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ABSTRACT 9 

 The hydroxy sulfate jarosite [(K,Na,H3O)Fe3(SO4)2(OH)6] has both been discovered on Mars, 10 

and is associated with areas of highly acidic runoff on Earth. Because jarosite is extremely sensitive to 11 

formation conditions, it is an important target mineral for remote sensing applications. Yet at visible and 12 

near infrared (VNIR) wavelengths, where many spacecraft spectrometers collect data, the spectral 13 

abundance of a mineral in a mixture is not linearly correlated with the surface abundance of that mineral. 14 

Radiative transfer modeling can be used to extract quantitative abundance estimates if the optical 15 

constants (the real and imaginary indices of refraction, n and k) for all minerals in the mixture are 16 

known. Unfortunately, optical constants for a wide variety of minerals, including sulfates like jarosite, 17 

are not available. This is due, in part, to the inherent difficulty in obtaining such data for minerals that 18 

tend to crystallize naturally as fine grained (~10 µm) powders, like many sulfates including jarosite. 19 

However, the optical constants of powders can be obtained by inverting the equation of radiative transfer 20 

and using it to model laboratory spectra. In this paper, we provide robust n and k data for synthetic 21 

potassium, hydronium, and sodium jarosite in the VNIR. We also explicitly describe the calculation 22 

procedures (including providing access to our Matlab code) so that others may obtain optical constants 23 



of additional minerals. Expansion of the optical constants library in the VNIR will facilitate the 24 

extraction of quantitative mineral abundances, leading to more in-depth evaluations of remote sensing 25 

target locations. 26 

INTRODUCTION 27 

Jarosite has been the subject of a multitude of studies over the past decade (Bishop and Murad 28 

2005; Frost et al. 2005; Navrotsky et al. 2005; Nomura et al. 2005; Barron et al. 2006; Papike et al. 29 

2007; Cloutis et al. 2008; Madden et al. 2008; Bell et al. 2010; Norlund et al. 2010; Kula and Baldwin 30 

2011; Madden et al. 2012; Pritchett et al. 2012; Zahrai et al. 2013) since its discovery on Mars in 2004 at 31 

the Mars Exploration Rover Opportunity landing site at Meridiani Planum (Klingelhofer et al. 2004). On 32 

Earth, this iron oxyhydroxy sulfate [(K,Na,H3O)Fe3(SO4)2(OH)6] occurs primarily as an oxidative 33 

weathering product of pyrite-rich sediments associated with acid mine drainage (AMD) (Navrotsky et al. 34 

2005). Therefore, its discovery on Mars suggests a highly acidic formation environment (Bishop et al. 35 

2004). On both Earth and Mars, jarosite’s sensitivity to formation conditions makes it an important 36 

environmental indicator. It is, therefore, a key remote sensing target. Visible and near infrared (VNIR) 37 

remote sensing has been used to identify and map jarosite on both planets (Swayze et al. 2000; Farrand 38 

et al. 2009).  However, quantitative abundance estimates cannot be extracted from these data because of 39 

a lack of optical constants (the real and imaginary indices of refraction, n and k). The absence of these 40 

optical constants from the literature is due, in part, to the inherent difficulty in obtaining such data for 41 

minerals that tend to crystallize naturally as fine grained (~10 µm) powders, like many sulfates including 42 

jarosite. Yet once optical constants have been determined, and quantitative mineral abundances 43 

obtained, it becomes possible to conduct a more in-depth evaluation of the target location.  44 

As additional jarosite-bearing regions are discovered on Mars (Farrand et al. 2009; Roach et al. 45 

2010; Wendt et al. 2011; Sefton-Nash et al. 2012; Sowe et al. 2012), there is a growing need for tools 46 



and data that can enhance our interpretations of past Martian environments. In the absence of targeted 47 

sample return, quantitatively modeled mineral abundances derived from remote sensing data can provide 48 

valuable constraints on past fluid compositions, atmospheric conditions, weathering timelines, and sub-49 

surface processes. This will aid in developing a full picture of Martian history. To this end, jarosite is a 50 

particularly valuable environmental indicator mineral because it is extremely sensitive to environmental 51 

conditions. For example, terrestrial jarosite only precipitates under very specific Eh and pH conditions 52 

as a supergene deposit (Bigham et al. 1996a; Bigham et al. 1996b; Norlund et al. 2010). It also only 53 

remains stable under a narrow range of atmospheric and surface conditions (i.e. low surface moisture 54 

and low relative humidity (Madden et al. 2004; Papike et al. 2006)). This sensitivity has allowed it to be 55 

used as a ‘stopwatch’ for wetting processes on Mars (Madden et al. 2009). Jarosite can also crystallize 56 

from subsurface (volcanic) processes, and its ability to easily incorporate rare earth elements into its 57 

structure makes it a valuable geochronometer (Lueth et al. 2005; Papike et al. 2006). Jarosite can also be 58 

used as a geothermometer both through oxygen isotopes analysis (Rye and Stoffregen 1995; Papike et 59 

al. 2006) and hydronium content (Swayze et al. 2008). In addition, because jarosite is a well-studied 60 

mineral, thermodynamic data are available to model its formation, stability, and partitioning behavior 61 

(Drouet and Navrotsky 2003; Navrotsky et al. 2005). For example, it is possible to determine the K/Na 62 

ratio of the fluid from which jarosite formed (Deyell and Dipple 2005; Papike et al. 2006).   63 

On Earth, jarosite is quickly becoming a major environmental contaminant (Pappu et al. 2006). 64 

As one of the main byproducts of hydrometallurgical extraction of zinc (600,000 barrels of residue 65 

annually in the European Union), and as a precipitate linked to highly acidic AMD runoff (Swayze et al. 66 

2000), it has the capacity to both store and release large quantities of heavy metals back into the 67 

environment (Papike et al. 2006; Swayze et al. 2008). In AMD regions, the most acidic runoffs are 68 

associated with iron (III) sulfates (Jerz and Rimstidt 2003). Among these, jarosite is often spectrally 69 



significant on remote sensing spatial scales. It indicates areas where neutral rain and snow melt can be 70 

transformed into pH < 3 runoff (Swayze et al. 2000; Jerz and Rimstidt 2003). Swayze et al. (2000) 71 

showed that identifying jarosite in remote spectral analysis of AMD regions saved both time (2 years) 72 

and money ($2 million) in cleanup efforts at the California Gulch superfund site in Leadville, CO 73 

compared to traditional remediation methods.  74 

For single pass or targeted cleanup efforts, qualitative data may be sufficient. However, for 75 

monitoring, quantitatively determined abundances would greatly improve efficiency. As aeolian 76 

processes expose more pyrite to oxygen and water, jarosite concentrations increase, indicating an active 77 

area of contamination. If, however, an AMD region is no longer producing highly acidic waters, 78 

conditions will favor the formation of goethite and hematite, causing jarosite concentrations to diminish 79 

with time. Thus, by combining quantitative abundance analysis with the broad spatial coverage of 80 

remote sensing, detailed geochemical conditions on the ground can be assessed in a manner that 81 

broadens scope and significantly reduces time and cost. 82 

Jarosite is spectrally distinct in the VNIR (~0.35-2.5 µm) wavelength range from other hydrates, 83 

hydroxylates, and iron-bearing minerals (Figure 1; Swayze et al. 2000). On a remote sensing platform, 84 

VNIR spectroscopy remains one of the most useful methods for identifying hydrated and hydroxylated 85 

minerals, like jarosite, over large spatial scales. This technique is, therefore, an indispensable tool for 86 

wide-scale monitoring and discovery missions. While VNIR spectroscopic identification of many 87 

minerals is straightforward (Clark et al. 2003), extracting quantitative abundances of single minerals 88 

from spectra of mineral mixtures can be quite difficult. In this wavelength region, multiple scattering is 89 

often the dominant process, in contrast to the mid-infrared (MIR), where absorption dominates (Clark 90 

1999). The dominant scattering condition in the VNIR, which impacts the shape and depth of spectral 91 

features, depends on grain size, absorption coefficient, and internal and surface imperfections. In 92 



addition, light can be scattered multiple times in a regolith surface before being absorbed or reflected to 93 

a detector. This means that the contribution to a spectrum from a mineral in a mixture is not necessarily 94 

linearly correlated with its abundance in the sample (Hapke and Wells 1981). Therefore, a model is 95 

needed to relate the spectral abundance of a mineral with its abundance in a mineral mixture. 96 

Fortunately, radiative transfer theory can be used to tackle the problem of nonlinear spectral 97 

mixing and to extract quantitative mineral abundance in the VNIR (Clark and Roush 1984; Mustard and 98 

