between water saturated melt
30	and exsolved aqueous fluid (where $D/H_{W,Melt} \neq D/H_{W,Fluid})$ during crystallization of
31	Earth's magma ocean, potentially controlling the D/H content of the Earth's oceans.
32	
33	Keywords. Hydrogen Isotopes, Silicate Melts, fractionation
34	
35	Introduction
36	Hydrogen isotope fractionation during magmatic processes is key to
36 37	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin
36 37 38	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated
36 37 38 39	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the
36 37 38 39 40	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and
 36 37 38 39 40 41 	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and Ihinger, 2000). Experiments have revealed significant hydrogen isotope partitioning
 36 37 38 39 40 41 42 	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and Ihinger, 2000). Experiments have revealed significant hydrogen isotope partitioning between melts and fluids or vapors at magmatic temperatures (e.g. Kuroda et al. 1982;
 36 37 38 39 40 41 42 43 	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and Ihinger, 2000). Experiments have revealed significant hydrogen isotope partitioning between melts and fluids or vapors at magmatic temperatures (e.g. Kuroda et al. 1982; Richet et al. 1986; Dobsen et al. 1989; Pineau et al. 1998; Mysen 2013). The origin of
 36 37 38 39 40 41 42 43 44 	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and Ihinger, 2000). Experiments have revealed significant hydrogen isotope partitioning between melts and fluids or vapors at magmatic temperatures (e.g. Kuroda et al. 1982; Richet et al. 1986; Dobsen et al. 1989; Pineau et al. 1998; Mysen 2013). The origin of such fractionation, given the high temperatures of magmatic processes, is not likely due
 36 37 38 39 40 41 42 43 44 45 	Hydrogen isotope fractionation during magmatic processes is key to understanding the deep Earth hydrological cycle and may place constraints on the origin of Earth's oceans. It is well established that the D/H content of water in hydrated nominally anhydrous mantle minerals is systematically lower (< -100 ‰) than the standard mean ocean water (SMOW, D/H = 1.5576×10^{-4} , defined as 0 ‰) (Bell and Ihinger, 2000). Experiments have revealed significant hydrogen isotope partitioning between melts and fluids or vapors at magmatic temperatures (e.g. Kuroda et al. 1982; Richet et al. 1986; Dobsen et al. 1989; Pineau et al. 1998; Mysen 2013). The origin of such fractionation, given the high temperatures of magmatic processes, is not likely due to equilibrium isotope effects as described by statistical mechanics (Urey 1947;

2

47 Near Infrared (NIR) spectroscopy reveals that water exists in guenched melts as 48 hydroxyl (silanol) and molecular water (Stolper 1982); where the proportion of these 49 species is a function of water concentration and temperature (Nowak and Behrens 1995). 50 The possibility that fractionation of hydrogen isotopes exists between silanol and 51 molecular water within melts has been considered (Dobsen et al. 1989). Whereas NIR 52 spectroscopy reveals distinct bands for silanol and molecular water, the primary O-H 53 vibrational structure in the mid-infrared region cannot distinguish been these primary 54 species (Zotov and Keppler, 1998). What is observed in the mid Infrared region with 55 hydrous glasses at room temperature is very complex vibrational structure spanning a 56 very wide frequency range. Interestingly, a FTIR study comparing primary O-H and O-57 D vibrational structure in a hydrated (with H₂O and D₂O) sodium tetrasilicate glasses, 58 does suggest differences in the intensities of various OH and OD vibrational modes 59 (Zotov and Keppler, 1998), possibly indicating differences in intramolecular D-H 60 partitioning between different molecular sites within the hydrated silicate glass. 61 However, in the study of Zotov and Keppler (1998) the deuterated and hydrated glasses 62 were separately prepared samples, thus the apparent differences in vibrational intensities 63 across the mid-infrared could be attributed to slight differences in water composition or 64 synthesis conditions across the two samples.

Solid state ¹H Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for the study of water in hydrous silicate glasses quenched from melts. Previous studies have shown that water resides in wide range of molecular environments within glasses formed in this manner (e.g. Eckert et al. 1987, 1988; Kohn et al. 1989; Schaller and Sebald 1995; Cody et al. 2005; Xue and Kanzaki 2009). The ¹H solid state NMR

spectrum of silanol and water in hydrous glasses is understood to be predominantly controlled by O-H•••O distance (Eckert et al. 1988, Xue and Kanzaki 2001). Similar to mid IR vibrational spectroscopy, ¹H solid state NMR cannot readily distinguish between silanol and molecular water, i.e., hydrogen's chemical shift is unaffected by whether the oxygen it is bonded to is water or a siloxy group.

75 Solid state NMR does have the advantage that it is an isotope specific emission 76 spectroscopy, therefore, signal interference between different isotopes is very rarely a 77 problem and one can investigate mixed isotopic systems without interference. In the present study ¹H, ²H and ²⁹Si solid-state Nuclear Magnetic Resonance (NMR) 78 79 spectroscopy was performed on hydrated sodium tretrasilicate glasses quenched from melt, at various water contents and variable D/H content. ¹H and ²H solid state NMR 80 81 were also performed on a hydrous glass with a model basalt composition. We show that 82 large differences in intramolecular H-D partitioning are evident in all of the glasses 83 studied.

- 84
- 85

Methods and Analytical Techniques

86 Sample preparation

This study employed two types of glasses: a hydrated sodium tetrasilicate (Na₂O·4SiO₂, hereafter referred to as NS4) glass, which is a classic model system investigated by multiple techniques (e.g. Schaller and Sebald 1995; Kummerlin et al 1992; Zotov and Keppler, 1998) and a synthetic, iron-free, hydrated glass of basalt-like composition (10CaO·20MgO·5Na₂O·15Al₂O₃·50SiO₂, hereafter referred to as CMNAS). The starting dry NS4 glass was made by mixing spectroscopically pure Na₂CO₃ and SiO₂, ground under alcohol for ~ 1 h, and then decarbonated during slow heating

94 (~1.5°C/min). The resultant mixture was melted at ambient pressure in a Deltech furnace 95 in open Pt crucibles at 1500°C for 60 min and then quenched to glass. The dry CMNAS 96 glass was similarly synthesized with a melting temperature of 1400°C. These anhydrous 97 starting glasses were crushed to $\geq 20 \ \mu m$ grains and stored at 110°C when not used. 98 To prepare for the synthesis of hydrous glasses, pure D_2O (99.5%) was mixed 99 with isotopically unlabeled distilled deionized water at desired ratios to produce a series 100 of solutions with D abundance varying from 0 to 100% (Table 1). Water was injected 101 into Pt capsules, approximately 5 mm O.D. \times 10 mm long, using a 10-µL microsyringe. 102 The anhydrous glasses were then added to the same Pt capsules which were welded shut 103 using a tungsten inert gas high frequency pulsed arc welder (Lampert PUK 3S). The use 104 of a pulsed arc welder greatly reduces the heating and potential for water loss during 105 welding. The exact amount of H_2O added was determined by weight. The average total 106 sample mass (water + anhydrous glass) was around ~ 200 mg. The weighing accuracy 107 was ± 0.02 mg, which gives accuracy $\leq \pm 0.1\%$ in the reported water contents. Table 1 108 summarizes the water content and hydrogen isotopic composition of all the glasses 109 synthesized in this study.

