Carbon speciation in silicate-C-O-H melt and fluid as a function of redox conditions: An experimental study, in-situ to 1.7 GPa and 900°C

Bjorn Mysen
Geophysical Laboratory
Carnegie Instn, Washington
USA

Abstract

Carbon speciation in and partitioning among silicate-saturated C-O-H fluids and (C-O-H)-saturated melts have been determined ~1.7 GPa and 900°C under reducing and oxidizing conditions. The measurements were conducted in-situ while the samples were at the conditions of interest. The solution equilibria were (1) $2\text{CH}_4 + \text{Q}^n = 2\text{CH}_2 + \text{H}_2\text{O} + \text{Q}^{n+1}$ and (2) $2\text{CO}_3^{2-} + \text{H}_2\text{O} + 2\text{Q}^{n+1} = 2\text{HCO}_3^- + 2\text{Q}^n$, under reducing and oxidizing conditions, and where the superscript, n, in the Qn-species denotes number of bridging oxygen in the silicate species (Q-species). The abundance ratios, CH$_4$/CH$_3$ and HCO$_3^-$/CO$_3^{2-}$, increase with temperature. The enthalpy change associated with the species transformation differs for fluids and melts and also for oxidized and reduced carbon (Reducing: $\Delta H_{\text{H}_1}^{\text{fluid}} = 16\pm 5$ kJ/mol, $\Delta H_{\text{H}_1}^{\text{melt}} = 50\pm 5$ kJ/mol; oxidizing $\Delta H_{\text{H}_2}^{\text{fluid}} = 81\pm 14$ kJ/mol). For the exchange equilibrium of CH$_4$ and CH$_3$ species between fluid and melt, the temperature-dependent equilibrium constant, $(X_{\text{CH}_4}/X_{\text{CH}_3})^{\text{fluid}}/(X_{\text{CH}_4}/X_{\text{CH}_3})^{\text{melt}}$, yields $\Delta H = 34\pm 3$ kJ/mol.

Increased abundance ratios, CH$_4$/CH$_3$ and HCO$_3^-$/CO$_3^{2-}$, lead to increased polymerization of silicate+(C-O-H) melt. Because of such relations, melt transport properties (e.g., viscosity) and element partition coefficients between magmatic liquids, C-O-H fluids, and crystalline phases can vary by more than 100% with speciation changes of C-bearing volatiles upper mantle. These structure effects are more pronounced the higher the pressure and the more mafic the magma.

Keywords: Redox, COH volatiles, melt structure, melt properties, fluid structure
Introduction

In (C-O-H)-bearing magmatic systems in the Earth's interior, redox conditions affect physicochemical properties of melts, melting phase relations, and element partitioning between coexisting phases. For example, during partial melting of a (C-O-H)-bearing the upper mantle under reducing conditions (methane is stable) melts tend to silica enrichment compared with anhydrous melting (Eggler and Baker, 1982; Green et al., 1987; Brey et al., 2006). Under oxidizing conditions, partial melts tend toward silica under-saturation (Eggler, 1976; Wyllie, 1984). This is because the redox state(s) of carbon affects its solubility and solution mechanism(s) in silicate melts. However, the solubility and solution mechanism(s) are not only redox-dependent, but also vary with silicate composition, temperature, and pressure (Brooker et al., 2001; Mysen et al., 2011; Guillot and Sator, 2011).

In order to characterize the structure and the relationships between structure and properties of magmatic liquids and C-O-H fluids at high pressure and temperature, the characterization must be conducted while the sample is at the pressure, temperature, and redox conditions of interest because the imposed conditions change during the quenching process thus causing structural changes of melt and fluid as these are cooled from experimental to ambient conditions before analysis. This goal can be reached by containing the sample in externally heated diamond anvil cells and by using vibrational
spectroscopic methods to determine structural relationships. Results from
such examination are provided in this report.

Experimental Methods

The (C-O-H)-free starting material was a glass of composition,
(Na₂Si₄O₉)₉9(Na₂(NaAl)₄O₉)₁₀, denoted NA10, to which was added (C-O-H)
components prior each experimental series (see also below). The material is from
the same glass as that originally used by Mysen (2007). The degree of
polymerization, NBO/T, of NA10 melt is near 0.5 with Al/(Al+Si) = 0.1. Here, Na⁺
charge-balances Al³⁺ in tetrahedral coordination.

The experiments were conducted in-situ with the samples at the
temperature, pressure, and redox conditions of interest by using an externally
heated hydrothermal diamond anvil cell (HDAC) (Bassett et al., 1994). In
experiments under reducing conditions, Re gaskets was used for sample
containment. Iridium gaskets were used for experiments under oxidizing
conditions because under these conditions Re from the gasket reacts with H₂O
and silicate to form rhenate complexes and H₂. Iridium is inert under the
experimental conditions. The gaskets were 125 µm thick with a 500 µm central
hole before experiments. During an experiment, the sample hole shrank to
about 400 µm diameter with the gasket thickness between the two diamonds
reduced to ~80-100 µm.
For experiments conducted under reducing conditions, NA10 glass starting glass was saturated with CH$_4$ prior to an experimental series in the HDAC. This methane-saturation was accomplished in a solid-media, high-pressure apparatus (Boyd and England, 1960) by equilibrating NA10 melt with C-O-H fluid at 1.5 GPa and 1400°C and at a hydrogen fugacity, f$_{H_2}$, controlled by the reaction, Mo+H$_2$O=MoO$_2$+H$_2$. This equilibrium is within ~0.5 orders of magnitude of that of the often-used iron-wüstite buffer in the temperature-range of the present experiments (Mysen and Yamashita, 2010). The source of carbon was Ag$_2$C$_2$O$_4$, which decomposes to Ag and CO$_2$ at <200°C (Boettcher et al., 1973). During high-temperature/pressure synthesis this CO$_2$ reacts with the H$_2$ generated by the Mo/MoO$_2$ buffer reaction to yield CH$_4$ and H$_2$O (CO$_2$ + 3H$_2$ = CH$_4$ + H$_2$O). The melt was temperature-quenched to glass while at 1.5 GPa. The glass resulting from this procedure contains 0.74 wt% CH$_4$ (analyzed with an Elemental Analyzer as described by Mysen et al., 2009). The glass also contains H$_2$O and H$_2$. For experiments in the HDAC under reducing conditions, this CH$_4$-bearing NA10 glass was loaded into the Re gasket hole together with Mo metal for the f$_{H_2}$ control, Pt metal for enhanced equilibration rate (Horita, 1988), carbon-13 synthetic diamond for pressure measurement (Mysen and Yamashita, 2010), and liquid H$_2$O. The Mo reacts with H$_2$O at a few hundred degrees C to form MoO$_2$ (Fig. 1) thus buffering the f$_{O_2}$ and f$_{H_2}$ during the experiments so that methane does not get oxidized.

