	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5117.
1	Revision 1
2	
3	
4	
5	
6	Pieczkaite, ideally Mn ₅ (PO ₄) ₃ Cl, a new apatite-supergroup mineral
7	from Cross Lake, Manitoba, Canada: Description and crystal structure
8	
9	
10	
11	Kimberly Tait ^{1,2} , Neil A. Ball ¹ and Frank C. Hawthorne ^{1,*}
12	
13	¹ Department of Geological Sciences, University of Manitoba,
14	Winnipeg, Manitoba, R3T 2N2, Canada
15	² Current address: Department of Natural History (Mineralogy), Royal Ontario Museum,
16	100 Queen's Park, Toronto, Ontario, M5S 2C6, Canada
17	
18	
19	* E-mail: <u>frank_hawthorne@umanitoba.ca</u>
20	

21

ABSTRACT

22	Pieczkaite, ideally Mn ₅ (PO ₄) ₃ Cl, is a new apatite-supergroup mineral from Cross Lake,
23	Manitoba, Canada. It occurs as small patches and narrow veins in large crystals of apatite and
24	(Mn,Cl)-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. Veins of
25	Mn-bearing apatite narrow to \sim 25 microns where the Mn content becomes high enough to
26	constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet
27	light, and has no observable cleavage or parting. Mohs hardness is 4-5, and pieczkaite is brittle
28	with an irregular fracture. The calculated density is 3.783 g/cm ³ . Optical properties were
29	measured using a Bloss spindle stage at a wavelength of 590 nm (using a gel filter). Pieczkaite is
30	uniaxial (–) with indices of refraction $\omega = 1.696$, $\varepsilon = 1.692$, both ±0.002. Pieczkaite is hexagonal,
31	space group $P6_3/m$, a 9.504(4), c 6.347(3) Å, V 496.5(1) Å ³ , Z = 2, c:a = 1:0.6678. The six
32	strongest lines in the X-ray powder diffraction pattern are as follows: d (Å), I, (h k l): [note to
33	typesetting: changes minus signs to overbars] 2.794, 100, (-2 3 1, -1 3 1); 2.744, 88, (0 3 0);
34	2.639, 34, (-1 2 2); 2.514, 25, (0 3 1, 0 2 2); 1.853, 25, (-3 4 2, -1 4 2); 3.174, 24, (0 0 2).
35	Chemical analysis by electron microprobe gave P ₂ O ₅ 37.52, MnO 41.77, FeO 2.45, CaO 13.78,
36	Cl 3.86, H ₂ O 0.60, O \equiv Cl –0.87, sum 99.11 wt.% where the H ₂ O content was calculated as 1 –
37	Cl apfu. The resulting empirical formula on the basis of 12 O anions is $(Mn_{3.36}Fe_{0.20}Ca_{1.40})_{\Sigma 4.96}$
38	$(P_{1.01}O_4)_3(Cl_{0.62}OH_{0.38})_{1.00}$, and the end-member formula is $Mn_5(PO_4)_3Cl$. The crystal structure of
39	pieczkaite was refined to an R_1 index of 4.07% based on 308 observed reflections collected on a
40	three-circle rotating-anode diffractometer with MoKa X-radiation. Pieczkaite is isostructural
41	with apatite, Mn is the dominant cation at both the [9]- and [7]-coordinated-cation sites in the
42	structure, and Cl is the dominant monovalent anion.

12/16

- 44 *Keywords:* Pieczkaite, new mineral species, phosphate, apatite supergroup, granitic pegmatite,
- 45 Cross Lake, Manitoba, Canada, crystal structure, electron-microprobe analysis, Raman spectrum.

47

INTRODUCTION

48	Pegmatite #22 occurs on the southeastern shoreline of a small, unnamed island in Cross
49	Lake, Manitoba, Canada. It was investigated as part of general work on the Cross Lake
50	Pegmatite field (Anderson 1984), and a very Mn-rich assemblage of phosphate minerals was
51	discovered. Bobfergusonite (Ercit et al. 1986a, 1986b) was discovered in samples collected at
52	this time, together with an unknown phosphate whose structure remained somewhat enigmatic
53	for many years. More recently, Tait (2002) examined the mineralogy of the phosphate nodules in
54	pegmatite #22 in considerable detail, and Ercit et al. (2010) and Tait et al. (2011) described the
55	hitherto unknown phosphate mineral as manitobaite, an ordered superstructure of the alluaudite
56	structure type. The nodules contained large crystals of Mn-rich apatite, and a Mn-dominant
57	apatite-like phase occurred in fractures in these crystals. This material was characterized as a
58	(Mn,Cl)-dominant analogue of apatite. The new mineral and mineral name were approved by the
59	Commission on New Minerals and Mineral Names, International Mineralogical Association
60	(IMA 2014-005). Pieczkaite is named after Adam Pieczka (born 1957-09-08 at Wilamowice near
61	Bielsko-Biała, Silesia Province, Poland), Assistant Professor in the Department of Mineralogy,
62	Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection,
63	Kraków, Poland, for his extensive contributions to the crystal chemistry of pegmatite minerals.
64	The holotype is deposited in the mineral collection of the Royal Ontario Museum, catalogue
65	number M56483.