Pieters 1987; Lucey 2004; Poulet and Erard 2004; Wilcox et al. 2006; Cahill and Lucey 2007; Lawrence 99 

and Lucey 2007; Denevi et al. 2008; Cahill et al. 2009; Poulet et al. 2009; Li and Li 2011). Quantitative 100 

abundances are obtainable because radiative transfer theory explicitly models the interaction of light 101 

with particles, like atmospheric dust and aerosols, or soils and regoliths. Unmixing models based on 102 

radiative transfer theory use the fact that although reflectance is not linearly correlated with 103 

concentration in a mixed spectrum, the bulk single scattering albedo (SSA), or the probability that a 104 

photon will survive the interaction with a particle, is a linear combination of the SSA’s of the minerals 105 

in the mixture. The SSA can be obtained from VNIR reflectance data, provided that the real and 106 

imaginary indices of refraction (optical constants n and k), of the minerals in the mixture are known and 107 

an effective particle size of the target can be estimated. However, this method has seen limited use due 108 

to a distinct lack of optical constants for a wide variety of materials (Lucey 1998; Dalton et al. 2004; 109 

Cruikshank et al. 2005).  110 

Optical constants can be determined by a variety of methods provided that large (mm) sized 111 

crystals of the pure material can be grown. For naturally fine-grained minerals (like many sulfates) that 112 

cannot be cast into thin films, optical constants can only be determined through inverting the theory of 113 

radiative transfer and applying it to spectra of pure minerals obtained in the lab. Although several 114 

treatments of radiative transfer theory, developed in the 1980s by Hapke (Hapke 1981; Hapke 1993), 115 



and later in the 1990s/2000’s by Shkuratov et al. (Shkuratov et al. 1999), made this procedure more 116 

computationally straightforward, it remained, until recently, a lengthy and user intensive process. Recent 117 

increases in computing power have made the calculation of optical constants more robust and less time 118 

consuming. However, a general lack of detailed methodology in the literature for these more robust 119 

methods has hindered potential progress. Here we contribute to the library of optical constants in two 120 

ways: first, by providing robust n and k data for synthetic potassium, hydronium, and sodium jarosite; 121 

and second, by explicitly describing the calculation procedures, providing our Matlab computer code, 122 

and detailing how others may obtain optical constants of additional minerals.  123 

METHODS 124 

Sample Synthesis 125 

We synthesized hydronium jarosite following a modified method from Majzlan et al. (2004). 126 

Hydrothermal reactions were carried out in 23 ml Teflon lined Parr pressure vessels. Each liner was 127 

filled with a mix of 12 mL of 18 mΩ millipore DI water and 3 g of Fe2(SO4)3 • 5 H2O and magnetically 128 

stirred for 30 minutes. The vessels were sealed and placed in a Fisher Isotemp forced-air circulation 129 

oven at 142 °C for 48 hours. After the reaction, the hydronium jarosite was washed with DI water and 130 

dried in an oven at 40 °C for 12 hours. The products of 16 reactions were combined for this study.  131 

Potassium and sodium jarosite were synthesized following the redox-based hydrothermal method 132 

of Grohol et al. (2003). The 23 ml Teflon lined Parr pressure vessels were first loaded with 9.2 mL of 18 133 

mΩ millipore DI water, 0.405 mL of H2SO4, and 0.9 g of K2SO4 for potassium jarosite or 0.626 g of 134 

Na2SO4 in the case of sodium jarosite. The solutions were magnetically stirred for 30 minutes then 135 

placed in a glove bag with an O2 atmosphere. A 0.103 g piece of 2 mm diameter iron wire (99.9% 136 

Aldrich), was added to the solution. The pressure vessels were sealed with an oxygen atmosphere. Prior 137 

to being added to the Teflon vessels, the iron wire was cleaned of any surface oxide residue by heating it 138 



to 800 ºC under an H2 atmosphere for 1 hour. The pressure vessels were then placed in a Fisher Isotemp 139 

forced-air circulation oven at 201 °C for 4 days. After the reaction, the products were washed in DI 140 

water and dried in an oven at 40 °C for 12 hours. For potassium jarosite, the largest grain sizes were 141 

obtained when the Parr autoclaves were cooled at 0.1 ºC/min. For the sodium jarosites, large grain sizes 142 

required seeding from previous batches, and best results were obtained when the autoclaves were pulled 143 

directly from the oven after 4 days. For potassium and sodium jarosite, the products of 32 and 16 144 

reactions, respectively, were combined for this study.  145 

Analysis 146 

The synthesis products were dry-sieved into four size fractions: <45 μm, 45-63 μm, 63-90 μm, 147 

and 90-125 μm. Powder XRD patterns were collected using a Rigaku Ultima IV diffractometer (Cu Kα) 148 

in Bragg-Brentano reflection geometry with a D/teX Ultra high speed one-dimensional position sensitive 149 

detector. The patterns were collected from 10 to 159º at a rate of 0.5 º/min with a 0.01º step size for 150 

phase identification. Reflectance spectra of the three largest size fractions were collected using an 8° 151 

field of view foreoptic lens coupled via an optical fiber to an ASD Fieldspec3 Max UV-VIS-NIR 152 

spectrometer with a 512 element Si photodiode array detector for the 350-1000 nm interval and two TE 153 

cooled InGaAs photodiode detectors in the 1000-2500 nm interval, giving spectral resolution of 10 nm 154 

(at 1400 or 2100 nm). The incident light was provided by an Ocean Optics HL-2000-HP tungsten 155 

halogen light source directed down a 600 μm Ocean Optics optical fiber. Each size fraction of each 156 

sample was analyzed at 7 phase angles from 15 to 45˚ (spectra taken every 5˚). Incidence and emergence 157 

angles were obtained by using a custom-built goniometer (estimated error of < 2˚). All spectra were 158 

taken in the absence of ambient light and referenced to a calibrated Spectralon standard (Labsphere, 159 

Inc.), illuminated at the same angle as the sample. Since the intensity of the incident light varied with 160 

phase angle, the number of averaged scans was increased as phase angle increased to improve signal to 161 



noise. At incidence of 15˚, each spectrum is an average of 3000 scans. At 45˚, each spectrum is an 162 

average of 7500 scans. Due to the changing phase angle, the detector was optimized, and a new white 163 

reflectance baseline (500 scans dark current, 1000 scans white reflectance) was acquired before each 164 

measurement. Samples were mounted into an XRD sample holder painted flat black. Rather than 165 

packing the sample into the sample holder by compression, which can add preferential orientation and 166 

possibly introduce coherent effects, each sample was leveled by tapping the sides and underside of the 167 

sample plate. Repeat measurements from separate sample loadings of the same sample in the same 168 

configuration were compared, and errors are found to be ~0.01% reflectance. 169 

The smallest size fraction of each sample was pressed into a compact pellet ~ 2 mm thickness 170 

and 13 mm diameter. Mid infrared (MIR) and far infrared (FIR) (for potassium jarosite only) specular 171 

reflectance spectra were collected for each pellet. MIR measurements were made on a Thermo Fisher 172 

Nicolet 6700 FTIR spectrometer with a DTGS detector (with a KBr window) and a CsI beamsplitter. 173 

FIR measurements were made on the same spectrometer equipped with a Nicolet Solid Substrate 174 

beamsplitter and a DTGS detector with a polyethylene window. MIR and FIR reflectance spectra were 175 

referenced to a gold mirror and each spectrum is an average of 256 scans. 176 

The porosity of each sample was estimated as 1-(bulk density/particle density). Since the grain 177 

size ranges are small and approximately equivalent in size, it was assumed that particles would pack 178 

similarly for each grain size range. Therefore, a single value for porosity was used for each sample. 179 

However, due to the very small amount of sample available for analysis, the porosity estimates are 180 

considered quite rough, thus optical constants are reported with and without a porosity correction.  181 

Theory 182 

The equation of radiative transfer (a form of the Boltzmann transfer equation; Hapke 2012), 183 

which explicitly models the interaction of light with a medium, has no analytic closed form solution 184 



(Hapke 2012). Therefore, use of the equation of radiative transfer varies based on the exact set of 185 

approximations or formulations used to obtain results. There are two primary modern formulations that 186 

have been applied to the modeling of planetary bodies: The Hapke model (Hapke 1981; Hapke 1996; 187 

