1	Revision 2: The effect of H_2O on F and Cl solubility and solution mechanisms of in
2	aluminosilicate melts at high pressure and high temperature.
3	
4	Celia Dalou* and Bjorn O. Mysen
5	Carnegie Institution of Washington DC
6	5241 Broad Branch Rd, NW
7	Washington DC
8	now at:
9	Department of Geological Sciences,
10	The University of Texas at Austin,
11	Austin, Texas
12 13 14	ABSTRACT
15	
16	Effects of H ₂ O on the solution behavior of fluorine and chlorine in peralkaline sodium
17	aluminosilicate glasses quenched from melts at high temperature (1400°C) and pressure
18	(1.5 GPa) were studied by combining solubility measurements and Raman spectroscopy.
19	With increasing H ₂ O content from 0 to ~ 10 wt%, the fluorine solubility increases from
20	3.3 to 4.4 mol% in Al-free glasses and from 6.3 to 9.3 mol% in Al-rich glasses (10 mol%
21	Al ₂ O ₃). In contrast, in the same H ₂ O concentration range the chlorine solubility decreases
22	from 5.7 to 3.4 mol% in Al-free glasses and from 3.6 to 1.7 mol% in Al-rich glasses.
23	In Al-free glasses, interaction between H ₂ O and the silicate to depolymerize the

24 network is $Q^4 + H_2O \Leftrightarrow Q^2(H)$ and $Q^3 + H_2O \Leftrightarrow Q^2(H)$. The effect of water on silicate

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4814

melt structure is different in halogen-bearing melts because in hydrous melt systems both
F and Cl can act to depolymerize the melt further. For fluorine, this is accomplished via
formation of Si-F, Al-F, and Na-F bonding in addition to Si-OH, whereas in chlorinebearing hydrous melts, there is no interaction between Si⁴⁺ and Cl⁻.

29 The halogen solubility in the magmatic liquid influences mineral/melt partition 30 coefficients of chlorine and fluorine and implies partition coefficients different from 31 unity. Moreover because of the contrasting effects of H₂O on fluorine and chlorine 32 solubility, the Cl/F ratio in magmas formed in water-rich environments such as 33 subduction zones can be a sensitive indicator H₂O during arc magmas genesis. Transport 34 properties of melts, such as diffusion and viscosity, also vary differently in halogen-35 bearing hydrous melts compared with halogen-free systems. Moreover, the effects are the 36 strongest in F-bearing systems.

37

38 keywords

39 Water, Fluorine, Chlorine, solubility, solution mechanism, aluminosilicate melt

40

41 **INTRODUCTION**

42

Fluorine and chlorine contents in phenocryst melt inclusions basaltic magma can reflect their respective compositions in the mantle source because the F and Cl contents of mantle-derived magma are less than their saturation values at low pressure. Therefore, unlike H₂O, F and Cl are not significantly degassed (e.g. Métrich and Wallace 2008). These halogens are also less affected by post-entrapment diffusive loss from melt 48 inclusions through the host mineral than other volatiles (e.g. Gaetani et al. 2012; Bucholz 49 et al. 2013; Lloyd et al. 2013; Le Voyer et al. 2014), perhaps because of their low 50 concentration in melt relative to their solubility in the melt. In the water-rich environment 51 of island arc magma formation and evolution, the Cl/F- ratio of primitive island arc melt 52 inclusions depends either on the composition of a metasomatic agent prior to melting of a 53 source rock (Le Voyer et al. 2010) or on the fluid/rock ratio (Dalou et al. 2010), or both. 54 Therefore, the Cl/F ratio may reflect the different fractionation of F and Cl during 55 hydrous mantle melting depending on the proportion of H_2O (Dalou et al. 2010). This 56 fractionation behavior with H₂O is either because of the effect of H₂O on melting phase 57 relations and phase composition, by the effect of dissolved H_2O on the melt structure, or 58 both.

59 In this paper, we focus on the role of melt structural changes with increasing H_2O 60 content on the behavior of dissolved F and Cl. Fluorine and chlorine solubility and 61 solution mechanisms in silicate melts previously have been studied in anhydrous 62 aluminosilicate melt compositions (Mysen and Virgo 1985a, b; Kohn et al. 1991; Schaller 63 et al. 1992; Zeng and Stebbins 2000; Stebbins and Du 2002; Mysen et al. 2004; Zimova 64 and Webb 2006; Baasner et al. 2013; Dalou and Mysen 2012). In anhydrous melts, F and 65 Cl solubility and solution mechanisms depend on Al content, Na/Si ratio and the 66 proportion of network-modifier alkalis. In other words, solubility and solution 67 mechanism in anhydrous melts depend on melt structure. Fluorine mainly forms 68 complexes with Al in four or six-fold coordination and to a lesser extent Na-F complexes, 69 depending on aluminosilicate melt composition (Mysen et al. 2004). In contrast, chlorine

70	bonds mainly with network-modifying cations such as alkali metals or alkaline earths
71	(Stebbins and Du 2002; Sandland et al. 2004; Evans et al. 2008; Dalou and Mysen 2012).
72	Given the significant effect of H ₂ O on melt structure (e.g. Zhang et al. 1991;
73	Schaller and Sebald 1995; Hess and Dingwell 1996; Zotov and Keppler 1998; Cody et al.
74	2005; Mysen and Cody 2005) and the halogen solubility is affected by melt structure, it is
75	likely that H ₂ O plays an important role in F and Cl solution behavior in silicate melts. In
76	this report, we have addressed effects of H ₂ O on F and Cl solubility and solution
77	mechanisms in sodic aluminosilicate melts at 1.5 GPa and 1400°C.

78

79 METHODS

80

81 Starting compositions were along the joins Na₂O-SiO₂-H₂O and Na₂O-Al₂O₃-SiO₂-H₂O,

with H₂O content ranging from ~2 to 10 wt%. The nominal starting compositions are NS3Ax, NS4Ax and NS5Ax (x, representing the mol fraction of Al, while NS3 denotes Na₂O•3SiO₂; NS4 Na₂O•4SiO₂ and NS5 Na₂O•5SiO₂ in the Al-free glasses). Under the assumption that Al^{3+} is fully in tetrahedral coordination and is charge-balanced by Na⁺, the degree of melt polymerization NBO/T is constant with the increasing of bulk melt Al/(Al + Si) ratio (Table 1).

Anhydrous starting glasses were prepared by mixing spectroscopically pure Na₂CO₃, SiO₂ and Al₂O₃. These mixtures were decarbonated during slow heating (50°C /15 minutes) and then melted for 2 hours at ~ 100°C above there liquidii (from 900 to 1400°C, liquidus data from Osborn and Muan 1960). The melts were then quenched to glass, crushed for ~1h under alcohol and stored at ~250°C when not in use. The powdered

93 starting glasses were loaded into 3mm outside diameter by 5-6 mm long Pt capsules, 94 together with double-distilled, deionized H₂O (from ~ 0.3 to ~ 1.6 µl depending on the 95 desired H₂O concentration), and with either PdCl₂ or AgF₂ as sources of chlorine and 96 fluorine, respectively. These latter two compounds break down to metal (Pd_0 or Ag_0) and 97 molecular Cl₂ or F₂, upon heating to experimental conditions (sufficient chloride and 98 fluoride was added to form ~ 5 wt% of Cl_2 or ~10 wt% of F_2 during high-temperature/-99 pressure experiments). At experimental conditions, F and Cl are released from the thermal decomposition of AgF₂ (AgF₂ \rightarrow Ag₀ + F₂) and PdCl₂ (PdCl₂ \rightarrow Pd₀ + Cl₂) with 100 101 metallic Ag and Pd forming spheres of metal (nm to 3 µm). Water was loaded in the 102 capsule first by using a 0.1 µl precision microsyringe. Then either PdCl₂ or AgF₂, and 103 finally the starting glasses were added before the capsule was welded shut. The maximum 104 of H₂O content used (~10 wt%) was less than that needed for water saturation of the melt 105 for their specific compositions, pressure and temperature conditions (Mysen and Cody 106 2005).