- 66
- 67

SAMPLE PROVENANCE

68 Pieczkaite occurs in pegmatite #22 on the southeastern shoreline of a small, unnamed
69 island in Cross Lake, Manitoba, Canada, about 5 km north-northwest of the Cross Lake

70	settlement at 54°41'N 97°49'W (Anderson 1984; Ercit et al. 1986a, 1986b). Associated minerals
71	in the interior wall zone of the pegmatite are fluorapatite, bobfergusonite, manitobaite,
72	eosphorite, dickinsonite, triploidite, goyazite, perloffite, beusite, triplite, quartz, K-feldspar,
73	muscovite, schorl, beryl, spessartine, gahnite and (Nb,Ta, Sn)-oxides. In the core zone, the
74	associated minerals are fluorapatite, chlorapatite, triploidite, eosphorite, dickinsonite, fillowite,
75	quartz, K-feldspar, muscovite, schorl, beryl, gahnite and (Nb,Ta,Sn)-oxides. Fluorapatite is a
76	common primary mineral in the core zone of the pegmatite, whereas Mn-rich Cl-rich apatite and
77	pieczkaite occur in the interior wall zone as narrow veins and small inclusions in apatite and
78	fine-grained aggregates of manitobaite, eosphorite, triploidite, etc., indicating crystallization
79	from late-stage, residual pegmatitic fluids highly enriched in Mn and Cl.
80	
81	PHYSICAL PROPERTIES
81 82	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite
81 82 83	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely
81 82 83 84	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of
 81 82 83 84 85 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to
 81 82 83 84 85 86 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet
 81 82 83 84 85 86 87 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet light, and has no observable cleavage or parting. Mohs hardness is 4–5, and pieczkaite is brittle
 81 82 83 84 85 86 87 88 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet light, and has no observable cleavage or parting. Mohs hardness is 4–5, and pieczkaite is brittle with an irregular fracture. The calculated density is 3.783 g/cm ³ . Optical properties were
 81 82 83 84 85 86 87 88 89 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet light, and has no observable cleavage or parting. Mohs hardness is 4–5, and pieczkaite is brittle with an irregular fracture. The calculated density is 3.783 g/cm ³ . Optical properties were measured using a Bloss spindle stage at a wavelength of 590 nm (using a gel filter). Pieczkaite is
 81 82 83 84 85 86 87 88 89 90 	PHYSICAL PROPERTIES Pieczkaite occurs as patches and veins in large crystals of apatite and Mn-bearing apatite in phosphate pods in the quartz core of a granitic pegmatite. The Mn content is inversely proportional to the size of the patches and the width of the veins. Continuous veins consist of Mn-bearing apatite, narrowing to ~25 microns where the Mn content becomes high enough to constitute pieczkaite. It is grey with a greyish-white streak, does not fluoresce under ultraviolet light, and has no observable cleavage or parting. Mohs hardness is 4–5, and pieczkaite is brittle with an irregular fracture. The calculated density is 3.783 g/cm ³ . Optical properties were measured using a Bloss spindle stage at a wavelength of 590 nm (using a gel filter). Pieczkaite is uniaxial (–) with indices of refraction $\omega = 1.696$, $\varepsilon = 1.692$, both ±0.002.

92

93

CHEMICAL COMPOSITION

94	Crystals were analyzed with a Cameca SX-100 electron microprobe operating in
95	wavelength-dispersion mode with an accelerating voltage of 15 kV, a specimen current of 10
96	nA, and a beam diameter of 5 μ m. The following standards were used: maricite (P, Fe),
97	spessartine (Mn), apatite (Ca), tugtupite (Cl). The data were reduced and corrected by the PAP
98	method of Pouchou and Pichoir (1985). Table 1 gives the chemical composition (mean of seven
99	determinations). The empirical formula unit, based on 12 O atoms per formula unit (pfu) with
100	$(Cl + OH) = 1$ apfu, is $(Mn_{3.36}Fe_{0.20}Ca_{1.40})_{\Sigma 4.96}(P_{1.01}O_4)_3(Cl_{0.62}OH_{0.38})_{1.00}$, the general formula is
101	(Mn, Ca) ₅ (PO ₄) ₃ (Cl,OH) and the end-member formula is Mn ₅ (PO ₄) ₃ Cl.
102	
103	X-RAY POWDER DIFFRACTION
104	The nature of the sample did not provide sufficient material of the composition of
105	pieczkaite to allow collection of powder diffraction data. Thus we collapsed the single-crystal
106	data to produce an experimental diffraction pattern that simulates that of a powder pattern, in
107	much the same way that a Gandolfi apparatus does. The resulting data are listed in Table 2.
108	
109	RAMAN AND INFRARED SPECTROSCOPY
110	The Raman spectrum was collected in back-scattered mode on a HORIBA Jobin Yvon-
111	LabRAM ARAMIS integrated confocal micro-Raman system equipped with a 460 mm focal
112	length spectrograph and a multichannel air-cooled (-70°C) CCD detector. A magnification of
113	1006 was used with an estimated spot size of 1 mm, an 1800 lines mm ⁻¹ grating, an excitation
114	radiation of 532 nm, and a laser power between 5 and 12.5 mW. The spectrometer was calibrated
115	using the 520.7 cm ⁻¹ line of silicon. The Raman spectrum is shown in Figure 1a. The peaks at