The sealed Pt capsules containing the starting glass and water were loaded in 0.75-diameter furnace assemblies and then subjected to high-pressure (1.5 GPa) and high-temperature (1400°C) experiments in a solid-media, high-pressure apparatus. Temperatures were measured with Pt-Pt₉₀Rh₁₀ thermocouples. The estimated uncertainties are $\pm 10^{\circ}$ C and ± 0.1 GPa, respectively. The experimental temperature was programmed to initially rise from room temperature to 1400 °C at 300 °C /sec. The duration of each run was 3+ hrs, followed by quenching to glass at a rate of 100°C/s.

11/12

117 In order to test for potential kinetic isotope effects, one sample was also 118 subjected to prolonged heating at 1.5 GPa for 48 hours to test for the attainment of D-H 119 equilibrium (Table 1). This run was then quenched slowly at 1 °C/min in order to see 120 whether H and D partitioning changed relative to the standard experiment, as a test for 121 potential mass-derived kinetic isotope effects that might occur during any re-122 equilibration upon cooling to the glass transition temperature (see discussion in section 123 3.3). For comparison with hydrogen speciation in various glasses and minerals, we also prepared two hydrous SiO₂ glasses containing either 14 mol% H₂O or D₂O for ¹H and 124 125 ²H NMR analysis. Also included for comparison is a sample of natural gypsum 126 $(CaSO_4 \cdot 2H_2O).$

127

128 ²⁹Si, ¹H, and ²H solid state NMR spectroscopy

NMR experiments were performed with a Varian-Chemagnetics Infinity 300 solid-state NMR spectrometer with a static field of ~7.05 T. The resonance frequencies of ¹H, ²H, and ²⁹Si nuclei are 300, 46, and 59 mHz, respectively. ¹H and ²⁹Si spectra were referenced to tetramethylsilane (TMS), while ²H spectra were referenced to perdeuterated-tetramethylsilane (TMS-² H_{12} , 99%, from C/D/N Isotopes).

The ¹H NMR spectra were obtained by ¹H single-pulse magic-angle-spinning (MAS) experiments employing a 2.5 mm rotor and fast MAS probe with spinning frequency ($\omega_r/2\pi$) of 22 kHz. The DEPTH four pulse sequence was employed to suppress background ¹H signal where phase cycling (n=16) removes any signal from background protons (outside the RF coil) that experience a nutation angle of less than 45 °. The acquisition parameters include a ¹H 90° RF pulse length of 3 µs, a recycle delay

of 100 s (the spin-latice relaxation time, T_1 , for ¹H in these glasses was determined by experiment to be 20 s) and a spectral width of 200 kHz. A total of 1600 acquisitions were acquired per sample.

143 The ²H NMR spectra were obtained by ²H single pulse experiments at MAS frequency of 8 kHz (controlled to \pm 1 Hz). The ²H excitation pulse width was 1.5 µs 144 $(\omega_1/2\pi = 55.5 \text{ kHz})$ corresponding to a 30 °C nutation angle. Spinning at this rate is 145 sufficient to induce complete homonuclear decoupling and significantly average out 146 much of the ¹H-²H coupling. In order to ensure complete ¹H-²H decoupling, high power 147 ¹H decoupling was performed during signal acquisition with $\omega_1/2\pi = 62.5$ KHz. A pulse 148 149 delay of 10 s was employed to minimize interference due to longitudinal (spin-lattice) relaxation effects [previous estimates of 2 H's T₁ in silicate glasses was less than 1 s 150 151 (Ekert et al. 1987)]. A total of 16000 acquisitions were acquired per sample.

²H is a spin-1 quadrupole and static NMR spectra of ²H in a rigid solid yields a 152 153 classic Pake powder pattern spectrum spanning a spectral width that is dependent on the strength of the quadrupolar interaction, in some cases in excess of 200 kHz for ²H in 154 155 rigid environments (Eckert et al. 1987). Under fast MAS rotation the quadrupolar 156 powder pattern is defined by multiple spinning sidebands that spread out over the 157 frequency range of quadrupole interaction. While it is possible to fit all of the side bands in order to obtain the site specific powder patterns to quantify the standard ²H 158 MAS NMR spectra, an alternative approach provides purely isotropic ²H MAS NMR 159 spectra that are more directly comparable to ¹H MAS NMR spectra. Isotropic spectra 160 161 were obtained by rotor synchronized acquisition, where the spectral width is exactly 162 equal to the MAS frequency (8 KHz \pm 1 Hz), thus the dwell is equal to the rotor period.

The receiver band width was set at 600 KHz, thus all of the sidebands detected outside of the spectral window are perfectly aliased into the central band, greatly increasing the signal-to-noise ratio and yielding a purely isotropic spectrum (see for example Eckman, 186 1982; Ashbrook and Wimperis, 2005).

Given that the ²H quadrupolar interaction may be 200 kHz or larger and given 167 168 that the maximum power of the RF pulse is 55.5 kHz suggests that off resonance effects may be expected (Ernst et al. 1991). In the case where ²H in different environments 169 have significanly different quadrupolar interaction strengths, ²H with larger quadrupolar 170 171 interactions could have suppressed signal intensity in the rotationally resonant isotropic 172 spectrum (Eckman, 1982). Consideration of the potential of such artifacts are addressed in the discussion below. In one case, wide line ²H MAS NMR was acquired, where the 173 174 spectral width was 600 kHz and the nutation time was 500 ns to minimize off resonance effects. 175

Single pulse ²⁹Si NMR spectra were obtained with MAS frequency of 8 kHz, ²⁹Si
pulse widths corresponding to 30° tip angles, a recycle delay of 100 s, and co-addition of
1000 acquisitions. Proton decoupling was performed with continuous RF irradiation at
62.5 kHz. More details on the ²⁹Si Single pulse NMR experiments can be found in
(Cody et al., 2005).