107 The samples, contained in those sealed Pt-capsules, were subjected to high 108 pressure (1.5 GPa) and high temperature (1400°C) with 90-minute experimental duration 109 in 0.75" -diameter furnace assemblies (Kushiro 1976) in a solid-media, high-pressure 110 apparatus (Boyd and England 1960). Temperature was measured with Pt/Pt₉₀Rh₁₀ 111 thermocouples to within \pm 5°C of the set point. From pressure-calibration with the quartz-112 coesite transition (Bohlen 1984), the uncertainty is \pm 0.1 GPa. Before decompression, 113 experiments were quenched rapidly (\pm 100°C/s), by turning off the power to the furnace.

114 After experiments, capsules were opened and pieces of the glasses were either 115 kept intact to be examined by Raman spectroscopy or mounted in epoxy and polished for

116 SEM analysis. The rest of a sample was finely powdered under alcohol and dried to be 117 used to determine H₂O content in a ThermoQuest Finnigan Delta^{plus}XL mass 118 spectrometer. For these analyses, standards were stearic acid, mineral oil and pump oil. 119 Prior to chemical analysis, the powdered samples (1-2 mg contained in Ag foil) were then 120 stored for 12h at 50°C under dry N₂ to reduce or eliminate, as much as possible, moisture 121 from ambient air. A standard deviation of ~1.08 wt% of H₂O was obtained for the first

session of IR-MS analysis and 1.21 wt% for the second.

Saturation of F and Cl was indicated by the presence of 10-30 μ m bubbles in the quenched glass. Vapor exsolution upon quenching often produces finely distributed, micron- to submicron bubbles, significantly different from bubbles formed by stable vapor, which appeared as large bubbles (>10 μ m) randomly distributed in the quenched glass (Mysen and Acton 1999). The absence of such bubbles in the sample (typically < 1 μ m diameter) indicates that volatiles (water or halogens) did not exsolve from the glass during quenching.

130 Major elements, F, and Cl were analyzed energy dispersive mode with a JEOL 131 JSM-6500F field emission scanning electron microscope SEM/EDS operating at 15 kV 132 with a 0.1 nA beam current. To reduce Na losses during analysis, the beam was 133 defocused of 25-50 µm. Possible Na, F or Cl loss were monitored by carrying out several 134 analyses in the same sample spot. No significant compositional change (within the 135 standard deviation) when using a 25 μ m-diameter electron beam. At least 12 spots per 136 glass were analyzed. Topaz was employed as standard for F and scapolite for Cl. 137 Counting times used were 50 sec per element. Major element compositions of starting 138 glasses are presented Table 1. The compositional homogeneity of the quenched glasses

suggests that 90 min experiment duration was sufficient to reach F and Cl equilibriumsolubility in melts (Table 2, Figure 1).

141 The structure of the glasses including the structural environment of F and Cl was 142 probed by using Raman spectroscopy. The Raman spectra were recorded with a JASCO 143 model IRS-3100 confocal microRaman spectrometer with the 532 nm line of a solid-state 144 laser operating at 6.4 mW at the sample for sample excitation. A 50X objective lens was 145 employed for visual microscopic examination and spectroscopic analysis. Signal 146 detection is provided by an Andor Model DV401-F1 1024*128 pixel (25 µm pixel size) 147 Peltier-cooled CCD. With the 1200 grooves/mm of the holographic gratings, a 265–2110 cm⁻¹ frequency range was covered within a single CCD window. The frequency 148 resolution is $\pm 3 \text{ cm}^{-1}$. Acquisition time was typically 15 min per spectrum. 149

150 The background of Raman spectra was subtracted by applying a spline function 151 through the portions of the spectra with no Raman intensity (Figure 2). After background 152 correction, Raman spectra in the frequency region 800 to 1300 cm⁻¹ (shaded range on 153 Figure 2) were fitted to 5 to 6 Gaussian lines using the IGOR[™] software package from 154 Wavemetrics. Then number of fitted bands, their initial location and width were first 155 chosen according to Mysen (2007). During the first step of the curve fitting process, the 156 bandwidth was fixed. Then, the location and bandwidth were restricted to vary within 30 cm⁻¹ until minimization of the χ^2 . Finally, location, bandwidth, and band intensity, were 157 158 used as free independent variables. Errors on the curve-fitting process are estimated from 159 residuals, i.e. differences between the fitted model and the data, and are presented as 160 estimated standard deviation of fitted location and intensity.

162 **RESULTS AND DISCUSSION**

163

164 1. Fluorine and chlorine solubility in quenched hydrous aluminosilicate melts165 (glasses)

166

167 The fluorine solubility is positively correlated with bulk H₂O content (Figure 1A). 168 It increases linearly from 3.33 (± 0.74) to 4.41 (± 0.03) mol% in NS5 composition melt (no Al^{3+}) as the H₂O concentration increases from 0 to 9 wt%. In Al-bearing glass such as 169 170 NS5A5 the F solubility increase is from 4.29 (± 0.36) to 6.14 (± 0.40) mol% in as the H₂O 171 content is increased from 0 to 8.8 wt%, and from 6.32 (± 0.37) to 9.31 (± 0.31) mol% in 172 NS5A10 when H₂O content increases from 0 to 10.7 wt%. In other words, the fluorine 173 solubility is more sensitive to H_2O concentration in Al-bearing (NS5A10) than in Al-free 174 melts (NS5). The solubility increases with bulk Al/(Al + Si) ratio at constant H₂O 175 concentration.

176 There is a negative correlation of Cl solubility with H₂O concentration (Figure 177 1B), which contrasts with the fluorine solubility behavior (Figure 1A). The solubility 178 decreases nearly linearly from 5.70 (± 0.65) to 3.4 (± 0.06) mol% in NS3 composition melt 179 as the H₂O concentration is increased from 0 to 9 wt%, from $3.94 (\pm 0.66)$ to $2.64 (\pm 0.07)$ 180 mol% in NS3A5 from 0 to 4.9 wt% H₂O, and from 3.62 (± 0.38) to 1.66 (± 0.04) mol% in 181 NS3A10 in the H_2O from 0 to 8.5 wt%. The Cl solubility decreases, therefore, with the 182 bulk Al/(Al + Si) in contrast with the solubility behavior of fluorine (Figures 1A and B). 183 Moreover, the dependence of Cl solubility on H_2O content is greater in Al-free glasses 184 than in Al-rich glasses (Cl/H₂O ratio is -0.25 in the NS3 system and -0.15 in the NS3A10

185	system). Negative relationships between Cl solubility and H ₂ O concentration in melt
186	were also reported by Webster (1997) in haplogranite liquids. Although in the latter study
187	the relationship between Cl solubility and H ₂ O content was distinctly non-linear. This
188	difference could be because of the more complex composition of the haplogranitic liquids
189	and because Webster (1997) conducted his experiments in a significantly lower pressure
190	environment than in the present study.
191	
192	2. F and Cl solution mechanisms in hydrous aluminosilicate glasses
193	
194	2.1 Raman spectroscopic data and band assignments
195	
196	Raman spectra in the frequency range of first order Raman scattering assigned to (Si, Al)-
197	O stretch vibrations are presented in Figure 3 (between 800 and 1300 cm ⁻¹ ; see, for
198	example Mysen and Richet 2005, chapters 7 and 9 for review of data). There is a
199	maximum between 1000 and 1100 cm ⁻¹ with visible shoulders on both sides, the detailed
200	geometry of which is changing with H_2O and Al content (Figure 3).
201	Raman spectra of hydrous glasses were fitted to 5 bands, common both to F and
202	Cl- bearing system, near 870-900, 930-970, 1010-1050, 1070-1110 and 1100-1150 cm ⁻¹ .
203	These bands are also common in spectra of halogen-free, hydrous silicate and
204	aluminosilicate glasses. Because of the compositional similarities (hydrous NS4Ax

205 compositions), we used Mysen (2007) to assign the bands 870-900, 930-970, 1070-1110 206 and 1100-1150 cm^{-1} to (Si-Al)-vibrations in structural units with 3, 2, 1 and 0 non-

207 bridging atoms for Q^1 , Q^2 , Q^3 and Q^4 structural units, respectively. The 870-900 cm⁻¹

208 band (light grey shading, Figure 4) is assigned to (Si,Al)-O⁻ (O⁻-nonbridging oxygen) vibrations in Q¹ structural units. Its area increases with the increasing H₂O content. The 209 930-970 cm⁻¹ band (medium grey shading, Figure 4) is assigned to (Si,Al)-O⁻ in Q² units, 210 the 1070-1110 cm⁻¹ (dark grey shading) to (Si,Al)-O⁻ vibrations in Q^3 , and the 1100-1150 211 cm⁻¹ band (carbon black shading) to (Si,Al)-O^o (O^o -bridging oxygen) in Q⁴ units. This 212 assignment is consistent with the structural interpretation of recent ²⁹Si NMR spectra of

214 glasses along the join Na₂Si₃O₇-Na₂(NaAl)₃O₇ (Mysen et al. 2003) and in the system 215 Na₂O-SiO₂-H₂O (Cody et al. 2005).