116	~1095 cm ^{-1} (strong), ~1000 and 960 cm ^{-1} (shoulders) may be assigned to stretching vibrations of
117	the PO ₄ groups, and the peak at ~795 cm ^{-1} (weak) to HPO ₄ stretches. The peak at 560 and
118	shoulder at ~480 cm ^{-1} are due to bending vibrations of PO ₄ . In the infrared (Fig. 1b), the OH
119	band is centered at \sim 3460 cm ⁻¹ and has significant fine structure due to different local
120	arrangements of Mn and Ca bonded to (OH).
121	The Fourier transform infrared (FTIR) spectrum was collected using a Bruker Hyperion
122	2000 IR microscope equipped with a liquid-nitrogen-cooled mercury-cadmium-telluride
123	detector. The spectrum was obtained in the range 4000-650 cm^{-1} by averaging 100 scans with a
124	resolution of 4 cm ^{-1} . A very broad envelope centred at ~3450 cm ^{-1} (Fig. 1b) and the lack of
125	peaks at ~1630 cm^{-1} are indicative of the presence of (OH) in pieczkaite.
126	
127	CRYSTAL-STRUCTURE SOLUTION AND REFINEMENT
128	A single crystal of pieczkaite (8 x 25 x 30 μ m) was attached to a glass fiber and mounted
129	on a Bruker D8 three-circle diffractometer equipped with a rotating anode generator (MoK α X-
130	radiation), multilayer optics and an APEX-II detector. A total of 11,949 intensities was measured
131	out to $50^{\circ} 2\theta$ using 14 s per 0.5° frame with a crystal-to-detector distance of 5 cm. Unit-cell
132	dimensions were determined by least-squares refinement of 4082 reflections with $I > 10\sigma I$, and
133	are given in Table 3, together with other information pertaining to data collection and structure
134	refinement. Empirical absorption corrections (SADABS; Sheldrick 2008) were applied and the
135	data were corrected for Lorentz, polarization and background effects, averaged and reduced to
136	structure factors, resulting in 325 unique reflections.
137	All calculations were done with the SHELXTL PC (Plus) system of programs; <i>R</i> indices
138	are of the form given in Table 3 and are expressed as percentages. Systematic absences in the

single erystal X ray annaeton data are consistent with space group r 03/m, and the structure was
refined by full-matrix least-squares to an R_1 index of 4.07% using a fully ionized scattering
factor for oxygen and neutral scattering factors for other species (see Lussier et al. 2011; Cooper
et al. 2009; Abdu and Hawthorne 2013). Refined atom coordinates and anisotropic-displacement
parameters are listed in Table 4, selected interatomic distances are given in Table 5, refined site-
scattering values are listed in Table 6, and bond valences [calculated with the parameters of
Brown (2013) and Brese and O'Keeffe (1991)] are given in Table 7.
CRYSTAL STRUCTURE
Pieczkaite has the apatite structure (e.g., Hughes et al. 1990; Hughes and Rakovan 2002).
The refined site-scattering values (Hawthorne et al. 1995) given in Table 6 are compatible with
the chemical formula calculated from the electron microprobe analysis, and show that the M1
and M2 sites are occupied by Mn and Ca. Mn is the dominant cation at both the M1 and M2
sites, and Cl is the dominant anion at the monovalent-anion X site, and hence the end-member
composition of pieczkaite is Mn ₅ (PO ₄) ₃ Cl.
Of particular interest in the structure of pieczkaite is the stereochemistry of the M1 and
M2 sites, and their relation to the stereochemistry of the analogous sites in hydroxylapatite
(Hughes et al. 1989), synthetic fluorapatite (Sudarsanan et al. 1972) and synthetic chlorapatite
(Mackie et al. 1972). Hydroxylapatite, fluorapatite and pieczkaite are hexagonal and have space-
group symmetry $P6_3/m$, whereas chlorapatite is monoclinic and has space-group symmetry $P2_1/b$
(first setting). The result of this lowering in symmetry is that in chlorapatite, there are two sites,
Ca1 and Ca2, that are analogous to the M1 site in the $P6_3/m$ apatite structure, and three sites,
Ca3, Ca4 and Ca5, that are analogous to the M2 site in the $P6_3/m$ apatite structure.

162	The stereochemistry of the M1, Ca1 and Ca2 sites in hydroxylapatite, fluorapatite,
163	chlorapatite and pieczkaite is shown in Figure 2, and the M1-O and M2-O,X (X = OH ⁻ , F ⁻ , Cl ⁻)
164	distances are compared in Table 8. The conformation of the coordination of the M1 site is very
165	similar in all four structures (Fig. 2). The M1 site in pieczkaite has a smaller mean bond-length
166	than the other three apatite structures (Table 8), in accord with the smaller cation radius of Mn^{2+}
167	relative to that of Ca. Shannon (1976) gives ${}^{[9]}Ca^{2+} = 1.18$, ${}^{[3]}O^{2-} = 1.36$ Å, sum = 2.54 Å, close
168	to the observed <m1-o> distance of 2.55 Å in hydroxylapatite and fluorapatite (Table 7).</m1-o>
169	Comparison of <m1-o> bond-lengths in Table 8 shows that these distances in hydroxylapatite,</m1-o>
170	fluorapatite and chlorapatite are very similar at ~2.55 Å, indicating that the presence of Cl^{-} at the
171	X site has no inductive effect on the size of the M1 polyhedron in chlorapatite (even though it
172	does cause a lowering of symmetry). This $<$ M1-O> distance of \sim 2.55 Å is significantly longer
173	(by ~0.08 A) than the analogous distance in pieczkaite: 2.473 Å (Table 8). Shannon (1976) does
174	not list a radius for ^[9] Mn ²⁺ , but we may derive a value by extrapolation from his listed radius
175	values for other coordination numbers of Mn^{2+} : ^[9] $Mn^{2+} = 1.04$ Å. Summing the relevant values
176	gives a predicted <m1-o> distance in pieczkaite of (1.04 x 1.15 + 1.18 x 0.85) / 2 + 1.375 \approx</m1-o>
177	2.475 Å, close to the observed value of 2.47 Å (Table 8). Should the M1-O(3) distance be
178	considered as a chemical bond where $M(1)$ is occupied by Mn^{2+} ? Inspection of the bond valences
179	(Table 7) indicates that the incident bond-valence sums around O3 and, to a lesser extent, M1,
180	are low if M1-O3 is not considered as a chemical bond. If the M1-O3 distance is considered as a
181	bond in pieczkaite, the sum at the O3 anion becomes more reasonable (1.954 v.u., Table 7), but
182	the sum at the M1 site is somewhat large (2.151 v.u.). All things considered, it seems that a
183	coordination number of [9] is somewhat more appropriate for Mn^{2+} at the M1 site in pieczkaite,
184	although the situation is not clearcut.

