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Abstract 12 
In the present study, we computed the thermo-chemical and thermo-physical properties of the 2M1 13 
polytype of muscovite in the 0 – 10 GPa and 0 – 900 K ranges, using the hybrid DFT/B3LYP-D* 14 
density functional, corrected to take into account dispersive forces, and by using the quasi-harmonic 15 
approximation. The bulk modulus KT0 of muscovite, its first derivative K’ and the unit-cell volume 16 
at zero pressure V0 at 298.15 K, calculated using a third-order Birch-Murnaghan equation of state, 17 
were KT0 = 59.93 GPa, K’ = 7.84 and V0 = 940.6 Å3. Our theoretical data are in good agreement 18 
with previous experimental results obtained by X-ray diffraction. Thermal bulk moduli, KT, thermal 19 
expansion coefficients, αT, and heat capacity at different P,T conditions are given, which could be 20 
useful in both geophysical and technological applications. The results of this kind of analysis can be 21 
used in the study of the thermodynamic properties of solid phases at physical conditions that are 22 
difficult to obtain during experimental procedures, especially under controlled high pressures and 23 
temperatures. 24 
Keywords  DFT, Quasi-harmonic approximation, Muscovite, Phonons, Thermal equation of state, 25 
Thermochemistry  26 
 27 
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 28 
INTRODUCTION 29 
White dioctahedral micas (2:1 phyllosilicates) play a crucial role in most petrogenetic processes, in 30 
both magmatic and low- and medium-pressure metamorphic environments. For example, muscovite 31 
commonly occurs in metamorphic rocks and has been used as marker to estimate the P-T conditions 32 
of crystallization. Among the physical properties of interest, one of the most important parameters 33 
is the equation of state, which is the pressure- and temperature-dependence of the mineral unit-cell 34 
volume. Such equation is necessary for calculating the P-T conditions of mineral reactions. 35 
Understanding the mineral thermoelastic behavior is important to provide a reliable basis for 36 
interpretation and prediction of phase equilibria, as they are used as geothermometers and 37 
geobarometers (Guidotti and Sassi, 1976; Putnis, 1992; Guidotti et al., 1994; Guidotti and Sassi, 38 
2002). To a first approximation, the rock-forming white micas can be described as crystalline 39 
solutions among the three end-members: muscovite (Ms), paragonite (Pg) and margarite (Mg). In 40 
the past, researchers attempted to use the partitioning of Na and K between coexisting muscovite 41 
and paragonite as a geothermometer (Guidotti and Sassi 1976). However, difficulties arose from 42 
using solvus curves not accurate enough to model the thermodynamic properties of these two micas. 43 
In fact, the exact shape of the solvus, and how it changes as a function of pressure and temperature 44 
are still not well known. 45 

Many experimental studies contributed to the knowledge of the molar volumes of muscovite-2M1 46 
polytype and of their variation with P (Comodi and Zanazzi, 1995; 1997) and T (Symmes 1986; 47 
Guggenheim et al. 1987; Catti et al. 1989; Comodi et al., 2002). These data allowed a definition of 48 
an approximate P–V–T equation of state for K- and Na-dioctahedral micas. However, these are only 49 
an indication of volumetric behaviour at the boundaries of the P–T conditions achieved in rocks in 50 
the Earth’s crust. To determine more accurately the behaviour of muscovite–paragonite micas it is 51 
essential to verify if there are any ‘‘non-linear effects’’ when both P and T are high. If the effects of 52 
P and T on the volumetric properties of muscovite–paragonite micas were precisely known for the 53 
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full range of P–T conditions of geologic interest, it would be possible to accurately calculate effects 54 
on the muscovite–paragonite solvus. Relatively small changes in excess molar volume could have 55 
significant effect on solvus limb positions, particularly in the 600 to 700 °C range.   56 

However, it is often difficult to obtain the equation of state, especially in natural mineral samples, 57 
because they present a series of both physical and chemical internal heterogeneities (cation 58 
order/disorder, morphological, crystal-chemical, and crystal-physical variations) which hinder a 59 
well-constrained evaluation of the physical properties (Mondol et al., 2008).  Furthermore, 60 
obtaining experimentally the simultaneous pressure and thermal (P-T) behavior of a mineral is still 61 
a difficult task, which requires complex and expensive apparatuses.  62 

In recent years, the adoption of accurate quantum mechanical approaches increased the 63 
knowledge on minerals. Such computational methods can provide reliable crystal structures, 64 
subsequently used to yield both the elastic and thermal properties by varying the mineral unit cell 65 
and using the quasi-harmonic approximation, respectively (Militzer et al., 2011; Ortega-Castro et 66 
al., 2010; Ottonello et al., 2010; Ottonello et al., 2009b; Prencipe et al., 2011; Stixrude, 2002). 67 
These methods provide results that can help to explain the thermo-chemical and thermo-physical 68 
behavior of minerals and aid interpretations of the seismologic data.  69 

Muscovite presents an interesting challenge to computational mineralogists, because its structure 70 
is composed by tetrahedral-octahedral-tetrahedral (T-O-T) layers with potassium in the interlayer 71 
(see the structure of muscovite reported in Fig. 1). The simulation parameters should be chosen 72 
carefully when dealing with micas, because two directions of the mineral are dominated by covalent 73 
bonds (within the TOT layers), while the third direction exhibits an interplay of both van der Waals 74 
forces (between the layers) and strong ionic interactions due to the interlayer cations. 75 

