1 2	Manuscript 4960-Revision 1				
3 4 5	Possible new Ca-REE-Bi phosphate minerals from a tungsten-rich calcsilicate skarn, Sierra Nevada Mountains, California				
6	Beverly J. Berekian ¹ , Diane Clemens-Knott ^{2*} , and Chi Ma ³				
7 8 9 10 11 12 13	 ¹ Geology Department, Cypress Community College, 9200 Valley View St, Cypress, CA 90630, U.S.A. ² Department of Geological Sciences, California State University, Fullerton, 800 N. State College Blvd., Fullerton, CA 92831, U.S.A. ³ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A. 				
14	ABSTRACT				
15	Scanning electron microscope and electron microprobe analyses of 3 to 15 μ m diameter				
16	grains present within a garnet-quartz granofels from a tungsten skarn reveal the possible				
17	existence of at least two new rare earth element (REE)-bearing phosphate phases:				
18	Ca(Ce,La,Bi,Nd) ₂ [(P,As)O ₄] ₂ (OH) ₂ and Ca(La,Ce,Nd,Pr,Bi) ₂ [(P,As)O ₄] ₂ (OH) ₂ . The analyzed				
19	REEs constitute up to 50 wt% of the phases; bismuth oxide contents range from 4.1 to 16.1 wt%.				
20	Structural data has proved impossible to obtain from these tiny grains, presumably due to				
21	radiation damage by thorium decay. These potentially new phosphate minerals are present within				
22	alteration assemblages of REE-rich epidote crystals, as well as along grain boundaries and cracks				
23	cross-cutting the quartz-garnet host rock. Association with the zeolite brewsterite-Ba suggests				
24	that these hydroxyl phosphates formed during water-rich, low temperature, retrograde				
25	mineralization in the skarn environment.				
26					
27	Keywords: phosphate mineral, rare earth element, bismuth, Sierra Nevada, tungsten, skarn				
28					

*E-mail: <u>dclemensknott@fullerton.edu</u> 29

30 INTRODUCTION

31 A detailed mineralogic examination of samples collected from a small tungsten mine in 32 the western foothills of the Sierra Nevada Mountains in California reveals the possible presence 33 of a variety of new minerals. In particular, distinct phosphate phases containing various 34 abundances of the REE, bismuth and hydroxyl appear to coexist along grain boundaries and 35 cracks, as well as within alteration assemblages replacing epidote cores (Berekian 2008). 36 Structural data has proven impossible to collect; moreover, the collection of high quality 37 chemical data is challenged by the small grain size ($<15 \mu m$). In this paper we present chemical 38 data that may help define two new REE-rich phosphate phases. REE-phosphates include 39 monazite, xenotime and varieties of apatite (Pan and Fleet 2002; Spear and Pyle 2002); naturally 40 occurring bismuth-bearing phosphates have also been identified. REE-bearing calcium-bismuth-41 phosphors have been synthesized (Jiao et al., 2013) but naturally occurring REE-bearing 42 phosphates having high bismuth contents are currently unknown. 43 Calcsilicate-hosted skarns are scattered throughout the Sierra Nevada batholith, having 44 formed where Mesozoic arc plutons intruded Neoproterozoic to early Mesozoic carbonate rocks 45 present along the southwestern margin of Laurentia (Newberry 1980, 1998). Skarn formation is 46 characterized by an initial period of prograde metamorphism to temperatures of ~400-650°C 47 (Stage 1); a period of thermal equilibration between host rock and intruding pluton (Stage 2); 48 followed by retrograde mineralization (Stage 3) marked by the invasion of meteoric and/or 49 metamorphic fluids that promote cooling and the precipitation of metals (Einaudi et al. 1981; 50 Corbett and Leach 1998). Some Sierra Nevada skarns host ore deposits that have proven to be 51 economically viable, most significantly the Pine Creek mine from which more than 16 million 52 tons of tungsten-bearing ore $(0.6\% \text{ WO}_3)$ and 31 thousand tons of molybdenum and copper were