In experiments under oxidizing conditions, volatile-free NA10 glass powder was loaded into the diamond cell together with Ag$_2$C$_2$O$_4$, Pt metal,
liquid H$_2$O, and synthetic carbon-13 diamond. Platinum was employed to enhance reaction rates (Horita, 1988). The silver oxalate decomposes to CO$_2$ and metallic Ag at <200°C.

Textural and structural characterization of the sample *in-situ* while at the redox conditions, temperatures, and pressures of interest was carried out with optical microscopy and Raman spectroscopy. The Raman spectrometer was a JASCO model NRS-3100 confocal microRaman system equipped with a single monochromator, a holographic notch filter, and holographic gratings. This system was used with 532 and 490 nm solid-state lasers for sample excitation with about 7 mW and 30 mW power at the sample, respectively. A 50X Mitutoyo™ long working distance objective (2.5 cm working distance, 0.42 N.A.) was used for optical monitoring and signal collection. The signal was recorded with an Andor™ Model DV401-F1 1024×128 pixel (25 μm pixel size) Peltier-cooled CCD.

The confocal optics in the Raman system restricts the sample depth excited by the laser. There is, nevertheless, a finite depth within which the laser produces a Raman signal. This depth can be an issue in the present experiments because during experiments under reducing conditions 10-30 μm diameter spheres of transparent melt rest on the bottom diamond culet, but otherwise are surrounded by transparent fluid. To evaluate the extent to which such an environment may lead to signal interference from fluid on the signal from melt, Raman intensity from a clear glass sample in contact with air was used as a model of the optical environment. The Raman signal intensity
decreases by about 90% within 25 μm of the focal plane (Fig. 2). As 30μm melt spheres were analyzed during the experiments, ≥ 90% of the signal is from the melt sphere, but with some interference from the surrounding fluids. The effect on the uncertainty in the experimental data of this environment is discussed further below.

The groove density of the holographic gratings governs the frequency resolution of the spectrometer. For most sample measurements (melt and fluid), 600 grooves/mm were used, which results in ±4 cm⁻¹ frequency uncertainty. With 600 grooves/mm, the width of a single CCD window is ~3900 cm⁻¹ in the frequency range of the present experiments. With 1200 and 2400 grooves/mm, the uncertainties were ±2 and ±1 cm⁻¹ and window widths of about 1900 and 1000 cm⁻¹, respectively. These higher groove-density gratings were employed when better frequency precision was needed.

Temperature was measured with two K-type thermocouples touching the upper and lower diamonds, respectively, and located less than 1 mm from the sample itself. With this configuration, the temperature uncertainty is ±2°C (Mibe et al., 2008). Pressure was measured with the frequency of the one-phonon Raman peak of carbon-13 diamond (at known temperature; see also Schiferl et al., 1997). For these latter measurements, 2400 grooves/mm were employed. A spectrum of some of the Ne emission lines was recorded simultaneously with the one-phonon vibration from carbon-13 diamond in order to improve on the frequency uncertainty in these measurements. By correcting the one-phonon Raman shift with the aid of the Ne emission lines a ±0.1 cm⁻¹
frequency uncertainty was achieved. This frequency uncertainty corresponds to a
contribution of ±40°C to the total pressure. The calibration of the
pressure/temperature effect on the one-phonon Raman band of 13C diamond
adds to the pressure uncertainty (±100 MPa; Mysen and Yamashita, 2010).
These two contributions result in an overall pressure uncertainty of ±110 MPa.
This uncertainty is independent of pressure because its contributions are from
the fitting error of the data used in the pressure calibration and from the fixed
uncertainty of the spectrometer reading.

Platinum was used to enhance equilibration rate (Horita, 1988). Results
from time studies in the system NaCl+H2O+D2O in similar temperature and
pressure ranges indicated that D/H equilibrium was reached in minutes (Mysen,
2013). As chemical equilibration occurs on a faster time-scale than isotope
equilibration, 1-hour dwell time prior to a measurement is, therefore, considered
sufficient to reach equilibrium in the current experiments.

Results

Each experimental temperature/pressure path was started at the highest
planned temperature and pressure for the first measurements followed by
decreasing temperature and pressure (Fig. 3). The samples remained at each
temperature and pressure condition for about 1 hour before spectra were
recorded. The cooling rate between measurements was 100°C/min.