213

The assignment of the peak near 1010-1050 cm⁻¹ has been proposed to be either to 216 Si-O° or (Si,Al)-O° vibrations in any structural unit with bridging oxygen (Mysen et al. 217 218 1982; Lasaga 1982) or to Si-O vibrations of bonds associated with alkali metals or alkaline earths in Q³ species (Fukumi et al. 1990; McMillan et al. 1992). However, no 219 evidence of a second Q³ structural unit was found in the ²⁹Si NMR spectra in 220 221 aluminosilicate glasses of compositions similar to the ones used in this study (e.g. 222 Maekawa et al. 1991; Buckermann et al. 1992; Mysen et al. 2003; Cody et al. 2005). 223 Therefore, the most likely assignment is the (Si,Al)-O° vibration.

224 The curve fitting of the spectra of F-bearing glasses requires an additional band (Table 5) around 980-990 cm⁻¹ (crossed-hatched region in Figure 4). The fits to spectra of 225 226 Cl-bearing equivalent glasses or halogen-free glasses of similar composition either 227 anhydrous or hydrous glasses do no require this additional band (Mysen 2007). A band near ~945 cm⁻¹ has been assigned to correspond to SiO₃-F complexes (Dumas et al. 1982; 228 229 Yamamoto et al. 1983). As the F/O increases, the frequency of the band assigned to SiO_xF_{4-x} complexes increases (Yamamoto et al. 1983; Mysen and Virgo 1985a, 1985b). 230

Accordingly, the 990 cm⁻¹ band is assigned to (Si, Al)-F stretching in Q^3 , in which one or two non-bridging oxygens are replaced by F.

233 With increasing H₂O content and Al/(Al+Si) ratio of glasses, peak positions shift to the lower frequencies, more particularly for the band attributed O^4 (Table 3). An 234 analogous shift has been observed in ²⁹Si NMR MAS NMR spectra (e.g. Zotov and 235 Keppler 1998; Lee and Stebbins 1999). The shift is mainly observed Q^4 bands, because 236 Al^{3+} preferentially substitutes for Si^{4+} in the most polymerized Q^n species (Merzbacher 237 and White 1991; Mysen et al. 2003). The decrease of Q^4 peak frequency with increasing 238 239 H₂O content (Table 3), previously also reported by Zotov and Keppler (1998), may reflect the preference of OH to bond with Si in Q⁴, rather than with Al, increasing the 240 proportion of Al in Q^4 . 241

242

243 2.2 Structural interpretations

244

245 In order to quantify and decipher the effect of H_2O , F, and Cl on melt structure, relative 246 band intensities must be converted in Qⁿ-species mol fraction abundances. Mol fraction 247 of structural units, X₀₁, X₀₂, X₀₃ and X₀₄, were calculated by using Raman literature data (Mysen and Frantz 1993; Mysen and Cody 2001; Mysen et al. 2003; Mysen et al. 2004) 248 and ²⁹Si-NMR spectral data of glasses of similar composition. This calculation derives 249 mol fraction X_n , for species, *n*, from ²⁹Si MAS NMR, combining a calibration factor α_n 250 with integrated intensity of the relevant Raman band, A_n , (Cody et al. 2005; Mysen and 251 252 Cody 2005):

$$253 \qquad \alpha_n = X_n / A_n. \tag{1}$$

The α_n -factors for Q¹, Q² and Q³ based on NMR and Raman data are from 254 255 hydrous NS4 and NS4A10 glasses of Cody et al. (2005) and Mysen and Cody (2005). 256 The Al/(Al + Si) has no effect on all α_n -factors, except for α_4 (Mysen 2007). The H₂O 257 content in glasses has only a small effect. Nevertheless, by using α_n -factors determined 258 from halogen-free glasses, we may have introduced an inaccuracy in the calculation O^n 259 mol fractions in halogen-bearing glasses. The extent of this uncertainty is not readily 260 estimated. Essentially all the Al^{3+} resided in the Q^4 species in peralkaline aluminosilicate 261 262 melts and glasses (Merzbacher and White 1991; Mysen et al. 2003), which is why the α_4 depends on Al/(Al+Si) in the Q^4 - species. The Al/(Al + Si) of the present glasses cannot 263 be calculated and likely varies with H₂O and halogen content. The Q⁴-abundance hydrous 264 265 aluminosilicate glasses was calculated, therefore, from mass-balance: 266 $X_{O4} = 1 - (X_{O3} + X_{O2} + X_{O1}).$ (2)The uncertainty of this procedure is related to the unknown amount of $Si(O^3)$ -OH, $Si(O^3)$ -267 268 F and $Si(O^3)$ -Cl, which are not taken into account in this calculation. 269 The variation of Qⁿ species abundance with H₂O content in Al-free (Figure 5) and 270 Al-rich samples (Figure 6) is different in the halogen-free samples from Mysen (2007) 271 and the F- or Cl-bearing samples examined here.

- 272
- 273 2.2.1 The structural effect of H_2O on silicate glasses
- 274

Structural characterization of hydrous, halogen-bearing glasses relies on existing
structural data of hydrous, halogen-free aluminosilicate glasses (Mysen 2007). In such

hydrous glasses, increasing H_2O content produces a linear increase of X_{Q1} . However, the X_{Q2} abundance increase is non-linear. This solution mechanism can be illustrated with the expression;

280
$$Q^4 + H_2O = Q^2(2H),$$
 (3)

where $Q^2(2H)$ refers to Q^2 -species with $2H^+$ per Si, which is consistent with the data from the present study (Figure 5).

The X_{Q3} abundance initially also increases non-linearly followed by a decrease for high H₂O content. At low H₂O content (< 4 wt%), the Q³ abundance increases with increasing water concentration, because Na⁺ preferentially forms bonding with nonbridging oxygens in Q³-species with the H⁺ associated with nonbridging oxygen in Q² and Q¹ species (Mysen 2007). Above 4 wt% H₂O (~ 9 mol% H₂O), the decreasing Q³ abundance likely is due to additional breaking of oxygen bridges to form more Q²(2H) are in Q³ species:

290
$$Q^3 + 2H_2O = Q^2(2H).$$
 (4)

For these compositions, the X_{Q4} abundance always decreases with increasing water content (Mysen 2007).

In melts with high sodium contents, solution of water does not significantly increase depolymerization (Cody et al. 2005). Therefore, the assumption that H⁺ forms complexes only with silica to create non-bridging oxygens cannot be correct. The presence of Na-OH was suggested by ¹H SPMAS NMR studies of NS4 composition hydrous glasses (Xue and Kanzaki 2003; Cody et al. 2005). The formation of such complexes causes polymerization of the silicate network (Mysen and Cody 2005), because it decreases the abundance of Na⁺ network modifiers. As Na/Si increases, the formation of Na-OH complexes increases (Cody et al. 2005; Mysen and Cody 2005).