53	extracted (Newberry 1982; Kurtak 2007). Sierra Nevada skarns were first mined for tungsten
54	during WWI, with production resuming during both WWII and the Korean War (Krauskopf
55	1953; Newberry 1980). Production in Sierra Nevada skarns continued at decreased levels until
56	1990 when cheaper, foreign sources of tungsten became available (Kurtak 2007).
57	The Consolidated Tungsten Mine (CTM), located in the western foothills near the
58	northern edge of Tulare Co., produced ~17 thousand tons of tungsten-bearing ore (~2% WO ₃)
59	between 1941 and 1957 (Krauskopf 1953). Of the Sierra Nevada tungsten mines, the CTM was
60	among the top 20 producing mines by tonnage, although it was not one of the largest mines
61	geographically (Newberry, 1980). The CTM skarn (11S 310960E, UTM 4056628N) formed in
62	the aureole surrounding a 163 ± 1.5 Ma granodiorite pluton intruded into the northeastern tip of
63	the Lake Kaweah pendant (Clemens-Knott et al. 2013). Based on mineral assemblages and
64	chemistries, CTM skarn formation is estimated to have occurred at temperatures less than 700
65	°C, pressures of ~3-4 kbar, low X_{CO2} , and low fO ₂ (Newberry 1980; Berekian 2008).
66	METHODS
67	Newberry (1980) mapped and described mineral assemblages defining the lithologic
68	zonation within the CTM skarn. The mine is currently sealed, so samples of tremolite-diopside-
69	epidote-quartz-garnet granofels, characteristic of the inner skarn, were collected with landowners
70	permission from the tailings pile (Berekian 2008). Though tailings are expected to be poor in ore
71	minerals, rare scheelite crystals surrounded by thin calcite rims were observed. Multiple grains
72	of the unknown Ca-REE-Bi phosphate phases were first observed on high magnification
73	backscatter electron (BSE) images of polished, carbon-coated thin sections under a ZEISS
74	1550VP field emission scanning electron microscope. Preliminary compositional data collected
75	by SEM-energy dispersive spectroscopy identified the presence of the REEs Ce, La, Nd, and Pr;

76	Sm, Dy, Er and Yb, however, were not detected (abundances < one-sigma of 0.3 wt. %) so were
77	not included in the subsequent analysis. Compositional data were collected using a JEOL 8200
78	electron microprobe (WDS: 15 kV; 25 nA; beam in focused mode) interfaced with the Probe for
79	EPMA software. Possible interferences on peak position and background position were checked
80	and corrected for all measured elements using the Probe for EPMA software. Standards for the
81	analysis were anorthite (CaK α , AlK α , SiK α), forsterite (MgK α), fayalite (FeK α), bismuth metal
82	$(BiM\alpha)$, ZnO $(ZnK\alpha)$, CePO ₄ $(PK\alpha, CeL\alpha)$, LaPO ₄ $(LaL\alpha)$, GaAs $(AsK\alpha)$, PrPO ₄ $(PrL\alpha)$, NdPO ₄
83	(NdL α), GdPO ₄ (GdL α), ThO ₂ (ThM α), albite (NaK α), microcline (KK α), Mn ₂ SiO ₄ (MnK α),
84	benitoite (BaLa), anhydrite (SKa), tellurium metal (TeLa), and phlogopite (FKa). Quantitative
85	elemental microanalyses were processed with the CITZAF correction procedure (Armstrong
86	1995).
87	Electron backscatter diffraction (EBSD) analysis was attempted with the goal of
88	collecting structural data, using methods described in Ma and Rossman (2008, 2009). An HKL
89	EBSD system on the Zeiss SEM was used and operated at 20 kV and 6 nA in a focused beam
90	configuration with a 70° tilted stage and variable pressure (25 Pa) mode.
91	RESULTS
92	In the CTM skarn, the Ca-REE-Bi phosphates occur along grain boundaries between
93	quartz and garnet, as members of replacement assemblages within the cores of zoned epidotes,
94	and in anastomosing fractures that transect the coarse-grained crystals (Fig. 1a). Though tiny, the
95	phosphate grains are easily recognized by their bright reflectance in BSE images (Fig. 1b). Nine
96	acceptable microprobe analyses from two grains in a single sample contain higher atomic
97	abundances of cerium (Ce) relative to lanthanum (La) (Table 1). REEs constitute up to 50 wt%
98	of this phosphate: Ce_2O_3 contents range from 19.0 to 25.3 wt% (av. = 21.6 wt%) and La_2O_3