In experiments under reducing conditions the initial step was to bring
the sample to 850°C/1446 MPa (see also Fig. 3). At this condition, there is a
single supercritical fluid containing silicate components, CH₄, H₂, and H₂O. The Raman spectrum of this fluid was then recorded and followed by measurements of supercritical fluid at 800°C/1419 MPa and 725°C/1119 MPa. Upon further cooling, to near 700°C/1100 MPa, separation occurs into (C-O-H)-rich, silicate-saturated fluid and (C-O-H)-saturated silicate melt. The first measurements of coexisting fluid at melt were carried out at 675°C/986 MPa followed by 50°C temperature decrements between each set of spectroscopic measurements until the glass transition temperature was approached. The glass transition temperature is not accurately known, but is less than about 430°C (the glass transition temperature of anhydrous Al-free NS4; see also Knoche et al., 1994). The presence of Al and H₂O likely will cause a lowering of this temperature so 425°C/492 MPa was chosen as the lowest pressure and temperature conditions for measurements of supercooled liquid and coexisting fluid under reducing conditions.

In experiments under oxidizing conditions, the sample initially was brought to 900°C/1745 MPa (the highest temperature and pressure in these experiments) where a supercritical silicate+H₂O+CO₂ fluid exists together with Ag metal. The sample was kept at this condition for about 1 hour to allow physical separation of the heavy Ag metal from the much less dense supercritical silicate+CO₂+H₂O supercritical fluid. The initial spectroscopic measurements then were carried out at this temperature and pressure (00°C/1745 MPa). Temperature and pressure were then decreased. Spectroscopic measurements of supercritical fluids were carried out at
T>800°C and >1427 MPa and of coexisting fluids and melts from 800°C/1427
MPa to 610°C/1015 MPa at the temperature and pressure intervals shown in
Fig. 3. The last measurements were at 610°C/1015 MPa because carbonate
minerals crystallize from the melt+fluid assemblage at temperatures between
600° and 575°C (Fig. 4).

Raman spectroscopy

In the frequency range between ~400 and ~1200 cm⁻¹ Raman signals occur
that are assigned to (Si,Al)-O vibrations. In addition, C-O vibrations from
molecular CO₂, HCO₃, and CO₃ groups also can be found in this frequency
range. The 2800-4200 cm⁻¹ frequency range comprises that where the most
intense Raman bands assigned to C-H, O-H, and H-H stretch vibrations are
located.

Oxidizing Conditions. In the 400-1200 cm⁻¹ region, spectra of melt are
dominated by three broad intensity maxima near 520, 900 and 1100 cm⁻¹,
respectively (Fig. 6A). Additional bands or shoulders occur between 520 and
900 cm⁻¹. In the spectra of (CO₂+H₂O) fluid, the Raman intensities near 520 and
900 cm⁻¹ are greatly reduced or not detected at all (Fig. 6A). A sharper band
centered near 1050 cm⁻¹ has replaced the broad 1100 cm⁻¹ band seen in this
frequency region of the melt spectra. The dominant band in the spectra of fluid,
however, is that near 780 cm⁻¹ (Fig. 6A). The differences between spectra of
fluid and coexisting melt are highlighted further in the difference spectra (Fig.
7). Here, a spectrum of melt is subtracted from that of coexisting fluid (Fig. 7).

In the difference spectra, the dominant intensity is near 780 cm\(^{-1}\) together with
less intense maxima near 670 cm\(^{-1}\), 970 cm\(^{-1}\) and 1050 cm\(^{-1}\). The pronounced
negative difference near 520 cm\(^{-1}\) reflects the lack of intensity in this region of
spectra of fluid.

The low-frequency region (~400–1200 cm\(^{-1}\)) was fitted to lines of
Gaussian shape as illustrated with a few examples in Fig. 8. In fitting these
spectra, statistical treatment (\(\chi^2\) minimization) was augmented with existing
information on speciation in hydrous melts and fluids in the NA10+H\(_2\)O system
(Mysen, 2010a). Assignments were guided by literature data as reviewed, for
example, by Mysen and Richet (2005). In spectra of melt and supercritical
fluids (Fig. 8) the 1100, 860, 820, and 775 cm\(^{-1}\) bands are assigned to (Si,Al)-O-
stretch vibrations in Q\(^3\), Q\(^2\), Q\(^1\), and Q\(^0\) silicate structural units, respectively (O-
indicates nonbridging oxygen. The superscript in the Q\(^n\)-notation indicates
number of bridging oxygen in the structural entity). In some spectra of melts, a
very weak signal near 1150 cm\(^{-1}\) may be assigned to (Si,Al)-O\(^\circ\) vibrations in Q\(^4\)
species. In spectra of melts, there is also a strong 510 and a distinct 580 cm\(^{-1}\)
band, which are assigned to (Si,Al)-O-(Si,Al) bending or rocking motions in
structural units with bridging oxygen (the possible structural units with
bridging oxygen are Q\(^3\), Q\(^2\), Q\(^3\), and Q\(^4\)). Bands at 860 and 820 cm\(^{-1}\) also are
observed in the spectra of fluids, but are considerable weaker than in the melt
spectra. The dominant band in spectra of fluids is that fitted near 775 cm\(^{-1}\).
In the 400-1200 cm\(^{-1}\) frequency region, there can be as many as four bands that are not observed in spectra of C-free samples (grey-filled bands marked “a”, “b”, “c”, and “d” in the examples in Fig. 8). In general, these bands are most intense in the spectra of fluid and least intense in spectra of melt. The highest-frequency band, between 1040 and 1070 cm\(^{-1}\) (“d”), occurs in all spectra. A strong Raman band near this frequency is always present in spectra of CO\(_2\)-rich silicate glasses and melts, and is assigned to symmetric C-O stretching in CO\(_3\) groups (e.g., Fine and Stolper, 1986; Brooker et al., 2001). In the spectra of high-temperature/pressure fluid and supercritical fluid, a band marked “c” occurs slightly below 1000 cm\(^{-1}\). It is assigned to C-OH stretching in HCO\(_3\) groups (e.g., Frantz, 1998). The band near 670 cm\(^{-1}\) (“b” in Fig. 6) could be a bending mode in either CO\(_2\), CO\(_3\) or HCO\(_3\) groups, or combinations of these (Davis and Oliver, 1972). Contributions to this intensity from CO\(_3\) and HCO\(_3\) groups are likely given the structural interpretation of the Raman bands in the 1000-1070 cm\(^{-1}\) region immediately above. A contribution from molecular CO\(_2\) is possible because solution of a portion of carbon dioxide in silicate melts in the form of molecular CO\(_2\) is common (Fine and Stolper, 1986; Nowak et al., 2003). Unfortunately, the characteristic Fermi doublet from molecular CO\(_2\), near 1280 and 1380 cm\(^{-1}\) (Colthup et al., 1975) cannot be observed in the present spectra because this frequency region is within the frequency-range of the very strong one-phonon Raman band from diamond in the diamond cell. It is not possible, therefore, to include or exclude the presence of CO\(_2\) from the Raman data. Finally, a fourth
band, near 620 cm$^{-1}$ ("a"), occurs in spectra of melts and fluids (Fig. 8). This band is assigned to a C-OH bending motion in the HCO$_3$ groups (Davis and Oliver, 1972; Frantz, 1998). This band may also exist in spectra of supercritical fluid, but lack of spectral resolution in the frequency region near 600 cm$^{-1}$ at the high temperature of supercritical fluid makes such a band unresolvable (Fig. 8).

