Quantification of Water in Majoritic Garnet

Sylvia-Monique Thomas¹, Kathryn Wilson¹, Monika Koch-Müller², Erik H. Hauri³, Catherine McCammon⁴, Steven D. Jacobsen⁵, John Lazarz⁵, Dieter Rhede², Minghua Ren¹, Neal Blair⁵, Stephan Lenz²

¹Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
(śylvia-monique.thomas@unlv.edu)
²Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), 14473 Potsdam, Germany
³Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA
⁴Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
⁵Department of Earth and Planetary Sciences, Evanston, IL 60208, USA

Abstract

Majoritic garnet, characterized by an excess of silicon (>3 Si per formula unit), is considered one of the major phases of the Earth’s transition zone from 410-660 km depth. Quantifying the H₂O content of nominally anhydrous mantle minerals is necessary to evaluate their water storage capacity from experiments and modeling the Earth’s deep water cycle. We present mineral-specific infrared absorption coefficients for the purpose of quantifying the amount of water incorporated into majorite as hydroxyl point defects. A suite of majoritic garnet samples with varying proportions of Si, Fe, Al, Cr and H₂O was synthesized at conditions of 18-19 GPa and 1500-1800°C. Single-crystals were characterized using X-ray diffraction, electron microprobe analysis, secondary Ion Mass spectrometry (SIMS), IR, Raman and Mössbauer spectroscopy. We utilize SIMS and Raman spectroscopy in combination with IR spectroscopy to provide IR absorption coefficients for water in majoritic garnets with the general mineral formula (Mg,Fe)₃(Si,Mg,Fe,Al,Cr)₂[SiO₄]₃. The IR absorption coefficient for majoritic garnet in the OH stretching region is frequency-dependent and ranges from 10470 ± 3100 Lmol⁻¹cm⁻² to 23400 ± 2300 Lmol⁻¹cm⁻².
Keywords: IR spectroscopy, water in nominally anhydrous minerals, transition zone, integral molar absorption coefficient, SIMS, high pressure, Raman spectroscopy

Introduction

Majorite was first described by Smith and Mason (1970), who found a garnet with silicon excess (more than 3 silicon atoms per formula unit) in the Coorara meteorite. They further defined majorite as garnet solid solution with partial occupancy of the octahedral site by excess Si and Mg. The first terrestrial occurrence was reported by Moore and Gurney in 1985, who discovered majorite inclusions in kimberlitic diamonds. Garnet, along with olivine and its high-pressure polymorphs wadsleyite and ringwoodite, are major components of the Earth’s upper mantle and transition zone (Akaogi and Akimoto 1977; Anderson and Bass 1986; Irifune 1987).

With increasing depth the majoritic component of garnets increases towards the solid solution end member majorite (Maj), Mg$_3$(Mg$_3$Si$_1$)Si$_3$O$_{12}$ = Mg$_4$Si$_4$O$_{12}$, from small amounts in the upper mantle to significant amounts in the transition zone (e.g., Ringwood 1967; Ringwood and Major 1971; Kanzaki 1987; Irifune 1987; Gasparik 2002). Hence, majorite-pyrope (Mg$_4$Si$_4$O$_{12}$-Mg$_3$Al$_2$Si$_3$O$_{12}$) solid solutions are of high relevance for the Earth’s transition zone, which can contain \geq 40 % majorite depending on the petrological model considered (e.g., Ita and Stixrude 1992).

The incorporation of silicon into the octahedral site is facilitated by the above-mentioned majoritic component, which is a coupled substitution of tetravalent silicon and one divalent cation (M) in equal amounts replacing two trivalent cations (2 M$^{3+}$ = Si$^{4+}$ + M$^{2+}$) (Ringwood 1967; Ringwood and Major 1971). This coupled substitution leads to the general crystal chemical formula (Mg,Fe,Ca)$_3$(Si,Mg,Fe,Al,Cr)$_2$[SiO$_4$]$_3$ and to a symmetry reduction; whereas Al-bearing majoritic garnet is cubic, endmember majorite crystallizes in tetragonal symmetry.
due to ordering of Mg and Si on two distinct octahedral sites (Ringwood and Major 1967; Akaogi and Akamoto 1977; Hatch and Ghose 1989; Angel et al. 1989).

Majorite crystal structure, stability, compressibilities, elasticity, iron oxidation state and vibrational spectroscopy have been extensively studied in the past (e.g., Akaogi and Akimoto 1977; Hazen et al. 1994; Heinemann et al. 1997; Murakami et al. 2008; McCammon and Ross 2003; Hofmeister et al. 2004). In this work we focus on the incorporation of water into majoritic garnet. The presence of water, incorporated as OH through charge-coupled chemical substitutions into high-pressure silicates of the Earth's deep interior, may play a significant role in geophysical processes due to its influence on phase relations and melting behavior, conductivity, elasticity, viscosity and rheology (Smyth and Jacobsen 2006; Keppler and Smyth 2006; Hirschmann 2006). Theoretical studies and high pressure experiments indicate a significant water storage capacity of nominally anhydrous minerals composing the Earth's upper mantle, transition zone and lower mantle (e.g., Keppler and Smyth 2006). Recently, the first direct evidence for H₂O in the transition zone has been reported by Pearson et al. (2014), who found ~ 1.4 wt% H₂O dissolved in a ringwoodite diamond inclusion. Evidence for regional-scale hydration of the transition zone beneath North America was recently inferred from detection of dehydration melting below 600 km depth (Schmandt et al. 2014).

While for natural garnets of mantle origin a maximum water content of several hundreds of wt ppm H₂O has been reported (e.g., Beran et al. 1993; Beran and Libowitzky 2006), recent experiments found that synthetic majorite can store up to ~1300 wt ppm H₂O in its structure (Bolfan-Casanova et al. 2000; Katayama et al. 2003). Majorite is nominally anhydrous, i.e., water is incorporated as hydroxyl point groups through defect mechanisms. Such defect mechanisms can include the hydrogarnet substitution associated with tetrahedral sites, where SiO₄ is replaced by OH₄, but also vacancies in octahedral and dodecahedral sites or the substitution of silicon by trivalent aluminum and a proton in the tetrahedral sites.

