Complex IR spectra of OH$^{-}$ groups in silicate glasses: implications for the use of the 4500 cm$^{-1}$ IR peak as a marker of OH$^{-}$ groups concentration

Charles Le Losq1, George D. Cody1, Bjorn O. Mysen1

1: Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington D.C. 20015, U.S.A.

*Corresponding author: clelosq@carnegiescience.edu

Keywords: Water speciation, FTIR spectroscopy, O-H stretch signal, silicate glasses

Abstract

Previous studies of hydrous glasses and melts with infrared spectroscopy have led to the conclusion that the IR combination peaks near 4500 and 5200 cm$^{-1}$ reflect the existence of OH$^{-}$ (hydroxyl) groups and H$_2$O$_{mol}$ water molecules in those materials. Here, we show that the glass chemical composition can impact profoundly the intensities and frequencies of the fundamental O-H stretching signal and, therefore, potentially those of the 4500 and 5200 cm$^{-1}$ combination peaks. In alkali silicate glasses, compositional effects can give rise to peaks assigned to fundamental O-H stretching at frequencies as low as 2300 cm$^{-1}$. This expanded range of Raman intensity assigned to O-H stretch is increasingly important as the ionic radius of the alkali metal increases. As a result, the combination of the fundamental O-H stretch in OH$^{-}$ groups with the Si-O-H stretch located near 910 cm$^{-1}$ gives rise to a complex combination signal that can extend to frequencies much lower than 4200 cm$^{-1}$. This combination signal then becomes unresolvable from the high-frequency limb of the band...
assigned to fundamental O-H stretch vibration in the infrared spectra. It follows that, when O-H stretch signals from OH\(^-\) groups extend to below 3000 cm\(^{-1}\), the 4500 cm\(^{-1}\) peak does not represent the total OH\(^-\) signal. Under such circumstances, this infrared peak may not be a good proxy for determining the concentration of OH\(^-\) hydroxyl groups for glassy silicate materials.

Introduction

Water dramatically affects the physical properties of silicate melts and glasses (see the review by Mysen & Richet, 2005), and, as a result, is of key importance in both industrial and geologic processes. An important feature of water dissolved in glassy and molten silicate materials is that it exists both as molecules (H\(_2\)O\(_{\text{mol}}\)) and as hydroxyl groups (OH\(^-\)) bonded to the silicate network. It has often been stated that those two different species give rise to IR combination peaks at \(\sim\)5200 and \(\sim\)4500 cm\(^{-1}\) respectively (Davis & Tomozawa, 1996; Efimov & Pogareva, 2006; Malfait, 2009; Scholtze, 1960; Stolper, 1982). The OH\(^-\) groups are bonded to the tetrahedral network of silicate glasses and melts, forming Si-OH and Al-OH bonds by breakage of bridging oxygen bonds (Si-O-Si, Al-O-Al, and Si-O-Al) (see for instance Moulson & Roberts, 1961; Scholtze, 1960; Stolen & Walrafen, 1976; Stolper, 1982). This solution mechanism results in depolymerization of the silicate network (see for instance the study of Mysen & Cody, 2005). In contrast, water dissolved in the form of H\(_2\)O\(_{\text{mol}}\) species does not change melt polymerization. As a result, the dissolution of water as OH\(^-\) groups or as H\(_2\)O\(_{\text{mol}}\) species has different effects on the polymerization and hence properties of hydrous silicate amorphous materials. These differences are reflected in transport properties of hydrous melts, glass transition temperature (see for instance Deubener et al., 2003), solidus
temperatures, melt/mineral phase equilibria, and element partitioning (see for a review Mysen and Richet, 2005).

The water speciation, in terms of $\text{H}_2\text{O}_{\text{mol}}$ species and OH^- groups, varies with total water concentration and temperature (Behrens & Yamashita, 2008; Nowak & Behrens, 1995; Stolper, 1982). It also depends on composition (Deubener et al., 2003; Moretti et al., 2014). However, it is not known how temperature effects vary with bulk composition, and how bulk compositional variables govern solution mechanisms and solubility.