To the authors’ knowledge, there is only one quantum mechanical simulation of the muscovite 76 
equation of state reported in literature by Ortega-Castro et al. (2010). That study was performed in 77 
athermal conditions, and the authors employed a Density Functional Theory (DFT) approach using 78 
the generalized gradient approximation (GGA) PBE functional, numeric atomic orbitals and norm 79 
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conserving pseudopotentials. Very recently, Hernandez-Haro and co-workers (2013) presented a 80 
DFT investigation on the elastic constants of the muscovite-paragonite mineral series, employing 81 
the same computational methods adopted by Ortega-Castro et al. (2010). The authors studied the 82 
effect of the K and Na content in the crystal lattice on the second order elastic constant tensor. 83 
Militzer et al. (2011) also calculated the isothermal elastic constants at 0 K of muscovite using DFT 84 
and looked at the effect of Al-Si cation disorder in the crystal structure. However, in both works the 85 
authors did not consider the contribution of the dispersive forces acting between the TOT layers, 86 
and the thermal effects on the mineral elastic properties.  87 

The aim of our work is a further step in the knowledge of muscovite equation of state. We present 88 
a detailed theoretical simulation of the muscovite-2M1 polytype of ideal chemical formula 89 
KAl2(AlSi3)O10(OH)2 to provide the thermal equation of state, the thermo-physical and thermo-90 
chemical properties of the mineral, taking into account the dispersive force contribution. We 91 
employed the DFT/B3LYP-D* functional (dispersive forces corrected) and an all-electron localized 92 
Gaussian-type orbital basis set. This approach is known to provide very accurate structural and 93 
energy results of phyllosilicates, data required for a correct calculation of mineral physical-chemical 94 
properties (Ulian et al., 2013). First, we geometrically optimized the muscovite unit-cell and then 95 
compared the result to experimental and theoretical data available in literature. Secondly, the 96 
Muscovite athermal equation of state is obtained by varying the unit-cell volume and finally, using 97 
the quasi-harmonic approximation described by Anderson (1995), we calculated the thermo-98 
mechanical and thermo-chemical properties of muscovite, as done in a previous work on talc (Ulian 99 
et al., 2014; Ulian and Valdrè, 2014). Thermal bulk moduli, KT, thermal expansion coefficients, αT, 100 
and heat capacity (isochoric, CV, and isobaric, CP) at different P-T conditions are provided, which 101 
could be useful in both geophysical and technological applications. For example, muscovite is 102 
currently used in resistors (Haynes, 2014) and in other electronic devices (Jin, 2011; Saito and 103 
Yamaguchi, 2009), in paints (Kalendova et al., 2010), and as additive in ceramics tailored for fuel 104 
cells (Liaw et al., 2011). Previous studied of Hsieh and co-workers (2009) showed that the thermal 105 
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conductivity of muscovite can be tuned by pressure. Heat capacity at constant pressure is finally 106 
compared to available experimental data of differential scanning calorimetry obtained by Robie et 107 
al. (1976).  108 
 109 
COMPUTATIONAL DETAILS 110 
Generality. We adopted the Becke three-parameter hybrid exchange functional (Becke, 1993) in 111 
combination with the gradient-corrected correlation functional of Lee, Yang, and Parr (Lee et al., 112 
1988) for all calculations (B3LYP). The exchange–correlation contribution is the result of a 113 
numerical integration of the electron density and its gradient, and we calculated it over a pruned 114 
grid of 75 points and 974 angular points obtained from the Gauss–Legendre quadrature and 115 
Lebedev schemes (Prencipe et al., 2004). This represents a good compromise between accuracy and 116 
cost of calculation for geometry optimization and vibrational frequencies. The values of the 117 
tolerances that control the Coulomb and exchange series are the default provided by CRYSTAL09, 118 
but we increased the pseudo-overlap parameter to stabilize the self-consistent bahavior during unit-119 
cell deformations. The Hamiltonian matrix has been diagonalized (Monkhorst and Pack, 1976) 120 
using a  4×4×4 k-mesh, which leads to 36 reciprocal lattice points. We chose this sampling grid to 121 
perform a better sampling along the c-axis direction, due to the mixed ionic/dispersive forces acting 122 
in that direction.  123 

Within the CRYSTAL code, multi-electron wave functions are described by linear combination 124 
of crystalline orbitals (CO), expanded in terms of Gaussian-type orbital (GTO) basis sets. For all the 125 
calculations, oxygen has been described by a 8-411d11G  basis sets, silicon by a 88-31G* (Nada et 126 
al., 1996) and hydrogen by a 3-1p1G basis set (Gatti et al., 1994). We had employed them with 127 
good results in our previous investigations of the structure and mechanical behavior of talc (Ulian et 128 
al., 2013; 2014). Aluminum and potassium atoms are described by a 8-511d1G (Catti et al., 1994b) 129 
and a 86-511G (Dovesi et al., 1991) basis sets, respectively. The chosen basis sets are well balanced 130 
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and, in particular the one of the hydrogen atom, allows accurate calculations in both molecular and 131 
crystal structures with sustainable computational costs. 132 

We optimized lattice constants and internal coordinates within the same run using the analytical 133 
gradient method for the atomic positions and a numerical gradient for the unit-cell parameters. The 134 
Hessian matrix is upgraded with the Broyden–Fletcher–Goldfarb–Shanno algorithm (Broyden, 135 
1970a; Broyden, 1970b; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The tolerances for the 136 
maximum allowed gradient and the maximum atomic displacement for considering the geometry as 137 
converged have been set to 6·10-5 hartree bohr–1 and 6·10-5 Å, respectively. 138 