The structure of hydrous halogen-bearing glasses of the present study is compared with hydrous halogen-free glasses from Mysen (2007). It must be noted that the NBO/T of Mysen (2007)'s glasses is slightly lower than ours (0.44) and the H₂O content in the two studies was carried out by different methods. Nevertheless, NBO/T-difference between the two studies is nearly within their error bars, so it is assumed that Q^n trends with increasing H₂O content can be compared (Figure 7).

307 In hydrous F-bearing melt glasses, X_{Q2} and X_{Q4} are lower and X_{Q3} is higher 308 than in halogen-free systems. Moreover, the X_{Q2} increase and X_{Q4} decrease with 309 increasing H₂O content are lower in F-bearing glasses than in F-free glasses. These latter 310 observations suggest that the presence of F affects depolymerization reactions such as, 311 for example, described in equation 3.

In Na₂O-SiO₂-F glasses, the dominant complexes, inferred from ¹⁹F and ²⁹Si 312 313 NMR spectroscopy, have been reported as NaF type (e.g. Schaller et al. 1992; Mysen et 314 al. 2004). The Si-F complexes were found by Raman spectroscopy studies in high F 315 concentration SiO₂-NaF glasses (> 7.5 mol% of F; Mysen and Virgo 1985b). In addition, a small fraction of Si-F bonding was found by ¹⁹F NMR spectroscopy in F-bearing 316 317 silicate and aluminosilicate glasses (Zeng and Stebbins 2000; Kiczenski et al. 2004; 318 Kiczenski and Stebbins 2006). Mysen and Virgo (1985b) show that the proportion of Na-319 F and Si-F complexes depends on the degree of polymerization of glasses: the abundance 320 of Na-F is greater than Si-F complexes in highly depolymerized Na₂O-SiO₂-F glasses 321 (NBO/T ~ 2), but in melt of comparable NBO/T to that in this study (~ 0.4, 0.5), Si-F 322 complexes represents 90% of fluoride complexes.

In hydrous fluorine-bearing melts, Si-F complexes most likely is in the form a Q^3 -type complex where one of the oxygen per Si is replaced with fluorine to form a stoichiometry such as, Si₂O₃F₂. We will denote this as Q³(F). Water breaks oxygen bridges to form Si-OH bonds. Given that the Raman spectra indicate increased abundance of Q²-species with increasing H₂O content, it is proposed that the stoichiometry of this species is SiO₃H₂. A schematic and balanced reaction to illustrate how fluorine interacts with the silicate network then becomes;

330
$$3Q^4 + H_2O + F_2 = 2Q^3(F) + Q^2(H) + 1/2O_2,$$
 (5)

331 where
$$Q^4$$
 is equivalent to SiO₂, $2Q^3(F)=Si_2O_3F_2$, and $Q^2(H)=SiO_3H_2$.

One could also write equations with H^+ in species other than Q^2 and fluorine in 332 species other than Q³. However, from the Raman spectra, there is evidence only for 333 formation of Q^3 and Q^2 . Moreover, other evidence suggests that H^+ tends to favor 334 335 associated with nonbridging oxygen in the least polymerized species. In the present 336 study, that species is Q^2 . The actual reaction likely is more complex and will need to accommodate Na^+ and Al^{3+} so that there will be mixed (Al,Si) species and mixed (Na,H) 337 338 species. Finally, in a hydrous alkali aluminosilicate melt system such as examined here, fluorine bonding to Al^{3+} and Na^{+} also is likely as demonstrated in other F-bearing 339 340 anhydrous glasses (e.g., Schaller et al. 1992; Mysen et al. 2004). Although a number of 341 feasible solution mechanisms involving those components could be written, there is little 342 structural information with which to identify the most likely reaction, so this has not been 343 attempted.

344 In hydrous Cl-bearing glasses, the abundance of Q^4 , X_{Q4} is lower and X_{Q3} is 345 higher than in halogen-free melts, which implies that Cl enhances melt depolymerization

(Figure 7). Raman and ³⁵Cl NMR spectroscopy (Stebbins and Du 2002; Sandland et al. 346 347 2004; Evans et al. 2008; Dalou and Mysen 2012) show that Cl⁻ form bonds with alkali 348 network modifiers in silicate glass and melt. Sodium is the network-modifier in the present study. As H₂O content in Cl-bearing glasses increases, the Q² abundance 349 increases and that of Q⁴ decreases more rapidly than in Cl-free, hydrous glasses (Figure 350 351 5). In other words, Cl enhances H₂O depolymerizing effect. Given that there is no 352 evidence for Si-Cl bonding and that Cl both likely form NaCl complexes and increase H₂O depolymerization effect, our data are consistent with the following reaction 353 354 schematic expression:

355
$$Q^{3}(Na) + Q^{4} + Cl_{2} + 2H_{2}O = 2Q^{2}(H) + NaCl + 1/2O_{2}.$$
 (6)

In eqn. (6), $Q^3(Na)$ is equivalent to $Na_2Si_2O_5$, where, in other words, the nonbridging oxygens are charge-balanced with Na^+ , and $Q^2(H)=SiO_3H_2$, where the nonbridging oxygens are charge-balanced with 2 H⁺. The Q⁴ is equivalent to SiO₂. We emphasize that this is schematic as (Al,Si)-exchange is not taken into account.

Expression (6) also illustrates how stabilization of NaCl complexes in hydrous melts results in melt depolymerization, whereas in anhydrous melts, formation of similar NaCl complexes results in silicate polymerization via a simple expression such as, for example:

$$363 2Q^{3}(Na) + Cl_{2} = 2Q^{4} + 2NaCl + 1/2O_{2}. (7)$$

364

366

367 In order to understand the role of Al⁺ in solution of halogens, a summary of how Al³⁺
368 interacts with melt structure is necessary. In this environment as well as in crystalline

aluminosilicates, charge-balanced Al³⁺ substitutes for Si⁴⁺ in the silicate species with the 369 370 smallest intertetrahedral angle (Brown et al. 1969; Merzbacher and White 1991; Mysen et al. 2003). In peralkaline aluminosilicate melts with coexisting Q^4 , Q^3 , and Q^2 species, the 371 substitution will be dominantly in the form of aluminous Q⁴ units, or simply NaAlO₂. 372 373 Fluorine solution in anhydrous aluminosilicate melts results in formation of both 374 Al-F and Na-F bonding (e.g. Schaller et al. 1992; Zeng and Stebbins 2000; Mysen et al. 375 2004; Baasner et al. 2014). The Al-F/Na-F ratio increases with increasing Al/(Al+Si) of the melt (Mysen et al. 2004). One may write such a mechanism by using the $Q^{3}(F)$ 376

377 complex discussed above [equation (5)] as source of fluorine and by describing dissolved

 Al^{3+} as an AlO₂ complex. The two principal reactions can be written:

$$379 \quad 2Q^{3}(F) + 2NaAlO_{2} = 2Q^{1}(Al) + 2NaF$$
(8a)

380 and

$$381 \quad 3Q^{3}(F) + 2NaAlO_{2} = 2Q^{3}(Na) + 2AlF_{3} + 4Q^{4}.$$
(8b)

In these two expressions, the notations NaF and AlF₃ simply are meant to indicate stoichiometric environments with Na-F and Al-F bonding, respectively, and the notations $Q^{1}(Al)$ and $Q^{3}(Na)$ means nonbridging oxygen bonded to Al³⁺ and Na⁺, respectively. The implications of eqns. (8a) and (8b), is that formation of Al-F bonding in an anhydrous peralkaline aluminosilicate melts, is a much more efficient way to depolymerize the melt than by forming Na-F bonds.