99	contents range from 14.0 to 18.8 wt% (av. = 16.8 wt%). In contrast to apatites (containing ~ 50 -
100	55 CaO wt.% and ~42 P ₂ O ₅ wt.%), this phase contains only 5.8 to 8.3 wt% CaO (av. = 7.0 wt%)
101	and only 18.9 to 28.4 wt% P_2O_5 (av. = 23.9 wt%). As much as 9.7 wt% As_2O_5 (av. = 2.9 wt%)
102	substitutes for phosphorous. Calculating a hypothetical formula using 9 oxygens yields 5 cations;
103	low EPMA totals and observed beam damage suggest the presence of either $(OH)_2$ or CO_3 .
104	Assuming the presence of hydroxyl yields a mean formula of
105	$(Ca_{0.72}Ba_{0.06}Mg_{0.01})(Ce_{0.76}La_{0.60}Bi_{0.24}Nd_{0.20}Pr_{0.07}Al_{0.04}Mn_{0.02}Th_{0.02}Gd_{0.01}Fe_{0.01}Zn_{0.01})[(P_{1.94}As_{0.15})$
106	O ₈](OH) ₂ . A tenth analysis from a different sample has a similar composition, except that the
107	atomic abundance of La (0.77) is greater than Ce $(0.54; Table 2)$, consistent with the formula
108	$(Ca_{0.84}Ba_{0.09}K_{0.01}Mg_{0.01})(La_{0.77}Ce_{0.54}Nd_{0.29}Pr_{0.15}Bi_{0.14}Th_{0.07}Gd_{0.01}Al_{0.01}Mn_{0.01}Fe_{0.01}Zn_{0.01})[(P_{1.99}As_{0.01}Mg_{0.01})(P_{0.01}Mg_{0.01})](P_{0.01}Mg_{0.01})(P_{0.01}Mg_{0$
109	0.01)O ₈](OH) ₂ . Conversion of the average chemical compositions of these two phases into atomic
110	abundances (atoms per formula unit, apfu; Tables 1, 2), and comparison of these results to the
111	formula for apatite [Ca ₅ (PO ₄) ₃ (OH,F,Cl)] supports the following general formulas for these
112	unknown phases: CaCe ₂ [(P,As)O ₄] ₂ (OH) ₂ ; CaLa ₂ [(P,As)O ₄] ₂ (OH) ₂ . The theoretical total oxide
113	weight percent that would be measured by electron microprobe for this hydroxyl-bearing phase
114	is 96.69%, a total that is approached by the average of nine analyses (94.36 wt%; Table 1) and
115	nearly equaled by a single analysis (96.21 wt%; Table 2). Alternatively, substituting CO ₃ in the
116	formula for hydroxyl yields a total hypothetical mass of ~104%. This unacceptably high total,
117	coupled with the absence of excess carbon compared to other silicate phases analyzed in the
118	same thin section, is most consistent with the inclusion of hydroxyl in the proposed formula.
119	Additional REE-rich phosphate grains were analyzed in samples of the CTM skarn,
120	though quantitative data is currently insufficient to justify the designation of additional phases
121	(Berekian 2008). This data is, however, useful in revealing details of compositional variations