The higher-frequency range of spectra recorded under oxidizing conditions, between about 2900 and 4200 cm$^{-1}$, comprises a single band centered near 3550 cm$^{-1}$ (Fig. 6C). Its full width at half height, FWHH, decreases with increasing temperature (see insert in Fig. 6C), resembling the temperature evolution of this band in Raman spectra of other hydrous silicate glasses and melts and of aqueous fluids (e.g., Kawamoto et al., 2004; Ratcliffe and Irish, 1982; Mysen, 2010a,b). The 3550 cm$^{-1}$ band becomes increasingly asymmetric with decreasing temperature, which is also similar to that of H$_2$O dissolved in other silicate melts at high temperature and pressure as well as a pure H$_2$O fluid (Frantz et al., 1993; Kawamoto et al., 2004; Mysen, 2010b). The Raman bands in this envelope are assigned to OH stretching, whether in OH groups forming metal-OH bonding or as a part of molecular H$_2$O. The asymmetry as this Raman band, seen the most clearly at low temperature, is consistent with more than one type of OH-groups and with increasing extent of hydrogen bonding with decreasing temperature (Mysen and Virgo, 1986; Walrafen et al., 2002).
Reducing conditions. At the hydrogen fugacity of the Mo-MoO₂ buffer (reducing conditions), the low-frequency portion of spectra of fluid and melt is dominated by sharp bands near 880 and 900 cm⁻¹ and by an intense, but broader, band near 300 cm⁻¹ (Fig. 6B). There is also a weaker band near 780 cm⁻¹ and a shoulder between 780 and 880 cm⁻¹. Also shown in Fig. 6B is a spectrum of crystalline MoO₂ recorded at ambient temperature and pressure. This MoO₂ spectrum shows major sharp peaks near the main peaks of spectra of melts and fluids in this frequency range. In light of the observation of finely disseminated MoO₂ through the sample (Fig. 1), we conclude that this portion of the Raman spectrum is dominated by Mo-O vibrations from the crystalline MoO₂ needles (Busey and Keller, 1964). These very strong Raman bands make band assignments and interpretation of silicate structure from the spectroscopic information in this frequency region difficult, which, therefore, was not attempted.

The higher-frequency spectral range, between about 2800 and 4200 cm⁻¹, is where Raman bands can occur that would be assigned to C-H (near 2900 cm⁻¹), O-H (centered near 3550 cm⁻¹), and H-H (near 4100 cm⁻¹) stretch vibrations, respectively. These vibrations would occur because the samples comprised hydrocarbon functional groups (e.g., CH₄), in H₂O (and OH), and in H₂ molecules (Walrafen, 1964; Nakamoto, 1978; Chou et al., 1990). The most intense peak is centered near 3550 cm⁻¹ (Fig. 6 D), similar to spectra from oxidizing conditions (Fig. 6C), and is assigned, therefore, to O-H stretching in
structurally bound OH groups and in molecular H$_2$O (Ratcliffe and Irish, 1982; Walrafen et al., 1986).

The sharp peak near 2900 cm$^{-1}$ (Fig. 6D) is assigned to C-H stretching in methane, in methyl groups, or both (Chou et al., 1990; Socrates, 2002; Mysen and Yamashita, 2010; Mysen et al., 2011). This band is slightly asymmetric. The extent of asymmetry in spectra of coexisting melts and fluids differs. This difference is seen more clearly in difference spectra obtained by subtracting spectra of melt from those of coexisting fluid at the same temperature and pressure (Fig. 9). The asymmetry and intensity differences may exist because the 2900 cm$^{-1}$ band comprises more than one symmetric Raman band the relative intensities of which differ in spectra of melts and fluids. Two peaks of Lorentzian shape, near 2900 and 2915 cm$^{-1}$, result from curve-fitting of the spectra (Fig. 10), perhaps assignable to C-H stretching in two (C-H)-bearing groups in the melts and fluids. That suggestion is consistent with a recent carbon-13 MAS NMR study of (C-O-H)-saturated NA10 glass that was formed by temperature-quenching (from 1400°C) of melt at 1.5 GPa (Mysen et al., 2011). In that study, the precursor melts was equilibrated with C-O-H fluid at the f_{H2} of the iron-wüstite buffer before quenching to glass. Both CH$_4$ and CH$_3$ groups were detected in the NMR spectra of this glass (see Fig. 11). Given the same silicate composition and quite similar hydrogen fugacity in the present experiments and those of the 13C NMR study by Mysen et al. (2011) (see also Fig. 11), it is concluded that the two peaks fitted to the 2900 cm$^{-1}$ Raman band in the spectra of reduced silicate-C-O-H melts and fluids (figs. 9 and 10) should
be assigned to C-H stretching in molecular CH₄ and in CH₃ groups. The 2915
cm⁻¹ band assigned to C-H symmetric stretching in molecular CH₄ (Dubessy et
al., 1999). The peak near 2900 cm⁻¹ is assigned to C-H stretching in the CH₃
groups, which is consistent with that of symmetric C-H stretching in Si(CH₃)₄
(Nakamoto, 1978).
Finally, there is a sharp, but weak, band near 4120 cm⁻¹ (see right insert
in Fig. 6D). It is assigned to H-H stretching in H₂ molecules in the fluid and in
the melt (e.g., Veirs and Rosenblatt, 1987).