Hapke 2012) and the Shkuratov model (Shkuratov et al. 1999). Although the Shkuratov model has the 188 

advantage of computational simplicity, we have found it suffers from two drawbacks. First and 189 

foremost, we know that the imaginary index of refraction, k, is a fundamental property of a mineral and 190 

is, therefore, grain-size independent. However, the computational simplicity of the Shkuratov model 191 

means that the same k cannot be obtained for two different size fractions of the same sample. Thus 192 

although a useable, and often useful quantity is obtained, it is not technically correct to call it k. Second, 193 

the Shkuratov model ignores illumination and viewing geometry, making it impossible to take factors 194 

like surface roughness into account (Li and Li 2011).  195 

For these reasons, our model is based on the Hapke treatment of radiative transfer. The equations 196 

used in this work are slightly altered from those in the literature. Our equations follow directly from the 197 

theory as it is presented by Hapke. However, we make fewer assumptions about our reflectance 198 

experiment, which cause the geometry (placement of µ and µ0) in some of the expressions to differ from 199 

what is traditionally reported in the literature.   200 

 The Hapke treatment of radiative transfer requires three things: that the particle size be much 201 

greater than the wavelength of light; that the medium be continuous and closely packed such that the 202 

particles are touching; and that they are randomly oriented such that the multiply scattered light can be 203 

assumed isotropic (see Hapke 2012b for a full derivation and explanation). If these conditions are met, 204 

the bidirectional reflectance, or the ratio of the scattered radiance I to the source irradiance J, is  205 ݎሺ݅, ݁, ݃ሻ ൌ ܭ ௪ସగ µబµబାµ ሼሾ1  ሺ݃ሻሺ݃ሻሿܤ  ሻܭ/ሺµܪሻܭ/ሺµܪ െ 1ሽ,    (1) 206 



where μ and μ0 are the cosine of the emission angle, e, and the incidence angle, i, respectively, and g is 207 

the phase angle. In Equation 1, B(g) is the backscatter function, which can be set to zero if the phase 208 

angle is greater than 15˚ (Mustard and Pieters 1989). The phase angle dependence of singly scattered 209 

light is represented by p(g), the phase function, and can be modeled with a two term Legendre 210 

polynomial, such that 211 ሺ݃ሻ ൌ 1  ܾ cosሺ݃ሻ  ܿሺ1.5 cosଶሺ݃ሻ െ 0.5ሻ.              (2) 212 

Multiply scattered light is described by Ambartsumian-Chandrasekhar’s H-function (Ambartsumian 213 

1958; Chandrasekhar 1960), which can be approximated by  214 

ሺxሻܪ ൌ ቄ1 െ xݓ ቂݎ  ቀଵିଶబ୶ଶ ቁ ln ቀଵା୶୶ ቁቃቅିଵ.    (3) 215 

Here r0=(1-γ)/(1+γ) is the diffuse reflectance and ߛ ൌ √1 െ  is the albedo factor (Hapke 2002). The 216 ݓ

variable w is the single scattering albedo (SSA), and for a closely packed medium is   217 ݓ ൌ ܳ௦ ൌ ܵ  ሺ1 െ ܵሻ ሺଵିௌሻଵିௌ Θ.     (4) 218 

 In Equation 4, Θ is the internal transmission factor, such that  219 

Θ ൌ ାୣ୶୮ቀିඥሺାःሻۃۄቁଵା ୣ୶୮ቀିඥሺାःሻۃۄቁ,     (5) 220 

 is the effective grain size, or the path length traveled by light through a particle, ः [note to 221 ۄܦۃ

typesetting:  these are special brackets and symbols only available in equation tools and I do not know 222 

how you want them inserted but I will write them as <D> and *s* from here on out in case you have a 223 

special way to insert them that is easiest for you] is the internal scattering factor, and α=4πk/λ is the 224 

absorption coefficient. In Equation 4, Si and Se are the Fresnel reflectance coefficients integrated over all 225 

angles and can be approximated by 226 ܵ݅ ൎ 1.014 െ 4݊ሺ݊1ሻ2  and      (7) 227 



ܵ݁ ൎ ሺ݊െ1ሻ2݇2ሺ݊1ሻ2݇2  0.05.     (8) 228 

The constant, K, is the porosity factor (Hapke 2008). For equant particles,  229 

ܭ ൌ െ ln ൫ଵିଵ.ଶଽథሺమ య⁄ ሻ൯ଵ.ଶଽథሺమ య⁄ ሻ ,     (9) 230 

where φ =1 - P is the filling factor, and P is the porosity. Porosity effects can significantly change the 231 

reflectance properties of a medium. If porosity effects are not accounted for explicitly, the calculated 232 

value of k may be too small by as much as a factor of 2 (Hapke 2012). However, due to a large degree of 233 

uncertainty in the value of φ, which clearly accounts for the largest source of error in the calculation of 234 

k, optical constants are reported both with and without a porosity correction. 235 

Strictly speaking, what is measured in a bidirectional reflectance experiment is not the ratio of 236 

the radiance to the irradiance, I/J, as is the definition of Equation 1, but the radiance I. The following 237 

derivation is adapted from Piatek (2003). 238 

Let the area of the sample illuminated by the source be Ab. When the source is not normal to the 239 

sample, the illuminated area will be stretched by incidence angle μ0, such that I=J*Ab/μ0. Similarly, if 240 

the detector, which can be assumed to be sensitive only to light from the source (even if it ‘sees’ a 241 

greater area of the sample) is not normal to the sample, it will ‘see’ an area that is stretched by emission 242 

angle μ, such that I=J*r(i,e,g)* μ. Combining terms, you get 243 ܫሺ݅, ݁, ݃ሻ ൌ ܬ כ ఓబ כ ߤ כ ,ሺ݅ݎ ݁, ݃ሻ ൌ ܾܣܬ כ ఓఓబ כ ,ሺ݅ݎ ݁, ݃ሻ.   (10) 244 

The term JAb cannot be explicitly calculated. However, in a bidirectional reflectance experiment, each 245 

measurement is referenced to a standard. The same procedure would show that the radiance of the 246 

standard is  247 ܫሺ݅ᇱ, ݁ᇱ, ݃ᇱሻ ൌ ܾܣܬ כ ఓᇲఓబᇱ כ ,ሺ݅Ԣݎ ݁Ԣ, ݃Ԣሻ.     (11) 248 

The quantity actually recorded by the spectrometer is then  249 



ூሺ,,ሻூሺᇲ,ᇲ,ᇲሻ ൌ ഋഋబכሺ,,ሻഋᇲഋబᇲכሺᇱ,ᇱ,ᇱሻ.       (12) 250 

Here we have to make a choice of how to deal with the standard. A primary assumption in the literature 251 

(Mustard and Pieters 1987; Lucey 2004; Dalton and Pitman 2012) is that commercially available 252 

calibrated Spectralon standards are Lambertian scatterers. Although this may be true for hemispherical 253 

reflectance experiments (the calibration file for Spectralon is in hemispherical reflectance), it is not true 254 

for bidirectional reflectance (Figure 2; Piatek, 2003). Therefore, the standard is treated as an isotropic 255 

scatterer, i.e., setting p(g)=1.  Now, substituting in values for r, and r’, and still assuming that B(g)=0, 256 

we get 257 

ூሺ,,ሻூሺᇲ,ᇲ,ᇲሻ ൌ ഋഋబቂరೢഏ µబµబశµሺሺሻାுሺµబሻுሺµሻିଵሻቃഋᇲഋబᇲቈೢᇲరഏ µబᇲµబᇲశµᇲሺுሺµబᇱሻுሺµᇲሻିଵሻ     (13) 258 

                  ൌ ቂరೢഏ µµబశµሺሺሻାுሺµబሻுሺµሻିଵሻቃቈೢᇲరഏ µᇲµబᇲశµᇲሺுሺµబᇱሻுሺµᇲሻିଵሻ .    (14) 259 

Because the sample was calibrated at each phase angle, i=i’ and e=e’ for our experiments. However, this 260 

is not required should a single calibration be used for multiple measurements.  261 

The single scattering albedo for Spectralon can be quickly determined using the calibration data 262 

supplied by the manufacturer and a minimization code in Matlab, since the hemispherical reflectance is 263 

simply rh=1-γH(μ0*) (Hapke 2002; Piatek 2003).  Equation 14 is the relationship used in all of our 264 

programs. The above derivation assumes that ambient light does not contribute to light recorded by the 265 

detector. This is a valid assumption for our experiment since spectra are acquired in the absence of 266 

ambient light.  267 

Program Description 268 



The variables or unknown quantities in the above series of equations are the apparent grain size, 269 

<D>, the internal scattering parameter, *s*, the phase function coefficients, b and c, and, of course, the 270 

wavelength dependent real and imaginary indices of refraction, n and k. When dealing with a single 271 

phase angle of a single grain-size, the radiative transfer problem is under-determined. However, solving 272 

simultaneously for multiple size fractions and/or multiple phase angles results in an over-determined 273 

problem, for which all variables can be calculated. The code is split into three routines, which are run 274 

iteratively (Figure 3)—one that determines k from three mineral size fractions, one that determines n 275 

from k, and one that calculates appropriate phase function coefficients. The code is split in this way 276 

because a too highly over-determined problem can suffer from non-uniqueness of fit.  277 