To determine absolute water concentrations and to take advantage of the high sensitivity of IR spectroscopy for the detection of trace OH, mineral-specific absorption coefficients are essential. To date no mineral specific IR calibration constant has been reported for majorite. Several calibration attempts have been made for a wide variety of natural garnets with up to several hundreds of wt ppm H₂O using Nuclear Reaction Analyses, vacuum extraction and H₂ manometry (Rossman et al. 1988; Rossman 1990; Bell et al. 1995; Maldener et al. 2003). Bell et al. (1995) report an integral molar absorption coefficient of 6700 ± 670 Lmol⁻¹cm⁻² for a garnet megacryst of the Monastery kimberlite. Maldener et al. (2003) suggest the use of an average value of the 3470 Lmol⁻¹cm⁻² for pyrope-rich garnets, and 3630 ±1580 Lmol⁻¹cm⁻² for other compositions, based on the study of nine samples with different chemical compositions.

In this study we calculate absorption coefficients for a set of crystals in the majorite-pyrope solid-solution series using IR, Raman and SIMS measurements. We test the wavenumber-dependence of these absorption coefficients, compare them with literature data, and discuss OH incorporation mechanisms.

Methods

Syntheses and samples

Single-crystals of majoritic garnet with varying Si-, Fe-, Mg-, Al, Cr- and OH- contents were synthesized with and without water at 18 GPa and 1500°C or 1800 °C in the rotating multi-anvil press (for press specifications see Schmidt and Ulmer 2004; Deon et al. 2010) at GeoForschungsZentrum Potsdam (MA380 – 385, 337). The temperature was controlled using a W5%Re/W26%Re thermocouple. Note that we did not remove traces of adsorbed water from our dry run starting materials (MA380, MA382) as they might act as flux for the
growth of larger crystals. Pure oxide mixtures were loaded in Pt capsules for multi-anvil runs
that were sealed by cold welding. Temperature cycling (final temperature ± 20 °C) was used
during the first 30 minutes of the runs to enhance crystal growth. Samples Max3 and Max4
were synthesized at 19 GPa and 1800°C in a 1000-ton multi-anvil press from natural
orthopyroxene at the Bayerisches Geoinstitut. Starting compositions and experimental
conditions are listed in Table 1. After quenching, the Pt capsules were filed open for sample
recovery. Isotropic single-crystals (50-500 µm in size) were used for analysis.

Microprobe analysis

For chemical analyses, individual grains of the majoritic garnets were polished, mounted in
Indium and coated with carbon. Compositions were determined by wavelength-dispersive X-
ray analysis (WDS) techniques using a JEOL JXA-8500F (HYPERPROBE) electron
microprobe at the Deutsches GeoForschungsZentrum Potsdam (GFZ). The analytical
conditions included an acceleration voltage of 15 kV, a beam current of 10 nA, and a
focussed beam. The following natural and synthetic reference standards were used
(respective element and peak counting time listed in brackets): wollastonite (for Ca; 20 s),
almandine (for Fe; 30 s, and Al 30 s), pyrope (for Si; 30 s), MgO (for Mg; 20 s) and Cr₂O₃ (for
Cr; 20 s). The background counting times were always set to half of the respective peak
counting times. The CITZAF routine in the JEOL software, which is based on the F(rZ)
method (Armstrong, 1995), was used for data processing.

X-ray diffraction

High-precision lattice parameters of majoritic garnets in this study were determined using
single-crystal X-ray diffraction and the method of eight-position centering (King and Finger
1979; Angel and Finger 2011) on the Huber four-circle diffractometer at Northwestern
University. For each sample, 30 reflections from 9 different (hkl) classes and with 2θ angles
between 14 and 30 degrees. Unconstrained and symmetry constrained lattice parameters for
each sample are provided in Table 2.
Mössbauer spectroscopy

Individual grains were mounted in clusters with approximately 300 µm overall diameter on mylar sheets using clear nail varnish. The grain mounts were centered inside holes ranging from 400 to 1000 µm diameter drilled in pieces of 25 µm thick Ta foil (absorbs 99% of 14.4 keV gamma rays). The dimensionless Mössbauer thickness estimated for the grain assemblages based on chemical compositions and physical thickness ranges from 1 to 4 and Mössbauer spectra were collected between 1 and 12 days.

Mössbauer spectra were recorded at room temperature (293 K) in transmission mode on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co high specific activity source in a 12 µm thick Rh matrix. The velocity scale was calibrated relative to 25 µm thick α-Fe foil using the positions certified for (former) National Bureau of Standards standard reference material no. 1541; line widths of 0.36 mm/s for the outer lines of α-Fe were obtained at room temperature. Mössbauer spectra were fitted using the program MossA (Prescher et al. 2012).

Mössbauer spectra were fitted to Lorentzian doublets according to current models in the literature (e.g., McCammon and Ross 2003). The usual constraints were applied to all doublets (equal component areas and widths) unless otherwise noted. Values for Fe$^{3+}$/ΣFe were calculated based on relative area ratios corrected for differences in recoil-free fraction, where the latter correction was based on the Debye model with assumed Mössbauer Debye temperatures for garnet of 340 and 400 K for Fe$^{2+}$ and Fe$^{3+}$, respectively (Amthauer et al. 1976; De Grave & Van Alboom 1991).