185 The coordination of the M2 site (and the analogous Ca3, Ca4 and Ca5 sites in 186 chlorapatite) shows much more variation than at the M1 site (Fig. 3). In fluorapatite, the F atom 187 occurs on the mirror plane at z = 1/4, whereas in hydroxylapatite and pieczkaite, the monovalent 188 anion is displaced slightly off the mirror plane at $z = \frac{1}{4}$. In chlorapatite, the monovalent anion is 189 further displaced off the mirror plane (Fig. 3c). In hydroxylapatite and pieczkaite, only one of the 190 monovalent anions shown in Figure 3 can bond to the M2 cation, as the other site is too close to 191 be occupied. The coordination of the monovalent anion in these four structures is shown in Figure 4. The X site in all structures is surrounded by six M2 cations at the vertices of an 192 193 octahedron. In hydroxylapatite, fluorapatite and pieczkaite, the monovalent anion occurs close to 194 a face of this octahedron (Figs. 4a, b, d) whereas in chlorapatite, the monovalent anion is 195 displaced toward the centre of this octahedron (Fig. 4c). As a result of these arrangements, the 196 monovalent anion in hydroxylapatite, fluorapatite, chlorapatite and pieczkaite is bonded to three M2 cations at distances in the range 2.23-2.80 Å. The relevant bond lengths and bond valences 197 198 are listed in Table 9. Here we see the reason why the monovalent anion occupies different 199 positions in fluorapatite, hydroxylapatite, chlorapatite and pieczkaite. In fluorapatite, F occurs exactly in the plane of the three coordinating Ca^{2+} cations as the resulting bond lengths provide 200 sufficient incident bond-valence to F⁻ to satisfy the valence-sum rule of bond-valence theory. In 201 202 hydroxylapatite, OH^{-} is slightly displaced from the plane of the three coordinating Ca^{2+} cations and has longer X-Ca distances (Table 9), and the corresponding Ca^{2+} -OH⁻ distances result in 203 204 incident bond-valences that again are in accord with the valence-sum rule around OH. In chlorapatite, Cl⁻ is displaced significantly from the plane of the three coordinating Ca²⁺ cations 205 (Fig. 4c) and has much longer X-Ca distances (Table 9), and the corresponding $Ca^{2+}-Cl^{-}$ 206 207 distances result in incident bond-valences that again are in accord with the valence-sum rule

208	around Cl ⁻ . In pieczaite, the X anion (= $Cl_{0.62}^{-}OH_{0.38}^{-}$) is displaced only slightly from the plane of
209	the three coordinating Mn^{2+} cations (Fig. 4c) and has much shorter X- Mn^{2+} distances that in
210	chlorapatite (Table 9), and the corresponding Mn ²⁺ -(Cl ⁻ ,OH ⁻) distances result in incident bond-
211	valences that again are in accord with the valence-sum rule around Cl ⁻ . Thus we see the reason
212	why Cl occupies a very different position in the structure of pieczkaite than in the structure of
213	chlorapatite: the occurrence of Mn ²⁺ instead of Ca ²⁺ at M2 requires the Cl ⁻ anion to displace from
214	its position intermediate between the face and the centre of the octahedron of surrounding M2
215	cations (in chlorapatite, Fig. 4c) almost to the plane of the edge of the octahedron (in pieczkaite,
216	Fig. 4d) in order to satisfy its bond-valence requirements. The situation is much more
217	complicated in minerals which show F ⁻ , Cl ⁻ , O ²⁻ solid-solution as local order-disorder between
218	the different anion species become important (Hughes et al. 1990; Hughes and Rakovan 2002).
210	
219	
219 220	O RDERING OF M N ²⁺ IN THE APATITE STRUCTURE
219 220 221	ORDERING OF MN ²⁺ IN THE APATITE STRUCTURE Long-range order
219220221222	ORDERING OF MN ²⁺ IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn ²⁺ tends to order at the M1 site (Suitch et al.
 219 220 221 222 223 	ORDERING OF MN ²⁺ IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn ²⁺ tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn ²⁺ more
 219 220 221 222 223 224 	ORDERING OF MN^{2+} IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn^{2+} tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn^{2+} more strongly ordered at M2 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.82$] than at M1 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.575$] in
 219 220 221 222 223 224 225 	ORDERING OF Mn^{2+} IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn^{2+} tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn^{2+} more strongly ordered at M2 [Mn ²⁺ / (Mn ²⁺ + Ca) = 0.82] than at M1 [Mn ²⁺ / (Mn ²⁺ + Ca) = 0.575] in pieczkaite. Inspection of the chemical formulae of the relevant structures shows that where Mn^{2+}
 219 220 221 222 223 224 225 226 	ORDERING OF Mn^{2^+} IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn^{2^+} tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn^{2^+} more strongly ordered at M2 [$Mn^{2^+}/(Mn^{2^+} + Ca) = 0.82$] than at M1 [$Mn^{2^+}/(Mn^{2^+} + Ca) = 0.575$] in pieczkaite. Inspection of the chemical formulae of the relevant structures shows that where Mn^{2^+} tends to order at the M1 site, the X site is occupied by F, whereas in pieczkaite, the X site is
 219 220 221 222 223 224 225 226 227 	ORDERING OF MN^{2+} IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn^{2+} tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn^{2+} more strongly ordered at M2 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.82$] than at M1 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.575$] in pieczkaite. Inspection of the chemical formulae of the relevant structures shows that where Mn^{2+} tends to order at the M1 site, the X site is occupied by F, whereas in pieczkaite, the X site is occupied by Cl. It is apparent that the nature of the monovalent anion strongly affects the
 219 220 221 222 223 224 225 226 227 228 	ORDERING OF MN^{2+} IN THE APATITE STRUCTURE Long-range order Several previous studies have shown that Mn^{2+} tends to order at the M1 site (Suitch et al. 1985; Hughes et al. 2004). This constrasts with the present results which show Mn^{2+} more strongly ordered at M2 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.82$] than at M1 [$Mn^{2+}/(Mn^{2+} + Ca) = 0.575$] in pieczkaite. Inspection of the chemical formulae of the relevant structures shows that where Mn^{2+} tends to order at the M1 site, the X site is occupied by F, whereas in pieczkaite, the X site is occupied by Cl. It is apparent that the nature of the monovalent anion strongly affects the ordering of Mn^{2+} in the apatite structure.