122	within the REE-phosphates of the CTM skarn (Fig. 2). For example, the cation ratio of cerium to
123	lanthanum appears to be positively correlated with the cation abundance of bismuth; specifically,
124	the lanthanum decreases from 59 to 0% of the total (La + Ce) content as bismuth increases from
125	6 to 35% of the total (Bi + Ce + La). This relation suggests that bismuth (av. 9.4 wt%; range 4.1
126	to 16.1 wt%; Table 1) occupies the same lattice site as the REE.
127	EBSD analysis failed to yield useful structural data for the unknown Ca-REE-Bi
128	phosphate phases. The high measured thorium contents (ThO ₂ = $0-1.8$ wt%; Table 1) suggest that
129	the analyzed phases are now amorphous due to radiation damage (Farnen et al., 2007).
130	DISCUSSION
131	The potentially new Ca-REE-Bi phosphate minerals are members of assemblages that
132	contain substantial concentrations of calcium (grossular garnet, diopsidic pyroxene, zoisite),
133	phosphorus (both hydroxy-apatite and fluor-apatite) and the REE (ferriallanite) (Berekian 2008).
134	A retrograde origin for the unknown Ca-REE-Bi phosphate phases is supported by their presence
135	within secondary assemblages replacing the REE-rich ferriallanite cores of sector-zoned epidotes
136	(Fig. 1a; Berekian 2008). Furthermore, the location of the unknown Ca-REE-Bi phosphate along
137	potential pathways of fluid flow, such as fractures and grain boundaries, suggests a hydrothermal
138	origin. This possibility is further supported by the spatial association of the unknown Ca-REE-Bi
139	phosphate phases with the rare zeolite, brewsterite-Ba (Robinson and Grice 1993; Armbruster
140	and Gunter 2001). The presence of this zeolite filling fractures and along grain boundaries
141	suggests that the fracture-filling mineral assemblages formed at low temperatures during Stage 3
142	of skarn formation (Chipera and Apps 2001; Cabella et al. 1993), consistent with other reports of
143	brewsterite-Ba in hydrothermal, low-temperature systems (Gottardi and Galli 1985; Green et al.
144	2005). Although the specific stability range of brewsterite-Ba is unknown, virtually all zeolites

9/3

145	form at <250°C in the presence of hydrothermal fluids (Chipera and Apps 2001). Other evidence
146	suggestive of retrograde mineralization within the CTM skarn includes tremolite-calcite-quartz
147	pseudomorphs of diopside (Berekian 2008). A detailed whole-rock oxygen isotope study
148	demonstrates that the CTM skarn and the entire surrounding Stokes Mountain region did not
149	experience subsequent hydrothermal events (Clemens-Knott, 1992).
150	Known REE-phosphate minerals include members from the monazite and apatite groups.
151	For example, monazite-Ce has a comparable REE content to the unknown phase but does not
152	contain calcium. Other monazite species, such as cheralite ((Ca,Ce)(Th,Ce)(PO ₄) ₂), contain
153	calcium but do not contain hydroxyl. Hydroxy-apatites, such as britholite
154	(Ca ₂ (Ce,Ca) ₃ (SiO ₄ ,PO ₄) ₃ (OH,F)) and hydroxyl apatite (Ca ₅ (PO ₄) ₃ (OH)), contain considerably
155	more calcium. Substitution of SiO ₄ for PO ₄ , as occurs in britholite, is not present in any of the
156	potentially new phosphates observed in the CTM (Berekian 2008). Bismuth-bearing phosphates
157	exist but the unknown phases reported herein appear to be the first reported, naturally occurring
158	REE-bearing phosphates having high bismuth contents.
159	IMPLICATIONS
160	Mineralogic data from a quartz-garnet granofels collected from a Mesozoic calcsilicate
161	skarn located in the western Sierra Nevada foothills suggests the discovery of at least two new
162	phosphate phases having the compositions Ca(Ce,La,Bi,Nd) ₂ [(P,As)O ₄] ₂ (OH) ₂ and
163	Ca(La,Ce,Nd,Pr,Bi) ₂ [(P,As)O ₄] ₂ (OH) ₂ . Analyzed grains are too small and too metamict to
164	support physical characterization. The presence of these unknown Ca-REE-Bi phosphate grains
165	along cracks crosscutting the major silicates and within their replacement assemblages, coupled
166	with the spatial association with the zeolite brewsterite-Ba, support formation of the unknown
167	Ca-REE-Bi phosphate phases during the final stages of skarn formation. These results suggest

that detailed examination of fluid-flow pathways within retrograde skarn rocks may lead to thediscovery of new mineral phases.