- 181
- 182

Results

²⁹Si MAS NMR of hydrous (H₂O and D₂O) Sodium tetrasilicate glasses
 184

185	Chemically, D ₂ O and H ₂ O are expected to interact with the sodium silicate melt
186	similarly, i.e., both D ₂ O and H ₂ O should depolymerize the silicate network to essentially
187	the same extent. This is confirmed with ²⁹ Si solid state NMR of sodium silicate glass
188	with 9 wt % water (Fig. 1), from which it is determined that hydrogen exists nearly
189	equally as (H,D) ₂ O and as silanol OH,D independent of the D-H content of water. The
190	only means for determining the proportion of Si-OH and H ₂ O in NS4 glass quenched
191	from melt via NMR is through the determination of the proportion of Q species via ²⁹ Si
192	NMR. Individual Q^n species Q^{4-0} in simple sodium tetrasilicate glasses are resolvable
193	using ²⁹ Si NMR (Maekawa et al. 1991, Kümmerlin et al. 1992, Zotov and Keppler 1998,
194	Cody et al. 2005). Compositionally, $Q^4 = SiO_2$, $Q^3 = NaSiO_{2.5}$, and anhydrous NS4 glass
195	= $Na_{0.5}SiO_{2.25}$; therefore, NS4 glass is expected to be composed of equal concentrations
196	of Q^4 and Q^3 , with the number of non-bridging oxygens per tetrahedron (NBO/T) being
197	0.5. The accuracy of determination of the proportion of Q species is clearly subject to
198	the choice of fitting parameters, i.e., peak shape characteristics (Zotov and Keppler,
199	1998). In the present case the ²⁹ Si spectra were fit with purely Gaussian bands with
200	fixed peak widths where Q^4 is centered at -103 ppm, Q^3 at -95 ppm, and Q^2 at -90 ppm.
201	The resulting percentages of Q^4 , Q^3 , and Q^2 are presented in Table 2. Whereas
202	anhydrous NS4 glass has an NBO/T of 0.5, NS4 glass with 9 wt % water in the form of
203	H ₂ O, D ₂ O or mixed H ₂ O-D ₂ O has an NBO/T of 0.88-0.92 that is expectedly independent
204	of the D-H composition of the water. The increase in NBO/T with water addition
205	reflects the additional depolymerization of the silicate oxide network by water, where
206	Na ₂ O is expected to act only as a depolymerizing agent, and the speciation of water
207	between Si-OH and H ₂ O is readily attained (Table 2). This degree of depolymerization

is in accord with other data at this water content (Stolper, 1982, Zotov and Keppler,
1998); where differences are ascribed to the approach to fitting (Kümmerlen et al. 1992;
Zotov and Keppler 1998; Cody et al. 2005).

211

212 ¹H and ²H MAS NMR of hydrous sodium tetrasilicate glasses

213

214 The ¹H MAS NMR spectrum of sodium tetrasilicate glass (NS4) is complex (Fig. 215 1, center), spanning a wide range of frequencies, but with intensity concentrated in a low 216 to intermediate-frequency band spanning from 0 up to 7 ppm and an asymmetric high-217 frequency band extending out to 16 ppm. These bands are clearly composite bands of 218 numerous overlapping resonances based on their asymmetric peak shapes. For 219 comparison, ¹H NMR of CaSO₄•2H₂O (gypsum) and water containing SiO₂ glass, 220 quenched from melt are also shown. The molecular H₂O in gypsum gives rise to a broad 221 symmetric resonance at 5.5 ppm, whereas hydrated SiO_2 melt quenched to glass exhibits 222 a sharp resonance nearly coincident with a broader peak, at 4.9 and 5.6 ppm, 223 respectively. Focusing on the hydrous NS4 glass (Fig. 1, center), the high-frequency ¹H 224 resonance band at 16 ppm corresponds to a particularly short O-H•••O distances (Eckert 225 et al. 1988, Xue and Kanzaki 2001). The low to intermediate frequency resonance band at \sim 5 ppm corresponds to water and silanol residing in sites with longer O-H•••O 226 227 distances (Fig. 1, center). Evidently one result of network depolymerization upon Na₂O 228 addition to SiO₂ is the creation of sites for OH and H₂O with short O-H•••O distances. The isotropic ²H solid state NMR spectra is expected to be very similar to that of 229

230 the ¹H solid state NMR spectra. Thus, in the case of ²H in hydrated NS4 glass (Fig. 1,

11/12

231 right) we observe resonance intensity spanning a wide frequency range, concentrated in 232 low and high frequency resonance bands as is observed in the ¹H NMR spectra of hydrated NS4 (Fig. 1, center). What is immediately obvious is that the spectral intensity 233 234 distribution in the ¹H and ²H spectra of the hydrated NS4 glasses is very different. 235 Deuterium (²H) preferentially resides in high spectral frequency sites with short O-**D**••••O distances, whereas hydrogen (^{1}H) populates the intermediate and high frequency 236 237 regions of the spectrum nearly equally (Fig 1, center). In comparison, in the case of a pure SiO₂ melt with D₂O, quenched to glass, the ²H NMR spectrum extends only to the 238 intermediate frequency resonance bands, similar to the ¹H NMR spectrum of SiO₂ glass 239 240 with H₂O.

This very large difference in intensity between ¹H and ²H NMR spectra in the 241 242 high and medium frequency sites was not expected. A valid concern is that the difference in intensity may result from an artifact related to the deuteron's quadrupolar 243 interaction influencing the rotor synchronized isotropic ²H spectra. In general, an ideal 244 245 NMR experiment employs RF excitation pulse strength greater than any of the internal 246 NMR interactions, e.g., the chemical shielding interaction. In the case of deuterium 247 solid state NMR, whereas the chemical shielding interaction is relatively weak, the 248 quadrupolar interaction is not inconsequential and is typically larger than available RF 249 pulse power. In cases where the NMR spectrum is wider than the available RF power, 250 off resonance effects at some level are inevitable (Ernst et al. 1991) leading to phase and amplitude errors particularly with long pulse widths (e.g. 90 ° pulses with typical RF 251 252 pulse power).