FTIR spectroscopy may be used to examine such effects by using the combination peaks often located near 4500 and 5200 cm$^{-1}$ in the spectra. However, as a first step, it is necessary to ascertain exactly what governs the frequency and integrated intensity of the 4500 and 5200 cm$^{-1}$ combination peaks in the IR spectra of hydrous silicate glasses (and melts). An example of this is the recent work of Malfait (2009) who concluded that the 4500 cm$^{-1}$ IR peak is formed by the combination of the fundamental O-H stretching mode at ~3600 cm$^{-1}$ with the Si-O-H, and presumed Al-O-H, stretching vibrational mode. The Al-O-H vibrational mode can occur near 800 cm$^{-1}$, whereas the Si-O-H is near 920 cm$^{-1}$. Combined with the fundamental O-H stretching mode at 3600 cm$^{-1}$ in simple aluminosilicate glasses, the exact frequency of the 4500 cm$^{-1}$ would be somewhat correlated, therefore, with the Al/Si of the glass. Concerning the 5200 cm$^{-1}$ peak, it is attributed to arise from the combination of the 3600 cm$^{-1}$ stretching and 1630 cm$^{-1}$ bending modes of $\text{H}_2\text{O}_{\text{mol}}$ species (Scholtze, 1960; Stolper, 1982).

The infrared signal assigned to O-H stretch in OH^- and $\text{H}_2\text{O}_{\text{mol}}$ species, usually characterized by an asymmetric band centered near 3600 cm$^{-1}$, can have a complex shape in some silicate glasses, where broad bands extend into the 2000-3000 cm$^{-1}$ frequency range (see for instance data on sodium silicate glasses of Uchino et al., 1991; Zotov & Keppler, 1998). If
those bands are from OH− groups, then their combination with the Si-O-H stretch mode located near 910 cm-1 (Zotov & Keppler, 1998) will give OH− combination signals at frequencies significantly lower than 4500 cm-1. However, if the low-frequency signals are from O-H stretch in H\textsubscript{2}O\textsubscript{mol} species, their combination with the H\textsubscript{2}O\textsubscript{mol} bending mode near 1630 cm-1 will result in signals in the range of the OH− combination peak. In both cases, using the intensities of the 4500 and 5200 cm-1 peaks would be not appropriate to determine the [OH−] and [H\textsubscript{2}O\textsubscript{mol}] concentration in the glass. To evaluate impacts of such effect and their consequence for the determination of [OH−] and [H\textsubscript{2}O\textsubscript{mol}], we studied alkali (Li, Na, K) silicate glasses containing different amount of dissolved water by using FTIR and Raman spectroscopies.

Experimental methods

Anhydrous KS4 (K\textsubscript{2}Si\textsubscript{4}O\textsubscript{9}), NS4 (Na\textsubscript{2}Si\textsubscript{4}O\textsubscript{9}) and LS4 (Li\textsubscript{2}Si\textsubscript{4}O\textsubscript{9}) glasses were synthetized by mixing pure anhydrous SiO\textsubscript{2}, K\textsubscript{2}CO\textsubscript{3}, Na\textsubscript{2}CO\textsubscript{3} and Li\textsubscript{2}CO\textsubscript{3} powders and grinding them under ethanol for about 1 hour. The powders were placed in a Pt crucible and heated at about 1.5°/min until reaching 1000°C before bringing the samples to complete melting. Melting was accomplished near 1200°C for the KS4 composition, 1400 °C for the NS4 composition, and 1600°C for the LS4 composition, in agreement with their respective liquidus temperature (Eppler, 1963; Schairer & Bowen, 1955; Schairer & Bowen, 1956). Melts were quenched to glass by placing the bottom of the crucible in liquid H\textsubscript{2}O. The resulting starting materials were stored at 110°C to avoid reaction with atmospheric water, an effect particularly critical for the KS4 glass (Schairer & Bowen, 1955). Chemical analysis of the starting glasses, shown in Table 1, were obtained by using a JEOL FE-SEM equipped with an energy dispersive
spectrometer. Measurements were performed on 25 x 25 micron areas with a 15 kV and 1.04 nA current. Lithium was quantified by difference.