In periodic systems and within the harmonic approximation, the phonon frequencies at Γ-point 139 
are evaluated diagonalising the central zone (k = 0) mass-weighted Hessian matrix: 140 
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Mi and Mj are the mass of the atoms associated to the i-th and j-th coordinates, respectively. 147 
The calculation of the Hessian at equilibrium is made by the analytical evaluation of the energy 148 
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while second derivatives at u = 0 (where all first derivatives are zero) are calculated numerically 151 
using a "two-point" formula: 152 
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More details on the vibrational calculation made by CRYSTAL is beyond the scope of the 154 

present paper and can be found in specific literature (Pascale et al., 2004; Tosoni et al., 2005). The 155 
Hessian matrix eigenvalues provide the normal harmonic frequencies ωh and it is obtained with 156 
3N+1 self-consistent field and gradient calculations. This method can be quite demanding for large 157 
unit cells, but point symmetry facilitates a remarkable time saving, because only the lines of the 158 
Hessian matrix referring to irreducible atoms need to be generated. The tolerances were increased to 159 
obtain better results, TOLDEE = 10. 160 

Density Functional Theory functionals, both generalized gradient approximation ones and their 161 
hybrid forms, often fails to adequately describe long-range dispersive interactions (Ulian et al., 162 
2013). To overcome this problem, dispersive forces have been evaluated according to the 163 
semiempirical approach (DFT+D) suggested by Grimme (2006), which adds the following 164 
contribution to the calculated DFT energy:  165 
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The summation over all atom pairs ij and g lattice vectors excludes the self- interaction 168 
contribution ( ji = ) for every g. The parameters iC6  represent the dispersion coefficient for the 169 
atom I; Rij,g is the interatomic distance between atom i in the reference cell and atom j in the 170 
neighbouring cells at distance |g| and s6 is a functional-dependent scaling factor. We employed the 171 

iC6  parameters reported in the work of Grimme (2006), which were obtained from atomic ionization 172 
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potentials (Ip) and static dipole polarizabilities (α) according to the formula 6 0.05i i i
pC NI α= , where 173 

N depends on atom row in the periodic table. The function fdump is used to dump the energy 174 
correction to avoid double counting of short-range contributions and depends on the sum of atomic 175 
van der Waals radii (Rvdw) and on a steepness parameter (d = 20). According to results previously 176 
reported in literature (Civalleri et al., 2008), which show that the EDISP correction tends to 177 
overestimate cohesive energy in solid crystals, the original B3LYP+D parameters were modified. 178 
We set s6 to 1, the hydrogen atom van der Waals radius Rvdw(H) to 1.30 and the heavier atoms van 179 
der Waals radii were scaled by a factor 1.05, correction called B3LYP-D*, named by Civalleri et al. 180 
(2008). The same approach was adopted with good results in a previous work on talc (Ulian et al., 181 
2013). 182 
Thermomechanical and thermochemical properties. We calculated the total pressures, bulk 183 
moduli, thermal expansion coefficients and heat capacity in the limit of the quasi-harmonic 184 
approximation described by (Anderson, 1995). The approach is based on the Grüneisen’s mode-γ 185 
parameters, namely the evaluation of unit cell volume dependence of the vibrational normal mode 186 
frequencies, calculated at Γ point. Due to the limited computational resources, we did not take into 187 
account dispersion effects in the muscovite phonon spectra at different pressures. However, the 188 
number of atoms in the unit cell, and the corresponding number of vibrational frequencies at Γ 189 
point, are sufficiently large and the corresponding Grüneisen’s parameters can be considered 190 
representative of the whole set of parameters. In previous works (Ottonello et al., 2010; Ottonello et 191 
al., 2009a; Ottonello et al., 2009b; Prencipe et al., 2011; Ulian and Valdrè, 2014) the dispersion 192 
effects were neglected, but the thermomechanical and thermochemical properties were correctly 193 
estimated for minerals with unit cell smaller than that of muscovite. Indeed, thermodynamic 194 
properties, which are obtained as averages over the relevant quantities at the atomic level, can 195 
reliably be derived even without a detailed knowledge of the phonon density of state (Kieffer, 196 
1979a).  197 
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The pressure, at each unit cell volume and temperature, is related to the Helmholtz free energy F 198 
of a solid insulator (Anderson, 1995) 199 

( ) ( ),ST VIBF E V F V T= +  (6) 200 
where EST is the potential of a static lattice at absolute zero (athermal limit) and FVIB is the 201 
vibrational energy related to the thermal motion of the atoms. 202 

The pressure can be obtained by the volume first derivative of Eq.(6) 203 
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and Xi = hνi/kT, h and k are the Planck’s and Boltzmann’s constants, respectively, νi is the 210 
vibrational frequency of the ith normal mode and ni is the Bose-Einstein distribution applied to the 211 
phonon gas. The Grüneisen’s mode-γ parameter is defined as 212 
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 (10) 213 
and were estimated by the analytical derivatives with respect to V of quadratic polynomials fitting 214 
the numerically determined γi(V) curves. The total pressure given by Eq.(8) is the sum of three 215 
contributions: the first one is the static pressure Pst(V); the second one is the zero point pressure 216 
Pzp(V) and the third one is the thermal pressure Pth(V,T). 217 

We calculated the static pressure Pst(V)values by interpolation of the Est(V) curve by Legendre’s 218 
polynomials up the third order and obtaining the static pressures as derivatives of the resulting 219 
analytical curves. The vibrational pressure, namely Pvib(V,T) = Pzp(V) + Pth(V,T), was obtained 220 
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directly from Eqs. (8) and (9). As observed by Prencipe et al. (2011) this method would implicitly 221 
assume the constancy of the Grüneisen’s parameters as the cell volume is reduced in a finite 222 
interval. However we calculated the volume dependence of the mode-γ parameters. 223 

With the set of P(V,T) data obtained as described above, we derived the volume at zero pressure 224 
(V0), the bulk modulus (KT) and its first derivative with respect to P (K’) using a third order Birch-225 
Murnaghan equation of state (BM3) (Birch, 1947): 226 