Each VNIR spectrum was smoothed once using a moving average low pass filter and then run 278 

through a Matlab encoded program following the method of previous workers (Lucey 1998; Quinn 279 

2010; Quinn et al. 2010). This code first calculates the imaginary index of refraction, k, for each grain 280 

size individually, by assuming a constant real index of refraction, n, over the VNIR wavelength range, as 281 

well as fixed guesses for b, c, <D>, and *s* (initial guesses for b and c were taken from Mustard and 282 

Pieters (1989), <D> was assumed to be the smallest size in the distribution, and *s* was initially set to 283 

zero). The code then matches the radiance coefficient at each wavelength to a value in a look-up table 284 

and delivers the associated k. This routine is used to get a reasonable first guess for k.  285 

 The second step uses Matlab’s lsqcurvefit minimization routine with a multi-start protocol 286 

(where the code randomly generates multiple start points for all variables) to find a single k for three 287 

grain-sizes simultaneously while also solving for b, c, <D>, and *s* within user specified bounds. 288 

Lsqcurvefit is a least squares minimization routine appropriate for use on non-linear equations (Coleman 289 

and Li 1994).  The program finds the array of values, x, that minimizes the difference between the 290 

experimental data and the modeled data within user specified constraints. The multistart protocol is used 291 



to ensure that global rather than local minima are obtained. Bounds for b and c were modified from 292 

Mustard and Pieters (1989), <D> was allowed to vary from 1/3 the smallest value of the grain size 293 

range to the highest value in the grain size range, *s* was allowed to vary between 0.0 and 0.06 μm-1. 294 

Since k is, by definition, grain-size independent, this procedure provides better accuracy in solving for k 295 

than solving for each grain-size individually and then averaging them together. For this first pass, n, b, 296 

and c are considered scalars.  297 

 Once a multi grain-size k has been determined, it is used to determine a wavelength dependent n 298 

using a singly subtractive Kramers Kronig (SSKK) transformation (Lucarini et al. 2005). For a 299 

frequency v,  300 ݊ሺݒሻ ൌ ݊ଵ  ሺ௩మି௩భమሻଶగ ܲ  ௩ᇲሺ௩ᇲሻሺ௩ᇲమି௩మሻሺ௩ᇲమି௩భమሻ ᇱஶݒ݀ .   (15) 301 

Here, n1 is the real index of refraction at a known point, v1, and v’ is a dummy variable for integration. 302 

For n1, we use average literature values of n in the visible (sodium D line: 0.16970 cm-1 or 0.58929 μm). 303 

The P in front of the integral indicates that the Cauchy principle value of the integral must be taken. 304 

Where the integral is defined, the Cauchy principle value is simply the value of the integral. When the 305 

integral diverges (as is the case when either parenthetical expression in the denominator is zero), the 306 

Cauchy principle value defined as (Mauch 2004) 307 ܲ  ݂ሺݔሻ݀ݔ ൌ limఢ՜శ ቀ ݂ሺݔሻ݀ݔ௫బିఢ   ݂ሺݔሻ݀ݔ௫బିఢ ቁ .   (16) 308 

Since measured spectra are not continuous, but rather a collection of values at closely spaced intervals, 309 

the data are integrated by section using a Simpson’s rule approximation. The code first converts 310 

wavelength to frequency and re-interpolates to an equi-spaced array (5.913 cm-1 spacing). Each segment 311 

is assumed to have a constant k, and the bounds of integration are set so that the known k is at the 312 

midpoint of the range. The segments are subdivided 1000 times to produce a 0.0059 cm-1 mesh, and the 313 

Simpson’s rule approximation is applied. Around the singularities, the spacing is 0.003 cm-1. Integration 314 



done in this way avoids adding errors encountered from the singularities. An SSKK transformation 315 

ideally requires a much larger data set than is typically available. Therefore, we used MIR k values 316 

estimated from Lorentz-Lorenz dispersion analysis (Glotch and Rossman 2009) to extend the range for a 317 

more convergent solution. If UV behavior of the material is known, data can be extended in the short 318 

wavelength direction as well through linear extrapolation or curve fitting. To avoid end point problems 319 

that arise from using a finite data set, the spectra used for porosity corrected optical constants were 320 

linearly extended into the UV by 0.1 μm. 321 

Once a wavelength-dependent n is determined, the spectra for all phase angles are run through a 322 

phase function program to determine wavelength dependent b, and c. This code also uses Matlab’s 323 

lsqcurvefit program with a multistart protocol to simultaneously minimize the difference between the 324 

modeled fit and the data for all phase angles of all grain sizes. The code first creates a coarse data set 325 

(0.05 μm) spacing, and then finds a single b and c for all grain sizes and all phase angles. All phase 326 

angles of each grain size are restricted to have a single <D> and *s*, which are also fit during this 327 

process. The array k can be varied in this step using a scaling factor. Allowing k to vary in this way 328 

ensures that the division of the code into three parts does not overly constrain the solution for k while 329 

still maximizing the possibility of a realistic solution.    330 

Finally, we use n, b, and c as fixed arrays to minimize for a new k using the k minimization 331 

routine, followed by the SSKK routine, and then the phase function program, until values for k, n, b, and 332 

c do not vary substantially. In practice, this takes an additional two to three iterations.  333 

RESULTS 334 

The jarosites synthesized in this study are shown in Figure 4, and XRD analyses are shown in 335 

Figure 5. Hydronium jarosite grows as euhedral crystals with smooth faces but with deep cracks, which 336 

may propagate through the crystals. Sodium jarosite shows a great deal of pitting. Potassium jarosite 337 



seems to start as a finer-grained precipitate that then anneals to form larger grains, leading to surface 338 

roughness. Hydronium jarosite is the easiest of the three to synthesize as a coarse-grained sample 339 

whereas sodium jarosite is the most difficult and took many attempts. The VNIR spectra for hydronium, 340 

sodium, and potassium jarosite are shown in Figure 6a, 6b, and 6c, respectively. For each sample, the 341 

coarsest size fractions have the lowest overall albedos and the finest size fractions have the highest 342 

overall albedos. This trend is consistent with what is expected for VNIR spectra of powdered minerals 343 

of different size fractions. The MIR spectra of pressed pellets of the <45 μm size fraction of each 344 

jarosite are shown in Figure 7. 345 

Figures 8a, 8b, and 8c show the final values of wavelength dependent variables for hydronium, 346 

sodium, and potassium jarosite, respectively. Values are reported for calculation both with and without a 347 

porosity correction. The grain-size independent imaginary index of refraction, k, for each sample is 348 

plotted at the top of each figure; the grain-size independent real index of refraction, n, is plotted in the 349 

middle of each figure; and the value of p(g) vs. wavelength for g=30º is plotted at the bottom of each 350 

figure. The other minimized parameters (*s* and <D>), along with the porosity correction used for each 351 

sample, are listed in Table 1.  352 

Figure 9 shows the modeled spectra derived from using the grain-size independent values to 353 

produce grain-size specific VNIR spectra. The modeled results are overlaid on laboratory reflectance 354 

spectra.  355 

The MIR indices of refraction derived from the application of a Lorentz-Lorentz dispersion 356 

analysis are shown in Figure 10, and the dispersion parameters for each modeled spectrum are provided 357 

at http://aram.ess.sunysb.edu/tglotch/spectra.html, along with the MIR spectra and tabulated n and k 358 

values. The top pane of each plot shows the fit overlaid on the laboratory spectrum. Recall that since the 359 



MIR data were acquired from powder pressed into pellets, these values are likely off by a factor of ~2 360 

from those that would be modeled from polished single crystal specimens (Pecharroman et al. 1995). 361 