Hydrous glasses were synthesized by melting the starting glasses together with known amounts of H$_2$O in a piston-cylinder apparatus (Boyd & England, 1960). To this end, glasses were first crushed to powder in ethanol, and then heat-treated at 400°C for 1 hour to ensure complete removal of the ethanol. Then, glass powder and liquid H$_2$O were added in ~10 mm long, 5 mm diameter platinum capsules, which were welded shut and placed in ¼-inch diameter furnace assemblies, based on the design of Kushiro (1976). The products were then subjected to the desired pressure (1.5 GPa) and temperature (1450 °C for NS4, 1550 °C for KS4 and 1650 °C for LS4) for 90 minutes. Temperatures were measured with type S thermocouples with no correction for pressure on their emf. Such pressure effects may be as much as 10°C (Mao et al., 1971). Pressure was calibrated against the melting point of NaCl and the calcite-aragonite transformation (Bohlen, 1984). Estimated uncertainties are ~10°C and ~0.1 GPa, respectively.

Transmission infrared spectra were recorded using a Jasco® IMV-4000 multi-channel infrared spectrometer with a 10X objective, an MCT detector and the standard light source, a 100µm aperture, and 1000 acquisitions. The hydrous glasses were double-polished to a thickness in the 20-110 µm range by using oil in order to avoid any reaction of their surface with water. For KS4 composition glasses, two sets of samples were used. One was ~20 µm thick and was used for recording the 3600 cm$^{-1}$ O-H stretching band. However, those ~20 µm samples were too thin for acquisition of combination signals. Consequently, another thicker set of samples (~100 µm) were prepared for this purpose. The glass samples were placed on BaF$_2$ windows during measurements. After each spectrum, the sample was moved aside and a background spectrum was recorded at the same spot. Division of sample spectra by
background spectra gave the final absorbance spectra, which were normalized to samples thicknesses.

Raman spectra were recorded using a Jasco® NRS3100 spectrometer, equipped with a holographic notch filter, a single monochromator, and a 1024x128 Andor® DV401-F1 CCD Peltier-cooled at -71°C. A Coherent® solid laser line of 490 nm was used to excite samples, with a power of ~44 mW on the sample. The laser beam was focused through a 50X Olympus® lens. Measurements were done with a 1200 grooves/mm grating. Frequency accuracy of the Raman spectrometer was checked by using the 520.7 cm\(^{-1}\) Raman peak of pure silicon. All spectra are unpolarized. After acquisition, a baseline constrained in the spectral portions devoid of signal near 2000 and 3900 cm\(^{-1}\) was subtracted from the spectra. The intensities of baseline-subtracted spectra were normalized to their total spectral area (calculated between 250 and 3900 cm\(^{-1}\)). Further details about spectra processing are available in Le Losq et al. (2014a).

Total water concentration of glasses was estimated by using the FTIR and Raman spectra. Absorption coefficients for the 4500 and 5200 cm\(^{-1}\) IR peaks in NS4 glasses are available in the literature. We used the protocol of Yamashita et al. (2008) together with their absorption coefficients, which were derived by using total water concentrations determined independently with Karl-Fisher titration. Because of that and despite the fact that the present study will discuss the use of the 4500 cm\(^{-1}\) IR peak for inferring [OH\(^-\)] abundance, the FTIR-based [OH\(^-\)] + [H\(_2\)O\(_{mol}\)] sum is not affected by possible error in the assignments and attributions of the IR absorption peaks. As IR absorption coefficients are not available for KS4 and LS4 glasses, Raman spectroscopy was used to estimate the water concentration of these glasses. A protocol similar to that described in Le Losq et al. (2012) was used. The variations of the areas of the Raman signals assigned to O-H stretching, located between 2000
and 4000 cm\(^{-1}\), was calibrated with the FTIR-based total water concentrations of the same NS4 glasses. This calibration was then used with the other LS4 and KS4 glass series to determine their water concentration. More details are available in Le Losq et al. (2014a). Table 2 reports the measured water concentrations of the glasses.