IR spectroscopy

For IR spectroscopy, single-crystals were doubly polished with diamond lapping film using the 0.25 µm grade in the last step. For analysis the crystals were placed on a KBr plate. Unpolarized IR spectra of synthetic majoritic garnet were recorded from 1850 to 4000 cm$^{-1}$ at
ambient conditions with a Bruker IFS 66v FTIR spectrometer, a Hyperion microscope, an
InSb detector, a KBr beamsplitter, and a globar light source. Up to 1024 scans were taken
with a resolution of 2 cm⁻¹ through a 100 × 100 µm aperture. The sample thickness was
determined using the eyepiece reticule and stage micrometer scale of the optical
microscope. The final thickness varied from 30 to 40 µm depending on the specimen (cf.
Table 3). A linear baseline correction in the integration limits between 3000 and 3750 cm⁻¹
was applied for all our spectra. The integrated absorbances and area-weighted average
(Libowitzky and Rossman 1996, 1997) of the peak positions were determined using PeakFit
(Systat Software, Inc.). Quantitative measurements of single-crystals were obtained on
randomly oriented sections. Polarized measurements are not needed for isotropic minerals,
where the absorbance is linearly dependent on the species concentration and thickness of
the sample. It is important to note that some authors use the sum of absorbances (total
absorbance) in all three orthogonal directions of a crystal to calculate the absorption
coefficient, others use only one-directional information. For our cubic majoritic garnets we
use one-directional absorbance values derived from unpolarized spectra.

Raman spectroscopy

Single-crystals used in IR studies were characterized with confocal microRaman
spectroscopy at Northwestern University. No additional sample preparation was required. All
analyses were performed in backscattering geometry using an Andor Shamrock 0.3 m
spectrograph (1800 grooves/mm grating) coupled to an Andor Newton EM-CCD camera, an
Olympus optical microscope and a long working distance Mitutoyo 100x objective (LWD VIS,
NA = 0.70, WD = 6.0 mm). The 458-nm line of a solid-state Melles Griot laser source with
~300 mW output power was used for sample excitation. Laser intensity at the sample was 18
mW. For all measurements a confocal aperture of 60 × 60 µm was used. For sample
characterization spectra were acquired from 50 - 1300 cm⁻¹. Counting times were 20 s at 3
accumulations.
To independently quantify the water content in samples MA337 and MA380, Raman spectra were recorded at Helmholtz-Zentrum Deutsches GeoForschungsZentrum. The measurements were performed following the procedure described in Thomas et al. (2008, 2009). The 472-nm line of a Coherent Ar\(^+\) Laser (Innova 70-3) with 300 mW output power, a LabRam HR800 UV-Vis spectrometer, a motorized XY-stage, an Olympus optical microscope, a long working distance 100x objective (LWD VIS, NA = 0.80, WD = 3.4 mm) and a Peltier-cooled CCD detector were used. Spectra in the frequency range from 2800 – 4000 cm\(^{-1}\) were taken with the 300 grooves/mm grating and a confocal setup (100 \(\mu\)m pinhole). After a linear baseline correction was performed, spectra were integrated between 3000 and 3750 cm\(^{-1}\). Counting times were 10 s at 5 accumulations for MA337 and 50 s at 10 accumulations for MA380. The SD-8.06\% glass (cf. Thomas et al. 2008) was used as reference material. Mrosko et al. (2011) recommend for minerals with heavy cations a molar volume correction rather than a density correction for differences between sample and reference material (see reference for calculation details). For this reason a majoritic garnet correction factor of 0.788 was used for water quantification in samples MA337 and MA380.

Secondary-ion mass spectrometry

SIMS measurements of H in selected samples were performed on the Cameca NanoSIMS 50L scanning ion microprobe at the Carnegie Institution of Washington. Polished single-crystals were mounted in indium. To flatten the surface and fill cavities around the crystals, the whole assembly was pressed with 4.9 t in a hydraulic press. The \(^{16}\)OH\(^-\) signal was standardized using natural and synthetic minerals described in Koga et al. (2003) and Hauri et al. (2006): olivines SynFo100, SynFo68, GRR1012, KLV-23; orthopyroxenes KBH-1, India, Kenya, A288; garnets MON-9, ROM263-9, ROM263-25, ROM263-52; clinopyroxene PMR-53. We also used additional olivines and pyroxenes from the Monastery kimberlite that were studied by Bell et al. (2004): olivines ROM177, ROM250-13, ROM250-2; clinopyroxenes ROM271-10, ROM271-16, ROM271-21; orthopyroxene ROM273. Detailed analytical setup and methodology information is described in Hauri et al. (2006) and Koga et al. (2003).
Results

Sample characterization (Electron microprobe analyses, X-ray diffraction, Mössbauer spectroscopy)

Run products consisted of up to 500 µm sized single-crystals of majoritic garnet with significant amounts of Cr, Al, Fe and OH (Table 3). The ferric iron content was analyzed by Mössbauer spectroscopy and EELS (Lenz 2012) and ranged between 6 and 21 % depending on sample composition. Sample MA337, which is the only sample that was analyzed by EELS, has the highest Fe$^{3+}$ concentration (Table 3). Even though two different technical approaches have been applied here, the determined ferric iron contents are expected to be comparable within uncertainties. In fact, Mrosko et al. (2013) used both tools at the same laboratories to determine the ferric iron concentration in ringwoodite and report values that are in good agreement. Mineral formulas are given in Table 3. With increasing silicon content, Al$_2$O$_3$ and FeO concentrations decrease, while the MgO content increases. Lattice constants and cell volume indicate the cubic crystal system for all samples (Table 2).