DISCUSSION 362 

 It must not be taken for granted that values obtained by this type of modeling are simply the 363 

number or numbers that create the closest numerical match between the modeled fit and the laboratory 364 

data. The goodness of fit between the model and the data is often, but not always, a sign of how well the 365 

theory represents the real system. In the case of optical constant determination, a perfect match between 366 

the model and the data can be obtained for a variety of solutions. This is because, depending on the 367 

configuration of the code, the problem is either under-determined (not enough constraints for the 368 

number of data points) or over-determined (more constraining parameters than the number of data 369 

points). The seeming complexity of the procedure used for this study seeks to balance these two cases in 370 

order to maximize the probability of reaching a real and unique solution. Here, we discuss and justify 371 

these choices. 372 

Lookup Table Approach 373 

The under-determined case occurs when k is obtained from a single grain-size spectrum at a 374 

single phase angle. Here, b, c, *s*, and <D>, along with the array, k, are variables. This creates a system 375 

of linear equations the length of the data set (N), but with N+4 unknowns. Historically, the most efficient 376 

method for dealing with this problem has been to make three simplifying assumptions: first, that the 377 

surface is made up of isotropic scatterers, thus removing the phase function coefficients b and c from 378 

consideration; second, *s* is fixed at near zero; and third, <D> is specified based on prior knowledge or 379 

reasonable assumptions. In this case, a table can be created of modeled values calculated from a range of 380 

k values over the span of wavelengths. Each data point is matched to a value in the table, thus providing 381 

a specific k for each wavelength. If we assume knowledge of b and c, a similar table can be produced for 382 



the non-isotropic case. This “lookup table” approach is, indeed, how the first approximation of k is 383 

derived.   384 

Determining k in this fashion does not provide any means for verifying the solution. Since, 385 

however, k is a fundamental property of the material, it is, by definition, grain-size independent. 386 

Therefore, previous authors have constrained k either by averaging the k values for samples of multiple 387 

grain-sizes or by adjusting  <D> so that k values for multiple grain sizes fall closer to the mean (Lucey 388 

1998; Roush et al. 2007). Minimization routines, like the one used in this study, allow for the 389 

simultaneous fitting of multiple data sets to determine a single array for k. Figure 11 compares the “best 390 

fit” (minimum deviation between model and data) k obtained from the multi-minimization routine with k 391 

values obtained from “lookup tables” for both the isotropic case and the case where b and c are held 392 

fixed. Both “lookup table” k values shown are averages of the three grain sizes.  Figure 11 shows that 393 

the k curve produced in the multi-minimization routine is not the same as the average of the grain-size 394 

dependent k curves for the other cases. So, while both methods attempt to create a unique solution 395 

through the use of multiple grain sizes, the multi-minimization routine is more likely to converge closer 396 

to the true unique solution because the grain-sizes constrain k during the fitting process. 397 

Shkuratov Approach 398 

Determining k using Shkuratov's formulation (Shkuratov et al. 1999) does not suffer from this 399 

non-uniqueness problem. Since the only free parameters for the Shkuratov method are the optical 400 

constants, n and k, the porosity q and the average path length of light before reflection, S (Shkuratov et 401 

al. 1999), there can be only one solution for k for a single S and q. Actually, Shkuratov et al. (1999) 402 

found that value of k is only mildly dependent upon q, so each k is primarily dependent on S. But the 403 

parameter S in the Shkuratov model is equivalent to <D> in the Hapke model. So, k in the Shkuratov 404 

model is necessarily grain size dependent. In other words, it is mathematically impossible for k to be the 405 



same for multiple grain sizes using that model unless it is assumed that the path-length of light in all 406 

grain sizes is the same. While it is understood by users of this model that k is, by definition, grain size 407 

independent, final k values are typically determined by averaging multiple k values or adjusting other 408 

parameters so that k falls close to the mean (Roush et al. 2007). However, because we have found that 409 

the multi-grain-size k is not the average of k values determined for the three grain sizes independently, 410 

we argue that the optical constant values determined through the Shkuratov model are useful 411 

approximations (Figure 12), but are not the true optical constants of the material.  412 

Phase Function 413 

Where the Shkuratov model simplifies calculations by removing dependence of k on viewing 414 

geometry, the Hapke method utilizes this dependence to further constrain the problem. Measuring each 415 

sample over a range of phase angles makes it possible to determine values for b and c. It is typical to 416 

determine a phase function at a single wavelength over a larger continuum of phase space. But since the 417 

goniometer and spectrometer used in this study produced full size data sets at each phase angle, and 418 

since Matlab's minimization routines can process large data sets, phase function coefficients were 419 

determined for the full wavelength range. Introducing an additional 3N variables, however, created a 420 

highly over-determined problem that suffered from non-uniqueness of fit. 421 

Our initial tests showed that the phase function does not vary systematically with grain size.  422 

Therefore, we made a simplifying assumption that the phase function is the same for all grain sizes. This 423 

leaves only *s* and <D> to account for spectral differences associated with grain size. This assumption 424 

also addresses the issue of over-determination. The phase function coefficients are optimized for 3 425 

grain-sizes at 7 phase angles for a total of 27 spectra to be modeled from a single phase function 426 

coefficient curve. The measured and modeled spectra for one of these fits are shown in Figure 13.     427 



The phase function chosen for this work was a two term Legendre polynomial. Although we also 428 

investigated the use of both two and three term double Heyney-Greenstein phase functions, the 429 

Legendre polynomial provided the only reasonable fits for this system. We recommend that other 430 

investigators determine which phase function is best for each individual system as the results may vary. 431 

Phase function data collection and the phase function minimization routine have the potential to 432 

consume large amounts of laboratory and computation time, respectively. Therefore, we tested several 433 

scaled-down procedures to determine whether equivalent results could be obtained. An ideal data set for 434 

determining the actual phase function for a mineral would contain as wide a range of phase angles as 435 

possible. What we determine in this step, however, is probably a combination of phase effect, surface 436 

roughness, and shadow hiding. These effects can be explicitly accounted for using a more complicated 437 

version of Hapke’s treatment (Hapke 2002). It has been shown, however, that these quantities, when 438 

solved for explicitly, do not correlate well with the physical property they are meant to describe 439 

(Shepard and Helfenstein 2007). Although a portion of the discrepancy experienced by Shepard and 440 

Helfenstein (2007) may have been due to the absence of a filling factor coefficient (Hapke, personal 441 

communication), it was the goal of this study to find the minimum number of phase angles that could 442 

reliably stabilize the results for k. A result was sought that accounted for phase, roughness, and shadow 443 

hiding, such that the value of k obtained in this study was as close to the imaginary index of refraction as 444 

possible, while still striving for the simplest experimental and theoretical configuration. We found that 445 

fewer phase angles could not produce equivalent results even when they were spaced over the same 446 

phase angle range (Figure 14b). We determined, however, that models utilizing a down-sampled data set 447 

(Δλ=0.05 μm) produced almost identical results to a full data set in a fraction of the computational time 448 

(Figure 14a). The derived b and c values are then re-interpolated to the fine wavelength spacing.     449 

Kramers-Kronig Transformation 450 



The wavelength range of the data set used in this study was chosen based on results for the 451 

determination of n from k using the singly subtractive Kramers-Kronig (SSKK) approach. A Kramers-452 

Kronig transformation ideally requires a data set that spans from 0 to infinity. Since this is not possible 453 

with laboratory data, we performed a series of experiments using VNIR data and varying amounts of 454 

MIR and FIR data (extending our data set to 25 μm, 50 μm, 75 μm, and 100 μm) to assess results from 455 

data sets with limited wavelength ranges. When k data for the VNIR and MIR are plotted together 456 

(Figure 15), the difference in magnitude of the two data sets is apparent (k in the MIR is orders of 457 

magnitude greater than k in the VNIR). Therefore, it is clear that including the MIR data in the 458 

integration will have a strong influence on the result. 459 

 Figure 15 shows that there is an offset between the VNIR data and the MIR data. We adjusted 460 

the MIR data to overlap with the VNIR data using a simple linear offset plus extrapolation. The result 461 

from that procedure is shown in Figure 16. The continuous slope of the data set supports this type of 462 

correction. The corrected and combined k values were then run through the SSKK conversion, using 463 

data sets ranging from 2.5 to 50 μm (Figure 17). The VNIR n values continue to change substantially for 464 

data sets that do not extend to at least 25 μm. 465 

 An interesting feature about the shape of n curve in the VNIR is that, when MIR data are 466 

included, the curve becomes fairly featureless throughout the NIR and slopes down towards the MIR. 467 

This trend is identical for all samples with the differences arising from the value of n at the anchor point 468 

in the VNIR. Work from other authors shows the same trend (Roush et al. 2007). This characteristic may 469 

serve as a way to approximate n in the VNIR without taking MIR data, if a predictable pattern can be 470 

determined. 471 

Errors 472 



 The largest source of error in the computation of optical constants using the method outlined in 473 

this paper is the value of the filling factor (the porosity correction), which can change the value of k by 474 

up to a factor of 2. Due to the uncertainty associated with the filling factor estimate, the optical constant 475 

values calculated both with and without a porosity correction are reported. The second largest source of 476 

error is associated with the phase angle. The errors were therefore determined by taking the same 477 

spectrum and running it through the program using phase angle g, g + 2º and g - 2º, thus determining the 478 

variation in optical constant values that would result from misrepresentation of the phase angle. Those 479 

results for potassium jarosite (with a porosity correction) are plotted in Figure 18.  480 