253 It is well established that ¹H NMR frequency correlates with O-H•••O length 254 (Eckert et al. 1988, Xue and Kanzaki 2001). There is also a strong correlation between O-D•••O length and the ²H quadrupolar coupling constant, C_q, for that site (Ekert et al. 255 256 1987). Thus, one can corelate ¹H NMR frequency for a given site to ²H's C_{q} . For the high frequency ¹H peak at 16 ppm (Fig. 1) one predicts a ²H C_q of 113 KHz and for the 257 intermediate frequency peak at 5 ppm one predicts a ²H C_a of 240 KHz (Eckert et al. 258 259 1987). Note that these predictions assume that the deuterium atom is immobile, 260 however, Eckert et al. (1987) showed in their study of hydrated rhyolite glass that many 261 deuterons are partially mobile at room temperature, where motion of the deuteron has a short correlation time ($\tau_c^{-1} > C_q$). Such motion strongly effects the ²H NMR spectrum 262 by greatly reducing the spectral width (Schmidt-Rohr and Speiss, 1994). As will be 263 shown below, non rigid deuterons are also present in these hydrated NS4 glasses. 264

265 The worse case scenario associated with off resonance effects would be spectral distortion in the isotropic ²H NMR spectrum assuming rigid deuterons with C_q 's of 113 266 267 and 240 KHz, corresponding to the 16 and 5 ppm sites, respectively. The net effect could be to potentially lose intensity at the 5 ppm site in the ²H NMR spectrum relative 268 to that in the ¹H NMR spectrum (fig. 1). The magnitude of this off resonance distortion 269 270 will increase with excitation pulse width (Ernst et al. 1991). In the present experiments 271 a pulse width of 1.5 μ s, corresponding to 30 ° pulse, was employed. Such a short pulse width will help minimize off resonance distortion between ²H sites with significantly 272 different C_q's. In order to determine the magnitude, if any, of spectral distortion, 273 assuming this worse case scenario, rotor synchronized ²H MAS NMR was simulated 274 275 numerically using the SIMPSON code (Bak et al. 2000) with the experimental

parameters outlined in the methods section. These calculations reveal that off resonance effects can result in the large C_q site (low frequency) exhibiting a reduction in intensity of 8 % relative to the low C_q site (high frequency). Therefore, this worse case scenario involving off resonance effects is not sufficient to explain the very large observed differences in spectral intensity distribution between ¹H and ²H in hydrated NS4 glasses (Fig 1).

282 Having established that the large differences in intramolecular D-H partioning 283 are real, hydrated NS4 glasses were synthesized from melts equilibrated with 3, 6, and 9 284 wt % water with pure H₂O, D₂O and mixed D-H water. From near IR studies (e.g. 285 Stolper 1982; Nowak and Behrens 1995; Zotov and Keppler 1998) it is expected that at 286 3 wt % water content the dominant species is silanol (Si-OH,D), whereas at 6 wt % 287 water, silanol and molecular water are near equal in abundance, and at 9 wt % molecular 288 water is expected to be predominant. It is clear in Fig.s 2-4, that there are no systematic 289 spectral trends attributable to water or D-H content. This means that whether hydrogen 290 species are predominantly Si-OH (at 3 wt %) or majority H₂O (at 9 wt %) such speciation is not obvious in either the ¹H and ²H MAS NMR spectra and the site affinity 291 292 difference exhibited by D and H is independent of water content and D-H content. 293 Recall that the H or D NMR frequency is not sensitive to whether either isotope is 294 bonded to Si-OX or X_2O (X= H or D), but is sensitive to O-H•••O distance (Eckert at al. 295 1988, Xue and Kanzaki 2001).

In order to quantify a site affinity ratio for D and H in different regions of the ¹H and ²H MAS NMR spectra, the relevant spectral regions need to be integrated. It is obvious from the line shapes in the ¹H and ²H MAS NMR spectra that if one chose to fit

11/12

299 either spectra with Gaussian, Lorenztian, or mixed Gaussian/Lorenztian, many 300 overlapping peaks would be required with minimal constraint on peak shape 301 characteristics. As the point of this analysis is purely to see whether there was any trend 302 in the partitioning ratio for D-H in between the high frequency and low frequency regions of the spectrum we chose to define the low frequency domain as the spectral 303 area spanning from -30 ppm to 7.3 ppm (for ²H MAS NMR) and -15 to 10 ppm (for ¹H 304 305 MAS NMR) and the high frequency domain spanning the area from 7.3 ppm up to 40 ppm (for ²H MAS NMR) and 10 to 30 ppm (¹H MAS NMR). The small differences in 306 frequency ranges reflect the more Lorenztian shape of the ²H NMR spectrum and the 307 observation that the ²H NMR spectrum is consistently shifted by ~ 2 ppm to lower 308 frequency, relative to the ¹H NMR spectrum. 309

The integrated ¹H and ²H NMR spectra allow quantification of the percentage of H or D residing in low and high frequency regions of the spectra, as is presented as histograms in Figure 5. While there is some variation in speciation amongst various environments exhibited by both protium and deuterium, there is no correlation with water abundance. Furthermore, the environmental partitioning of deuterons and protons within the quenched melts is independent of D/H ratio and water content.

The site affinities of deuterons and protons for the different environments responsible for the high and low frequency resonances may be quantified through a D-H partitioning factor, R, defined as $R = (D/H)_{HF}/(D/H)_{LF}$, where "HF" is the ratio of ²H signal intensity in the high frequency region of the spectrum relative to ¹H and where "LF" is the ratio of intensity of ²H intensity in the low to middle frequency region of the spectrum relative to ¹H. R, so defined, is determined to be very large with an average of

325

326 Testing for kinetic isotope effects during quenching

327

328 The structure of these glasses is that of their melt at the glass transition where the 329 glass transition temperature is on the order of 550 to 600 °C (Mysen and Richet 2005). 330 It is known that the speciation of Si-OH and H₂O are dependent on water content 331 (Stolper, 1982; Zotov and Keppler, 1998) and temperature (Nowak and Behrens, 1995). 332 Although no evidence was found for water speciation affecting the affinity ratio (Figs 2-333 5), there remains the possibility that kinetic isotope effects during quenching may result 334 in the observed differential partitioning. During a typical experiment, run times were 335 on the order of 3 hours and the quench rate following the run was 100 °C/second. As 336 the glass transition of hydrous NS4 melt (quenched at these rates) is on the order of 500 337 to 600 °C, 8 to 9 seconds are available for kinetic isotope effects to potentially arise 338 from mass differences in isotope diffusion rates.