Discussion

Concentration ratios of carbon species in fluids and melts and carbon species
partitioning between them may be estimated from their Raman spectra. This is
possible because the variables affecting the intensity of a Raman band assigned
to a specific vibration in an amorphous material such as melt and fluid are
concentration, temperature and Raman cross-sections (e.g., Long, 1977). For
equilibria of carbon species between fluid and melt, density differences do not
affect the Raman intensity and temperature cancels out in a simple ratio.
Temperature effects on intensity ratios assigned to similar type of vibration
also cancel out because the frequencies of the bands under study are so far
from the laser excitation frequency that temperature- and frequency-
dependent scattering intensity variations are within the background scatter of
the data. In principle, there is a difference between these species (CH₄ versus
CH₃ and CH₃ versus HCO₃) because the will be affected by next neighbors (ie, H
vs. Si). The size of this difference cannot be estimated. However, in analogy
with Si-O stretching in SiO₄ tetrahedra with different number of bridging and
nonbridging oxygen in silicate glasses where the scattering factors differ only
be several percent, it is assumed that the cross sections are the same for
symmetric C-H stretching in CH₃ and CH₄ groups and of the C-O stretching in
CO₃ and HCO₃ groups, respectively. The ratio of integrated Raman intensities
of bands assigned to similar vibrations in spectra of coexisting phases, a and b,
or the ratio if different C-bearing species in a given phase then is related to the
ratios of the relevant species, Xᵢ, via the Raman cross section, αᵢ, so that a
partition coefficient, Kᵢᵃᵇ, is:

\[
Kᵢᵃᵇ = \frac{Xᵢᵃ}{Xᵢᵇ} = \frac{αᵢᵃ}{αᵢᵇ} \cdot \frac{Aᵢᵃ}{Aᵢᵇ}. \tag{1}
\]

Solution mechanisms, oxidized carbon

The equilibrium between silicate structure (Q-species), H₂O, CO₃, and HCO₃
groups in fluid, supercritical fluid, and melt can be written as;

\[
2CO₃²⁻ + H₂O + 2Q^{n⁺} ⇌ 2HCO₃⁻ + 2Qⁿ⁻. \tag{2}
\]

with the equilibrium constant;
\[K_{(2)} = \left(\frac{X_{\text{HCO}_3^-}}{X_{\text{CO}_3^-}} \right)^2 \cdot \left(\frac{X_{\text{O}^{2-}}}{X_{\text{O}^{4+}}} \right)^2 \cdot \frac{1}{f_{\text{H}_2O}}. \] (2a)

In eqn. (2), the superscript in the \(Q^n \)-notation denotes the number of bridging oxygen in the species, \(X_{Q^n} \), and \(f_{\text{H}_2O} \) is the fugacity of \(\text{H}_2\text{O} \). In these and subsequent expressions, activity of \(Q \)-species species is assumed equal to mol fraction.

For fluid and supercritical fluid, equilibrium (2) shifts to the left with temperature as the \(\frac{X_{\text{HCO}_3^-}}{X_{\text{CO}_3^-}} \)-ratio decreased from \(\sim 1.4 \) to \(\sim 0.2 \) (Fig. 12). This temperature-dependence results in \(\Delta H = 81 \pm 14 \text{ kJ/mol} \) (Table 1). The abundance of \(\text{HCO}_3^- \) groups in hydrous melts could not be estimated because of the lack of spectral resolution in the spectra of melts near 1000 cm\(^{-1}\) so that an enthalpy change associated with carbon speciation abundance changes could not be determined either. Given the similar structural features of silicate/carbonate in fluids, melts and supercritical fluid, a negative temperature dependence seems likely for melts. It follows that the structure of silicate dissolved in oxidized C-O-H fluid and in (C-O-H)-saturated silicate melt becomes more polymerized with increasing temperature.

Solution mechanisms, reduced carbon

In the experiments conducted under reducing conditions, the melt spheres are smaller than the distance between the two diamonds of the diamond cell \(\leq 30 \)
μm-diameter melt spheres and 80-100 μm distance between diamonds in sample chamber, respectively). Some interference of the melt spectral intensities from the adjoining fluid was, therefore, unavoidable. With the confocal Raman system used here, about 90% of the signal recorded is from melt with about a 10% contribution from adjoining fluid (see also Fig. 2 and discussion above). This means that partition coefficients and Raman band intensity ratios can be affected. The A_{2915}/A_{2900} is of particular interest as this ratio expresses abundance ratio, CH$_3$/CH$_4$. With the A_{2915}/A_{2900} area ratios of melts, which typically are between 2 and 3, a 10% contribution to the signal of melt from adjoining fluid adds between 5 and 10% uncertainty to the A_{2915}/A_{2900} area ratios. However, given that the melt sphere diameter does not vary significantly with temperature (and pressure), this contribution to the carbon partition coefficients for reduced carbon likely is not discernably temperature-dependent.