In hydrous aluminosilicate systems, the additional depolymerization reaction is illustrated in equation (4), which can be combined with equations (8a) and (8b) to indicate the two additional solution mechanisms [in addition to eqn. (5)] resulting from the presence of charge-balanced Al^{3+} in a hydrous melt:

$$392 2Q3(F) + Q4 + H2O + 2NaAlO2 = 2Q1(Al) + 2NaF + Q2(H), (9a)$$

393 and

$$394 \quad 3Q^{3}(F) + 2NaAlO_{2} + H_{2}O = 2Q^{3}(Na) + 2AlF_{3} + 3Q^{4} + Q^{2}(H).$$
(9b)

So even though addition of water to fluorine-bearing peralkaline aluminosilicate melts
results in additional silicate depolymerization, the difference on between Al-F and Na-F
discussed under eqns. (8a) and (8b) remains.

The solution mechanisms illustrated with expressions (5, 9a, and 9b) show the principles. However, given that Si-F, Na-F, and Al-F bonding have been detected in Fbearing aluminosilicate melts (Schaller et al. 1992; Zeng and Stebbins 2000; Mysen et al. 2004), very likely all three mechanisms work together with their relative importance governed by the Al/(Al+Si) of the melts [as already seen in anhydrous F-bearing aluminosilicate melts – see Mysen et al. (2004)]. The spectroscopic data in the present report are insufficient detailed to establish those details.

In hydrous Cl-bearing aluminosilicate glasses, the Cl solution mechanism remains unclear because we do not have an understanding of the type of Al-Cl-Na formed in anhydrous aluminosilicate melts. Complexes that incorporate Na-Cl bonding most commonly are reported (e.g. Stebbins and Du 2002; Sandland et al. 2004, Zimova and Webb 2006; Evans et al. 2008; Baasner et al. 2013). In an anhydrous aluminosilicate melt, such complexes may be formed via the solution mechanism;

411
$$12Q^4 + 4NaAlO_2 + 2Cl_2 = 4NaCl + 6Q^3(Al) + O_2,$$
 (10a)

412 whereas if Al-Cl bonding is formed (indicated by AlCl₃ in the schematic expressions):

413
$$4Q^4 + 4NaAlO_2 + 6Cl_2 = 4AlCl_3 + 4Q^3(Na) + 3O_2.$$
 (10b)

414

18

415 In equations (10a,b), as above, we consider Al^{3+} predominantly in Q⁴ and denote it 416 NaAlO₂. The symbolism Q³(Na) and Q³(Al) indicates, as above, Na⁺ and Al³⁺ 417 respectively as network-modifying cations forming bonding with nonbridging oxygen in 418 Q³-species. This means that 2Q³(Na) is equivalent to Na₂Si₂O₅ and 6Q³(Al) equivalent to 419 Al₂(Si₂O₅)₃. This means that in anhydrous melts, formation of NaCl-type depolymerizes 420 anhydrous aluminosilicate melts more efficiently than formation of Al-Cl bonding with 417 AlCl₃-type complexes.

In the hydrous systems under considerations here, these relationships remain except that by dissolving H_2O in Cl-bearing aluminosilicate melts, additional depolymerization will take place with the protons forming OH-bonding by reacting with nonbridging oxygen in depolymerized units. As above, we consider this to be Q^2 units as discussed above. The complete, schematic solubility mechanisms of water and chlorine in aluminosilicate melts can be written:

428
$$14Q^4 + 4NaAlO_2 + H_2O + 2Cl_2 = 4NaCl + 6Q^3(Al) + Q^2(H) + O_2,$$
 (11a)

429 and

430
$$5Q^4 + 4NaAlO_2 + H_2O + 6Cl_2 = 4AlCl_3 + 4Q^3(Na) + Q^2(H) + 3O_2.$$
 (11b)

It is likely that in actuality, mechanisms (6, 11a,b) operate together and that the relative importance, depends not only on water and chlorine content, but also on Al/(Al+Si), and Na/(Al+Si).

434

435 IMPLICATIONS: Contrasting effects of H₂O on F and Cl complexes in alumino436 silicate melts

10/1

An increase of both H₂O and the Al/Al+Si proportion leads to enhance fluorine solubility in aluminosilicate melts such as natural magmatic melts. The effect of dissolved H₂O on F solubility increases with the increasing Al/Al+Si because H₂O suppresses the relative importance of Si-F complexing. The effect of Al/(Al+Si) is less important for chlorine-bearing aluminosilicate melts because Si-Cl bond formation does not seem to take place. The influence of water on silicate polymerization of chlorinebearing melts is, therefore, less important than that of fluorine.

445 Properties of hydrous, fluorine-bearing magma vary with water content, but the 446 magma composition affects the extent of the water effect. This may, for example help 447 explaining why diffusivity of fluorine in basaltic magma is more sensitive than in 448 phonolite (Alletti et al. 2007; Balcone-Boissard et al. 2009). Note that the type of alkali 449 present in melts has no significant influence of F properties, as solubility (Dalou et al. in 450 review) or diffusivity (Balcone-Boissard et al. 2009). In the latter melt composition, the 451 higher silica concentration enhances fluorine solution as $Q^{3}(F)$ species compared with solution to form Na-F or Al-F bonding, or both. Increasing water content in an Q³(F)-rich 452 453 melt is less efficient silicate depolymerizer than when fluorine complexing is dominated 454 by Al-F and/or Na-F bonding, as likely is the case in hydrous basaltic magma. As 455 diffusivity is positively correlated with degree of polymerization of silicate melts, it 456 follows, then, that water has a more pronounced effect on F diffusion in basaltic than in 457 phonolitic melts.

Interestingly, the Cl diffusivity in hydrous phonolitic and basaltic magmas is more sensitive to water content in the silica-rich phonolite melts (Alletti et al. 2007; Balcone-Boissard et al. 2009). This behavior likely is related to the fact that ion contrast to

fluorine, chlorine does not form bonding with Si⁴⁺. Relative variations in water effects on 461 462 properties of Cl-bearing magmas are, therefore, simply a function of the proportion of 463 alkali-fluorine versus aluminum-fluorine complexing. The alkali/(Al+ Si) of phonolite is 464 considerably greater in phonolite than in basalt melt so that likely alkali-chloride 465 complexing is more important. From equation (11), water affects melt polymerization 466 more profoundly in environments where alkali-chloride complexing is the most important 467 solution behavior. As a result, Cl-bearing phonolite melt is more sensitive to water than is 468 basalt melt.

469 The increase of F solubility with increasing H₂O content is consistent with the 470 decrease of mineral/melt partition coefficients of F with increasing H₂O content dissolved 471 in basaltic melts (Dalou et al. 2010). Similarly, the Cl solubility decrease with increasing 472 H₂O content is consistent with the decrease of Cl partition coefficients between 473 anhydrous mantle minerals and hydrous basaltic melts, with increasing H_2O content 474 dissolved in basaltic magmas (Dalou et al. 2010). Because of the contrasting effect of 475 H₂O on F and Cl mineral/melt partition coefficients, Dalou (2011) highlight the potential 476 of F and Cl as tracers of primary H₂O content in mantle magmas, especially in subduction 477 zones' magmas. Indeed, the variation of a few wt% of H₂O produces highly variable Cl/F 478 ratios in magmas. We suggest that halogen solubility in the magmatic liquid has a 479 significant influence on F and Cl mineral/melt partition coefficients and because the 480 effect of the dissolved water on F and Cl solubility differs, the Cl/F ratio in magmas is 481 sensitive to the amount of H₂O involved in arc magmas genesis.

482

483	Aknowledgments: This research was conducted with partial support from NSF grant
484	EAR-1212754 (to BOM and CD), and NAI grant to the Geophysical Laboratory.
485	Reviews by Hélène Balcone-Boissard, two anonymous reviewers and A.E. Daniel
486	Neuville were very helpful. We also thank J.T. Armstrong and K. Crispin for their help
487	with the optimization of the SEM/EDS analytical protocol, and R. Bowden for her help in
488	analyzing samples H ₂ O content on the mass spectrometer.