Mössbauer spectra are shown in Figure 1. The Mössbauer spectrum of sample MA380 was sufficiently well resolved that two doublets could be fitted to the spectrum without further constraints, yielding realistic values for all hyperfine parameters. When the Mössbauer spectra of samples MA382 and MA385 were fitted without further constraints, unrealistically large values of the widths of the Fe$^{3+}$ doublets were obtained; hence these widths were constrained to 0.4 mm/s for these spectra. This value was chosen based on the width obtained for sample MA380 as well as literature values reported for a similar composition of majorite (McCammon and Ross 2003). A similar effect was observed in fitting the Mössbauer spectrum of sample MA384, except that an unrealistically low quadrupole splitting (QS) was obtained when the Fe$^{3+}$ doublet width was constrained. In this case it was sufficient to constrain the QS value to 0.35 mm/s, while allowing the Fe$^{3+}$ doublet width to vary. Mössbauer spectra of samples Max3 and Max4 were sufficiently resolved that no additional
constraints were required. Absorption near ~ 2 mm/s required the addition of a third doublet, which likely corresponds to octahedral Fe$^{2+}$. The consistency of hyperfine parameters in all of the fits were checked by plotting the centre shifts of all components against their quadrupole splitting and comparing values with the literature (McCammon and Ross 2003). All data are consistent with expected values within experimental error.

IR spectroscopy

Unpolarized IR spectra of majoritic garnet at room conditions are illustrated in Figure 2. Spectra are offset for clarity. All spectra are similar, though band intensities differ. The IR spectra are composed of broad absorption bands of OH stretching vibrations with maxima between ~3100 cm$^{-1}$ and ~3630 cm$^{-1}$ (Table 4). In general, bands at ~3580 cm$^{-1}$ show strongest intensities. With increasing H$_2$O concentration OH band intensities at ~3630 cm$^{-1}$ increase (cf. strongest band in MA384). Sample MA337, with the highest water content, shows an additional dominant OH band at ~3120 cm$^{-1}$.

Raman spectroscopy

Unpolarized Raman spectra of ~40 μm thick single-crystals of majoritic garnet are shown in Figure 3. The red spectrum is representative for the high-silica samples Max3 and Max4, whereas the black spectrum (MA384) is typical for the rest of the majoritic garnets (low-silica samples). Both spectra display a similar number of peaks and are characteristic for the cubic garnet structure with expected A_{1g} (360 cm$^{-1}$, 563 cm$^{-1}$, 928 cm$^{-1}$), E_g (868 cm$^{-1}$, 1064 cm$^{-1}$) and T_{2g} (211 cm$^{-1}$, 646 cm$^{-1}$) modes (McMillan et al. 1989). We follow the peak assignment in McMillan et al. (1989). The modes at ~360 cm$^{-1}$ (A_{1g}), 868 cm$^{-1}$ (E_g) and the strongest mode at 928 cm$^{-1}$ (A_{1g}) are due to symmetric stretching vibrations of the SiO$_4$ tetrahedra. The mode at 1064 cm$^{-1}$ (E_g) is associated with asymmetric stretching vibrations, and the peak at 563 cm$^{-1}$ (A_{1g}) is caused by symmetric bending vibrations of the SiO$_4$ group. The spectrum representative for the two Si-rich samples looks very similar to the spectrum of a natural majorite found in a meteorite (Jeanloz, 1980) with a strong peak at 595 cm$^{-1}$ and the 868 cm$^{-1}$
peak, which is strong in our Al-rich samples, being slightly shifted to 891 cm\(^{-1}\). The small
differences in peak positions and peak widths of the two spectra might be due to a slightly
larger cell volume of the Si-richer compositions, and a higher cation disorder, respectively.
According to McMillan et al. (1989) stiffening of the O-Si-O bending force constant during the
substitution of Si by Al in octahedral might be responsible for the peak shift of the 563 cm\(^{-1}\)
band.

Water contents and mineral-specific absorption coefficients

Sample water contents were determined by either confocal micro-Raman spectroscopy
(MA337, MA380, Fig. 4) and/or secondary ion mass spectrometry (MA380-MA385, Max3,
Max4). The H\(_2\)O concentration of the seven samples ranges from 126 to 2200 wt ppm (see
Table 4). From water concentrations (c\(_{\text{H}_2\text{O}}\)), peak-fitted integrated areas (A\(_i\)), samples
thickness (d) and density (\(\rho\)), mineral-specific absorption coefficients (Table 1) were
calculated using the Beer-Lambert law, \(\varepsilon = (A_i \times 1.8) / (d \times \rho \times c_{\text{H}_2\text{O}})\), with d in cm and c\(_{\text{H}_2\text{O}}\) in
wt\%. Note that we use one-directional absorbance information (A\(_i\)) for our calculations, not
the total absorbance from all three orthogonal directions of a crystal. For majoritic garnet
absorption coefficients ranging from 10470 ± 3100 Lmol\(^{-1}\)cm\(^{-2}\) to 23400 ± 2300 Lmol\(^{-1}\)cm\(^{-2}\)
were determined. The relative error of absorption coefficients is mainly determined by the
error of the water concentration from all analyses (7% relative uncertainty from SIMS, ~20%
standard deviation from Raman spectroscopy), sample thickness, density, the surface quality
of the samples, and spectral fits. From Gaussian error propagation of relative errors from
peak-fitted integrated areas (2%), sample density (2%), sample thickness (2%) and water
content (~10%), we estimate the relative error of the absorption coefficient to be 11%.

Discussion

Whereas water contents determined for the majority of our synthetic majoritic garnets are
consistent with literature data, we report a higher H\(_2\)O concentration of 2200 wt ppm in
MA337. Prior reported values typically range from 1 up to some hundreds of wt ppm H₂O in natural specimens of mantle origin, but extend to ~1300 wt ppm H₂O in synthetic samples (Lu and Keppler 1997; Withers et al. 1998; Bolfan-Casanova et al. 2000; Katayama et al. 2003; Mookherjee and Karato 2010). A spectrum shown in figure 2 of the study of Bolfan-Casanova et al. (2000) implies even ~2000 wt ppm H₂O for cubic garnet (pyrope) when compared with 677 wt ppm H₂O in Al-free majorite.