( )
7 3 5 3 2 3

3 0
0 0 0

3 31 4 ' 1
2 4BM T

V V VP K K P
V V V

− − −⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥= − − − − +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (11) 227 
with V0  the volume at reference pressure P0 (P0 = 0.0 GPa). We made the root mean square fitting 228 
of P as a function of V at each temperature with the EOS-FIT5.2 software (Angel, 2001).  229 

The thermal expansion coefficient (αT) at any given cell volume (pressure), as a function of T, is 230 
obtained by direct evaluation of the αTKT product (Anderson, 1995): 231 
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where KT  at each P-T condition is calculated from Eq.(11). 233 
The isochoric heat capacity as a function of T of a solid insulator can be expressed by (Anderson, 234 

1995) 235 
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The specific heat at constant pressure ( PC ) can be obtained from the relationship 237 

2
, ,P V T T P P TC C T K Vα= +  (14) 238 

where ,P TV  is the cell volume at pressure P and temperature T, respectively. It is worth noting that 239 
the isochoric specific heat expression in Eq. (13) does not include the acoustic mode contribution 240 
described by the Kieffer’s sinusoidal dispersion (Kieffer, 1979b). This contribution is calculated 241 
from the acoustic (seismic) wave velocities within the mineral, which are in turn derived from the 242 
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second order elastic constants (SOEC). We did not calculate the muscovite SOEC, because, as 243 
observed in our previous work on talc (Ulian and Valdrè, 2014), the contribution from the acoustic 244 
branch is very small at T > 300 K, consequently the description of the thermochemical properties is 245 
adequately described by the sole optical modes, and a saving is made on the computational costs.  246 
  247 
RESULTS AND DISCUSSION 248 
Geometry. The starting muscovite structure was taken from XRD refinement data of Guggenheim 249 
et al. (1987), belonging to the C2/c space group. However, in our simulations we employed a lower-250 
symmetry space group, 1P , which could break the monoclinic symmetry of muscovite. This choice 251 
was made for two reasons: the first one regards testing the stability of the quantum mechanical 252 
approach; the second one is letting the mineral crystallographic cell freely relax during compression 253 
(vide infra). Hydrogen atoms location is similar to the one of pyrophyllite structure, with O-H bond 254 
direction canted by about 30° on the [001] direction. Oxygen atoms are subdivided in three groups: 255 
apical [Oa or O(a)] shared between Si and Al; hydroxyl [Oh or O(h)]; basal [Ob or O(b)] shared 256 
between silica tetrahedrons. Aluminum atoms substitute silicon ones in the tetrahedral layer so as to 257 
maintain the unit-cell symmetry. Albeit this choice does not consider all possible aluminum 258 
distribution in the real mineral, it is a good starting model to be compared to experimental 259 
observations. See the stick and ball graphical representation of muscovite reported in Fig. 2. 260 

The optimized results of the structure of muscovite obtained by GTO/B3LYP-D* approach are 261 
described in details in Table 1, in comparison with a series of X-Ray and neutron diffraction 262 
refinements (Brigatti et al., 1998; Gatta et al., 2011; Guggenheim et al., 1987) and very recent 263 
theoretical results reported in literature (Hernandez-Haro et al., 2013). Our data are in general 264 
agreement with all those obtained experimentally, reported in Table 1, with small deviations due to 265 
the temperature analysis and mineral compositions. However, in the following we discuss and 266 
compare our structural theoretical results, calculated at T = 0 K, with Neutron Diffraction ones 267 
(Gatta et al., 2011), obtained at similar temperature (T = 20 K). 268 
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 It can be seen that lattice parameters and bond lengths (internal geometry) are in good agreement 269 
to those of Gatta et al. (2011), with only a small over-estimation of the cell volume (+0.6%). In 270 
particular, the description of the c-axis is accurate, although with a small underestimation of about 271 
0.7%. It is worth to note that, albeit the adopted space group breaks the monoclinic symmetry of 272 
muscovite, the deviations from ideal α and γ angles (90°) are less than 0.3%. The interlayer 273 
thickness, I (see Fig.1), is very close to that reported experimentally. This observation suggests the 274 
Grimme’s semi-empirical correction for dispersive forces provides an adequate description of the 275 
energy and geometry of the muscovite mineral. 276 
Athermal equation of state and internal geometry variations. We report in Table 2 the 277 
muscovite relaxed lattice parameters at the athermal limit. We found that the relationship between 278 
the muscovite energy Est at different volumes V, i.e. Est(V) curve, is well described by a 3rd-order 279 
polynomial equation with parameters p1  = -3.509·10-8, p2  = 1.052·10-4,  p3  = -1.046·10-1  and  p4  280 
= 3.449·10+1 (R2 = 0.999995). We were able to obtain the static pressure related to each volume 281 
Pst(V) by derivation of the Est(V) curve, according to Eq.(7). A graphical representation of the Est(V) 282 
and Pst(V) trends are shown in Figs. 3a,b, respectively. 283 

Next step is the calculation of muscovite bulk modulus at 0 K (KT0), its pressure first derivative 284 
(K’)  and the volume at zero pressure (V0) by fitting the volume vs. Pst data using BM3 equation of 285 
state. The refined elastic parameters are V0 = 926.86(38) Å3, KT0 = 64.2(1.2) GPa and K’ = 286 
7.98(33).  287 