Results

In the FTIR spectra of hydrous alkali silicate glasses, strong peaks at \(~1630\) (\(\nu_{B} H-O-H\)), \(~2350\) (A in Fig. 1), \(~2800\) (B in Fig. 1) and \(~3570\) cm\(^{-1}\) (C in Fig. 1) are observed. The IR spectra of hydrous NS4 glasses are similar to those previously published for NS4 hydrous compositions (e.g., Uchino et al., 1991; Zotov & Keppler, 1998). Spectra of hydrous KS4 and LS4 glasses have not been reported in the literature to our knowledge.

The three peaks (A, B, and C) in the 2000-4000 cm\(^{-1}\) portion of FTIR spectra are attributed to stretching of O-H bonds in \(H_{2}O_{mol}\) and \(OH^{-}\) groups. The 1630 cm\(^{-1}\) peak is assigned to the bending vibrational mode of \(H_{2}O_{mol}\) species (Bartholomew et al., 1980; Scholtze, 1960; Uchino et al., 1991; Wu, 1980; Zotov & Keppler, 1998). The other small peaks located at frequencies below 2000 cm\(^{-1}\) probably arise from overtones of the vibrational modes of the glass silicate network (see the study of Efimov & Pogareva, 2006 for instance) and are neglected because of their minor importance regarding the topic of this study. Above 3800 cm\(^{-1}\), peaks from the combination modes are present but not visible at the scale of Figure 1. They will be discussed in detail latter.

In the IR spectra of all glasses, the peaks A and B are broad, whereas the peak C is considerably sharper. Absorbance values of those peaks are reported in Table 2. At given water concentration, the absorbance intensities vary strongly as a function of the ionic radius of the alkali metal (Fig. 1). The absorbance intensities of peaks A and B increase strongly...
with increasing ionic radius of alkali, whereas that of peak C decreases. In a given composition, increasing water content results in a general absorbance increase of all contributions, but the absorbance of the ~3600 cm\(^{-1}\) contribution increases slightly more rapidly than the others (Table 2 and Fig. 1).

The three peaks in the infrared spectra, A, B and C, are also visible in Raman spectra of the same glasses (Fig. 2). As already emphasized by FTIR data (Fig. 1), the comparison of the spectra of the silicate glasses containing 17.6 mol% H\(_2\)O highlights that with increasing the ionic radius of the alkali, peaks A and B grow at the expense of the peak C. For comparison purposes, the Raman spectrum of a pure SiO\(_2\) glass with 20 mol% H\(_2\)O is also reported in Figure 2. In this latter spectrum, the signal intensity below 3000 cm\(^{-1}\) is negligible compared with the intensity between 3000 and 4000 cm\(^{-1}\). The two peaks located near 3595 and 3650 cm\(^{-1}\) can be attributed to O-H stretching from OH\(^-\) groups in different environments (the 3595 cm\(^{-1}\) peak is only observed in H\(_2\)O-rich silica glasses), but their attribution remains unclear and is subjected to speculation (see for instance the studies of Davis & Tomozawa, 1996; Efimov & Pogareva, 2006; Holtz et al., 1996; Mysen & Virgo, 1986a).