170	ACKNOWLEDGEMENTS
171	SEM, EBSD and EPMA analyses were carried out at the Caltech GPS Division
172	Analytical Facility, which is supported, in part, by NSF Grants EAR-0318518 and DMR-
173	0080065. Funding for this study was provided by a grant from the California State University
174	system. Landowners of the Consolidated Tungsten Mine are thanked for providing access, and
175	the Chrisman family is thanked for generous field support. Discussions with B. Browne, L.
176	Meinert, R. Newberry, W. Nokleberg, J. Preston, J. Pyle, L. Robb, G. Rossman and F. Spear
177	improved the content of this study, as did comments by Francis McCubbin and an anonymous
178	reviewer.
179	REFERENCES CITED
180	Armbruster, T., and Gunter, M.E. (2001) Crystal structures of natural zeolites. In D.L. Bish,
181	and D.W. Ming, Eds., Natural zeolites: Occurrence, properties, applications, 45, p. 1-
182	67. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,
183	Chantilly, Virginia.
184	Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative
185	electron microbeam X-ray analysis of thick polished materials, thin films, and
186	particles. Microbeam Analysis, 4, 177-200.
187	Berekian, B.J. (2008) A mineralogic study of the Consolidated Tungsten Mine skarn, Tulare
188	County, California, 103 p. M.Sc. thesis, California State University, Fullerton.

9/3

189	Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S., and Vezzalini, G. (1993) First				
190	occurrence of Ba-dominant brewsterite: Structural features. European Journal of				
191	Mineralogy, 5, 353-360.				
192	Chipera, S.J., and Apps, J.A. (2001) Geochemical stability of natural zeolites. In D.L. Bish, and				
193	D.W. Ming, Eds., Natural zeolites: Occurrence, properties, applications, 45, p. 117-				
194	161. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,				
195	Chantilly, Virginia.				
196	Clemens-Knott, D. (1992) Geologic and isotopic investigations of the Early Cretaceous				
197	Sierra Nevada batholith, Tulare County, CA and the Ivrea Zone, NW Italian Alps:				
198	Examples of interaction between mantle-derived magma and continental crust, 349				
199	p. Ph.D. thesis, California Institute of Technology, Pasadena, California.				
200	Clemens-Knott, D., van der Kolk, D.A., Sturmer, D., and Saleeby, J. (2013) The Goldstein Peak				
201	Formation, central California: Record of a nonmarine intra-arc basin within the				
202	Early Cretaceous Sierra Nevada arc. Geosphere, 9, 718-735.				
203	Corbett, G.J., and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: Structure,				
204	alteration and mineralization, 238 p., Society of Economic Geologists, Special				
205	Publication 6, Bookcrafters, Chelsea, MI.				
206	Einaudi, M.T., Meinert, L.T., and Newberry, R.J. (1981) Skarn deposits. In H.J. Skinner, Ed.,				
207	75th Anniversary Volume, p. 327-391. Society of Economic Geologists, Littleton, CO.				
208	Farnen, I., Cho, H., and Weber, W., 2007, Quantification of actinide alpha-radiation damage				
209	in minerals and ceramics: Nature, v. 445, p. 190-193.				
210	Gottardi, G., and Galli, E. (1985) Natural zeolites, 409 p. Springer-Verlag, Berlin.				