Final Remarks 481 

 In the absence of large single crystals, the optical constants determined by our method are the 482 

closest approximation to the real optical constants of synthetic potassium, hydronium, and sodium 483 

jarosite that can be achieved. This leads to two questions: are synthetic samples appropriate proxies for 484 

natural samples? And are the end member optical constants sufficient to model jarosites within the solid 485 

solution? The most common deviation between synthetic and natural jarosites is metal site occupancy 486 

(Swayze et al. 2008). The synthesis method used in this study was specifically designed to eliminate 487 

metal vacancies in the lattice (Nocera et al. 2004). In addition, after studying the cell dimensions of a 488 

variety of both hydrothermal and low temperature jarosites, Swayze et al. (2008) concluded that natural 489 

jarosites crystallize as mixtures of end members, not as intermediate compositions in the solid solution 490 

series. Thus, the optical constants determined in this study should be appropriate for modeling natural 491 

jarosites in all environments.   492 

IMPLICATIONS 493 

 The use of modeling techniques that determine quantitative abundances from particulate surfaces 494 

in the VNIR has been hindered by the lack of available n and k data for many of the relevant minerals. 495 



The optical constants presented in this paper allow for the use of such modeling techniques to derive 496 

abundances of the mineral jarosite, on Earth and Mars, from mixed spectra. These abundances can be 497 

used on Mars to constrain surface processes that led to jarosite formation, and they can be used on Earth 498 

to monitor AMD and jarosite wastes.  499 

 The detailed description of the technique used in this paper, along with the availability of our 500 

Matlab code, has the potential to greatly expand this library of data in the near future. The process 501 

outlined in this study, although based on complicated theory, requires three simple inputs: a sample in 502 

three grain sizes that can be measured at several phase angles, MIR measurements of the same sample 503 

out to 50 μm, and a desktop computer capable of running Matlab (less than two weeks computation time 504 

on a single core). All data and programs used in this study are available at 505 

http://aram.ess.sunysb.edu/tglotch/spectra.html. 506 

 507 

ACKNOWLEDGEMENTS 508 

We would like to thank Dr. Ted Roush for assistance with the computer modeling of the 509 

Kramers-Kronig calculation. 510 

The synthesis and XRD characterization work at Stony Brook was supported by the National 511 

Science Foundation (NSF) through Collaborative Research (CRC) in Chemistry grant CHE0714183. 512 

We would like to thank Dr. Bruce Hapke and Dr. Samuel Lawrence for helpful insights and 513 

suggestions provided in review of this manuscript. 514 

 515 

WORKS CITED 516 

Ambartsumian, V. (1958) The theory of radiative transfer in planetary atmospheres. In V. 517 

Ambartsumian Ed., Theoretical Astrophysics, p550-564. Pergamon, New York. 518 



Barron, V., Torrent, J., and Greenwood, J.P. (2006) Transformation of jarosite to hematite in simulated 519 

Martian brines. Earth and Planetary Science Letters, 251, 380-385. 520 

Bell, J.H., Bowen, B.B., and Martini, B.A. (2010) Imaging spectroscopy of jarosite cement in the 521 

Jurassic Navajo Sandstone. Remote Sensing of Environment, 114, 2259-2270. 522 

Bigham, J.M., Schwertmann, U., and Pfab, G. (1996a) Influence of pH on mineral speciation in a 523 

bioreactor simulating acid mine drainage. Applied Geochemistry, 11, 845-849. 524 

Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996b) Schwertmannite and 525 

the chemical modeling of iron in acid sulfate waters. Geochimica Et Cosmochimica Acta, 60, 526 

2111-2121. 527 

Bishop, J.L., and Murad, E. (2005) The visible and infrared spectral properties of jarosite and alunite. 528 

American Mineralogist, 90, 1100-1107. 529 

Bishop, J.L., Darby Dyar, M., Lane, M.D., and Banfield, J.F. (2004) Spectral identification of hydrated 530 

sulfates on Mars and comparison with acidic environments on Earth. International Journal of 531 

Astrobiology, 3, 275-285. 532 

Cahill, J.T., and Lucey, P.G. (2007) Radiative transfer modeling of lunar highlands spectral classes and 533 

relationship to lunar samples. Journal of Geophysical Research-Planets, 112, E10007. 534 

Cahill, J.T.S., Lucey, P.G., and Wieczorek, M.A. (2009) Compositional variations of the lunar crust: 535 

Results from radiative transfer modeling of central peak spectra. Journal of Geophysical 536 

Research-Planets, 114, E09001. 537 

Chandrasekhar, S. (1960) Radiative Transfer. Dover, New York. 538 

Clark, R.N. (1999) Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In 539 

A.N. Rencz, Ed., Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, 540 

p. 3-58. John Wiley and Sons, New York. 541 



Clark, R.N., and Roush, T.L. (1984) Reflectance spectrpscopy - Quantitative-analysis techniques for 542 

remote-sensing applications. Journal of Geophysical Research, 89, 6329-6340. 543 

Clark, R.N., Swayze, G.A., Livio, K.E., Kokaly, R.F, Sutley, S.J., Dalton, J.B., McDougal, R.R., and 544 

Gent, C.A. (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS 545 

Tetracorder and expert systems. Journal of Geophysical Research-Planets, 108, 5131. 546 

Cloutis, E.A., Craig, M.A., Kruzelecky, R.V., Jamroz, W.R., Scott, A., Hawthorne, F.C., and Mertzman, 547 

S.A. (2008) Spectral reflectance properties of minerals exposed to simulated Mars surface 548 

conditions. Icarus, 195, 140-168. 549 

Coleman, T., and Li, Y. (1994) On the convergence of interior-reflective Newton methods for nonlinear 550 

minimization subject to bounds. Mathematical Programming, 67, 189-224. 551 

Cruikshank, D.P., Owen, T.C., Ore, C.D., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., 552 

Poulet, F., Benedix, G.K., and Emery, J.P. (2005) A spectroscopic study of the surfaces of 553 

Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus, 175, 268-283. 554 

Dalton, J.B., III, and Pitman, K.M. (2012) Low temperature optical constants of some hydrated sulfates 555 

relevant to planetary surfaces. Journal of Geophysical Research-Planets, 117, E09001. 556 

Dalton, J.B., Bove, D.J., Mladinich, C.S., and Rockwell, B.W. (2004) Identification of spectrally similar 557 

materials using the USGS Tetracorder algorithm: the calcite-epidote- chlorite problem. Remote 558 

Sensing of Environment, 89, 455-466. 559 

Denevi, B.W., Lucey, P.G., and Sherman, S.B. (2008) Radiative transfer modeling of near-infrared 560 

spectra of lunar mare soils: Theory and measurement. Journal of Geophysical Research-Planets, 561 

113, E02003. 562 



Deyell, C.L., and Dipple, G.M. (2005) Equilibrium mineral-fluid calculations and their application to the 563 

solid solution between alunite and natroalunite in the El Indio-Pascua belt of Chile and 564 

Argentina. Chemical Geology, 215, 219-234. 565 

Drouet, C., and Navrotsky, A. (2003) Synthesis, characterization, and thermochemistry of K-Na-H3O 566 

jarosites. Geochimica Et Cosmochimica Acta, 67, 2063-2076. 567 

Farrand, W.H., Glotch, T.D., Rice, J.W., Hurowitz, J.A., and Swayze, G.A. (2009) Discovery of jarosite 568 

within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. 569 

Icarus, 204, 478-488. 570 

Frost, R.L., Wills, R.A., Martens, W., and Weier, M. (2005) NIR spectroscopy of jarosites. 571 

Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 62, 869-874. 572 

Glotch, T.D., and Rossman, G.R. (2009) Mid-infrared reflectance spectra and optical constants of six 573 

iron oxide/oxyhydroxide phases. Icarus, 204, 663-671. 574 

Grohol, D., Nocera, D.G., and Papoutsakis, D. (2003) Magnetism of pure iron jarosites. Physical Review 575 

B, 67, 064401. 576 

Hapke, B. (1981) Bidirectional reflectance spectroscopy 1. Theory. Journal of Geophysical Research, 577 

86, 3039-3054. 578 

Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy. Topics in Remote Sensing 3, 455 579 

p. Cambridge University Press, New York. 580 

Hapke, B. (1996) A model of radiative and conductive energy transfer in planetary regoliths. Journal of 581 

Geophysical Research-Planets, 101, 16817-16831. 582 

Hapke, B. (2002) Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect 583 

and anisotropic scattering. Icarus, 157, 523-534. 584 



Hapke, B. (2012) Theory of reflectance and emittance spectroscopy, 2nd edition, 513 p. Cambridge 585 