231 Short-range order

232 All cations at the M2 site in pieczkaite occupy approximately the same position at z =233 0.2179 (Table 4). There is no sign of any residual electron density corresponding to the Cl 234 position in chlorapatite, i.e., much nearer to the centre of the octahedra of M2 cations, as would 235 be the case if Ca were bonded to Cl⁻. This means that all Ca must be locally associated with OH⁻ 236 at the neighboring X sites. There is 0.28 OH⁻ occupying the X site in pieczkaite (Table 6) and 237 this must be locally associated with $0.28 \times 3 = 0.84$ apfu of M2 cations. As all Ca must be bonded to OH-, this means that the 0.28 OH- is bonded to $0.54 \text{ Ca} + 0.30 \text{ Mm}^{2+}$, and all Cl is 238 bonded to Mn²⁺. The fine structure in the infrared spectrum in the principal OH-stretching region 239 in pieczkaite must result from various local combinations of Ca and Mn^{2+} that sum to 0.54 Ca + 240 0.30 Mn²⁺ apfu: OH-CaCaCa, OH-CaCaMn²⁺, OH-CaMn²⁺Mn²⁺ and OH-Mn²⁺Mn²⁺Mn²⁺ in 241 242 order of decreasing wavenumber as coordinating ions of greater mass shift the associated OH absorption to lower energies. If the arrangements OH-CaCaCa, OH-CaCaMn²⁺, OH-243 $CaMn^{2+}Mn^{2+}$ and $OH-Mn^{2+}Mn^{2+}Mn^{2+}$ are random, they will occur in the following ratios: 244 245 0.49:0.27 : 0.15:0.08. Inspection of Figure 1b shows that this is not the case. The arrangement OH-CaCaCa must correspond to the highest-energy absorption which is at \sim 3596 cm⁻¹. This is 246 fairly close to the value of 3570 cm⁻¹ for hydroxylapatite, and the slightly higher value in 247 pieczkaite may be due to Mn²⁺ at next-nearest-neighbor M sites. The relative intensity of this 248 249 band (Fig. 1b) is significantly less than at least two of the lower-energy bands, indicating that there is strong short-range order of Ca and Mn²⁺ at these M2 trimers. Unfortunately we cannot 250 251 use the relative band intensities to derive the amounts of these different short-range arrangements 252 as we do not know the relation between transition probability and energy for the arrangements in

12/16

this structure type. Suffice it to say that strong short-range order of Ca and Mn²⁺ is indicated at
M2 sites around the X site.

255

256

IMPLICATIONS

257 In the recently published IMA nomenclature of the apatite supergroup (Pasero et al. 258 2010), a Mn-rich apatite described by Pieczka (2007) is tentatively assigned to the hedyphane group on the assumption that Mn^{2+} is ordered at the M1 site and the end-member formula is 259 $Mn^{2+}_{2}Ca_{3}(PO_{4})_{3}Cl$. However, Mn^{2+} is more strongly ordered at M2 where X = Cl, and a more 260 appropriate end member composition is $Ca_2Mn^{2+}_3(PO_4)_3Cl$ for compositions where Mn^{2+} is 261 dominant at M2 and Ca is dominant at M1. However, the results of Suitch et al. (1985) and 262 Hughes et al. (2004) show that Mn^{2+} is more strongly ordered at M1 where X = F, and a 263 hedyphane-like end-member composition of $Mn^{2+}_{2}Ca_{3}(PO_{4})_{3}F$ seems likely for F-rich 264 265 compositions. However, extreme fractionation at late stages in pegmatite evolution produce 266 residual fluids that react with earlier-crystallized minerals to produce common structures highly enriched in such elements as Mn, Pb and Cl. The stoichiometry of pieczkaite, $Mn^{2+}_{5}(PO_4)_3Cl$ 267 show it to be an apatite-group mineral, the Mn²⁺ analogue of chlorapatite, pyromorphite and 268 alforsite. It is very interesting that pyromorphite and alforsite have much larger M cations (Pb^{2+} , 269 270 Ba) than apatite (Ca) whereas pieczkaite has a much smaller M cation (Mn^{2+}) than apatite (Ca). 271 The placement of the Cl⁻ in pieczkaite is very similar to the placement of F⁻ in fluorapatite and 272 $(OH)^{-}$ in apatite. Mn₅(PO₄)Cl with the apatite structure was synthesized by Kreidel and Hummel (1970) at 850°C, whereas Yoder et al. (2004) were unable to synthesize Mn₅(PO₄)Cl with the 273 274 apatite structure from aqueous solution at a range of pH and temperatures (5-80°C). This result is 275 in accord with the paragenesis of pieczkaite which suggests that the presence of Mn and Cl in

12/16

276	pieczkaite associated with F,Mn-rich apatite may be the result of enrichment of Mn-Cl
277	complexes in late-stage fluids.
278	
279	ACKNOWLEDGEMENTS
280	We thank John Hughes and Claude Yoder for their salient comments on this paper, and
281	Mark Cooper for his help with this work. Supported was provided by a Canada Research Chair
282	in Crystallography and Mineralogy and by Discovery and Major Installation grants from the
283	Natural Sciences and Engineering Research Council of Canada to FCH, and by Innovation
284	Grants from the Canada Foundation for Innovation to FCH.