211	Green, D.I., Tindle, A.G., and Moreton, S. (2005) Brewsterite-Ba and harmotome from the				
212	Wicklow lead mines, Co. Wicklow, Ireland. Irish Journal of Earth Science, 23, 101-				
213	106.				
214	Jiao, M., Guo, N., Lu, W., Jia, Y., Lv, W., Zhao, Q., Shao, B., and You, H. (2013) Synthesis,				
215	structure and photoluminescence properties of europium-, terbium-, and thulium-				
216	doped Ca ₃ Bi(PO ₄) ₃ phosphors. Dalton Transactions, 42, 12395-12402.				
217	Krauskopf, K.B. (1953) Tungsten deposits of Madera, Fresno, and Tulare Counties,				
218	California, California Division of Mines Special Report 35, 83 p.				
219	Kurtak, J.M. (2007) Mine in the Sky, 220 p. Bookcrafters, Chelsea, MI.				
220	Ma, C. and Rossman, G.R. (2008) Barioperovskite, BaTiO ₃ , a new mineral from the Benitoite				
221	Mine, California. American Mineralogist, 93, 154-157.				
222	Ma, C. and Rossman, G.R. (2009) Tistarite, Ti_2O_3 , a new refractory mineral from the Allende				
223	meteorite. American Mineralogist, 94, 841-844.				
224	Newberry, R.J. (1980) The geology and chemistry of skarn formation and tungsten				
225	deposition in the central Sierra Nevada, California, 342 p. Ph.D. thesis, Stanford				
226	University, California.				
227	Newberry, R.J. (1982) Tungsten-bearing skarns of the Sierra Nevada: I, The Pine Creek				
228	Mine, California. Economic Geology and the Bulletin of the Society of Economic				
229	Geologists, 77, 823-844.				
230	Newberry, R.J. (1998) W and Sn skarn deposits: A 1998 status report. In D.R. Lentz, Ed.,				
231	Mineralized intrusion-related skarn systems, 26, p. 289-336. Short Course,				
232	Mineralogical Society of Canada, Quebec.				

233	Pan, Y., and Fleet, M. (2002) Compositions of the apatite-group minerals: Substitution
234	mechanimsm and controlling factors. In M. Kohn, J. Rakovan, and J. Hughes, Eds.,
235	Phosphates: Geochemical, Geobiological, and Materials Importance, 48, p. 13-49.
236	Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,
237	Chantilly, Virginia.
238	Robinson, G.W., and Grice, J.D. (1993) The barium analog of brewsterite from Harrisville,
239	New York. The Canadian Mineralogist, 31, 687-690.
240	Spear, F., and Pyle, J. (2002) Apatite, monazite, and xenotime in metamorphic rocks. In M.
241	Kohn, J. Rakovan, and J. Hughes, Eds., Phosphates: Geochemical, Geobiological, and
242	Materials Importance, 48, p. 293-335. Reviews in Mineralogy and Geochemistry,
243	Mineralogical Society of America, Chantilly, Virginia.
244	

Oxide	Ave. wt%	Range	apfu ^a	
CaO	$6.99(0.88)^{b}$	5.75-8.28	0.72	
BaO	1.64(0.10)	1.46-1.76	0.06	
K_2O	0.04(0.02)	0.00-0.06	0.00	
ThO_2	0.77(0.53)	0.00-1.77	0.02	
TeO ₂	0.19(0.15)	0.00-0.52	0.01	
MnO	0.22(0.18)	0.01-0.64	0.02	
FeO	0.16(0.16)	0.00-0.49	0.01	
MgO	0.06(0.02)	0.02-0.09	0.01	
ZnO	0.19(0.08)	0.03-0.29	0.01	
Ce_2O_3	21.64(1.99)	18.99-25.34	0.76	
La_2O_3	16.76(1.54)	14.02-18.83	0.60	
Bi ₂ O ₃	9.37(3.44)	4.10-16.06	0.24	
Pr_2O_3	2.04(0.36)	1.56-2.81	0.07	
Nd_2O_3	5.92(0.76)	4.36-6.78	0.20	
Gd_2O_3	0.40(0.13)	0.18-0.58	0.01	
SiO_2	0.74(0.11)	0.57-0.87	0.07	
Al_2O_3	0.37(0.13)	0.19-0.58	0.04	
P_2O_5	23.89(3.26)	18.93-28.38	1.94	
As_2O_5	2.92(3.85)	0.00-9.72	0.15	
SO_3	0.05(0.02)	0.03-0.09	0.00	
Total	94.36		4.94	
^a apfu: Atoms per formula unit based on 9 oxygen.				