For example, if at high temperatures, both H and D equally favor the high frequency sites (shorter O-H•••O distance) but at lower temperatures favored environments with longer O-H•••O distances, then if H diffusion rates were greater than D, then it is possible that the apparent partitioning observed in Figs 1-5 could be due to a kinetic isotope effect. To test this possibility a run was performed where the melt was held at 1400 °C and 1.5 GPa for 48 hours and then quenched at a rate of 1 °C/second

11/12

(providing ca. 800 seconds for any site exchange that might occur during cooling). No change in the observed intramolecular H-D partitioning was observed (Fig. 6) relative to the fast quench samples (Fig 1-4). Integration of the ¹H and ²H MAS NMR spectra from the slow quenched sample yielded an R of 3.1 (consistent with the fast quench samples, Fig. 5). This experiment indicates that the very large intramolecular partitioning observed with hydrated NS4 glass quenched from melts is not due to a kinetic isotope effect associated with quench rate.

352

Wide line ²H NMR of hydrated NS4 glass: insight from quadrupolar powder patterns

355

Whereas the rotor synchronized ²H MAS NMR spectra provide isotropic spectra 356 directly comparable to ¹H MAS NMR spectra, information derived from the quadrupolar 357 interaction is lost. Acquisition of the wide line ²H MAS NMR spectrum (spectral width 358 359 600 kHz at 8 kHz MAS) reveals a broad spectrum spanning just over 200 kHz composed 360 of 30 peaks that are spinning sidebands derived by the quadrupolar interaction, where 361 the intensity of the sidebands trace out the static quadrupolar line shape. In Fig. 7 A & 362 B the center band (Fig. 7A) and the most intense high frequency echo (Fig. 7B) are extracted from the wide line ²H NMR spectrum and presented separately. In the center 363 364 band (Fig. 7A) one clearly observes a high (H), middle (M), and low (L) frequency 365 peaks at 13, 3, and 0 ppm. In the high frequency side band (Fig. 7B) one observes the 366 prominent high frequency peak with significantly diminished intensity for the middle 367 and low frequency peaks. The quadrupolar line shapes are obtained by plotting the 368 intensities of the H, M, and L peaks for each side band (Fig. 7C). There are two 369 important pieces of information in Fig. 7C. First, the total area of the high frequency 370 peak is far greater than that of the middle and low frequency peaks, further confirming 371 what is observed in the rotor synchronized isotropic ²H NMR spectra. Second, in the 372 case of the high frequency peak (H) one observes a classic, albeit broadened, double 373 peaked Pake powder pattern (Fig. 7C) consistent with deuterium in a rigid environment. The frequency spread between the pair of peaks is indicative of a C_q of ca. 110 KHz. 374 This magnitude of C_a is consistent with an immobile deuteron in a site with an O-D•••O 375 distance that would yield a corresonding ¹H NMR frequency of ca. 16 ppm (Eckert et al. 376 377 1987, Eckert et al. 1988, Xue and Kanzaki 2001). In the case of the middle and low 378 frequency peaks, however, one observes a very different quadrupolar line shape, each 379 with a single maxima centered near 0 frequency. Such line shapes are typical of partial motional (dynamical) averaging of the ²H quadrupolar interaction, e.g., through O-D 380 381 wagging or flipping motion (Eckert et al. 1987, Schmidt-Rohr and Speiss 1994). Such 382 motional averaging leads to considerable reduction in the 2 H spectral width and greatly 383 reduces concerns of off-resonance effects, i.e., where as the worse case scenario predicts 384 a potential 8 % intensity artifact (see discussion above) assuming rigid deuterons, the 385 observation that the deuterons in the low frequency sites are not rigid further reduces 386 any potential artifact related to off-resonance effects.

387

³⁸⁸ ¹H and ²H MAS NMR of model basalt composition glass

390 The large intramolecular partitioning of H and D is readily observed in Figs 1-6 391 because of the relatively simple structure of NS4 glass. An important question is 392 whether intramolecular hydrogen isotope partitioning would also occur in glasses and 393 melts with more geochemically relevant compositions. To test this, a quenched silicate 394 melt designed to model basaltic melt composed of Ca, Na, Mg, Al, Si oxides (CNMAS) was synthesized with 6 wt % water D:H 1:1. The ¹H and ²H solid state NMR spectra of 395 396 the CNMAS glass guenched from melt are presented (overlayed) in fig. 8. Significant 397 differences in deuteron and proton speciation are evident. There is much more 398 electronic diversity in the CNMAS glass compared with the NS4 glass leading to a more 399 complex NMR spectrum. Notwithstanding the resulting increased spectral complexity, the ¹H and ²H NMR spectra are guite different indicating preferential affinity of 400 401 deuterons and protons for different molecular sites within the hydrous model basalt structure of the CNMAS glass. As in the case of the simpler hydrated NS4 glass, ²H 402 403 prefers sites with shorter O-D•••O distances, hence higher NMR frequency.

404

405

406

Discussion

407

Given that these glasses are synthesized and quenched at such high temperatures classical equilibrum fractionation, i.e., due to differences in zero-point energies (Bigeleisen and Mayer 1947; Urey 1947), is not expected. A lack of any spectroscopic evidence of broadening of OH stretching vibrations at 500 to 600 °C would appear to rule out isotope fractionation associated with hydrogen bonding effects (Mysen 2010).

413 The fact that ²H prefers sites with shorter O-D•••O distances suggests deuterium favors 414 sites with small molar volume and the observed large intramolecular partitioning is 415 likely derived from density or molar volume isotope effects (e.g. Driessner 1997; Horita 416 et al. 2002; Polyakov et al. 2006). Molar volume isotope effects (MVIE) have been 417 invoked to explain a pressure-dependence of isotopic fractionation between water and 418 $Mg(OH)_2$, attributed to differences in the molar volume of D_2O and H_2O (Horita et al. 419 2002). Also, recent high pressure neutron diffraction experiments on $Mg(OD)_2$ indicate 420 greater compressibility than Mg(OH)₂ (Horita et al. 2010). For supercritical fluids at 421 elevated pressures, theoretical calculations and experimental studies have supported the 422 significant effect of D₂O and H₂O molar volume differences on isotope exchange 423 reactions between D-H bearing dissolved volatiles (Polyakov et al. 2006; Foustoukos 424 and Mysen 2012, 2013).

425 Molar volume isotope effects have been identified in aqueous ionic solutions 426 containing sodium acetate and sodium hydroxide, where at elevated temperatures and pressures (up to the critical point of aqueous solutions) the Na⁺ solvation volume with 427 428 D₂O differs significantly than that with H₂O (Tevani et al. 2007; Erikson et al. 2011). In NS4 glasses, the extent to which water and Si-OH solvate Na⁺ is equivocal (Zotov et al. 429 430 1996). Solvation isotope effects in aqueous solutions are predicted to diminish as 431 temperature increases (Driesner and Seward 2000). How increased pressure might 432 change such effects is not known.