489

490 **REFERENCES**

- 491
- Alletti, M., Baker, D.R., and Freda, C. (2007) Halogen diffusion in a basaltic
 melt. Geochimica et Cosmochimica Acta, 71(14), 3570-3580.
- 494 Baasner, A., Schmidt, B.C., and Webb, S.L. (2013) Compositional dependence of the
- 495 rheology of halogen (F, Cl) bearing-aluminosilicate melts. Chemical Geology,
 496 346(C), 172-183.
- Baasner, A., Schmidt, B.C., Dupree, R., and Webb, S.L. (2014) Fluorine speciation as a
 function of composition in peralkaline and peraluminous Na₂O-CaO-Al₂O₃-SiO₂
 glasses: A multinuclear NMR study. Geochimica et Cosmochimica Acta, 132, 151169.
- Balcone-Boissard, H., Baker, D.R., Villemant, B., and Boudon, G. (2009) F and Cl
 diffusion in phonolitic melts: Influence of the Na/K ratio. Chemical Geology,
 263(1), 89-98.
- 504 Bohlen, S.R. (1984) Equilibria for precise pressure calibration and a frictionless furnace
- assembly for the piston-cylinder apparatus. Neues Jahrbuch für Mineralogie, Mh.,

- 506 84, 404–412.
- Boyd, F.R. and England, J.L. (1960) Apparatus for phase equilibrium measurements at
 pressures up to 50 kilobars and temperatures up to 1750°C. Journal of Geophysical
- 509 Research, 65, 741–748.
- 510 Brown, G. E., Gibbs, G. V., and Ribbe P. H. (1969) The nature and variation in length of
- the Si-O and Al-O bonds in framework silicates. American. Mineralogist, 54, 1044–
 1061.
- 513 Bucholz, C.E., Gaetani, G.A., Behn, M.D., Shimizu, N. (2013) Post-entrapment 514 modification of volatiles and oxygen fugacity in olivine-hosted melt 515 inclusions. Earth and Planetary Science Letters, 374, 145-155.
- 516 Buckermann, W. A., Müller-Warmuth, W., and Heinz Frischat, G. (1992) A further ²⁹Si
- 517 MAS NMR study on binary alkali silicate glasses. Glastechnische Berichte, 65(1),
 518 18-21.
- 519 Cody, G.D., Mysen, B.O., and Lee, S.K. (2005) Structure vs. composition: A solid-state
- ¹H and ²⁹Si NMR study of quenched glasses along the Na₂O-SiO₂-H₂O join.
 Geochimica et Cosmochimica Acta, 69(9), 2373–2384.
- 522 Dalou, C. (2011) Fluorine and chlorine fractionation in the sub-arc mantle: an
 523 experimental investigation. 304p. Ph.D. thesis, Université Blaise Pascal, Clermont524 Ferrand. *http://tel.archives-ouvertes.fr/tel-00657297*
- 525 Dalou, C., and Mysen, B.O. (2012) Solubility and solution mechanisms of chlorine in
- 526 aluminosilicate melts at high pressure and high temperature. *American Geophysical*
- 527 Union, Fall Meeting 2012, abstract #MR11C-2509.

- 528 Dalou, C., Koga, K.T. and Shimizu, N. (2010) Fluorine and Chlorine behavior in mantle
- wedge, new implications for slab component. *American Geophysical Union, Fall Meeting 2010, abstract #V34C-06.*
- 531 Dalou, C., Mysen, B.O., and Cody, G.D. (*in review*) Solubility and solution mechanisms
- of fluorine and chlorine in aluminosilicate melts at high pressure and hightemperature. American Mineralogist.
- 534 Dumas, P., Corset, J., Carvalho, W., Levy, Y., Neuman, Y. (1982) Fluorine-doped
- 535 vitreous silicate analysis of fiber optics preforms by vibrational spectroscopy.
- Journal of Non-Crystalline Solids, 47, 239-242.
- Evans, K.A., Mavrogenes, J.A., O'Neill, H.S., Keller, N.S., and Jang, L.Y. (2008) A
 preliminary investigation of chlorine XANES in silicate glasses. Geochemistry,
 Geophysics, Geosystems, 9(10).
- 540 Fukumi, K., Hayakawa, J., and Komiyama, T. (1990) Intensity of Raman band in silicate
- 541 glasses. Journal of Non-Crystalline Solids, 119(3), 297-302.
- 542 Gaetani, G.A., O'Leary, J.A., Shimizu, N., Bucholz, C.E., and Newville, M. (2012)
- 543 Rapid reequilibration of H_2O and oxygen fugacity in olivine-hosted melt 544 inclusions. Geology, 40(10), 915-918.
- Hess K.-U., and Dingwell D. B. (1996) Viscosities of hydrous leucogranitic melts: A
 non-Ahrrenian model. American Mineralogist, 81, 1297-1300.
- 547 Kiczenski, T.J., Du, L.S., and Stebbins, J.F. (2004) F-19 NMR study of the ordering of
- 548 high field strength cations at fluoride sites in silicate and aluminosilicate
 549 glasses. Journal of non-crystalline solids, 337(2), 142-149.

- 550 Kiczenski, T.J., and Stebbins, J.F. (2006) The effect of fictive temperature on the
- 551 structural environment of fluorine in silicate and aluminosilicate glasses. Journal of
- the American Ceramic Society, 89(1), 57-64.
- 553 Kohn, S.C., Dupree, R., Mortuza, M.G., and Henderson, C.M.B. (1991). NMR evidence
- 554 for five- and six- coordinated aluminum fluoride complexes in F-bearing 555 aluminosilicate glasses. American Mineralogist, 76, 309-312.
- 556 Kushiro, I. (1976) A new furnace assembly with a small temperature gradient in solid-
- media, high-pressure apparatus. Carnegie Institution Washington year Book, 75,832-833.
- Lasaga A.C. (1982) Optimization of CNDO for molecular orbital calculation on silicates.
 Physics and Chemistry of Minerals, 8, 36-46.
- Lee, S.K., and Stebbins, J.F. (1999) The degree of aluminum avoidance in
 aluminosilicate glasses. American Mineralogist, 84(5-6), 937-945.
- 563 Lee, S.K., and Stebbins, J.F. (2009) Effects of the degree of polymerization on the
- 564 structure of sodium silicate and aluminosilicate glasses and melts: An ¹⁷O NMR 565 study. Geochimica et Cosmochimica Acta, 73(4), 1109-1119.
- Le Voyer, M., Rose-Koga, E.F., Shimizu, N., Grove, T.L., and Schiano, P. (2010) Two
- 567 Contrasting H₂O-rich Components in Primary Melt Inclusions from Mount Shasta.
 568 Journal of Petrology, 51, 1571–1595.
- Le Voyer, M., Asimow, P.D., Mosenfelder, J.M., Guan, Y., Wallace, P.J., Schiano, P.,
- 570 Stolper, E.M., and Eiler, J.M. (2014) NanoSIMS determination of H₂O and F
- 571 concentrations in olivines around melt inclusions, Journal of Petrology,
 572 doi:10.1093/petrology/egu003.

- 573 Lloyd, A.S., Plank, T., Ruprecht, P., Hauri, E.H., and Rose, W. (2013) Volatile loss from
- melt inclusions in pyroclasts of differing sizes. Contributions to Mineralogy and
 Petrology, 165(1), 129-153.
- 576 Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, T. (1991) The structural
- 577 groups of alkali silicate glasses determined from ²⁹Si MAS-NMR. Journal of Non-
- 578 Crystalline Solids, 127(1), 53-64.
- 579 Merzbacher, C.I., and White, W.B. (1991) The structure of alkaline earth aluminosilicate
- glasses as determined by vibrational spectroscopy. Journal of non-crystallinesolids, 130(1), 18-34.
- 582 Métrich, N., and Wallace, P.J (2008) Volatile abundances in basaltic magmas and their 583 degassing paths tracked by melt inclusions. Reviews in Mineralogy and 584 Geochemistry, 69(1), 363-402.
- 585 McMillan, P.F., Wolf, G.H., and Poe, B.T. (1992) Vibrational spectroscopy of silicate 586 liquids and glasses. Chemical Geology, 96(3), 351-366.
- 587 Mysen, B.O. (2007) The solution behavior of H₂O in peralkaline aluminosilicate melts at
- high pressure with implications for properties of hydrous melts. Geochimica etCosmochimica Acta, 71(7), 1820-1834.
- 590 Mysen, B.O., and Virgo, D. (1985a) Structure and properties of fluorine-bearing
- aluminosilicate melts: the system Na₂O-AI₂O₃-SiO₂-F at 1 atm. Contributions to
 Mineralogy and Petrology, 91, 205–220.
- 593 Mysen, B.O., and Virgo, D. (1985b) Interaction between fluorine and silica in quenched
- 594 Melts on the joins SiO₂-AIF₃ and SiO₂-NaF determined by Raman spectroscopy.
- 595 Physics and chemistry of minerals, 12, 77-85.