University Press, New York. 586 

Hapke, B., and Wells, E. (1981) Bidirectional reflectance spectroscopy 2. Experiments and observations. 587 

Journal of Geophysical Research, 86, 3055-3060. 588 

Jerz, J.K., and Rimstidt, J.D. (2003) Efflorescent iron sulfate minerals: Paragenesis, relative stability, 589 

and environmental impact. American Mineralogist, 88, 1919-1932. 590 

Klingelhofer, G., Morris, R.V., Bernhardt, B., Schroder, C., Rodionov, D.S., de Souza, P.A., Yen, A., 591 

Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gutlich, P., Ming, 592 

D.W., Renz, F., Wdowiak, T., Squyres, S.W., and Arvidson, R.E. (2004) Jarosite and hematite at 593 

Meridiani Planum from Opportunity's Mossbauer spectrometer. Science, 306, 1740-1745. 594 

Kula, J., and Baldwin, S.L. (2011) Jarosite, argon diffusion, and dating aqueous mineralization on Earth 595 

and Mars. Earth and Planetary Science Letters, 310, 314-318. 596 

Lawrence, S.J., and Lucey, P.G. (2007) Radiative transfer mixing models of meteoritic assemblages. 597 

Journal of Geophysical Research-Planets, 112, E07005. 598 

Li, S., and Li, L. (2011) Radiative transfer modeling for quantifying lunar surface minerals, particle size, 599 

and submicroscopic metallic Fe. Journal of Geophysical Research-Planets, 116, E09001. 600 

Lucarini, V., Saarinen, J.J., Peiponen, K.-E., and Vartiainen, E.M. (2005) Kramers-Kronig Relations in 601 

Optical Materials Research. Springer Series in Optical Sciences. Springer, New York, 162 pp. 602 

Lucey, P.G. (1998) Model near-infrared optical constants of olivine and pyroxene as a function of iron 603 

content. Journal of Geophysical Research-Planets, 103, 1703-1713. 604 

Lucey, P.G. (2004) Mineral maps of the Moon. Geophysical Research Letters, 31, L08701. 605 

Lueth, V.W., Rye, R.O., and Peters, L. (2005) "Sour gas" hydrothermal jarosite: ancient to modem acid-606 

sulfate mineralization in the southern Rio Grande Rift. Chemical Geology, 215, 339-360. 607 



Madden, M.E.E., Bodnar, R.J., and Rimstidt, J.D. (2004) Jarosite as an indicator of water-limited 608 

chemical weathering on Mars. Nature, 431, 821-823. 609 

Madden, M.E.E., Guess, J.R., Madden, A.S., and Rimstidt, J.D. (2008) Measuring jarosite dissolution 610 

rates to determine jarosite lifetimes on Earth and Mars. Geochimica Et Cosmochimica Acta, 72, 611 

A243-A243. 612 

Madden, M.E.E., Madden, A.S., and Rimstidt, J.D. (2009) How long was Meridiani Planum wet? 613 

Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology, 37, 614 

635-638. 615 

Madden, M.E.E., Madden, A.S., Rimstidt, J.D., Zahrai, S., Kendall, M.R., and Miller, M.A. (2012) 616 

Jarosite dissolution rates and nanoscale mineralogy. Geochimica Et Cosmochimica Acta, 91, 617 

306-321. 618 

Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.F., Navrotsky, A., Burns, P.C., Crawford, 619 

M.K., and Amos, T.G. (2004) Thermodynamic properties, low-temperature heat-capacity 620 

anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. 621 

Physics and Chemistry of Minerals, 31, 518-531. 622 

Mauch, S. (2004) Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods 623 

for Scientists and Engineers. http://www.its.caltech.edu/˜sean 624 

Mustard, J.F., and Pieters, C.M. (1987) Quantitative abundance estimates from bidirectional reflectance 625 

measurements. Journal of Geophysical Research-Solid Earth and Planets, 92, E617-E626. 626 

Mustard, J.F., and Pieters, C.M. (1989) Photometric phase function of common geological minerals and 627 

applications to quantitative-analysis of mineral mixture reflectance spectra. Journal of 628 

Geophysical Research-Solid Earth and Planets, 94, 13619-13634. 629 

Navrotsky, A., Forray, F.L., and Drouet, C. (2005) Jarosite stability on Mars. Icarus, 176, 250-253. 630 



Nocera, D.G., Bartlett, B.M., Grohol, D., Papoutsakis, D., and Shores, M.P. (2004) Spin frustration in 631 

2D kagome lattices: A problem for inorganic synthetic chemistry. Chemistry-a European 632 

Journal, 10, 3851-3859. 633 

Nomura, K., Takeda, M., Iiyama, T., and Sakai, H. (2005) Mossbauer studies of Jarosite, Mikasaite and 634 

Yavapaiite, and implication to their Martian counterparts. Hyperfine Interactions, 166, 657-664. 635 

Norlund, K.L.I., Baron, C., and Warren, L.A. (2010) Jarosite formation by an AMD sulphide-oxidizing 636 

environmental enrichment: Implications for biomarkers on Mars. Chemical Geology, 275, 235-637 

242. 638 

Papike, J.J., Karner, J.M., and Shearer, C.K. (2006) Comparative planetary mineralogy: Implications of 639 

martian and terrestrial jarosite. A crystal chemical perspective. Geochimica Et Cosmochimica 640 

Acta, 70, 1309-1321. 641 

Papike, J.J., Burger, P.V., Karner, J.M., Shearer, C.K., and Lueth, V.W. (2007) Terrestrial analogs of 642 

martian jarosites: Major, minor element systematics and Na-K zoning in selected samples. 643 

American Mineralogist, 92, 444-447. 644 

Pappu, A., Saxena, M., and Asolekar, S.R. (2006) Jarosite characteristics and its utilisation potentials. 645 

Science of the Total Environment, 359, 232-243. 646 

Pecharroman, C., Gonzalezcarreno, T., and Iglesias, J.E. (1995) The infrared dielectric-properties of 647 

maghemite, gamma-Fe203, from reflectance measurement on presses powders. Physics and 648 

Chemistry of Minerals, 22, 21-29. 649 

Piatek, J.L. (2003) Size-dependent scattering properties of planetary regolith analogs, 186 p. Ph.D. 650 

thesis, University of Pittsburgh, Pittsburgh. 651 

Poulet, F., and Erard, S. (2004) Nonlinear spectral mixing: Quantitative analysis of laboratory mineral 652 

mixtures. Journal of Geophysical Research-Planets, 109, E02009. 653 



Poulet, F., Bibring, J.P., Langevin, Y., Mustard, J.F., Mangold, N., Vincendon, M., Gondet, B., Pinet, P., 654 

Bardintzeff, J.M., and Platevoet, B. (2009) Quantitative compositional analysis of martian mafic 655 

regions using the MEx/OMEGA reflectance data. Icarus, 201, 69-83. 656 

Pritchett, B.N., Madden, M.E.E., and Madden, A.S. (2012) Jarosite dissolution rates and maximum 657 

lifetimes in high salinity brines: Implications for Earth and Mars. Earth and Planetary Science 658 

Letters, 357, 327-336. 659 

Quinn, D. (2010) The Hapke Model in Excel. http://davenquinn.com/hapke/ 660 

Quinn, D.P., Gillis-Davis, J.J., and Lucey, P.G. (2010) Using Microsoft Excel for Hapke modeling: A 661 

technique to simplify calculations of optical constants and reflectance spectra, Abstracts of 662 

Papers Submitted to the Lunar and Planetary Science Conference XXXXI, The Woodlands, TX. 663 

Roach, L.H., Mustard, J.F., Swayze, G., Milliken, R.E., Bishop, J.L., Murchie, S.L., and Lichtenberg, K. 664 

(2010) Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus, 206, 253-268. 665 

Roush, T.L., Esposito, F., Rossman, G.R., and Colangeli, L. (2007) Estimated optical constants of 666 

gypsum in the regions of weak absorptions: Application of scattering theories and comparisons 667 

to independent measurements. Journal of Geophysical Research-Planets, 112, E10003. 668 

Rye, R.O., and Stoffregen, R.E. (1995) Jarosite-water oxygen and hydrogen isotope fractionations: 669 

Preliminary experimental data. Economic Geology and the Bulletin of the Society of Economic 670 

Geologists, 90, 2336-2342. 671 

Sefton-Nash, E., Catling, D.C., Wood, S.E., Grindrod, P.M., and Teanby, N.A. (2012) Topographic, 672 

spectral and thermal inertia analysis of interior layered deposits in Iani Chaos, Mars. Icarus, 221, 673 

20-42. 674 

Shepard, M.K., and Helfenstein, P. (2007) A test of the Hapke photometric model. Journal of 675 