The NS4 glasses in the present study were synthesized from silicate melts at 1400 °C and 1.5 GPa (corresponding to a depth of 50 km). The partial molar volume of water in quenched silicate melts is low, ca. 12 cm³/mol (Richet et al. 2000). This is far

436 denser than pure water at the same conditions, suggesting that partial molar volume 437 isotope effects may be expected (Driessner 1997; Horita et al. 2002; Palyakov et al. 438 2006). The O-H•••O distances for the high frequency and low frequency sites correspond 439 to 2.47 Å and 2.9 Å, respectively (Eckert et al. 1988, Xue and Kanzaki 2001); in terms of molar volume this could imply that the high frequency site has a molar volume that is 440 441 60 % that of the low frequency site. This is consistent with deuterons in the high 442 frequency site being rigid (immobile), whereas the deuterons in the low to medium 443 frequency sites are at least partially mobile (Fig. 7). Such a large molar volume 444 difference evidently has a strong influence on the affinity of H and D for different sites 445 within NS4 melt quenched to glass (Fig. 1-8).

- 446
- 447

Implications

448 The fact that deuterons and protons have different affinities for different 449 molecular sites in glasses and presumably melts based on molar volume differences 450 potentially has important implications for understanding Earth's deep hydrological cycle 451 as well as the D/H composition of Earth's first oceans and mantle. For example, during 452 the magma ocean phase of Earth's earliest history, shortly after accretion and, again, 453 following the moon forming impact, much if not all of the Earth was molten. 454 Devolatilization during crystallization of the magma ocean might have contributed the 455 water from which Earth's oceans ultimately formed (Drake and Righter 2002). Although 456 the solubility of water in silicate melts at high pressure is relatively high (Richet et al. 457 2000), eventually during crystallization the water content will saturate the melt leading 458 to exsolution of a silica saturated aqueous phase coexisting with the water-saturated

11/12

459 melt. Neither the cation-silicate ratio or NBO/T of silicate is expected to be the same for 460 co-existing melt and silica saturated aqueous fluid (Mysen 2010, 2013), therefore 461 significant D-H isotope partitioning between melt and aqueous fluid could be expected. 462 Furthermore, it has been noted that complete extraction of volatiles from melt from a 463 deep magma ocean even under moderate extents of crystallization becomes physically 464 difficult and perhaps impossible (Elkins-Tanton 2011); implying that some water must 465 have been retained in the mantle even after degassing that may have formed the Earth's 466 oceans.

467 In model hydrated NS4 melts saturated with water is has been shown that 468 $D/H_{Water-Melt} \neq D/H_{Water-fluid}$ (Mysen 2013). In effect, the D/H isotope exchange between 469 silicate melts and fluids appears to be controlled mainly by the solubility and speciation 470 of silicate species dissolved in the fluid phase. The present study provides further 471 evidence that D-H partitioning between molecular and structural water is independent of 472 the water content in the silicate melt, but largely constrained by the affinity of deuterium 473 into sites with lower molar volume. While it is not possible at this stage to predict the 474 magnitude or even the direction of D-H partitioning between fluid and melt during 475 magma ocean crystallization for geochemically realistic hydrous melt compositions, 476 these experimental data strongly suggest such an isotope partitioning process governed 477 by different intermolecular site affinities of H and D in fluids and melts must be 478 considered a distinct possibility early in Earth's history.

479

- 481 This research was conducted with support from a NASA Astrobiology Institute awarded
- 482 to the Carnegie Institution of Washington and NSF-EAR-1250499 (DF, BM, GC). All
- 483 NMR data were acquired using the W. M. Keck Solid State NMR facility supported in
- 484 part by the W. M. Keck Foundation, the NSF, and the Carnegie Institution of
- 485 Washington.
- 486

487 **References**

488 Ashbrook S. E. and Wimperis S. (2005) Rotor-synchronized acquisition of guadrupolar 489 satellite transition spectra: practical aspects and double-quantum filtration. 490 Journal of Magnetic Resonance. 177, 44-55. 491 492 Bak M., Rasmussen J. T., and Nielsen N. C. (2000) SIMPSON: A general simulation 493 program for Solid-State NMR spectroscopy. Journal of Magnetic 494 Resonance 147, 296-330. 495 496 Bell D. R. and Ihinger P. D. (2000) The isotopic composition of hydrogen in nominally 497 anhydrous mantle minerals. Geochimica et Cosmochimica Acta 64, 2109-498 2118. 499 Bigeleisen J. and Mayer M. G. (1947) Calculation of equilibrium constants for isotopic 500 501 exhange reactions. Journal of Chemical Physics. 15, 261-267. 502 Cody G. D., Mysen B. O., and Lee S. K. (2005) Structure vs. composition: a solid state 503 ¹H and ²⁹Si NMR study of quenched glasses along the Na₂O-SiO₂-H₂O join. 504 Geochimica et Cosmochimica Acta 69, 2373-2384. 505 506 507 Dobson P. F., Epstein S., and Stolper E. M. (1989) Hydrogen Isotope fractionation 508 between coexisting vapor and silicate glasses and melts at low pressure. 509 Geochimica et Cosmochimica Acta 53, 2723-2730. 510 511 Drake M. J. and Righter K. (2002) Determining the composition of the Earth. Nature 512 416, 39-44. 513 Driesner T. (1997) The effect of pressure on Deuterium-Hydrogen Fractionation in 514 515 High-temperature water. Science 277, 791-794. 516