In Fig.4a,b we report the evolution of volume and lattice parameters at different pressure, 288 
respectively. Regarding the compressive regime (P > 0 GPa), the calculated trend is monotonic 289 
(Fig.4a). It is graphically clear that muscovite deformation exhibits a strongly anisotropic behavior, 290 
with smaller variations for a and b cell parameters than for c. It is possible to describe the observed 291 
anisotropy by calculating the axial bulk moduli with a linear BM3 fit (Angel, 2001) on the lattice 292 
parameters at different pressures. The obtained refined data, after the BM3 fit, for the a, b and c axis 293 
were, respectively: a0 = 5.1975±0.0148 Å, KT0(a) = 136.95±1.12 GPa and K’(a) = 5.27±0.25;  b0 = 294 
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9.0392±0.0935 Å, KT0(b) = 118.25±1.01 GPa and K’(b) = 5.01±0.22; c0 = 19.8495±0.1602 Å, 295 
KT0(c) = 30.27±0.36 GPa and K’(c) = 6.60±0.12. Note that the lattice parameters a0, b0 and c0 are 296 
slightly different from those reported in Table 1, obtained by structural optimization, because of the 297 
BM3 fit. The axial compressibilities, described as β = 1/3KT0, are accordingly in the ratio 298 
β(a): β(b): β(c) = 1.000 : 1.158 : 4.525. This result suggests that the covalent bonds in the 299 
dioctahedral TOT layers are less compressible than the interlayer dominated by electrostatic and 300 
van der Waals forces (c direction). 301 

Regarding the internal geometry of muscovite, the pressure affects the size, shape and orientation 302 
of the coordination polyhedrons. While the thickness of the TOT layer is almost non-affected by 303 
pressure (-2.0%), the interlayer thickness I shrinks of about 15% at 10 GPa (Fig. S1 – 304 
Supplementary Materials), in agreement with the axial moduli. The pressure increase produces a 305 
volume reduction in both SiO4/AlO4 tetrahedra and AlO6 octahedra of about 3-4%. The mean Si – 306 
O and Al – O bond lengths are contracted by 0.9% and 1.3%, respectively, from 0 to 10 GPa. In the 307 
case of Si tetrahedron, the reduction is higher for the apical oxygen than for the basal ones. In both 308 
cases, the bond length contraction removes some distortion in the tetrahedra and in the octahedra.  309 

Another structural response to the compression is the increase of the tetrahedral rotation angle, 310 
which is defined as 

6

1
1 2 120 6i

i
α φ

=

⎛ ⎞= − °⎜ ⎟
⎝ ⎠
∑ , where �i is the angle described by triples of basal 311 

oxygen atoms (Bailey, 1988; Ulian et al., 2014). The calculated value of α increases from 13.2° at 0 312 
GPa to 14.6° at 10 GPa (see Fig.S2 – Supplementary Materials). 313 

We did not observe any significant variation in O-H bond lengths in the pressure range 314 
investigated (0.962 Å at 0 GPa and 0.963 Å at 10 GPa), nor in their directions. 315 

Our results are in line to those of Ortega-Castro et al. (2010) obtained in athermal conditions with 316 
generalized gradient approximation (GGA) and the Perdew-Burke-Ernzerhof (PBE) functional. The 317 
BM3 fit on V(P) data in the cited work is very similar to ours, albeit with small underestimations 318 
(KT0 = 60.1 GPa and K’ = 7.3). However, it can be observed in Fig. 4a that our muscovite volumes 319 
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at different P are smaller than those obtained by Ortega-Castro and co-workers (2010). Hernández-320 
Haro et al. (2013) derived with DFT simulations at T = 0 K the bulk modulus of end-member 321 
muscovite from the elastic constants, obtaining KT0 = 68.4 GPa.  The small difference between our 322 
results and the previous ones is imputable to at least two reasons. First, in our simulations we 323 
adopted an all-electron GTO basis set with hybrid B3LYP functional, including a correction for 324 
dispersive forces, whereas in both previous works (Hernandez-Haro et al., 2013; Ortega-Castro et 325 
al., 2010) the authors used a GGA  functional (PBE) with norm conserving pseudopotentials. The 326 
generalized gradient approximation tends to soften bonds and consequently the bulk modulus, 327 
which explains the low KT0 value and the large volumes of Ortega-Castro et al. (2010). Secondly, 328 
we observed in a previous work on talc (Ulian et al., 2014) that the bulk modulus obtained from the 329 
elastic stiffness is very sensitive on both the way of its calculation (e.g. Reuss bound, Voigth bound, 330 
etc.) and on the anisotropic behavior of the mineral.  331 

Compared to previous theoretical results on similar and other layered hydrous silicates, our 332 
muscovite model exhibits a higher bulk modulus than both TOT minerals without interlayer cations, 333 
such as talc (Mainprice et al., 2008), and TO structures, for example serpentine (Mookherjee and 334 
Stixrude, 2009), antigorite (Capitani et al., 2009; Mookherjee and Capitani, 2011; Capitani and 335 
Stixrude, 2012). On one hand, in the case of talc the absence of interlayer cations favors the 336 
compression along the c-axis direction, resulting in a fairly low bulk modulus (KT0 = 42.1 GPa). On 337 
the other hand, in TO minerals characterized by half-waves and reversals of the T-O sheets 338 
(serpentine group) the elastic softening is related to the adjustment of the relative misfit between the 339 
tetrahedral and octahedral sheets (Mookherjee and Capitani, 2011). Considering other micas, our 340 
muscovite model presents a stiffer nature than the phlogopite calculated by Chheda et al. (2014) 341 
with GGA functional.  Phlogopite is the Mg-trioctahedral equivalent of muscovite, and the lower 342 
bulk modulus may be due to the difference in the octahedral sheet composition. Finally, our 343 
muscovite model presents a KT0 value lower than the one calculated for chlorite (Mookherjee and 344 
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Mainprice, 2014), because the latter presents a brucite-like sheet sandwiched between talc-like TOT 345 
layers , which is less compressible than the interlayer with potassium cations.   346 
Thermomechanical and thermochemical properties. As explained in the computational method 347 
section, we calculated the muscovite thermal properties from the mineral vibrational features using 348 
the quasi-harmonic approximation. 349 