The shape of the peaks near 4500 and 5200 cm\(^{-1}\) in the IR spectra also varies significantly with the glass composition at given total water content (Fig. 3). In IR spectra of the LS4 glasses, two asymmetric peaks are observed at ~4520 and ~5240 cm\(^{-1}\). Their intensities increase with increasing water concentration, but in different ways. The ~4520 cm\(^{-1}\) peak is more intense than the ~5240 cm\(^{-1}\) peak in the IR spectrum of the LS4 + 3.3 mol% H\(_2\)O glass (Figs. 3, 4). In contrast, at 17.6 mol% H\(_2\)O, the ~5240 cm\(^{-1}\) peak is more intense than the ~4520 cm\(^{-1}\). Therefore, the intensity of the ~4520 cm\(^{-1}\) peak increases less and less with water addition, whereas that of the ~5240 cm\(^{-1}\) peak shows an opposite trend (Fig. 4). If these two IR peaks are attributed to OH\(^-\) (4520 cm\(^{-1}\)) and H\(_2\)O\(_{mol}\) (5240 cm\(^{-1}\)) species, as has
commonly been the case (see Introduction), their intensity variations are consistent with a
decrease of the OH/H$_2$O$_{mol}$ ratio with increasing water concentration in LS4 glass. In addition
to those two peaks, a small and broad peak near 4000 cm$^{-1}$ is visible. This peak is well
separated from the \sim4520 cm$^{-1}$ peak (Fig. 3, LS4 spectra). Its intensity increases with water
concentration, but is also affected by the high-frequency tail of the 3600 cm$^{-1}$ peak. Indeed,
this tail shifts toward high frequency and probably varies in intensity with increasing water
concentration (Fig. 3). This topological evolution probably affects the shape of the peak
located near 4000 cm$^{-1}$. The origin of the latter is unresolved but may involve unidentified
combination modes of both H$_2$O$_{mol}$ and OH$^-$ species (see the discussion of Stolper, 1982 and
also Davis & Tomozawa, 1996; Efimov & Pogareva, 2006).

The three peaks near 4000, 4520 and 5236 cm$^{-1}$ also are observed in the IR spectra of
NS4 hydrous glasses. Their intensities vary with water concentration in a way similar to that
observed in the LS4 spectra (Figs. 3, 4). However, the separation of the \sim4000 and \sim4520 cm$^{-1}$
peaks is less pronounced in NS4 spectra than in LS4 spectra (Fig. 3). It becomes even less
pronounced in the KS4 spectra, in which the peaks in the 3900-4700 cm$^{-1}$ range are poorly
defined (Fig. 3). In the KS4 + 3.3 mol% H$_2$O spectrum, a small peak at \sim4510 cm$^{-1}$ is
observed, and there is no peak near 5200 cm$^{-1}$. No peak is observed near 4000 cm$^{-1}$, but the
high-frequency end of the 3600 cm$^{-1}$ O-H stretch band affects the intensity of the spectrum in
the 3800-4200 portion of spectra (Fig. 3). In the KS4 + 9.4 mol% H$_2$O glass spectrum, the
\sim4510 cm$^{-1}$ peak is barely visible. The IR absorbance between 3800 and 4800 cm$^{-1}$ shows a
global, nearly linear, decay. There is no intensity near 5200 cm$^{-1}$ in this spectrum. At 17.6
mol% H$_2$O, the \sim4510 cm$^{-1}$ contribution is very broad and preceded by another broad small
peak centered near 4050 cm$^{-1}$. Finally, a small symmetric peak is present at \sim5230 cm$^{-1}$ in the
spectrum of this water-rich composition.
The absence of the ~5200 cm\(^{-1}\) peak in the IR spectra of the KS4 with 3.3 and 9.4 mol% H\(_2\)O and its low intensity in the spectrum of KS4 with 17.6 mol% H\(_2\)O (Figs. 3, 4) indicate that essentially all the water is present as OH\(^{-}\) groups in KS4 compositions, in agreement with results from \(^1\)H NMR spectroscopy (Le Losq et al., 2014a). In addition, the IR results and previous \(^1\)H NMR data (Le Losq et al., 2014a) both indicate that, at fixed water concentration, the OH\(^{-}/\)H\(_2\)O\(_{\text{mol}}\) ratio increases strongly with increasing ionic radius of alkali in the order Li < Na < K (Fig. 3; Le Losq et al., 2014a). However, despite their very high OH\(^{-}/\)H\(_2\)O\(_{\text{mol}}\) ratios, the KS4 hydrous glasses show the less resolved OH\(^{-}\) combination peaks in their IR spectra in comparison to the NS4 and LS4 compositions (Fig. 3). Interestingly, they also show the highest intensities in the 4000-4700 cm\(^{-1}\) portion of spectra (see comparison in Fig. 5).