517 518 519 520 521	Driessner T. and Seward T. M. (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid- vapor fractionation for 4-5 molal aqueous NaCl and KCl solutions to 400 °C. Geochimica et Cosmochimica Acta. 64, 1773-1784.
522 523 524 525	Eckert H., Yesinowski J. P., Stolper E. M., Stanton T. R., and Holloway J. (1987) The state of water in rhyolitic glasses. A deuterium NMR study. Journal of. Noncrystalline Solids. 93, 93-114.
526 527 528 529	Eckert H., Yesinoski J. P., Silver L. A., and Stolper E. M. (1988) Water in silicate glasses: quantitation and structural studies by ¹ H solid echo and MAS-NMR methods. Journal of Physical Chemistry. 92, 2055-2064.
530 531 532	Eckman R. R. (1982) Hydrogen and Deuterium NMR of solids by Magic Angle Spinning. Thesis, University of California, Berkeley. 231p.
532 533 534 535	Elkins-Tanton L. T. (2011) Magma oceans in the inner Solar System. Annual Reviews in Earth and Planetary Sciences 40, 113-139.
536 537 538 539	Erikson K. M., Arcis H., Raffa D., Zimmerman G. H. and Tremaine P. R. (2011) Deuterium isotope effects on the ionizationo constant of acetic acid in H_2O and D_2O by AC conductance from 368 to 548 K at 20 MPa. Journal of Physical Chemistry B, 115, 3038-3051.
540 541 542 543	Ernst R. R., Bodenhausen G., and Wokaun A. (1991) Principles of NMR in One and Two Dimensions, Clarendon Press, Oxford. 610p.
544 545 546 547	Foustoukos D. I. and Mysen B. O. (2012) D/H isotopic fractionation in the H2-H2O system at supercritical water conditions: composition and hydrogen bonding effects. Geochimica et Cosmochimica Acta 86, 88-102.
548 549 550	Foustoukos D. I. and Mysen B. O. (2013) H/D methane isotopologues dissolved in mgmatic fluids: stable hydrogen isotope fractionations in the Earth's interior. American Mineralogist 98, 946-954.
551 552 553 554 555	Horita J., Cole D. R., Polyakov V. B. and Driesner T. (2002) Experimental and theoretical study of pressure effects on hydrogen isotope fractionation in the system brucite-water at elevated pressure. Geochimica et Cosmochimica Acta 66, 3769 -3788
556 557 558 559	Horita J., dos Santos A. M., Tulk C. A., Chakoumakos B. C. and Palyakov V. B. (2010) High-pressure neutron diffraction study on H-D isotope effects in brucite. Physical Chemistry of Minerals 37, 741-749.
560 561 562	Kohn S. C., Dupree R., and Smith M. E. (1989) Proton environments and hydrogen bonding in hydrous silicate glasses from proton NMR. Nature 337, 539-541.

563		
564	Kümmerli	n J Merwin L H Sebald A and Keppler H (1992) Structural role of H ₂ O
565		in sodium silicate glasses: Results from ${}^{29}Si$ and ${}^{1}H$ spectroscopy. Journal of
566		Physical Chemistry 96 6405-6410
567		1 hysical Chemisuly, 90, 0403-0410.
569	Vurada V	Haring V. Surveli, T. and Matrue S. (1092) D/II fractionation between
508	Kuroda Y	., Hariya Y., Suzuoki T., and Malsuo S. (1982) D/H fractionation between
569		water and melts of quartz, K-reldspar, albite and anorthite at high
570		temperature and pressure. Geochemical Journal, 16, 73-78.
571		
572	Maekawa	H., Maekawa T., Kawamura K., and Yokokawa T. (1992) The structural
573		groups of alkali silicate glasses determined from ²⁹ Si MAS-NMR. Journal of
574		Non-Crystalline Solids 127, 53-64.
575		
576	Mysen B.	. O. (2010) Structure of H ₂ O-saturated peralkaline melt and coexisting
577	2	aluminosilicate saturated fluid determined in-situ to 800 °C and 800 MPa.
578		Geochimica et Cosmochimica Acta 74 4123-4139
579		
580	Mysen B	O_{1} (2013) Hydrogen isotope fractionation between coexisting hydrous melt
581	Mysen D.	and silicate-saturated aqueous fluid: An experimental study in situ at high
582		prossure and temperature. A mariagn Minoralogist 08, 276, 287
502		pressure and temperature. American Mineralogist. 98, 570-587.
383 594	Maaran D	O and Distrat D (2005) Cili (Classical M & Election New York 544
584 595	Mysen B.	O. and Richel P. (2005) Suicate Glasses and Metts Elsevier, New York. 544p.
585	NT 1 NG	
586	Nowak M	and Behrens H. (1995) The speciation of water in haplogranitic glasses and
587		meltsby in-situ near-infrared spectroscopy. Geochimica et Cosmochimica
588		Acta. 59, 3445.
589		
590	Pineau F.,	Shilobreeva S., Kadik A., and Javoy M. (1998) Water Solubility and D/H
591		fractionation in the system basalite and esite – H_2O at 1250 ° and between 0.5
592		an 3 kbars. Chemical Geology. 147, 173-184.
593		
594	Polykov V	Y. B., Horita J. and Cole D. R. (2006) Pressure effects on the reduced partition
595	5	function ratio for hydrogen isotopes in water. Geochimica et Cosmochimica
596		Acta 70 1904-1913
597		
598	Richet P	Roux I and Pineau F (1986) Hydrogen isotone fractionation in the system
500	referet 1.,	$H_{2}O_{-}$ liquid NaAlSi ₂ O ₂ : new data and comments on D/H fractionation in
600		hydrothermal experiments Earth and Dianetery Science Letters 78, 115, 120
601		nyurotnermai experiments. Earth and Flanetary Science Letters. 78, 115-120.
601	D'1 (D	
602	Richet P.,	Whittington A., Holtz F., Behrens H., Ohlnorst S., and Wilke M. (2000)
603		Water and density of silicate glasses. Contributions in Mineralogy and
604		Petrology. 138 , 337-347.
605		1
606	Schaller T	". and Sebald A. (1995) One- and two-dimensional 'H magic angle spinning
607		experiments on hydrous silicate glasses. Solid State Nuclear Magnetic
608		Resonance 5, 89-102.