There are 84 atoms in the muscovite unit-cell, which result in 84 x 3 = 252 normal modes, three 350 
of them related to translation of the whole unit-cell. The remaining 249 optic modes are subdivided 351 
in the following irreducible representations: 352 

Γtot = 126Ag + 123Au 353 
Modes with Ag symmetry are Raman-active, while Au ones are IR-active, but both do not exhibit 354 

degeneracies. For each optic normal mode (3n – 3) we determined the mode-γ parameters. Between 355 
30 and 1200 cm-1 (see Fig. 5a), all parameters are positive and, according to Eq.(8), they contribute 356 
positively to the total pressure. In this frequency range, only one vibrational mode is associated with 357 
a small negative γ. Above 1200 cm-1 the mode-γ are negative (γ ≈ -0.1) and give negative 358 
contribution to the pressure values. The mean Grüneisen’s parameter ( γ ) is equal to 0.67. We 359 
reported the results and the mode-gammas for each frequency at zero pressure in Table S1 360 
(Supplementary material). 361 

Using Eq.(11) we calculated the thermal contribution to athermal pressure values in the range 10 362 
– 900 K. To help the interested readers in better understanding how the quasi-harmonic 363 
approximation works, we plotted in Fig. 5b the static (Pst), zero point (Pzp) and thermal (Pth) 364 
pressure contribution to P = 0 GPa total pressure as a function of temperature. The zero point 365 
pressure is almost constant, as it is a function of the sole volume. The thermal pressure increases, as 366 
the Grüneisen’s parameters are almost all positive. Since there is an external pressure constrain (0 367 
GPa), to maintain the equilibrium the static pressure mirrors the thermal pressure behavior, with a 368 
shift in pressure due to Pzp.  369 
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In Fig. 6a we show the V(P) values obtained at 298 K, alongside experimental data from powder 370 
XRD (Comodi et al., 2002; Curetti et al., 2006). There is a good agreement with the volumetric 371 
behavior of muscovite in the range 0 – 10 GPa. We noticed also that the comparison is more 372 
favorable with the data of Curetti and co-workers (2006) than with that of Comodi et al. (2002), 373 
despite the very small overestimation observed with the B3LYP-D* approach. The slight difference 374 
between the two experimental results and our set of data resides in the chemical composition and 375 
the physical preparation of the muscovite sample. While both powdered samples exhibit a wide 376 
presence of substitutional defects, such as Mg and Fe3+ in the octahedral sheet, our model represents 377 
an “ideally” pure muscovite mineral. Furthermore, the nature of the experimentally analyzed 378 
samples, namely powdered Ms, is formally different from our model, realized with periodic 379 
boundary conditions (hence, “single-crystal”). In fact, as observed in our previous work on talc 380 
(Ulian and Valdrè, 2014), it is expected that the results obtained from the quantum mechanical 381 
approach fit better with those obtained experimentally on a single-crystal specimen. In Fig. 6b we 382 
reported a three-dimensional plot of the V(P,T) data in the range 10 – 900 K. 383 

With the pressure and temperature data, we fitted the results by the third-order Birch-Murnaghan 384 
equation of state for each P-T condition. The results, KT, K’ and VT obtained in the pressure range 0 385 
– 10 GPa and between 10 – 900 K are reported in Tables S2, S3 and S4 (Supplementary Materials), 386 
respectively. At room temperature (T = 298 K) and 0 GPa the refined equation of state parameters 387 
are KT0 = 59.93 GPa, K’ = 7.84 and V0 = 940.6 Å3. These data well match those obtained in 388 
previous powder XRD experiments at T = 298 K, KT0 = 57.3 GPa, K’ = 6.97 and V0 = 938.9 Å3 in 389 
the work of Curetti et al. (2002) and KT0 = 57.0 GPa and V0 = 933.0 Å3 in the investigation of 390 
Comodi et al. (2002). We also compared our theoretical BM3 results at 573, 723 and 873 K with the 391 
corresponding experimental values at the same temperatures of the work of Comodi et al. (2002) 392 
(see Table 3). The theoretical BM3 fitting for each isotherm is in reasonable agreement with 393 
experimental data, with a slight overestimation of both bulk moduli (+3.8%) and unit cell volume at 394 
zero pressure (+1.3%). This systematic shift suggests that the quasi-harmonic approximation 395 
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describes well the thermomechanical behavior of muscovite at high temperature and the deviations 396 
could be imputable to the different composition and preparation in the experimental sample, as 397 
previously explained. 398 

From the calculated bulk modulus at different temperatures, we obtained its thermal dependency 399 
at 0 GPa, (∂KT/∂T)P = -0.0158 GPa K-1, which is close to the experimental result of Comodi et al. 400 
(2002) that is (∂KT/∂T)P = –0.0146 GPa K-1. 401 

The T TKα  product attains the value of 2.39·10-3 GPa/K in the 100 – 900 K range and reaches a 402 
constant value of 2.48·10-3 GPa/K at very high temperatures (see Fig. 7a). A three-dimensional plot 403 
of the T TKα  product in the 0 – 10 GPa and 10 – 900 K ranges is reported in Fig. S3a 404 
(Supplementary Materials). 405 