For fluid and melt equilibrated with C-O-H fluid under reducing conditions the solution equilibrium between Q-species (silicate structure), H$_2$O, CH$_3$-groups, and CH$_4$ can be described as:

$$2\text{CH}_4 + Q^* \leftrightarrow 2\text{CH}_3 + Q^{n+1} + \text{H}_2\text{O}, \quad (3)$$

with the equilibrium constant;
\[K_{(3)} = \left(\frac{X_{CH_2}}{X_{CH_4}} \right)^2 \cdot \left(\frac{X_{O^{en}}}{X_{O}} \right)^2 \cdot f_{H, O} \]

Equation (3) shifts to the right with decreasing temperature and at a faster rate in melts than in coexisting fluid because the abundance ratio, \(\frac{X_{CH_2}}{X_{CH_4}} \), in melt is more sensitive to temperature than in the fluid (Fig. 13). However, the \(\frac{X_{CH_2}}{X_{CH_4}} \)-values of melt are minimum values because of the interference problem associated with adjoining fluid (the \(\frac{X_{CH_2}}{X_{CH_4}} \) of fluid is smaller than that of melt).

However, the temperature trends are not affected by this uncertainty. The temperature-dependent trend implies that increasing temperature leads to depolymerization of the silicate network (\(Q^{n-1}/Q^n \) decreases and, therefore, NBO/T decreases).

By combining the C-H speciation data for coexisting fluid and melt, an exchange equilibrium can be written:

\[(CH_4)^{fluid} + (CH_3)^{melt} \rightleftharpoons (CH_2)^{melt} + (CH_3)^{fluid} \]

with the exchange equilibrium coefficient;
\[K_{4} = \frac{(X_{\text{CH}_4} / X_{\text{CH}_2})^{\text{fluid}}}{(X_{\text{CH}_4} / X_{\text{CH}_2})^{\text{melt}}} \]

(4a)

The temperature-dependence of this exchange coefficient (Fig. 13) yields \(\Delta H = 34 \pm 3 \text{ kJ/mol} \) (Table 1). In other words, increasing temperature (and pressure) favors a fluid with molecular \(\text{CH}_4 \) coexisting with melt where the reduced carbon species are increasingly dominated by \(\text{CH}_3 \)-groups. It is emphasized, however, that the errors of \(\Delta H \)-values in Table 1 for equations (3) and (4) do not include the contribution from the fluid interference on the Raman spectra of melt. As discussed above (and see also Fig. 2) The signal from fluid interference on melt spectra introduces an additional 5-10\% uncertainty in the \(\Delta H \)-values over and beyond those listed in Table 1 and shown in the error bars in Figs. 13 and 14.

Implications

Recent experimental data on speciation of C-O-H volatiles in silicate melts as a function of redox conditions in the temperature/pressure range of the upper mantle indicate that reduced C-species such as \(\text{CH}_4 \) and \(\text{CH}_3 \) groups may be stable at oxygen fugacities, \(f_{\text{O}_2} \), near and below that corresponding to the magnetite-wüstite (MW) oxygen buffer (Mysen *et al.*, 2011). Oxidized carbon, as \(\text{CO}_2 \) or \(\text{CO}_3 \) groups, or both, dominate speciation in melts at higher \(f_{\text{O}_2} \). The \(f_{\text{O}_2} \) of the present day upper mantle likely is within 1-2 orders of magnitude of MW (O’Neill, 1991; McCammon, 2005). It follows that methane and compositionally related functional groups (e.g., \(\text{CH}_3 \) groups in silicate melt
structure) might be more common in the present mantle than hitherto assumed. An understanding the relationships between equilibria involving both oxidized and reduced carbon species is necessary, therefore, to characterize the carbon budget in the Earth and to understand how carbon speciation in melts (maggmatic liquids) governs physical and chemical properties of magmatic systems in the Earth’s interior.

Carbon species, whether oxidized or reduced, affect the degree of silicate melt polymerization. The degree of silicate polymerization is often quantified in terms of the proportion of nonbridging oxygen to tetrahedrally coordinated cations, NBO/T. The degree of polymerization of silicate melt structure is an important, but not the only, factor controlling melt properties. We note, however, that abundance of Q^n-species and the value of NBO/T (nonbridging oxygen per tetrahedrally coordinated cations) are linked via the expression:

$$\frac{\text{NBO}}{\text{T}} = \sum_{n=0}^{n=1} X_{Q^n} \times (\text{NBO}/T)_{Q^n},$$

where NBO/T is the bulk melt NBO/T, and $(\text{NBO}/T)_{Q^n}$, that of individual Q^n-species. The X_{Q^n} is the mol fraction of the individual Q^n-species.