600					
610	Schmidt-Rohr K and Spiess H W (1994) Multidimensional Solid-State NMR and				
611	Polymers Academic Press New York 478n				
612					
613	Stolper E. M. (1982) Water in silicate glasses. An infrared spectroscopic study.				
614	Contributions in Mineralogy and Petrology. 81, 1-17.				
615					
616	Urey H.C. (1947) The thermodyamic properties of isotopic substances. Journal of the				
617	Chemical Society (London) 5, 562-581.				
618					
619	Tevani L. N., Balodis E. C., and Tremaine P. R. (2007) Apparent and standard partial				
620	molar volumes of NaCl, NaOH, and HCl in water and heavy water at T=523				
621	and 573 K at p= 14 MPa. Journal of Physical Chemistry B 111, 2015-2024.				
622					
623	Xue X. and Kanzaki M. (2001) An Ab-initio calculation of ¹⁷ O and ¹ H NMR				
624	parameters for various OH groups: Implications to the speciation and				
625	dynamics of dissolved water in silicate glasses. Journal of Physical				
626	Chemistry. B. 105, 3422-3434.				
627					
628	Xue X. and Kanzaki M. (2009) Proton distribution and hydrogen bonding in crystalline				
629	and glassy hydrous silicates and related inorganic materials: insights from				
630	nign-resolution Solid State NMR Spectroscopy. Journal of the American				
631	Ceramic Society 92, 2803-2830.				
632 623	Zotay N. Kappler H. Happon A. C. and Sapar A. K. (1006) The affact of water on the				
624	ZOROV N., Keppler H., Halmon A. C. and Soper A. K. (1996) The effect of water of the				
635	Noncrystalling Solids 202, 153, 163				
636	Nonerystamme Sonds 202, 155-105.				
637	Zotov N and Keppler H (1998) The influence of water on the structure of hydrous				
638	sodium tetrasilicate glasses. American Mineralogist 83, 823-834				
639	sourum terrasmente grasses. American Americanogist 05, 025 05 1.				
640					
641	Figure Captions				
642	Figure 1. Left, solid state ²⁹ Si MAS-NMR spectra of hydrated sodium tetrasilicate melt				
643	quenched to glass with 9 wt % water, variously deuterated from 100 %, 90 % and 0 %.				
644	Dashed lines highlight the silicate Q species, where for Q ⁿ , n=the number of bridging				
645	oxygens: Q^4 (-103 ppm), Q^3 (-95 ppm), Q^2 (-90 ppm). These ²⁹ Si MAS-NMR spectra are				
646	statistically indistinguishable and reveal that D and H depolymerize the glass network				
647	similarly. <i>Center</i> , solid state ¹ H MAS-NMR spectra of hydrated NS4 glass (Center-Top)				

- 648 (9 wt% water, 90 % D 10 % H), gypsum (Center-Middle), and hydrated SiO₂ glass (Center-Bottom). *Right*, solid state ²H NMR spectra of deuterated NS4 glass (Right-649 650 Top) and deutrated SiO₂ glass (Right-Bottom). 651 **Figure 2**: ¹H (left) and ²H NMR spectra of hydrated NS4 glasses with 3 wt. % water 652 653 with varying D-H content. 654 Figure 3: ¹H (left) and ²H NMR spectra of hydrated NS4 glasses with 6 wt. % water 655 656 with varying D-H content. 657 Figure 4: ¹H (left) and ²H NMR (right) spectra of hydrated NS4 glasses with 9 wt. % 658 659 water with varying D-H content. 660 661 Figure 5: Quantitative analysis of D-H speciation in hydrated silicate melts quenched to 662 glass with variation in total water content (3, 6 and 9 wt %) and D-H content of the water. High frequency (black) vs. low frequency (grav) abundances between ${}^{1}H$ and ${}^{2}H$ 663 664 solid state NMR are different (bottom and middle). The partitioning ratio, R, between 665 water in high frequency and low frequency environments is very large (R=3.1) (top). 666
- Figure 6: ¹H (left) and ²H NMR (right) spectra of hydrated NS4 glasses with 6.3 wt. %
 water with D:H of the water being 50:50 synthesized at 1400 °C, 1.5 GPa for 48 hours,
 quenched to glass at a rate of 1 °C/sec. Large intramolecular partitioning is still
- 670 observed (R=3.1)

671

672	Figure 7: Wide line ² H NMR spectrum of hydrated NS4 glass (9 wt % D_2O). A) The
673	central band highlighting the high (H), medium (M), and low (L) frequency deuterium
674	resonances. B) The forth (most intense) high frequency side band- note the diminished
675	intensity of the M and L peaks. C) 2 H quadrupolar line shapes for the H, M, and L
676	deuterium resonances. Note that the high frequency peak exhibits a broadened classic
677	Pake powder pattern indicative of deuterium in a rigid environment. The M and L
678	powder patterns exhibit the characteristics of deuterons in more mobile environments,
679	e.g., O-D wagging motion.
680	
681	Figure 8: ¹ H (black) and ² H (gray) solid state NMR spectra of a hydrated Ca, Mg, Na,
682	Al, Si oxide glass (a model basalt composition without Fe) with 6 wt % water (D:H 1:1).
683	The lack of fine structure relative to the NS4 glasses is due to a much larger number of
684	electronic environments available for H and D to reside with the glass structure. It is
685	evident that large intramolecular D-H partitioning exists, where D tends to favor
686	environments corresponding to the high frequency (shorter O-[H,D] ••• O distance)
687	resonances and H favors environments corresponding to the lower frequency (longer O-
688	[H,D]•••O distance) resonances.
689	
690	
691	
692	
693	

 Table 1

 Total water content and ²H:¹H concentration of the synthesized glasses

Composition of	total water content		277/177	H content	D content	run duration
anhydrous glass	(wt %)	(mol %)	H / H	(mol %)	(mol %)	(hrs)
NS4	3.3	11.4	100:0	22.8	0	3
NS4	3.3	11.4	90:10	2.2	20.6	3
NS4	3.1	11.1	50 : 50	11.0	11.0	3
NS4	6.3	21.1	50 : 50	21.0	21.0	3, 48
NS4	6.3	21.1	90:10	4.2	38.0	3
NS4	6.3	21.1	0:100	42.2	0	3
NS4	9.9	29.4	100:0	0	58.8	3
NS4	9.9	29.4	90:10	5.8	52.8	3
NS4	9.4	29.2	50 : 50	29.2	29.2	3
NS4	9.0	29.2	0:100	58.4	0	3
CMNAS	6.3	31.4	50 : 50	31.4	31.4	3

Table 2

²⁹Si NMR Q-species determination and water speciation OH to H₂O calculations

Run	D:H (9 wt %	Integration %(Hi, Mid,	NBO/T	% as H ₂ O	% as Si-OH
no.	water)	Low)			
6881	100% H	21.9 (-90 ppm) Q2		49.0	51.0
		46.7 (-95 ppm) Q3	0.91		
		31.4 (-103 ppm) Q4			
6872	9:1	21.2 (-90 ppm) Q2		43.5	56.5
		49.9 (-95 ppm) Q3	0.92		
		28.8 (-103 ppm) Q4			
6879	100% D	20.7 (-90 ppm) Q2		48.7	51.3
		46.7 (-95 ppm) Q3	0.88		
		32.7 (-103 ppm) Q4			

742			
743			
744			
745			
746			
747			
748			
749			
750			
751			
752			
753			

Figure 5