Pressure, temperature, water fugacity and chemical impurities can increase the water solubility in nominally anhydrous minerals. This has been observed for a range of minerals in the past, e.g., for stishovite (Pawley et al., 1993) and olivine (Kohlstedt et al. 1996). Because the H₂O concentration in majoritic garnets of this study varies widely from runs conducted at similar P-T conditions, difference in chemical composition (Fe, Al, Si, and Cr content) appears to be the major cause for water content differences. Excluding the very high (80-85%) majoritic component samples (i.e., Max3 and Max4), there is generally increasing water content expressed as H atoms per formula unit (apfu) with Al³⁺ content and Fe³⁺/ΣFe, whereas H (apfu) increases with decreasing Fe²⁺ and Cr³⁺ (Fig. 5, Tables 3, 4). In the very high majoritic component samples, the only cation variable is Fe³⁺, which shows a positive correlation with water content.

Nominally anhydrous majorite accommodates ‘water’ via the incorporation of hydroxyl groups. Several mechanisms are discussed for majorite, such as the hydrogarnet substitution, where silicon vacancies in the tetrahedron are charge-balanced through oxygen protonation; the substitution of silicon in the tetrahedron by trivalent aluminum and a proton; and the protonation of oxygens associated with octahedral vacancies, whereby divalent as well as trivalent cations can be involved (e.g., Rossman and Aines 1991; Hösch 1999; Bolfan-Casanova 2000; McCammon and Ross 2003; McCammon et al. 2004; Mokherjee and Karato 2010). Since tetrahedral vacancies induce an oxygen distance change from 1.63 Å in an occupied site to 1.95 Å in the vacancy (Lager and van Dreele 1996), it has been
concluded that increasing pressure will inhibit this form of substitution for garnets and
therewith limits the H$_2$O concentration to tens of wt ppm (Bell and Rossman 1992; Withers et
al. 1998).

Our IR spectra compare well with spectra of garnet and majorite reported in literature (e.g.,
Aines and Rossman 1984; Bell et al. 1995; Withers et al. 1998; Bolfan-Casanova et al. 2000;
Katayama et al. 2003; Maldener et al. 2003). Due to their complex nature a straightforward
assignment to corresponding OH incorporation mechanisms is not possible. Based on
chemical composition and IR spectra we can differentiate our majoritic garnets into three
different types (cf. Fig. 5, Tables 3, 4):

- **type I**) high concentration of octahedral silicon and low to intermediate water contents, low
 iron, aluminum and chromium concentrations, intermediate Fe$^{3+}$ content, weak and broad OH
 feature (Max3, Max4);
- **type II**) low concentration of octahedral silicon, 0.06 to 0.10 Fe$^{3+}$/ΣFe, intermediate water
 contents, high Al$^{3+}$ concentration, intense OH bands at at \sim3580 cm$^{-1}$ and \sim3630 cm$^{-1}$
 (MA380 – MA385), and
- **type III**) lowest concentration of octahedral silicon, high Fe$^{3+}$ and Al$^{3+}$ concentrations in
 combination with highest water content, additional intense OH band at lower wavenumbers
 (MA337).

The OH bands observed in this study at \sim3580 cm$^{-1}$ and \sim3630 cm$^{-1}$ are close to the bands
reportedly associated with the hydrogarnet substitution in pyrope (Ackerman et al. 1983;
Geiger 1991). However, the hydrogarnet substitution alone can not explain all OH bands in
the majorite IR spectrum, additional mechanisms are needed to explain the OH defect
incorporation.

In a proton NMR study Cho and Rossman (1993) show that even in grossular with low water
concentrations of 0.2-0.3 wt% H$_2$O other mechanisms than the hydrogarnet substitution are
prevailing. Andrut et al. (2002) conclude that in garnets with trace hydrogen, octahedral and
dodecahedral vacancies form SiO$_3$(OH) groups. McCammon et al. (2004) show that the
oxidation of ferrous iron leads to an increased vacancy production and suggest that
protonation of octahedral vacancies is the main hydration mechanism in mantle garnets.
Pigott et al. (2013) further support octahedral and dodecahedral Mg vacancies to be the main
protonation mechanisms in the majorite end member from atomistic simulations. Si and Mg
vacancies might explain the OH features in our silicon-rich samples with near-endmember
majorite composition Max3 and Max4 (type I). Positive correlations between trivalent iron and
aluminum with H$_2$O concentration, however, lead us to conclude that in our low octahedral Si
samples higher trivalent cation concentrations lead to increased vacancy production (type II
samples, Fig. 5, McCammon et al. 2004). If we follow the assignment of the OH bands at
\sim3580 cm$^{-1}$ and \sim3630 cm$^{-1}$ to the hydrogarnet substitution, the low band intensity in type I
majorites compared to type II and type III majorites in this spectral region might be explained
by the high concentration of octahedral silicon, potentially inhibiting this form of substitution
and limiting the incorporation of H$_2$O in these samples. The additional band at lower
wavenumber in water-rich type III majorite might be explained by the high Fe$^{3+}$ concentration
causing an increased vacancy production. Such vacancies might be associated with
octahedral defects or Fe$^{3+}$ substituting silicon in the tetrahedron, similar to what has been
discussed for ringwoodite (Mrosko et al. 2013). However, a definite band assignment
requires additional work.