We calculated the thermal expansion coefficient (αT) from the T TKα  product by the thermal bulk 406 
modulus previously obtained. We plotted the α(T)P values at pressures 0, 5 and 10 GPa in Fig. 7b. It 407 
is possible to observe that the thermal expansion coefficient decreases with pressure increase.  408 
There is a good agreement between the theoretical value at standard P and T (αT = 3.34 · 10-5 K-1) 409 
and those of different experimental results obtained in the same conditions: αT = 3.57 · 10-5 K-1 410 
(Comodi et al., 2002) and αT = 3.54 · 10-5 K-1 (Guggenheim et al., 1987). A three-dimensional plot 411 
in the 0 – 10 GPa and 10 – 900 K ranges is reported in Fig. S3b (Supplementary Materials). 412 

The isochoric and isobaric heat capacities were calculated with Eqs. (13) and (14), respectively 413 
(see Fig. 7c and Fig. S3c – Supplementary Materials). It was observed that CV attains the Dulong-414 
Petit limit (Ottonello et al., 2009a;b) at high temperatures. For both isochoric and isobaric specific 415 
heat, it can be observed a decrease of their values by increasing pressure. The CP vs. T data are 416 
fitted in the range 298.15 – 900K according to the form of a Haas–Fisher polynomial expression 417 
(Haas and Fisher, 1976), which is: 418 

2 2 1 2
PC a b T c T d T e T− −= + ⋅ + ⋅ + ⋅ + ⋅     (11) 419 
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The retrieved regression coefficients,  a = 8.2044·102, b = -3.5759·10-2, c = 0.8976 , d = 420 
5.4382·10-5 and e = -8.5978·103, reproduce computed heat capacities with a mean error of about 421 
±0.26 J mol-1 K-1 and the summation of squared residuals over 13 values is 1.1. 422 

Compared to experimental scanning calorimetric data of Robie et al. (1976), the calculated 423 
isobaric heat capacity in the range 10 – 380 K nicely fit the experimental results, albeit with a small 424 
deviation above room temperature. 425 

 426 
IMPLICATIONS 427 

The thermodynamic and thermoelastic properties of muscovite, and how they change as a 428 
function of pressure and temperature are still not well known. These properties are important for a 429 
reliable basis to the interpretation of phase equilibria. White dioctahedral micas play a fundamental 430 
role in most petrogenetic processes, in both magmatic and low- and medium-pressure metamorphic 431 
environments. Among the physical properties to estimate the P-T conditions of mineral stability, 432 
one of the most important function is the equation of state, which relates the unit-cell volume to the 433 
pressure and temperature. We reported in the present paper the thermal equation of state of 434 
muscovite, calculated by quantum mechanics. Furthermore, the proposed theoretical approach, 435 
based on a DFT/B3LYP-D* quantum mechanics modelling, with semi-empirical correction for 436 
dispersive force, and using the quasi-harmonic treatment to include the thermal effects is promising 437 
for detailed structural, thermo-mechanical and thermo-chemical analysis of other phyllosilicates. 438 
The results of this kind of analysis find usefulness in the study of the thermodynamic properties of 439 
minerals at physical conditions that are difficult to obtain during experimental procedures, 440 
especially under controlled high pressures and temperatures. 441 
 442 
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LIST OF TABLES 599 
Table 1. Calculated and experimental unit-cell and internal geometry of Muscovite. 

Present work 
DFT/B3LYP-D* 

Experimental 
XRD* 

Experimental 
XRD data ranges§ 

Neutron 
Diffraction† 

DFT 
PBE‡ 

Lattice parameters  
a (Å) 5.1974 5.1579 5.174-5.226 5.1999 5.187
b (Å) 9.0389 8.9505 8.976-9.074 9.0198 9.006 
c (Å) 19.8444 20.071 19.875-20.097 19.945 20.148 
α (°) 90.27 90.00 90.00 90.00 90.00 
β (°) 96.23 95.75 95.59-95.84 95.81 95.44 
γ (°) 89.88 90.00 90.00 90.00 90.00 
½csinβ 9.366 9.985 9.890-9.996 9.9213 10.029 
Volume (Å3) 926.74 921 926-945.4 930.66 936.999 

 

Mean bond lengths (Å)  
O-H 0.961 - 0.95 - 0.974 
Si-O 1.634 1.647 1.64 1.642 1.651 
Al(T)-O 1.741 - - - 1.757 
Al(Oc)-O(a) 1.937 1.921 1.927-1.94 1.939 1.934 
Al(Oc)-O(h) 1.919 1.935 1.911 1.939 1.918 
K-Oouter 3.380 3.368 3.272-3.373 3.329 3.427 
K-Oinner 2.798 2.848 2.832-2.934 2.863 2.759 
ΔK 0.582 0.520 0.426-0.509 0.466 0.6680 

 

TOT structure  
Tetrahedral rotation (°) 12.2 11.8 10.3-11.3 10.39 14.6 

Volume (T) Si,Al (Å3) 2.222, 2.697 2.25 - 2.265 
2.273, 
2.774 

Volume (Oc) (Å3) 9.345 9.15 - 9.518 9.386 
T thickness (Å) 2.248 2.234 2.262 2.224 2.277 
Oc thickness (Å) 2.086 2.081 2.083 2.102 2.093 
I thickness (Å) 3.260 3.436 3.375 3.125 3.361 

 

* data from (Guggenheim et al., 1987) K1.00Na0.03Ca0.01(Al1.93Fe0.01Mn0.01)(Al0.91Si3.09)O10 (OH)1.88F0.12
 

§ data collected from different sources (Burnham and Radoslovich, 1964): K0.66Na0.34Al2(AlSi3) O10(OH)2; 
(Rothbauer, 1971): K0.85Na0.1(Al1.81Fe2+