Discussion

Increasing the ionic radius of the alkali cation in hydrous silicate glasses, formed by quenching melts equilibrated at high temperature and pressure, produces in both the FTIR and Raman spectra a strong intensity increase of two peaks at frequencies below 3000 cm\(^{-1}\) and attributed to O-H stretch in H\(_2\)O\(_{\text{mol}}\) and OH\(^{-}\) groups (Figs. 1, 2 and 5). The exact frequency of the contribution B also decreases by ~100 cm\(^{-1}\) with increasing the alkali ionic radius (Figs. 2, 5). Such effect probably arises from the modification of the inter-oxygen O-O distance around protons (e.g. the distance of O-H\(^{-}\)O bonds, with \(^{-}\) hydrogen bond) as a function of the ionic radius of the alkali. Indeed, from \(^1\)H NMR spectroscopy of the same alkali silicate glasses, a decrease of the mean O-O distance around protons does occur with increasing the ionic radius of the alkali (Le Losq et al., 2014a). This mean O-O distance is ~287 pm in LS4 glasses and ~255 pm in KS4 glasses (Le Losq et al., 2014a). The frequency of the IR and Raman bands...
assigned to O-H stretching is related to the inter-oxygen O-O distance around protons (Nakamoto et al., 1955; Novak, 1974; Wall & Hornig, 1965). From the data compilation of Novak (1974), the mean O-O distances of ~287 and ~255 pm correspond to mean O-H stretch frequency of ~3500 and ~2300 cm⁻¹, respectively. These frequencies correspond to the main peaks C and A in the FTIR and Raman spectra of LS4 and KS4 glasses (Figs. 2, 3). Therefore, FTIR and Raman data confirm that increasing the alkali ionic radius in hydrous binary silicate glasses promotes a decrease of O-O distances around protons.

An increase of the alkali ionic radius also results in a significant increase of the OH⁻/H₂O_mol ratio, so that the hydrous KS4 glasses, for example, contain mostly OH⁻ groups at least up to the maximum total water content of this study (17.6 mol % H₂O). Given that peaks A and B are well expressed in the KS4 glasses (Figs. 1, 2, 3 and 5), it appears that those two peaks arise from O-H stretch in OH⁻ groups. Therefore, their combination with the Si-O-H stretch vibrational mode located near 910 cm⁻¹ (Fig. 2) must give a complex OH⁻ combination signal. This is indeed observed when superimposing the spectra of the 17.6 mol% glasses (Fig. 5, bottom). As the alkali ionic radius increases, the intensity of peaks A and B increase. As a result, the intensity between 4100 and 4400 cm⁻¹ also increases (arrow in Fig. 5, bottom), and the signal between 4000 and 4700 cm⁻¹ becomes less and less resolved. Consequently, the combination of the O-H fundamental stretch signals from OH⁻ groups with the signal assigned to Si-O-H stretching can result in a broad combination signal that extends from 4700 cm⁻¹ down to at least 3800 cm⁻¹, and thus becomes mixed with the unattributed ~4000 cm⁻¹ peak and with the high-frequency end of the O-H stretching band in the IR spectra (Fig. 5).