The main goal of this work is to analyze the relationship between OH band position and
absorption coefficient, i.e., the frequency dependence of the absorption coefficient of
majoritic garnet. Figure 6 shows the general trend of absorption coefficients for water in
hydrous minerals and glasses versus wavenumber of the corresponding OH bands (lines
labeled 1 and 2). An increase of the coefficients with decreasing wavenumber is expected
due to interrelations of OH dipole strength, O-H...O geometry and OH band intensity. For a
review see Koch-Müller and Rhede (2010). However, for some minerals frequency-
independent mineral-specific absorption coefficients have been published, such as for
feldspar (Johnson and Rossman 2003), rutile (Maldener et al. 2001), garnet (Hösch
1999), olivine (Thomas et al. 2009, Withers et al. 2012), wadsleyite (Deon et al. 2010) or quartz
(Thomas et al. 2009). For majoritic garnet, we observe a frequency dependence of the
absorption coefficient, similar to what has been communicated by Paterson (1982),
Libowitzky and Rossman (1996), and for ringwoodite by Koch-Müller and Rhede (2010) (Fig.
6). From our absorption coefficients and the values of Bell et al. (1995) and Maldener et al.
(2003) we calculate the following linear calibration trend based on three-dimensional
absorbance data (see Fig. 6), which can be used to determine IR absorption coefficients for
garnets: $y = -249x + 906128$, where y is the absorption coefficient in Lmol$^{-1}$cm$^{-2}$ and x is the
mean frequency of all OH bands in cm$^{-1}$.

For minerals that show a wide spectral range of OH absorption bands, such as olivine, the
use of a single absorption coefficient has been suggested in the past (Thomas et al. 2009,
Mosenfelder et al. 2011). Whereas Kovacs et al. (2010) propose site-specific absorption
coefficients for olivine other groups see no such evidence in their studies (Koch-Müller et al.
2006; Thomas et al. 2009; Mosenfelder et al. 2011). On the contrary, e.g., Thomas et al.
(2009) calculate a frequency-independent absorption coefficient for both, synthetic olivine
showing group I OH bands (\sim3600 cm$^{-1}$) and olivine from Zarbargad, Egypt, with group II OH
bands (3200 cm$^{-1}$). Based on our study the use of a single absorption coefficient for water
quantification in majoritic garnet is not recommended. The need for a frequency-dependent
calibration in majoritic garnet likely reflects the diversity of OH substitution mechanisms
depending upon the concentration of trivalent cations and octahedrally-coordinated Si.

For majoritic garnet, we determine absorption coefficients ranging from 10470 ± 3100 Lmol$^{-1}$
1cm$^{-2}$ to 23400 ± 3100 Lmol$^{-1}$cm$^{-2}$. All values for our majoritic garnets are higher than the
values of 6700 ± 2300 Lmol$^{-1}$cm$^{-2}$ reported for pyrope garnet by Bell et al. (1995) and 3630 ±
1580 Lmol$^{-1}$cm$^{-2}$ proposed for a series of garnets by Maldener et al. (2003), but plot below
the calibration curves of Paterson (1982) and Libowitzky and Rossman (1996). Koch-Müller et al. (2010) propose that wavenumber-independent absorption coefficients, such as those for olivine and quartz (Thomas et al. 2009), are valid for minerals having the same composition and thus comparable atomic distances. Absorption coefficients strongly depend on structure changes. This has been shown for polymorphs of SiO$_2$, where coefficients increase from quartz to coesite and stishovite, as the densities of the structures and thus the mean O-O distances decrease (Thomas et al., 2009; Koch-Müller and Rhede 2010). Koch-Müller and Rhede (2010) report wavenumber-dependent absorption coefficients for synthetic Fe-Mg ringwoodites, similar to what we observe for majoritic garnet. They explain this by strongly differing mineral compositions (Fe/Mg substitution), which may result in a continuous decrease of the O-H----O distances with increasing Mg. This might be also true for our set of majoritic garnets with varying chemical compositions. However, the crystal chemistry and H incorporation in majorite are too variable to confirm clear relations such as seen in the SiO$_2$ system or ringwoodite.

Implications

Our work illustrates that using average IR absorption values for garnet (Bell et al. 1995; Maldener et al. 2003) would lead to water content overestimation in the case of majoritic garnet, whereas the general IR calibration trends reported by Paterson (1982) and Libowitzky and Rossman (1997) would underestimate water concentrations. Our absorption coefficients give up to 4 times higher H$_2$O contents than these general trends would estimate, and up to 7 times lower water concentrations than the Bell et al. (1995) and Maldener et al. (2003) calibrations would imply. We have produced a linear wavenumber-dependent IR calibration for water quantification in minerals of the pyrope-majorite solid-solution series, which will result in more accurate estimations of the water content in natural and synthetic majoritic garnets. Wavenumber-dependent factors allow conversion of published H$_2$O concentrations that use the Paterson (1982) or Libowitzky and Rossman (1997) calibration.
curves. For a mean wavenumber of 3550 cm\(^{-1}\), the conversion factors are 1.54 and 2.26, respectively.

References

Akaogi, M., and Akimoto, S. (1977) Pyroxene-garnet solid solution equilibria in the system \(\text{Mg}_4\text{Si}_4\text{O}_{12}-\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}\) and \(\text{Fe}_4\text{Si}_4\text{O}_{12}-\text{Fe}_3\text{Al}_2\text{Si}_3\text{O}_{12}\) at high pressures and temperatures. Physics of the Earth and Planetary Interiors, 15, 90–106.

Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2000) Water partitioning between nominally anhydrous minerals in the MgO–SiO₂–H₂O system up to 24GPa: implications for...

Kanzaki, M. (1987) Ultrahigh-pressure phase relations in the system Mg$_4$Si$_4$O$_{12}$-Mg$_3$Al$_2$Si$_3$O$_{12}$, Physics of the Earth and Planetary Interiors, 49, 168-175.

nominally anhydrous high-pressure minerals. American Mineralogist, 95, 770 – 775.

Acknowledgements

SMT thanks Rainer Thomas for discussions, and Andreas Ebert (GFZ Potsdam) and Dan Frost (BGI) for help with the syntheses. This research was supported by NSF grant EAR-1215957 awarded to SMT and by grants from the NSF (EAR-0748707), the David & Lucile Packard Foundation, and the Carnegie/DOE Alliance Center (CDAC) to SDJ.