Melt structure/property relations often are insufficiently well understood to relate those to the behavior of individual Q^n-species. For the purpose of the present discussion we will assess, therefore, only relationships to bulk melt NBO/ where property-NBO/T relations are well established.
Melt viscosity and mineral/melt partition element coefficients are among the more important examples of melt properties that can be related nearly quantitatively to melt composition and, therefore, its polymerization. For example, viscosity data from a simple chemical system, Na$_2$O-SiO$_2$ at 1400°C (viscosity data from Bockris et al., 1955), can be fitted to the NBO/T of the melt as (see also insert in Fig. 15);

\[
\eta(\text{Pa s}) = 4.4 + 0.75 \times (\text{NBO} / \text{T})^{-1.5}.
\] (6)

From eqns. (2) and (3), the changes in melt polymerization, \(\Delta \text{NBO}/T\), CO$_3$/HCO$_3$ abundance ratio under oxidizing conditions and, CH$_3$/CH$_4$, under reducing conditions, respectively, are:

\[(\Delta \text{NBO} / \text{T})^{\text{oxid}} = 0.135 + 0.59 \times e^{-0.55(\text{NCO}_2/\text{NCO}_3)} - 0.27 \times e^{-2.5(\text{NCO}_2/\text{NCO}_3)} \] (7a)

and

\[(\Delta \text{NBO} / \text{T})^{\text{reduc}} = 0.135 + 0.59 \times e^{-0.55(\text{CH}_3/\text{CH}_4)} - 0.27 \times e^{-2.5(\text{CH}_3/\text{CH}_4)} \] (7b)

The change of melt viscosity, \(\Delta \eta\), as a function of carbon speciation ratio in a melt is then calculated by combining eqns. (6) and (7) (Fig. 15). The effects are large (several hundred percent), but will depend on the NBO/T of the (C-O-H)-free melt because the viscosity versus NBO/T relationship is non-linear (See insert, Fig. 15).
Another example of how melt structure/composition can affect melt properties is the $\text{Fe}^{2+} \rightleftharpoons \text{Mg}$ exchange equilibrium between olivine and melt. This equilibrium often is used as an indicator of petrogenetic history of magmatic rocks in the Earth’s interior with the assumption that an exchange equilibrium coefficient, $K_{\text{olivine/melt}} = \frac{(X_{\text{Fe}^{2+}} / X_{\text{Mg}})_{\text{olivine}}}{(X_{\text{Fe}^{2+}} / X_{\text{Mg}})_{\text{melt}}}$, is constant and equal to 0.3 [originally determined by Roeder and Emslie (1970)]. Subsequent experimental work has shown, however, that melt composition can affect the $K_{\text{olivine/melt}}$ by as much as about 50% (Walter and Kushiro, 1998; Kushiro and Mysen, 2002; Toplis, 2004). In an experimental study of $K_{\text{olivine/melt}}$ versus NBO/T of melts in the Na$_2$O-K$_2$O-CaO-MgO-FeO-Fe$_2$O$_3$-Al$_2$O$_3$-SiO$_2$ system, Kushiro and Mysen (2002), in accord with Kushiro and Walter (1998), found a parabolic relationship between $K_{\text{olivine/melt}}$ and NBO/T of the melt (see insert in Fig. 16). This relationship implies that the effect of carbon speciation ratio in melt on the direction of $K_{\text{olivine/melt}}$-change with carbon speciation ratio is different depending the NBO/T-value of the melt. For example, for a highly polymerized melt (NBO/T=0.25 is used in Fig. 16), increasing CH$_3$/CH$_4$ abundance ratio results in a negative change of $K_{\text{olivine/melt}}$. In contrast, in a highly depolymerized melt (NBO/T=2.25 is used in Fig. 16) the change of $K_{\text{olivine/melt}}$-values with increasing CH$_3$/CH$_4$ ratio is positive. Translated to NBO/T-values of melts of common igneous rocks, variation in carbon speciation in a magmatic liquid has different influence on $\text{Fe}^{2+} \rightleftharpoons \text{Mg}$.
olivine/melt exchange equilibria for felsic melts compared with ultramafic melts.

Furthermore, from eqn. (2a) it follows that an increase in $\text{CO}_2/\text{HCO}_3^-$ abundance ratio leads depolymerization of the silicate structure (increased NBO/T), whereas from eqn. (3a) it follows that under reducing conditions, a decrease in abundance ratio, $\frac{X_{\text{CH}_2}}{X_{\text{CH}_4}}$, leads to increased abundance ratio, $\frac{Q^+}{Q^0}$, which means that the silicate melt becomes more polymerized. This contrasting behavior implies that $K_{\text{Ol/melt}}^{\text{D/Fe}^{2+}-\text{Mg}}$-changes with carbon speciation ratio also can vary with changes in redox conditions.

In the calculations shown in Figs. 15 and 16, the speciation ratio of carbon is treated as an independent variable. This ratio, whether oxidized or reduced depends on, temperature, pressure, melt composition and total carbon content in a melt. For example, with increasing temperature, eqns (2) and (3) shift to the left and right, respectively (Figs. 12 and 13). This means that under oxidizing conditions, increasing temperature results in silicate melt polymerization, whereas under reducing conditions, increasing temperature causes depolymerization of the silicate melt structure.

Carbon solubility, whether oxidized or reduced, increases with increasing pressure. This implies that the extent of melt polymerization change of a COH-bearing magmatic liquid in the mantle as a function of carbon speciation ratio also changes with pressure.
Finally, there is a positive correlation between carbon solubility itself and bulk melt NBO/T (Holloway et al., 1976; Brooker et al., 2001). Basaltic magmatic liquids are likely, therefore, to be more sensitive to speciation variation than more felsic liquids (e.g., dacite and rhyolite) because the basalt is less polymerized (average NBO/T of rhyolite melt is near 0.1, whereas the average for basalt is around 0.9). These factors taken together illustrate the need to ascertain exactly how speciation of volatiles in magmatic liquids in the Earth’s interior govern the physical and chemical properties of the magma.

Acknowledgments

This research was conducted with support from NSF grants EAR-1212754 and EAR-1250449. The solid-state 490 nm laser was acquired with funds provided by NSF grant EAR-1251931. A grant from the W. M. Keck Foundation supported acquisition of analytical instruments used in this study. A portion of this work was conducted while the author was visiting professor in GI³ Lab (Global Intellectual Incubation and Integration Laboratory) program of WPI-AIMR (WPI-Advanced Institute for Materials Research), Tohoku University, in 2013. Their hospitality and assistance is greatly appreciated.
References

Mysen, B.O. (2010b) Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure. American Mineralogist 95, 1807-1816.