Implication
The IR combination signal of OH− groups is often reported to be near 4500 cm−1 because most of the signals assigned to O-H stretch are located above 3000 cm−1 in many aluminosilicate glasses (Stolper, 1982). However, the data reported here show that IR combination signals used to study the speciation of water in glasses and melts can be complex because of the strong dependence of the O-H stretch frequency on the O-O distances around protons, and hence, on the glass structure. In any study of hydrous silicate glasses, the strong dependence of the proton environment as a function of the type of metallic cation within the silicate network of glasses must be kept in mind, because this dependence affects the IR combination signals and therefore the accuracy of the determination of water speciation with IR spectroscopy. The combination peaks in IR spectra of alkali-rich or alkaline-earth rich natural compositions, such as alkali phonolite and phono-trachyte for instance, may, therefore, be broadened as illustrated in the simple compositions used in this study. However, this is purely speculative at this time and has to be investigated. In all cases, we advise users to check the occurrence and importance of low-frequency (<3000 cm−1) O-H stretching signals in glasses before using the 4500 and 5200 cm−1 combination peaks as proxies for [OH−] or [H\textsubscript{2}O\textsubscript{mol}]. If those low-frequency O-H stretching signals are significant, any use of the combination peaks to determine [OH−] or [H\textsubscript{2}O\textsubscript{mol}] is problematic.

Acknowledgements

We thank John Armstrong (GL-CIW) for his help with S.E.M analyses of the glasses. We also acknowledge Zoltan Zajacz, an anonymous reviewer and the associate editor Grant Henderson for their helpful comments that helped improving this manuscript. This research was partially supported by grants EAR1212754 and EAR1251931 to B.O.M. and the NASA Astrobiology Institute.
References

Table 1: Chemical composition of LS4, NS4 and KS4 anhydrous glasses. nom. mol%, nom. wt% and meas. wt% refer respectively to the nominal compositions in mol and wt%, and to the measured composition in wt%. *Lithium has been determined by difference. Errors are given at the 1σ confidence interval.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Li₂O*</th>
<th>Na₂O</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nom. mol%</td>
<td>80.00</td>
<td>20.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>nom. wt%</td>
<td>88.94</td>
<td>11.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>meas. wt%</td>
<td>88.77(94)</td>
<td>11.23(75)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>NS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nom. mol%</td>
<td>80.0</td>
<td>20.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>nom. wt%</td>
<td>79.50</td>
<td>0.00</td>
<td>20.50</td>
<td>0.00</td>
</tr>
<tr>
<td>meas. wt%</td>
<td>80.38(36)</td>
<td>n.a.</td>
<td>19.62(31)</td>
<td>n.a.</td>
</tr>
<tr>
<td>KS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nom. mol%</td>
<td>80.0</td>
<td>20.0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>nom. wt%</td>
<td>71.84</td>
<td>0.00</td>
<td>0.00</td>
<td>28.16</td>
</tr>
<tr>
<td>meas. wt%</td>
<td>71.16(49)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>28.84(28)</td>
</tr>
</tbody>
</table>
Table 2: Water concentration in mol and wt% of glasses. Nom.: nominal water concentration.

I_A, I_B and I_C FTIR absorbance intensities correspond to those observed on Fig. 1 for peaks A, B and C (as this is for indicative purpose, no error are indicated). Errors are given at the 2σ confidence interval.