0.14Mg0.12)(Al0.9Si3.1)O9.8(OH)2; (Catti et al., 1989): 
K0.86Na0.11(Al1.93Fe0.07Mg0.02)(Al0.92Si3.08)O10(OH)2; (Catti et al., 1994a): K0.90Na0.07 
(Al1.63Fe0.23Mg0.16Ti0.03)(Al0.80Si3.20)O10(OH)2; (Brigatti et al., 1998): different compositions; (Mookherjee and 
Redfern, 2002): K0.95Na0.05(Al0.76 Fe0.14Mg0.10)2(Al0.75Si3.25)O10(OH1.96F0.04). 
† data from neutron diffraction experiments at 20K (Gatta et al., 2011). 
‡ theoretical data from (Hernandez-Haro et al., 2013) 
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Table 2. Simulated Muscovite unit-cell parameters at different volumes. 
Pst (GPa) PBM-III (GPa) Volume (Å3) a (Å) b (Å) c (Å) α (°) β (°) γ (°) 

-1.24 -1.33 948.2 5.2149 9.0745 20.1613 90.24 96.36 89.89 
-0.74 -0.75 938.3 5.2072 9.0587 20.0138 90.26 96.30 89.89 
-0.14 -0.11 928.5 5.1990 9.0421 19.8699 90.27 96.25 89.88 
-0.03 0.01 926.7 5.1974 9.0389 19.8444 90.27 96.23 89.88 
0.53 0.58 918.8 5.1903 9.0246 19.7305 90.28 96.20 89.88 
1.29 1.34 909.1 5.1811 9.0061 19.5953 90.29 96.15 89.88 
2.13 2.16 899.4 5.1713 8.9866 19.4646 90.29 96.10 89.87 
3.05 3.06 889.9 5.1610 8.9661 19.3384 90.30 96.05 89.87 
4.05 4.03 880.4 5.1502 8.9446 19.2164 90.30 96.01 89.87 
5.12 5.08 870.9 5.1389 8.9220 19.0987 90.30 95.96 89.86 
6.27 6.22 861.5 5.1270 8.8987 18.9844 90.30 95.92 89.86 
7.49 7.45 852.2 5.1148 8.8746 18.8734 90.31 95.87 89.85 
8.77 8.77 843.0 5.1023 8.8499 18.7659 90.31 95.83 89.85 
10.13 10.20 833.8 5.0893 8.8245 18.6604 90.31 95.78 89.84 

         

Note: Pst values were obtained from 3-order polynomial fitting (p-fit) and PBM-III data from 3rd-order Birch-Murnaghan 
fitting (BM3). 

 612 
 613 
 614 
Table 3. Comparison on theoretical and experimental BM3 results 
 Present work Experimental 

XRD 
Theoretical 
DFT/PBE 

T = 0 K    
KT (GPa) 64.2 ± 1.2 - 59.81
KT' 7.98 ± 0.33 - 6.96
V0 (Å3) 926.86 ± 0.38 - - 
  

T = 573 K  
KT (GPa) 55.52 ± 1.29 55.1 - 
KT' 8.07 ± 0.32 - - 
V0 (Å3) 950.2 ± 0.6 938.0 - 

T = 723 K  
KT (GPa) 53.08 ± 1.42 51.1 - 
KT' 8.20 ± 0.33 - - 
V0 (Å3) 956.1 ± 0.8 944.1 - 

T = 873 K  
KT (GPa) 50.62 ± 1.56 48.9 - 
KT' 8.33 ± 0.36 - - 
V0 (Å3) 962.4 ± 1.0 952.5 - 
Notes: experimental and theoretical values are taken from the works 
of Comodi et al. (2002) and Ortega-Castro et al. (2010), respectively.
 615 
 616 
 617 
  618 
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FIGURE CAPTIONS 619 
 620 
Figure 1. Schematic structure of ideal muscovite, viewed (a) from [100] and (b) from [001] 621 
directions: embedding of one interlayer I in between two TOT layers, each one of which consists of 622 
one octahedral sheet O sandwiched by two tetrahedral sheets T. (c) The local structure of the 623 
interlayer potassium ions, where 12 oxygen atoms in the first shell are interlayer atom, while Si and 624 
Al atoms are located in the centers of O tetrahedrons. 625 
 626 
Figure 2. Stick and ball representation of the DFT optimized muscovite model viewed (a) from 627 
[100] and (b) from [001] directions. 628 
 629 
Figure 3. (a) Est(V) in Hartree units and (b) P(V) plots of muscovite obtained from ab initio 630 
calculations. The dashed lines helps in distinguishing compression regime (on the left) and 631 
expansion (on the right). 632 
 633 
Figure 4. Ab initio pressure effects on muscovite unit-cell volume and axis lengths. The theoretical 634 
athermal results has been compared to those of Ortega-Castro et al. (2010). 635 
 636 
Figure 5. (a) Grüneisen’s parameters (γ) at P = 0 GPa as a function of frequency (ν). The dashed 637 
line represents the mean of the mode-γ. (b) Contributions to the zero total pressure of the static (Pst), 638 
zero point (Pzp) and thermal (Pth) pressures.  639 
 640 
Figure 6. (a) V(P) plot of muscovite compressional behavior at 298K compared to powder XRD 641 
data (Comodi et al., 2002; Curetti et al., 2006) and (b) V(P,T) three-dimensional plot obtained with 642 
DFT/B3LYP-D*.  643 
 644 
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Figure 7. αTKT product (a) and αT (b) calculated for muscovite at selected pressures. (c) isochoric 645 
(dashed lines) and isobaric (solid lines) heat capacities, compared to experimental calorimetric data 646 
(Robie et al., 1976). 647 
 648 
 649 
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