Figure Captions

Fig. 1 Room temperature Mössbauer spectra of samples (a) MA380, (b) MA382, (c) MA384, (d) MA385, (e) Max3, and (f) Max4. The doublets assigned to dodecahedral Fe$^{2+}$, octahedral Fe$^{3+}$, and octahedral Fe$^{2+}$ are shaded white, light grey and dark grey, respectively. The residuals of the fits are shown above each spectrum and the velocity scale is relative to α-Fe.

Fig. 2 Unpolarized IR spectra of majoritic garnet at room conditions. Spectra are offset for clarity. Spectral information and sample thicknesses are given in Table 4.

Fig. 3 Raman spectra of MA384 (black) and Max4 (red) showing characteristic lattice vibrations in the low-frequency range.
Peak positions are slightly shifted depending on the silicon content.

Fig. 4 Unpolarized Raman spectra of MA337 (upper, free-standing single-crystal) and MA380 (lower, thin section) showing OH bands in the high-frequency range agree well with IR spectra. Integrated intensities were used for quantitative OH analyses. The additional band at ~3050 cm\(^{-1}\) in the spectrum of MA380 (lower) is due to C-H stretching of the oxirane group of epoxy resin and was excluded from calculations.

Fig. 5 Comparison between H (apfu) Si and chemical sample composition. We observe a positive linear correlation between the water concentration of the samples and the integrated OH band area from IR spectroscopy. In addition, positive correlations between sample water content and trivalent cations Fe\(^{3+}\) and Al\(^{3+}\) are illustrated here. Sample water content and Cr\(^{3+}\) are negatively correlated. Note however, that this relationship seems to hold only for samples with lower concentrations of octahedral silicon (i.e., smaller majorite component) and higher concentrations of trivalent cations (see Tables 3, 4).

Fig. 6 Comparison of mineral-specific IR absorption coefficients calculated in this study and data from 1) Paterson (1982), 2) Libowitzky and Rossman (1997), 3) Bell et al. 1995, and 4) Maldener et al. (2003). The x-axis gives mean wavenumbers of all OH bands calculated from peak fitting. Great care must be taken when comparing published absorption coefficients. This figure contains values derived from one absorbance direction multiplied by three to allow comparison between published absorption coefficient values. Some authors such as Paterson (1982) and Libowitzky and Rossman (1997) use the sum of absorbances (total absorbance) in all three orthogonal directions of a crystal to calculate the absorption coefficient, whereas others such as Bell et al. (1995) and Maldener et al. (2003) use only one-directional information. The linear regression (dashed line), \(y=-249x + 906128\) (\(R^2=0.63571\)), allows calculation of IR absorption coefficients for water quantification in garnets.

Table 1. Starting compositions and experimental conditions. Samples, to which water was added, are marked by footnotes.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>Starting composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA380</td>
<td>18</td>
<td>1800</td>
<td>(Mg(_2)Fe(_1))(Si(_2)Mg(_2)Al(_4)Cr(_2))[SiO(_4)]</td>
</tr>
<tr>
<td>MA382</td>
<td>18</td>
<td>1800</td>
<td>(Mg({1.8})Fe({1.5}))(Si(_2)Mg(_2)Al(_4)Cr(_2))[SiO(_4)]</td>
</tr>
<tr>
<td>MA384(^*)</td>
<td>18</td>
<td>1800</td>
<td>(Mg(_2)Fe(_1))(Al(_3)Cr(_2))[SiO(_4)]</td>
</tr>
<tr>
<td>MA385(^*)</td>
<td>18</td>
<td>1800</td>
<td>(Mg(_2)Fe(_1))(Si(_2)Mg(_2)Al(_4)Cr(_2))[SiO(_4)]</td>
</tr>
<tr>
<td>MA337(^*)</td>
<td>18</td>
<td>1500</td>
<td>(Mg(_2)Fe(_1))(Al(_3)Cr(_2))[SiO(_4)]</td>
</tr>
<tr>
<td>Max(^*)</td>
<td>19</td>
<td>1800</td>
<td>orthopyroxene (En(^{3+}))</td>
</tr>
<tr>
<td>Max(^*)</td>
<td>19</td>
<td>1800</td>
<td>orthopyroxene (En(^{3+}))</td>
</tr>
</tbody>
</table>

Note that starting materials of samples MA380, MA382, MA384 and MA385 were placed in Fe-doped Pt-capsules to reduce the potential loss of Fe during synthesis (see Grove et al., 1981). *0.5 µl bidistilled H\(_2\)O was added. *2 µl bidistilled H\(_2\)O was added. *Starting material was a natural orthopyroxene from garnet-peridot sample TM-17 from the study of Stern et al. (1999). H\(_2\)O was added as brucite.

Table 2. Lattice parameters of majoritic garnets in this study.
Table 3. Composition of majoritic garnets determined by electron microprobe analyses and Mössbauer spectroscopy.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Oxides (wt%)</th>
<th>Mineral formula (based on 12 Oxygens)</th>
<th>Fe MV [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MgO</td>
<td>FeO</td>
<td>SiO2</td>
</tr>
<tr>
<td>MA380</td>
<td>21.41(71)</td>
<td>43.22(40)</td>
<td>18.73(14)</td>
</tr>
<tr>
<td>MA382</td>
<td>16.08(24)</td>
<td>20.88(44)</td>
<td>18.34(17)</td>
</tr>
<tr>
<td>MA384</td>
<td>23.53(42)</td>
<td>10.22(84)</td>
<td>42.92(28)</td>
</tr>
<tr>
<td>MA385</td>
<td>22.96(26)</td>
<td>11.61(35)</td>
<td>42.92(29)</td>
</tr>
<tr>
<td>MA337*</td>
<td>20.78(48)</td>
<td>13.14(90)</td>
<td>42.32(44)</td>
</tr>
<tr>
<td>Max3</td>
<td>34.26(23)</td>
<td>5.03(17)</td>
<td>55.03(54)</td>
</tr>
<tr>
<td>Max4</td>
<td>33.86(45)</td>
<td>5.03(17)</td>
<td>55.03(54)</td>
</tr>
</tbody>
</table>

*Data from Lenz (2012).