<table>
<thead>
<tr>
<th>Glass</th>
<th>nom. mol% H$_2$O</th>
<th>nom. wt% H$_2$O</th>
<th>Wt% H$_2$O FTIR absorption, cm$^{-1}$</th>
<th>FTIR</th>
<th>RAMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS4</td>
<td>3.28</td>
<td>1.12</td>
<td>-</td>
<td>0.97(30)</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>9.40</td>
<td>3.35</td>
<td>-</td>
<td>3.61(30)</td>
<td>98.3</td>
</tr>
<tr>
<td></td>
<td>17.64</td>
<td>6.67</td>
<td>-</td>
<td>6.75(30)</td>
<td>190.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS4</td>
<td>3.28</td>
<td>1.00</td>
<td>1.21(12)</td>
<td>0.98(30)</td>
<td>96.4</td>
</tr>
<tr>
<td></td>
<td>9.40</td>
<td>3.00</td>
<td>2.89(18)</td>
<td>3.25(30)</td>
<td>238.6</td>
</tr>
<tr>
<td></td>
<td>17.64</td>
<td>6.00</td>
<td>6.00(29)</td>
<td>5.96(30)</td>
<td>500.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS4</td>
<td>3.28</td>
<td>0.90</td>
<td>1.04(30)</td>
<td>172.4</td>
<td>166.0</td>
</tr>
<tr>
<td></td>
<td>9.40</td>
<td>2.71</td>
<td>-</td>
<td>2.76(30)</td>
<td>344.6</td>
</tr>
<tr>
<td></td>
<td>17.64</td>
<td>5.44</td>
<td>-</td>
<td>4.84(30)</td>
<td>702.1</td>
</tr>
</tbody>
</table>
Figure 1: FTIR spectra of LS4 (top), NS4 (middle) and KS4 (bottom) glasses with 0.0, 3.3, 9.4 and 17.6 nom. mol% water (from bottom to top in the figures respectively). A, B and C are visual markers for the three observed peaks attributed to the O-H stretch (ν_s O-H) in H$_2$O$_{mol}$ and OH$^-$ groups. The peak at 1630 cm$^{-1}$ arises from the bending of H$_2$O$_{mol}$ (ν_B H-O-H). Signal below 1300 cm$^{-1}$ is at saturation and therefore not shown here. Spectra are offset of 5 absorbance units for clarity.

Figure 2: Raman O-H stretching signal in the KS4, NS4 and LS4 glasses with 17.6 nom. mol% H$_2$O. For comparison, the peak assigned to O-H stretch in a SiO$_2$ glass with 20 mol% H$_2$O is also shown (made at 1.5 GPa - 1650°C). A, B and C are visual markers for the three observed peaks (see also Figure 1). Small sharp peaks near 2330 cm$^{-1}$ arise from the N$_2$ atmospheric signal. Insert: signals from the Si-O-Si bending (the 500 cm$^{-1}$ band) and the Si-O stretching modes (the 1100 cm$^{-1}$ band) of the KS4 + 17.6 mol% H$_2$O are shown (see Le Losq et al., 2014b; Mysen, 1990; Mysen & Cody, 2005; Mysen et al., 1982 for more details and attributions for silicate species); the signal from the Si-O-H stretch may give rise to the peak near 910 cm$^{-1}$ that is perfectly visible on this spectrum (Malfait, 2009; Spiekermann et al., 2012; Zotov & Keppler, 1998).

Figure 3: Details of the 3800 - 5600 cm$^{-1}$ region of the FTIR spectra of KS4, NS4 and LS4 glasses. From bottom to top in the figures: 0.0, 3.3, 9.4, 17.6 nom. mol% H$_2$O. Spectra are offset of 1 absorbance unit for clarity. The dotted lines indicate the presence of peaks in the spectra (see text).
Figure 4: Absorbance of the peaks located at ~4500 and ~5200 cm\(^{-1}\), observed on the spectra of hydrous glasses presented in Figure 3, reported as a function of the nominal water content of glasses. Absorbance was measured at the maximum intensity of peaks. Please note that those values were measured on spectra for which no background subtraction was applied, so that those values cannot be used to retrieve the water concentration of the glasses. Lines are guides for the eyes.

Figure 5: Top: 2000-4000 cm\(^{-1}\) portion of spectra of 17.6 mol\% H\(_2\)O KS4, NS4 and LS4 glasses, the A, B and C marker correspond to those on figure 1; Bottom: 3800 - 5600 cm\(^{-1}\) region of same spectra. The arrows are used as visual marker for highlighting the effects produced by an increase of the ionic radius of the alkali in the glasses (see text).
Combined modes (see Fig. 3)
Increasing ionic radius of the alkali
Decreasing O-O distance of O-H-O bonds

Absorbance

Wavenumber, cm$^{-1}$