286	References
287	Abdu, Y.A., and Hawthorne, F.C. (2013) Local structure in C2/c clinopyroxenes on the
288	hedenbergite (CaFeSi ₂ O ₆)-ferrosilite (Fe ₂ Si ₂ O ₆) join: A new interpretation for the
289	Mössbauer spectra of Ca-rich C2/c clinopyroxenes and implications for pyroxene
290	exsolution. American Mineralogist, 98, 1227-1234.
291	Anderson, A.J. (1984) The Geochemistry, Mineralogy and Petrology of the Cross Lake
292	Pegmatite Field, Central Manitoba. MSc thesis, University of Manitoba, Winnipeg,
293	Manitoba.
294	Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
295	Crystallographica, B47, 192–197.
296	Brown, I.D. (2013) http://www.iucr.org/data/assets/file/0006/81087/bvparm2013.cif
297	Cooper, M.A., Hawthorne, F.C., and Grew, E.S. (2009) The crystal chemistry of the
298	kornerupine-prismatine series. I. Crystal structure and site populations. Canadian
299	Mineralogist, 47, 233–262.
300	Ercit, T.S., Anderson, A.J., Černý, P., and Hawthorne, F.C. (1986a) Bobfergusonite, a new
301	phosphate mineral from Cross Lake, Manitoba. Canadian Mineralogist, 24, 599-604.
302	Ercit, T.S., Hawthorne, F.C., and Černý, P. (1986b) The crystal structure of bobfergusonite.
303	Canadian Mineralogist, 24, 605–614.
304	Ercit, T.S., Tait, K., Cooper, M.A., Abdu, Y., Ball, N.A., Anderson, A.J., Černý, P., Hawthorne,
305	F.C., and Galliski, M. (2010) Manitobaite, Na ₁₆ Mn ²⁺ ₂₅ Al ₈ (PO ₄) ₃₀ , a new phosphate

306 mineral from Cross Lake, Manitoba, Canada. Canadian Mineralogist, 48, 1455–1463.

15

12/16

307	Hawthorne, F.C., Ungaretti, L., and Oberti, R. (1995) Site populations in minerals: terminology
308	and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33,
309	907–911.
310	Hughes, J.M., and Rakovan, J. (2002) The crystal structure of apatite, Ca ₅ (PO ₄) ₃ (F,OH,Cl). In
311	M.L. Kohn, J. Rakovan, and J.M. Hughes, Eds., Phosphates: Geochemical, Geobiological
312	and Materials Importance, p. 1–12. Reviews in Mineralogy and Geochemistry Vol. 48,
313	Mineralogical Society of America, Chantilly, Virginia.
314	Hughes, J.M., Cameron, M., and Crowley, K.D. (1989) Structural variations in natural F, OH,
315	and Cl apatites. American Mineralogist, 74, 870-876.
316	(1990) Crystal structures of natural ternary apatites: Solid solution in the $Ca_5(PO_4)_3X$ (X =
317	F,OH,Cl) system. American Mineralogist, 75, 295–304.
318	Hughes, J.M., Ertl, A., Bernhardt, H.J., Rossman, G.R., and Rakovan, J. (2004) Mn-rich
319	fluorapatite from Austria: crystal structure, chemical analysis and spectroscopic
320	investigations. American Mineralogist, 89, 629-632.
321	Kreidler, E.R., and Hummel, F.A. (1970) The crystal chemistry of apatite: structure fields of
322	fluor- and chlorapatite. American Mineralogist, 55, 170-184.
323	Lussier, A., Abdu, Y., Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M., and Kroeker, S. (2011)
324	Oscillatory zoned elbaite-liddicoatite from central Madagascar. I. Crystal chemistry and
325	structure by SREF and ¹¹ B and ²⁷ Al MAS NMR spectroscopy. Canadian Mineralogist,
326	49, 63–88.
327	Mackie, P.E., Elliott, J.C., and Young, R.A. (1972) Monoclinic structure of synthetic
328	Ca ₅ (PO ₄) ₃ Cl, chlorapatite. Acta Crystallographica, B28, 1840-1848.
329	

330	Pasero, M.	Kampf	A.R.	Ferraris.	C.,	Pekov.	LV.	Rakovan, J	L and V	White.	T.J. ((2010)	
550	1 uboro, 111.	, i su iiipi,	· · · · · · · · · · · · · · · · · · ·	i viiuiis,	<i>–</i> .,	renov,	1	, itano van, a	, una i	, me,	1.0. (2010)	

- 331 Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22,
 332 163–179.
- 333 Pieczka, A. (2007) Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite,
- Lower Silesia, Southwestern Poland. Canadian Mineralogist, 45, 901–914.
- Pouchou, J.L., and Pichoir, F. (1985) 'PAP' $\varphi(\rho Z)$ procedure for improved quantitative
- microanalysis. In J.T. Armstrong, Ed., Microbeam Analysis, p. 104–106. San Francisco
 Press, California.
- 338 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- 340 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 341 Sudarsanan, K., Mackie, P.E., and Young, R.A. ((1972) Comparison of synthetic and mineral
- fluorapatite, Ca₅(PO₄)₃F, in crystallographic detail. Materials Research Bulletin, 1972,
 1331-1338.
- Suitch, P.R., Lacout, J.L., Hewat, A.W., and Young, R.A. (1985) The structural location and role
 of Mn²⁺ partially substituted for Ca²⁺ in fluorapatite. Acta Crystallographica, B41, 173–
 179.
- 347 Tait, K.T. (2002) The Crystal Chemistry of the Alluaudite-Group Minerals. MSc thesis,
- 348 University of Manitoba, Winnipeg, Manitoba.
- Tait, K.T., Ercit, T.S., Abdu, Y., Černý, P., and Hawthorne, F.C. (2011) The crystal structure and
- 350 crystal chemistry of manitobaite, ideally $(Na_{16}\Box)Mn^{2+}_{25}Al_8(PO_4)_{30}$, from Cross Lake,
- 351 Manitoba. Canadian Mineralogist, 49, 1221–1242.