TABLE 1. Mean composition of Ce-dominant phase

Errors listed inside parentheses are one standard

deviation of the mean based on nine analyses.

245

246

	Ce-dominant Phase		La-dominant	La-dominant Phase	
Oxide	(wt%)	(apfu ^a)	(wt%)	(apfu)	
CaO	6.73(0.03)	0.72	7.75(0.03)	0.84	
BaO	1.46(0.07)	0.06	2.40(0.07)	0.09	
K_2O	0.02(0.02)	0	0.05(0.01)	0.01	
ThO ₂	0.31(0.03)	0.01	2.91(0.04)	0.07	
TeO ₂	0.52(0.05)	0.02	b.d. ^c		
MnO	0.64(0.03)	0.05	0.06(0.03)	0.01	
FeO	0.49(0.04)	0.04	0.13(0.03)	0.01	
MgO	0.08(0.02)	0.01	0.05(0.01)	0.01	
ZnO	0.10(0.05)	0.01	0.15(0.05)	0.01	
Ce_2O_3	25.34(0.38)	0.92	14.67(0.29)	0.54	
La_2O_3	14.02(0.34)	0.51	20.76(0.39)	0.77	
Bi_2O_3	16.06(0.13)	0.41	5.36(0.08)	0.14	
Pr_2O_3	1.77(0.09)	0.06	4.20(0.07)	0.15	
Nd_2O_3	4.36(0.11)	0.16	8.05(0.13)	0.29	
Gd_2O_3	0.25(0.07)	0.01	0.34(0.07)	0.01	
SiO_2	0.83(0.02)	0.08	0.22(0.02)	0.02	
Al_2O_3	0.47(0.02)	0.06	0.09(0.01)	0.01	
P_2O_5	22.04(0.13)	1.85	23.35(0.14)	1.99	
As_2O_5	0.64(0.23)	0.03	b.d.		
SO ₃	0.09(0.01)	0.01	b.d.		
Total	96.21	5.02	90.54	4.97	

 TABLE 2. Single analyses of Ce- and La-dominant phases

^a apfu: Atoms per formula unit based on 9 oxygen. ^b Errors listed inside parentheses are 1-sigma of analytical error.

^cb.d. = Below detection limit: 0.07 wt% Te, 0.28 wt% As and 0.01 wt% S.

248 FIGURE CAPTIONS

- 249 Figure 1. BSE images of the unknown Ca-REE-Bi phosphate phase: (a) sector-zoned REE-
- 250 bearing epidote crystal with altered REE-rich core composed of an assemblage of REE-bearing
- 251 epidote-family minerals (shades of gray) crosscut by the unknown Ca-REE-Bi phosphate phase
- 252 (white); (b) bright grain located along a grain boundary between garnet (left) and quartz (right).
- 253 Figure 2. Ternary plot displaying the relative atomic abundances of calcium, bismuth and the
- analyzed REE (Ce + La + Pr + Nd). Symbols: Ce-dominant Ca-REE-Bi phosphate (open
- triangles); La-dominant Ca-REE-Bi phosphate (solid square); as many as four additional and
- distinct unknown REE-phosphate phases (crosses; Berekian 2008). Note: lanthanum contents
- 257 were not measured for the three samples (crosses) that plot on the Ce-Bi tie-line.

258

Berekian_Fig1a

9/3