Table 1. Regression coefficients for least squares fits \((x=a+b/T)\) in Figs. 12-14.

<table>
<thead>
<tr>
<th>Relationship, (x)</th>
<th>(a)</th>
<th>(b)</th>
<th>(r^2)</th>
<th>(\Delta H) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(X_{\text{HCO}2}/X{\text{CO}_2})) (Fig. 12)</td>
<td>(-10.0\pm1.6)</td>
<td>(9723\pm1700)</td>
<td>(0.89)</td>
<td>(81\pm14)</td>
</tr>
<tr>
<td>(\ln(X_{\text{CH}3}/X{\text{CH}_4})^{\text{had}}) (Fig. 13)</td>
<td>(1.4\pm0.8)</td>
<td>(-1883\pm631)</td>
<td>(0.75)</td>
<td>(16\pm5)</td>
</tr>
<tr>
<td>(\ln(X_{\text{CH}3}/X{\text{CH}_4})^{\text{het}}) (Fig. 13)</td>
<td>(5.6\pm0.8)</td>
<td>(-5933\pm673)</td>
<td>(0.96)</td>
<td>(50\pm7)</td>
</tr>
<tr>
<td>(\ln \left[\left(\frac{X_{\text{CH}3}/X{\text{CH}4}}{X{\text{CH}3}/X{\text{CH}_4}} \right)^{\text{had}} \right]) (Fig. 14)</td>
<td>(4.2\pm0.4)</td>
<td>(-4050\pm313)</td>
<td>(0.96)</td>
<td>(34\pm3)</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1 - Photomicrograph of sample under reducing conditions while in diamond cell at 675°C and 986 MPa. The dense latticework of needle-shaped crystals are MoO₂ crystals, melt occurs in spherical bubbles and fluid occurs as a matrix as indicated.

Figure 2 - Relative intensity of Raman signal from standard microscope slide (silicate glass) measured as a function of distance into air relative to the intensity at the glass/air interface (focal plane) by using a 0.05 mm diameter confocal hole (see text for more detailed description).

Figure 3 - Pressure-temperature paths of experimental data point under reducing (closed circles) and oxidizing (closed squares) conditions.

Figure 4 - Photomicrograph of sample under oxidizing conditions at 725°C and 1055 MPa. Dark areas are regions of aggregated Ag metal, bubbles are CO₂+H₂O (+dissolved silicate), whereas silicate melt forms the matrix as indicated.

Figure 5 - Photomicrograph of sample with melt and carbonate crystals recorded under oxidizing conditions at 575°C and 876 MPa.

Figure 6 - Example of Raman spectra of melts and fluids under oxidizing and reducing conditions. Frequency indicators on the spectra are those where peaks are visually observable. The numbers and letters are those that will be used in the text when describing the spectral features. A. At 650°C/1029 MPa under oxidizing conditions in the frequency region where (Si,Al)-O vibrations occur. B. At 675°C and 986 MPa under reducing conditions (solid line) in the
same frequency range as (A). Also shown is a Raman spectrum of MoO$_2$

...
Figure 11 – Portion of a 13C MAS NMR spectrum of quenched melt in the Na-silicate system equilibrated with CH$_4$-H$_2$O-H$_2$ fluid at 1400°C and 1.5 GPa at the hydrogen fugacity, f_{H_2}, controlled by the magnetite-wüsite buffer (3FeO+H$_2$O=Fe$_3$O$_4$+H$_2$) based on data from (Mysen et al., 2011). The identification of one peak to molecular CH$_4$ and the other to CH$_3$ was aided by 1H-13C CPMAS measurements (Mysen et al., 2011).

Figure 12 – Evolution of abundance ratio X_{CO_2}/X_{CO_3} from spectra recorded under oxidizing conditions as described in text in fluids and supercritical fluids as a function of 1/T (K$^{-1}$) with corresponding pressures shown on the upper horizontal axis. Regression coefficients are given in Table 1.

Figure 12 – Evolution abundance ratio X_{CH_3}/X_{CH_4} from spectra recorded under reducing conditions as a function of 1/T (K$^{-1}$) with corresponding pressures shown on the upper horizontal axis. Regression coefficients are given in Table 1.

Figure 13 – Evolution of equilibrium exchange coefficient [eqn (4a)], (X_{CH_4}/X_{CH_3})$_{fluid}/(X_{CH_4}/X_{CH_3})_{melt}$, from spectra recorded under reducing conditions as described in text in fluids and supercritical fluids as a function of 1/T (K$^{-1}$) with corresponding pressures shown on the upper horizontal axis. Regression coefficients are given in Table 1.

Figure 15 – Change in viscosity, $\Delta \eta$, by using the fit to the viscosity in the insert in combination with equations (7a) and (7b). Changes are calculated as % of value for (C-O-H)-free melt composition with volatile-free (wo/COH) NBO/T-values equal to 0.5.

Figure 16 – Change olivine/melt exchange equilibrium coefficient, ΔK_0 (= $K_{Olivine/melt}^{\text{eq}}$), by using the fit to the NBO/T-dependent coefficients in the insert.
in combination with equations (7a) and (7b). Changes are calculated as % of
value for (C-O-H)-free melt composition with volatile-free (wo/COH) NBO/T-
values of 0.25 and 2.25. NBO/T-values near 0.3 correspond to andesite to
dacite composition melts, whereas NBO/T=2.25 is typical of that of peridotitic
komatiite.
Fig. 3
Fig. 5
Fig. 6
Fig. 7
Fig. 9

Intensity difference, fluid-melt

475°C/540 MPa

675°C/985 MPa

Wavenumber, cm⁻¹
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16