12/16

- 352 Yoder, C.N., Fedors, N., Flora, N.J., Brown, H., Hamilton, K., and Schaeffer, C.D. Jr. (2004)
- 353 The existence of pure-phase transition metal hydroxy apatites. Synthesis and Reactivity
- in Inorganic and Metal-Organic Chemistry, 34, 1835-1842.

12/16

356	FIGURE CAPTIONS
357	
358	Figure 1. The (a) Raman and (b) infrared spectra of pieczkaite.
359	
360	Figure 2. Comparison of the stereochemistry around the M1 site in (a) hydroxylapatite,
361	(b) fluorapatite, (c) chlorapatite, (d) pieczkaite; Ca: yellow circles; Mn: violet circles; O: blue
362	circles; the numbers inside the circles indicate the specific anion identifications given in the
363	original papers.
364	
365	Figure 3. Comparison of the stereochemistry around the M2 site in (a) hydroxylapatite,
366	(b) fluorapatite, (c) chlorapatite, (d) pieczkaite; legend as in Fig. 2, plus orange circles represent
367	monovalent anions. All monovalent-anions sites except that of F half-occupied (i.e., disordered
368	off special positions on the 6_3 axis); both sites are shown but only one is locally occupied.
369	
370	Figure 4. Comparison of the stereochemistry around the monovalent-anion site in (a)
371	hydroxylapatite, (b) fluorapatite, (c) chlorapatite, (d) pieczkaite; legend as in Fig. 2, plus orange
372	circles represent monovalent anions.

TABLE 1. Chemical composition (wt%) of pieczkalte									
Constituent	wt%	Range	SD						
P_2O_5	37.52	35.28-39.51	0.83						
MnO	41.77	19.64-47.46	6.51						
FeO	2.45	1.07-3.35	0.56						
CaO	13.78	7.02-33.81	6.22						
CI	3.86	2.88-4.19	0.37						
H ₂ O	0.60								
O = CI	-0.87								
Total	99.11								

4 **Ch** :4:. (1,1,1,0)

I _(meas.) %	<i>d</i> _(meas.) Å	<i>d</i> _(calc.) Å	h	k	Ι	I _(meas.) %	<i>d</i> _(meas.) Å	<i>d</i> _(calc.) Å	h	k	Ι
8	8.231	8.231	0	1	0	17	1.810	1.810	-3	5	1
5	5.026	5.026	0	1	1			1.810	-2	5	1
4	4.116	4.115	0	2	0	16	1.796	1.796	-4	5	0
15	3.453	3.453	0	2	1			1.796	-1	5	0
24	3.174	3.174	0	0	2	22	1.750	1.749	-2	3	3
14	3.111	3.111	-2	3	0			1.749	-1	3	3
		3.111	-1	3	0	14	1.727	1.728	-1	5	1
12	2.961	2.961	0	1	2			1.726	0	4	2
100	2.794	2.793	-2	3	1	10	1.623	1.623	-3	5	2
		2.793	-1	3	1	12	1.587	1.586	0	0	4
88	2.744	2.744	0	3	0			1.584	-3	6	0
34	2.639	2.639	-1	2	2	3	1.563	1.563	-4	5	2
25	2.514	2.518	0	3	1			1.563	-1	5	2
		2.513	0	2	2	7	1.555	1.556	-4	6	0
11	2.283	2.283	-3	4	0			1.556	-2	6	0
		2.283	-1	4	0			1.556	-3	4	3
11	2.224	2.225	-2	4	1			1.552	-1	4	3
		2.222	-2	3	2	3	1.537	1.537	-3	6	1
		2.222	-1	3	2	5	1.511	1.511	-4	6	1
9	2.148	2.148	-3	4	1			1.511	-2	6	1
		2.148	-1	4	1	2	1.478	1.480	0	2	4
6	1.933	1.933	-1	2	3			1.478	-5	6	0
21	1.902	1.902	-2	4	2			1.478	-1	6	0
10	1.889	1.888	-3	5	0			1.475	0	4	3
		1.888	-2	5	0	9	1.461	1.461	0	5	2
25	1.853	1.853	-3	4	2	7	1.440	1.440	-5	6	1
		1.853	-1	4	2			1.440	-1	6	1

 TABLE 2.
 Powder-diffraction data for pieczkaite

a (Å)	9.504(4)
С	6.347(3)
V (Å ³)	496.5(1)
Space group	P6 ₃ /m
Ζ	2
$D_{calc}(g/cm^{3})$	3.783
Radiation/ filter	Μο <i>Κ</i> α
2θ-range for data collection (°)	50.00
R(int) (%)	1.96
Reflections collected	42095
Reflections in Ewald sphere	12637
Independent reflections $F_{o} > 4\sigma F$	2292 2288
Refinement method	Full-matrix least squares on \vec{F}
R _(merge) %	1.96
Final R _{obs} (%) [<i>F</i> °> 4σ <i>F</i>]	$R_{1} = 4.06$
R indices (all data) (%)	R = 2.22
	wR = 5.99
	GooF = 1.126
$R_1 = \Sigma(F_{\rm o} - F_{\rm c}) / \Sigma F_{\rm o} $	
$wR_2 = [\Sigma w (F_o^2 - F_o^2)^2 / \Sigma (F_o^2)^2]^2$, w (14.20 P)], where P = (Max $(F_o^2, 0)^2$)	= $1/[\sigma^2(F_o)^2 + (0.0279 P)^2 +$ + 2 F _o ²) / 3