- 596 Mysen, B.O., and Frantz, J.D. (1993) Structure of silicate melts at high temperature: In-
- situ measurements in the system BaO-SiO₂ to 1669°C. American Mineralogist, 78(78), 699-709.
- 599 Mysen, B.O., and Acton, M. (1999) Water in H₂O-saturated magma-fluid systems:
- 600 solubility behavior in $K_2O-Al_2O_3$ -SiO₂-H₂O to 2.0 GPa and 1300°C. Geochimica et 601 Cosmochimica Acta, 63(22), 3799-3815.
- Mysen, B.O., and Cody, G.D. (2001) Silicate-phosphate interactions in silicate glasses
 and melts: II. Quantitative, high-temperature structure of P-bearing alkali
 aluminosilicate melts. Geochimica et Cosmochimica Acta, 65(14), 2413-2431.
- Mysen, B.O., and Cody, G.D. (2004) Solubility and solution mechanism of H₂O in alkali
 silicate melts and glasses at high pressure and temperature. Geochimica et
 cosmochimica Acta, 68(24), 5113-5126.
- Mysen, B.O., and Cody, G.D. (2005) Solution mechanisms of H₂O in depolymerized
- 609 peralkaline melts. Geochimica et Cosmochimica Acta, 69(23), 5557-5566.
- Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts, Properties and Structure.
- Elsevier, Amsterdam.
- Mysen, B.O., Finger, L.W., Virgo, D., and Seifert, F.A. (1982) Curve-fitting of Raman
 spectra of silicate glasses. American Mineralogist, 67(7-8), 686-695.
- 614 Mysen, B.O., Lucier, A., and Cody, G.D. (2003) The structural behavior of Al³⁺ in
- peralkaline melts and glasses in the system Na₂O-Al₂O₃-SiO₂. American
 Mineralogist, 88, 1668-1678.
- 617 Mysen, B.O., Cody, G.D., and Smith, A. (2004) Solubility mechanisms of fluorine in 618 peralkaline and meta-aluminous silicate glasses and in melts to magmatic

- 619 temperatures. Geochimica et Cosmochimica Acta, 68(12), 2745–2769.
- 620 Osborn E.F, and Muan A. (1960) Phase equilibrium diagrams for ceramists. Plate 4. The
- 621 system Na₂O-Al₂O₃-SiO₂. American Ceramic Society, Columbus, OH.
- 622 Sandland, T.O., Du, L.S., Stebbins, J.F., and Webster, J.D. (2004) Structure of Cl-
- 623 containing silicate and aluminosilicate glasses: A ³⁵Cl MAS-NMR
 624 study. Geochimica et cosmochimica acta, 68(24), 5059-5069.
- 625 Schaller, T., and Sebald, A. (1995) One- and two-dimensional ¹H magic- angle spinning
- experiments on hydrous silicate glasses. Solid State Nuclear Magnetic Resonance 5,89-102.
- 628 Schaller, T., Dingwell, D.B., Keppler, H., Knöller, W., Merwin, L., and Sebald, A.
- 629 (1992) Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study.
 630 Geochimica et Cosmochimica Acta, 56, 701–707.
- 631 Stebbins, J.F., and Du, L.-S. (2002) Chloride ion sites in silicate and aluminosilicate
- glasses: A preliminary study by ³⁵Cl solid-state NMR. American Mineralogist, 87,
 359-363.
- Webster, J.D. (1997) Chloride solubility in felsic melts and the role of chloride in
 magmatic degassing. Journal of Petrology, 38, 1793-1807.
- Kue, X., and Kanzaki, M. (2003) The dissolution mechanism of water in alkaline earth
 silicate and aluminosilicate melts: one view from ¹H MAS NMR. Geochimica et
 Cosmochimica Acta, 67, A543.
- 639 Yamamoto K., Nakanishi T., Kasahara H., and Abe K. (1983) Raman scattering of SiF₄
- 640 molecules in amorphous fluorinated silicon. Journal of Non-Crystalline Solids, 59-
- 641 60, 213**-**216.

- 642 Zeng, Q., and Stebbins, J.F. (2000) Fluoride sites in aluminosilicate glasses: High-
- resolution ¹⁹F NMR results. American Mineralogist, 85, 863-867.
- 644 Zhang Y., and Stolper, E. M. (1991) Water diffusion in a basaltic melt. Nature 351, 306-645 309.
- 646 Zimova, M., and Webb, S.L. (2006) The effect of chlorine on the viscosity of Na₂O-
- Fe_2O_3 -Al_2O_3-SiO_2 melts. American Mineralogist, 91(2-3), 344–352.
- 648 Zotov, N., and Keppler, H. (1998) The influence of water on the structure of hydrous
- sodium tetrasilicate glasses. American Mineralogist, 83, 823-834.
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662 FIGURE CAPTIONS
- 663

664	Figure 1. Solubility (mol%) of F (A) and Cl (B) in aluminosilicate quenched melts
665	(glass) as a function of the H ₂ O content in wt%. For F-solubility experiments, diamonds
666	refer to NS5Ax samples and, for Cl-solubility experiments, circles refer to NS3Ax
667	samples. The gray scale refers to the bulk Al ₂ O ₃ content (mol%). All samples were run at
668	1.5 GPa and 1400°C. Errors bars in F and Cl mol% represent one standard deviation of
669	the average of all analyses of each sample (\geq 12 analyses). Error bars in H ₂ O content
670	(1.08 wt%) represent the analytical error, calculated from the difference between known
671	standards' composition values and their measured values (see text for standards
672	description).

673

Figure 2. Illustration of background subtraction with the Raman spectrum of glassC5H2NS4 as an example.

676

Figure 3. Raman spectra of NS4Ax glasses in the frequency region of first-order Raman scattering, for composition indicated in individuals panels. Numbers on individual spectra denotes the measured H₂O content (wt%). Spectra are offset for clarity and are normalized to 100% intensity, where 100% represents that data point within each spectrum of the highest intensity.

682

Figure 4. Examples of Raman spectra of glasses in the frequency region on (Si, Al)-O stretch vibrations for compositions indicated on each figure. The individual lines are of Gaussian shape and fitted to the spectra as discussed in the text. Also see text for discussion of band assignments.

687

Figure 5. Mol fraction of Q^1 , X_{O1} , Q^2 , X_{O2} , Q^3 , X_{O3} , and Q^4 , X_{O4} , structural units as a 688 689 function of H₂O content (wt%), in halogen-free samples (squares), in F-bearing samples 690 (diamonds) and in Cl-bearing samples (circles), in the system NS4. Data in the halogenfree samples are from Mysen (2007). Qⁿ species abundance was calculated from Raman 691 692 data by using equation 1 and 2 and calibration factors from Mysen and Cody (2005), except for Q⁴, which was calculated by mass balance following equation 2. For more 693 694 clarity, only errors on X_{On} abundances, calculated from the fitting procedure, are 695 reported. Errors on H₂O content for those samples are presented in Figure 2. 696 Figure 6. Mol fraction of Q^1 , X_{O1} , Q^2 , X_{O2} , Q^3 , X_{O3} , and Q^4 , X_{O4} , structural units as a 697

698 function of H_2O content (wt%), in halogen-free samples (squares), in F-bearing samples 699 (diamonds) and in Cl-bearing samples (circles), in the system NS4A10. Data in the 700 halogen-free samples are from Mysen (2007).