Geophysical Research-Planets, 112, E03001. 676 



Shkuratov, Y., Starukhina, L., Hoffmann, H., and Arnold, G. (1999) A model of spectral albedo of 677 

particulate surfaces: Implications for optical properties of the moon. Icarus, 137, 235-246. 678 

Sowe, M., Wendt, L., McGuire, P.C., and Neukum, G. (2012) Hydrated minerals in the deposits of 679 

Aureum Chaos. Icarus, 218, 406-419. 680 

Swayze, G.A., Desborough, K.S., Smith, K.S., Lowers, H.A., Hammarstrom, J.M., Diehl, S.F., Leinz, 681 

R.W., and Driscoll, R.L. (2008) Understanding Jarosite -- from mine waste to Mars. In P.L. 682 

Verplanck, Ed., Understanding Contaminants, p.8-13. U.S. Geological Survey Circular, 1328.  683 

Swayze, G.A., Smith, K.S., Clark, R.N., Sutley, S.J., Pearson, R.M., Vance, J.S., Hageman, P.L., Briggs, 684 

P.H., Meier, A.L., Singleton, M.J., and Roth, S. (2000) Using imaging spectroscopy to map 685 

acidic mine waste. Environmental Science & Technology, 34, 47-54. 686 

Wendt, L., Gross, C., Kneissl, T., Sowe, M., Combe, J.-P., LeDeit, L., McGuire, P.C., and Neukum, G. 687 

(2011) Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM 688 

observations. Icarus, 213, 86-103. 689 

Wilcox, B.B., Lucey, P.G., and Hawke, B.R. (2006) Radiative transfer modeling of compositions of 690 

lunar pyroclastic deposits. Journal of Geophysical Research-Planets, 111, E09001. 691 

Zahrai, S.K., Madden, M.E.E., Madden, A.S., and Rimstidt, J.D. (2013) Na-jarosite dissolution rates: 692 

The effect of mineral composition on jarosite lifetimes. Icarus, 223, 438-443. 693 

 694 

FIGURE CAPTIONS 695 

Figure 1. VNIR spectra of several common minerals (USGS Speclab) plotted with the jarosites 696 

used in this study. Abbreviations are as follows: kaolinite CM7 (kaol), nontronite NG-1.a (nont), 697 

coquimbite GDS22 (coq), copiapite GDS21 (cop), hydronium jarosite 63-90 μm (H-jar), sodium jarosite  698 



63-90 μm (N-jar), potassium jarosite 63-90 μm (K-jar), goethite GDS134 (goet), hematite GDS27 699 

(hem), magnetite HS195.3B (mag). Vertical lines mark the diagnostic jarosite spectral features. 700 

Figure 2.  Phase curve for Spectralon reflectance standard, taken on a short arm goniometer with 701 

an incidence angle of 60º. Reference curves for a Lambertian and an isotropic scatterer show that 702 

Spectralon is an isotropic scatterer when used in a bidirectional reflectance experimental setup. Figure 703 

reproduced from Piatek (2003). Data are shown as absolute reflectance. 704 

Figure 3. Flow chart of calculations performed by this suite of programs. The sequence starts 705 

after k has initially been determined by the lookup table program for individual grain sizes. 706 

Figure 4. SEM images of the samples used in this study. EDS insets show the chemical 707 

composition of the point indicated. (a) is hydronium jarosite, (b) is sodium jarosite, and (c) is potassium 708 

jarosite. 709 

Figure 5. XRD patterns for hydronium (top), sodium (middle), and potassium (bottom) jarosite. 710 

Literature values are represented by ticks underneath each plot. All samples are phase pure.  711 

Figure 6. VNIR spectra of hydronium (a), sodium (b), and potassium (c) jarosite. Spectra for 45-712 

63 μm, 63-90 μm, and 90-125 μm size fractions are shown for each sample.  713 

Figure 7. MIR data for hydronium jarosite (a) and sodium jarosite (b). MIR and FIR data for 714 

potassium jarosite (c).  715 

Figure 8. Wavelength dependent variables for hydronium (a), sodium (b), and potassium (c) 716 

jarosite, respectively. The grain-size independent imaginary index of refraction, k, for each sample is 717 

plotted at the top , the grain-size independent real index of refraction, n, is plotted in the middle, and the 718 

value of p(g) vs. wavelength for g=30º is plotted at the bottom. Variables determined using a porosity 719 

correction are shown with a dashed line. 720 



Figure 9. Modeled fits produced from multi gain-size k values for all three grain sizes of 721 

hydronium (a) and (d), sodium (b) and (e), and potassium (c) and (f) jarosite. Porosity corrections were 722 

used for (d), (e), and (f). For each sample, the 45-63 μm spectrum is on top, the 63-90 μm spectrum is in 723 

the middle, and 90-125 μm spectrum is on the bottom. 724 

Figure 10. MIR optical constants for hydronium (a), sodium (b), and potassium (c) jarosite. The 725 

modeled fit for each sample is shown in the top pain with the laboratory spectrum. 726 

Figure 11. Imaginary index of refraction k, calculated for hydronium jarosite under three 727 

conditions: 1) simultaneous minimization to get a single k for three grain sizes (no porosity correction), 728 

while solving for b, c, *s*, and <D> (blue); 2) assuming an isotropic phase function, then using a 729 

lookup table to find k for each grain size, assuming knowledge of *s* and <D>, and then averaging the 730 

results (green); 3) the same as the isotropic case except assuming forward scattering phase function 731 

coefficients (Mustard and Pieters 1989) (red). The three cases do not produce equivalent results for this 732 

sample. 733 

Figure 12. Imaginary index of refraction k determined using the Shkuratov method vs. the 734 

method described in this paper for hydronium (a), sodium (b), and potassium (c) jarosite (no porosity 735 

correction). The grain size values that produced the best fits using the Shkuratov method are listed in the 736 

legends. The final grain sizes determined using this paper’s method are listed in Table 1.   737 

Figure 13. Modeled fits and laboratory spectra for hydronium jarosite’s phase function 738 

minimization (no porosity correction). Spectra are offset by 0.1% for clarity. Grain size ranges are 739 

grouped, such that 90-125 μm spectra are shown in group A, 63-90 μm in group B and 45-63 μm in 740 

group C. 741 

Figure 14. (a) P(g) vs. wavelength (calculated for g=30º) for down-sampled data sets (red) 742 

plotted with P(g) vs. wavelength (calculated for g=30º) full data set. Using the full data set introduces 743 



noise over the primary features. (b) P(g) vs. wavelength (calculated for g=30º) determined using spectra 744 

measured at g=15º and g=30º (blue); using spectra measured at g=15º, g=30º, and g=45º data (green); 745 

and using spectra measured at g=15º, g=20º, g=25º, g=30º, g=35º, g=40º, and g=45º (cyan). All grain 746 

sizes were used for all angles. The results are not equivalent. Spectral data are from hydronium jarosite. 747 

Figure 15. MIR and VNIR k data plotted for potassium jarosite.  748 

Figure 16. Adjusted and extrapolated k data for potassium jarosite. Note the continuity of the 749 

curve. 750 

Figure 17. The real index of refraction n for hydronium jarosite calculated from k values that 751 

extend out to 2.5 μm, 3.0 μm, 5.0 μm, 10 μm, 25 μm, and 50 μm (no porosity correction). VNIR data 752 

only become equivalent when MIR data out to at least 25 μm are used. These calculations, performed in 753 

frequency space, may be less sensitive to MIR data than those performed in wavelength space by the 754 

same method. 755 

Figure 18. Errors associates with the wavelength dependent variables: (a) the grain-size 756 

independent imaginary index of refraction, k; (b) the grain-size independent real index of refraction, n; 757 

and (c) the value of p(g) vs. wavelength for g=30º. 758 

 759 

TABLES 760 

Table 1. Values of the near-surface scattering factor, *s* (μm-1), and the apparent grain size, <D> (μm) 761 

delivered in the final minimization for calculations both with and without a porosity correction. The 762 

value of the porosity correction is also listed.  763 

 No porosity correction φ =0.51 φ =0.51 φ =0.46 
 H-Jar Na-Jar K-Jar H-Jar Na-Jar K-Jar 

*s* 45-63 10-17 0.04 10-14 0.01 0.05 0.06 
*s* 63-90 0.04 0.06 0.08 0.01 0.05 0.04 



*s* 90-125 0.04 0.07 0.05 10-14 0.03 0.03 

<D> 45-63 20.5 59.8 51.0 63* 42.3 57.6 
<D> 63-90 26.7 89.3 72.9 79.5 58.9 76.9 
<D> 90-125 35.6 125.9 112.8 103.3 77.5 110.2 
*upper limit 764 

 765 
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