TABLE 3.Miscellaneous refinement data for pieczkaite

Table 4. Atom coordinates and displacement parameters for pieczkaite

Site	X	У	Z	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	U_{12}	$U_{ m eq}$
M1	1⁄3	2/3	-0.0060(3)	0.0092(8)	0.0092(8)	0.0203(12)	0	0	0.0046(4)	0.0129(7)
M2	0.7291(2)	0.7532(2)	1/4	0.030(6)	0.0186(10)	0.0227(10)	0	0	0.0148(8)	0.0225(7)
Р	0.5955(3)	0.9725(3)	1/4	0.0090(12)	0.0066(12)	0.0267(14)	0	0	0.0034(10)	0.0143(8)
Х	0	0	0.2179(13)	0.021(2)						
O(1)	0.6486(8)	0.1527(8)	1/4	0.018(3)	0.007(3)	0.027(4)	0	0	0.003(3)	0.0186(16)
O(2)	0.4081(8)	0.8675(8)	1/4	0.006(3)	0.009(3)	0.050(5)	0	0	0.002(3)	0.0226(18)
O(3)	0.6565(6)	0.9219(6)	0.0564(9)	0.029(3)	0.021(3)	0.029(3)	-0.001(2)	0.001(2)	0.018(2)	0.0243(13)

TABLE 5. Selected interatomic distances (Å) in pieczkaite

M1-O1a,b,c	2.254(5)		M2-O2e	2.233(7)
M1-O2,d,e	2.331(5)		M2-O3f,g	2.163(6)
M1-O3	2.833(5)		M2-O3,h	2.379(5)
			M2-Xi	2.477(2)
P-O1f	1.525(7)			
P-02	1.547(7)			
P-03,g	1.535(5)			
<p-0></p-0>	1.536			
a: <i>y</i> , - <i>x</i> + <i>y</i> +1,	<i>z</i> ; b: - <i>x</i> +1,	- <i>y</i> +1,- <i>z</i> ;	c: <i>x-y</i> , <i>x</i> , <i>-z</i> ; d:	- <i>y</i> +1, <i>x</i> -

y+1, z; e: -x+y, -x+1, z; f: x-y+1, x, -z; g: x-y+1, x, z+¹/₂; h: x, y, $-z+^{1}/_{2}$; i: x+1, y+1, z; j: x+1, y+1, $-z+^{1}/_{2}$.

 TABLE 6.
 Refined site-scattering values and site populations for pieczkaite

Site	Site scattering (epfu)	Site population (apfu)	Mean bondlength (Å)
M1	45.8(6)	1.15 Mn* + 0.85 Ca	2.293
M2	72.3(9)	2.46* Mn + 0.54 Ca	2.324
Х	15.9(4)	0.72 Cl + 0.28 (OH)	
* inclu	udes 0.26 Fe.		

TABLE 7.Bond valences (v.u.) for pieczkaite*

	M1	M2	Р	Σ
01	$0.359 \ ^{x3\downarrow} x^{2 \rightarrow}$		1.282	2.000
02	$0.292 \xrightarrow{x_{3\downarrow} x_{2\rightarrow}}$	0.335	1.208	2.127
O3	[0.075 ^{x3↓}]	0.405 ^{x2↓} 0.226 ^{x2↓}	1.248 ^{x2↓}	1.879 [1.954]
Х	*	**0.377 ^{x3→}		1.131
Σ	1.953 [2.151]	1.974	4.986	

*calculated with the parameters of Brown (2013) and Brese and O'Keeffe (1991);

** the X-site is half occupied and hence contributes x1 summed around M2.

	$Ca_{2}(PO_{4})_{2}(OH)$	Ca ₂ (PO ₄) ₂ F	Pieczkaite	(,,	Ca	a₂(PO₄)₂Cl		
	003(1 04)3(011)	003(1 0473)	11002.10.10				-3(1 04)301		
M1-O1 x3	2.404	2.392	2.254	Ca1	2.426, 2.371, 2.447	Ca2	2.387, 2.398, 2.438		
M1-O2 x3	2.451	2.451	2.331	Ca1	2.416, 2.395, 2.478	Ca2	2.498, 2.438, 2.412		
M1-O3 x3	2.802	2.810	2.833	Ca1	2.942, 2.851, 2.654	Ca2	2.942, 2.729, 2.664		
<m1-0></m1-0>	2.552	2.551	2.473	Ca1	2.553	Ca2	2.545		
M2-O1	2.710	2.818	3.161	Ca3	2.965	Ca4	2.973	Ca5	2.972
M2-O2	2.353	2.384	2.233	Ca3	2.296	Ca4	2.300	Ca5	2.299
M2-O3 x2	2.343	2.395	2.163	Ca3	2.314, 2.361	Ca4	2.357, 2.323	Ca5	2.321, 2.351
M2-O3 x2	2.509	2.383	2.380	Ca3	2.470, 2.609	Ca4	2.556, 2.507	Ca5	2.459, 2.620
M2-X	2.385 x2	2.229 x2	2.477 x2	Ca3	2.789, 3.236	Ca4	2.813, 3.218	Ca5	2.800, 3.234

TABLE 8. Comparison of selected interatomic distances (Å) in some apatite-supergroup structures

TABLE 9.	Interatomic distances and corresponding bond-valences								
	X-Ca (Å)	Bond valence (v.u.)	Bond-valence sum (v.u.)						
Ca ₃ (PO ₄) ₃ F	2.229	0.351	1.05						
Ca ₃ (PO ₄) ₃ (O	H) 2.385	0.323	0.97						
Ca ₃ (PO ₄) ₃ Cl	2.801	0.312	0.94						
Pieczkaite	2.477	0.340	1.02						

FIGURE 1

FIGURE 2

12/16

FIGURE 3

FIGURE 4