701

Figure 7. Degree of polymerization, NBO/T (T = Si + Al), of the glasses in NS4 system (A) and in the NS4A10 system (B), as a function of mol% H_2O . Symbols are the same as that used in Figures 5 and 6.

705

706

707

	NS3A0 [13]	NS3A5 [12]	NS3A10 [12]
SiO ₂	75.96(57)	64.98(62)	52.41(31)
Al_2O_3	_	7.84(10)	15.86(19)
Na ₂ O	23.75(70)	28.06(28)	32.09(37)
Total	99.71	100.89	100.36
$Al/(Al+Si)^b$	0	0.12	0.26
NBO/T	0.61	0.61	0.61
	NS5A0 [12]	NS5A5 [12]	NS5A10 [13]
SiO ₂	83.84(41)	70.17(79)	59.49(68)
Al_2O_3	_	9.14(20)	15.54(81)
Na ₂ O	16.34(16)	21.51(60)	24.84(72)
Total	100.18	100.81	99.87
Al/(Al+Si)	0	0.13	0.24
NBO/T	0.38	0.38	0.38
	NS4A0 [12]	NS4A5 [12]	NS4A10 [11]
SiO_2	79.65(55)	68.16(43)	54.03(38)
Al_2O_3	_	7.96(14)	17.21(32)
Na ₂ O	19.74(21)	24(51(19)	29.37(29)
Total	99.4	100.62	100.62
Al/(Al+Si)	0	0.12	0.27
NBO/T	0.48	0.49	0.49

 TABLE 1. Composition of starting glasses (wt%)

Notes: Numbers in brackets indicate number of individual electron microscope analyses included on average. Number in parentheses represents one standard deviation in terms of the least units cited.

^a Calculated from composition assuming that Si⁴⁺ and Al³⁺ are in tetrahedral coordination in the glasses.

TABLE 2. Composition of run products	{{center	Solubility	samples over	H2O :	and F
mol% and put straddle rule}}					

	Solubility samples				
Sample	H ₂ O wt%	F mol%	Cl mol%		
	NBO/T ^b =	= 0.38(1)			
$Al/(Al+Si)^{a} = 0$					
F10NS5	0	3.33(73)	—		
F10H2NS5	2.01	3.51(46)	—		
F10H4NS5	7.34	3.84(62)	_		
F10H8NS5	9.01	4.41(3)			
F10H10NS5	9.50	4.98(6)			

Al/(Al + Si) = 0.12			
F10NS5A5	0	4.29(36)	
F10H4NS5A5	7.67	4.95(41)	
F10H6NS5A5	8.72	5.57(8)	
F10H8NS5A5	8.78	6.14(41)	—
Al/(Al + Si) = 0.24			
F10NS5A10	0	6.31(37)	—
F10H2NS5A10	3.08	6.97(50)	
F10H4NS5A10	3.31	7.32(92)	—
F10H6NS5A10	5.41	7.53(80)	—
F10H8NS5A10	10.64	9.37(93)	—
F10H10NS5A10	10.69	9.91(30)	—
	NBO/1	C = 0.61(1)	
Al/(Al + Si) = 0			
C5NS3	0		5.70(65)
C5H2NS3	1.90		5.1(12)
C5H4NS3	3.04		4.79(11)
C5H6NS3	7.18		4.07(10)
C5H8NS3	7.57		3.58(8)
C5H10NS3	8.95		3.4(6)
Al/(Al + Si) = 0.13			
C5NS3A5	0		3.94(66)
C5H2NS3A5	2.51		3.62(10)
C5H4NS3A5	3.62		3.39(10)
C5H8NS3A5	4.43		2.91(8)
C5H10NS3A5	4.87		2.64(7)
Al/(Al + Si) = 0.26			
C5NS3A10	0		3.86(38)
C5H2NS3A10	2.80		2.15(6)
C5H4NS3A10	5.42		2.04(6)
C5H6NS3A10	6.84		1.93(5)
C5H8NS3A10	7.78		1.81(5)
C5H10NS3A10	8.53		1.66(4)

Notes: Numbers in parentheses represents one standard deviation in terms of least units cited. Dash = below the detection limit. ^a Calculated from composition assuming that Si^{4+} and Al^{3+} are in tetrahedral coordination

^b NBO/T from composition of starting glasses.

TABLE 3. Parameters of the best curve-fits of Raman spectra: peak location (cm^{-1}) , fullwidth at half maximum (FWHM, cm^{-1}) and not normalized peak areas

	Peak location							Peak FWHM								
	Q^1	Q^2	Si-F	Si- O ^o	Q^3	Q^4	Q^1	Q^2	Si- F	Si- O ^o	Q^3	Q^4	$Q^1(\sigma)$	$Q^2(\sigma)$	Si-F(\sigma)	
F10NS4*	_	953	995	1035	1092	1148	_	54	38	45	69	81	—	50400(201)	51015(198)	
F10H2NS4	889	969	1002	1045	1085	1147	65	72	56	52	61	70	5277(125)	19902(125)	17160(155)	
F10H6NS4	890	946	997	1024	1066	1136	54	57	55	49	67	78	12941(87)	18737(118)	43135(279)	
F10H10NS4	892	944	994	1002	1050	1132	57	57	57	42	69	81	25204(141)	31151(139)	79747(227)	
F10NS4A10*		939	999	1050	1094	1153	_	74	81	65	70	74	—	100250(357)	248954(446)	2
F10H2NS4A10	878	944	988	1030	1057	1110	69	64	51	63	60	66	26342(360)	69601(399)	100945(538)	2
F10H6NS4A10	889	944	993	1025	1056	1101	61	62	49	50	55	66	15860(354)	66841(327)	64764(520)	2
F10H10NS410	866	936	980	1015	1052	1097	69	60	55	51	56	65	39201(96)	71148(129)	73668(330)	
C5NS4*		958		1029	1087	1140		64		72	57	88	_	41854(637)		1
C5H2NS4	906	966		1024	1075	1133	55	54		71	58	79	9282(108)	23139(323)		
C5H6NS4	895	957		1005	1059	1130	59	63		60	62	83	11305(141)	24923(165)		
C5H10NS4	903	964		1009	1060	1133	54	57		57	58	85	10737(73)	26944(171)		
C5NS4A10*		945		1005	1073	1128		70		81	78	86		67133(354))		2
C5H2NS4A10	878	952		1007	1058	1110	64	70		72	66	78	12964(72)	38552(97)		
C5H6NS4A10	878	957		1004	1052	1102	62	73		53	58	80	11872(95)	47869(215)		
C5H10NS410	875	958		1004	1054	1111	65	73		56	58	83	16333(39)	33315(108)		
Notes: Number units cited. Dasl	in pa h = n	arent not de	heses eterm	repre ined.	sents	one s	tano	larc	l de	viat	ion	in	terms of the	least		

* from Dalou et al. (in review).

TABLE 4. Volatiles and silicate species abundance from Raman spectra of F and Clbearing NS4 and NS4A10 glasses

	H_2O	F	Cl	SiF %		Relative	peak area	R	el	
	wt% ^a	Mol%	Mol%	b	Q^1	Q^2	Q^3	Q^4	Q^1	
F10NS4*	n.a.	3.95(2)	_	0.06(1)		0.07(0.2)	0.65(4)	0.28(1)		0
F10H2NS4	3.86 2	2.92(50)	_	0.04(1)	0.02(0.04)	0.06(0.05)	0.64(0.08)	0.28(0.07)	0.004(0.2)	0
F10H6NS4	6.65 4	4.00(39)	_	0.15(4)	0.06 (0.04)	0.08(0.05)	0.64(0.1)	0.22(0.08)	0.01(0.3)	0
F10H10NS4	11.14 3	8.46(63)	_	0.22(4)	0.11(0.06)	0.13(0.06)	0.59 (0.09)	0.17(0.06)	0.02(0.6)	0

1,2005 NAMS NAMS NAMS (mm5 jan;