Table 4. IR spectroscopic data for H2O analyses.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Sample thickness (µm)</th>
<th>Density (g/cm³)</th>
<th>Molar volume (cm³)</th>
<th>OH band positions (cm⁻¹)</th>
<th>A₀(cm⁻¹)</th>
<th>Mean wavenumber (cm⁻¹)</th>
<th>Independent determined water content from SIMS (wt ppm)</th>
<th>H /10⁶ Si</th>
<th>H (apfu)</th>
<th>Absorption coefficient (L/(molH₂Ocm²))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA380</td>
<td>40</td>
<td>3.79</td>
<td>3295</td>
<td>3430</td>
<td>3526</td>
<td>3582</td>
<td>7.46</td>
<td>3442</td>
<td>500 ± 35 / (440 ± 60)*</td>
<td>7999 ± 560</td>
</tr>
<tr>
<td>MA382</td>
<td>30</td>
<td>3.94</td>
<td>3395</td>
<td>3545</td>
<td>3592</td>
<td>-</td>
<td>2.18</td>
<td>3475</td>
<td>214 ± 15</td>
<td>3567 ± 250</td>
</tr>
<tr>
<td>MA384</td>
<td>40</td>
<td>3.72</td>
<td>3206</td>
<td>3441</td>
<td>3606</td>
<td>3637</td>
<td>14.70</td>
<td>3474</td>
<td>881 ± 62</td>
<td>13927 ± 975</td>
</tr>
<tr>
<td>MA385</td>
<td>40</td>
<td>3.75</td>
<td>3184</td>
<td>3467</td>
<td>3580</td>
<td>3620</td>
<td>6.27</td>
<td>3483</td>
<td>665 ± 47</td>
<td>10572 ± 740</td>
</tr>
<tr>
<td>MA337*</td>
<td>45</td>
<td>3.77</td>
<td>3127</td>
<td>3412</td>
<td>3526</td>
<td>3577</td>
<td>21.7</td>
<td>3450</td>
<td>2200 ± 500*</td>
<td>35052 ± 8092</td>
</tr>
<tr>
<td>Max3</td>
<td>40</td>
<td>3.58</td>
<td>3245</td>
<td>3472</td>
<td>-</td>
<td>-</td>
<td>2.35</td>
<td>3359</td>
<td>126 ± 9</td>
<td>1930 ± 135</td>
</tr>
<tr>
<td>Max4</td>
<td>35</td>
<td>3.59</td>
<td>3291</td>
<td>3512</td>
<td>3620</td>
<td>6.5</td>
<td>3414</td>
<td>711 ± 50</td>
<td>10897 ± 763</td>
<td>10390 ± 1300</td>
</tr>
</tbody>
</table>

*Water content determined with Raman spectroscopy (cf. methods section).
#Determined with EELS (cf. Lenz 2012).
$Note that the mineral formula is based on a coupled substitution with octahedrally coordinated fourvalent silicon and one divalent cation in equal amounts replacing two trivalent cations (Ringwood 1967; Ringwood and Major 1971), which is not shown here to simplify matters.
Fig. 1 Room temperature Mössbauer spectra of samples (a) MA380, (b) MA382, (c) MA384, (d) MA385, (e) Max3, and (f) Max4. The doublets assigned to dodecahedral Fe$^{2+}$, octahedral Fe$^{3+}$, and octahedral Fe$^{2+}$ are shaded white, light grey and dark grey, respectively. The residuals of the fits are shown above each spectrum and the velocity scale is relative to α-Fe.
Fig. 2 Unpolarized IR spectra of majoritic garnet at room conditions. Spectra are offset for clarity. Spectral information and sample thicknesses are given in Table 4.
Fig. 3 Raman spectra of MA384 (black) and Max4 (red) showing characteristic lattice vibrations in the low-frequency range. Peak positions are slightly shifted depending on the silicon content.
Fig. 4 Unpolarized Raman spectra of MA337 (upper, free-standing single-crystal) and MA380 (lower, thin section) showing OH bands in the high-frequency range agree well with IR spectra. Integrated intensities were used for quantitative OH analyses. The additional band at ~ 3050 cm$^{-1}$ in the spectrum of MA380 (lower) is due to C-H stretching of the oxirane group of epoxy resin and was excluded from calculations.
Fig. 5 Comparison between H (apfu) Si and chemical sample composition. We observe a positive linear correlation between the water concentration of the samples and the integrated OH band area from IR spectroscopy. In addition, positive correlations between sample water content and trivalent cations Fe$^{3+}$ and Al$^{3+}$ are illustrated here. Sample water content and Cr$^{3+}$ are negatively correlated. Note however, that this relationship seems to hold only for samples with lower concentrations of octahedral silicon (i.e., smaller majorite component) and higher concentrations of trivalent cations (see Tables 3, 4).
Fig. 6 Comparison of mineral-specific IR absorption coefficients calculated in this study and data from 1) Paterson (1982), 2) Libowitzky and Rossman (1997), 3) Bell et al. 1995, and 4) Maldener et al. (2003). The x-axis gives mean wavenumbers of all OH bands calculated from peak fitting. Great care must be taken when comparing published absorption coefficients. This figure contains values derived from one absorbance direction multiplied by three to allow comparison between published absorption coefficient values. Some authors such as Paterson (1982) and Libowitzky and Rossman (1997) use the sum of absorbances (total absorbance) in all three orthogonal directions of a crystal to calculate the absorption coefficient, whereas others such as Bell et al. (1995) and Maldener et al. (2003) use only one-directional information. The linear regression (dashed line), $y = -249x + 906128 \ (R^2=0.63571)$, allows calculation of IR absorption coefficients for water quantification in garnets.