28/08/14

1	28/08/14
2	Stability and adhesion of calcite/montmorillonite assembly.
3	
4	
5	W. Sekkal, A. Zaoui [*] and I. Shahrour
6	Civil Engineering and geo-Environment Laboratory LGCgE- (EA 4515) Lille Nord de
7	France, Polytech'Lille. Université des Sciences et de la Technologie de Lille. Cité
8	Scientifique. Avenue Paul Langevin. 59655 Villeneuve D'Ascq Cedex, France
9	
10	
11	Abstract
12	We analyze here the technical connection between the (104) calcite and (001)
13	montmorillonite surfaces at the atomic level, as well as the conditions to obtain a stable
14	assembly. To this end, the appropriate force field is used to describe the bonding character at
15	the interface. Results show that, in the x direction, the elastic energy provided by calcite to
16	ensure good adhesion at the interface is lower than the one of clay. While in the y direction, it
17	is rather the clay's atoms which provide energy for the accommodation to calcite.
18	Furthermore, we have evaluated, additionally, the adhesion energy, the interfacial distance
19	and the work of separation. We also show that the presence of water molecules at the
20	interface absorb the excess energy and thus contribute to the stabilization of the interface.
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

- 31 32
- 33
- 34 Correspondence to: azaoui@polytech-lille.fr
- 35

36 I. Introduction

37

The alkaline earth carbonates have been a subject of considerable interest in the Earth 38 39 sciences because they are the most abundant C-bearing species in the crust, and they represent 40 a major reservoir for C within the Earth's mantle carbonates (Berg 1986; Canil 1990; Katsura 41 and Ito 1990; Kraft et al. 1991; Bakri and Zaoui 2011; Ayoub et al. 2011; Bouibes et al. 2013; 42 Bouibes and Zaoui 2014; Zaoui and Shahrour 2010). We can find them in aquatic systems 43 forming huge amounts of scale and ocean sediment (Morse et al. 1990), in the atmosphere 44 (Usher and Mackenzie 2007) and as part of the sediment and rock record (Morse 2007). These 45 minerals affect the chemistry of aquatic systems by regulating pH and alkalinity through 46 dissolution/precipitation equilibrium. Moreover, they can govern the mobility and cycling of 47 metal contaminants and radionuclides via ion exchange, adsorption, and co-precipitation 48 reactions (Van Cappellen 1993). Calcite (CaCO₃) is one of the most abundant mineral species 49 on the surface of this planet and is stable at ambient conditions. It is one of the constituents of 50 argillite, a mineral rock used for the wastes disposal. 51 On the other hand, swelling clays are one of the important components of engineered barriers

52 around underground storage sites of high-activity radioactive waste due to their properties of 53 low permeability and high retention capacity of cations. Many theoretical and experimental 54 works have been paid for describing the behavior of diffusion of water and some cations in 55 smectite clay (Nye 1979; Cebula et al. 1981; Sposito 1981; Chang et al. 1995; Chang et al. 56 1997; Chang et al. 1998; Spoel 1998; Sutton and Sposito 2001; Marry and Turg 2003; 57 Kosakowski et al. 2008; Yang and Zaoui 2013; Benazzouz et al. 2013; Zheng and Zaoui 58 2013; Yang and Zaoui 2013; Benazzouz and Zaoui 2012; Zheng and Zaoui 2011; Zheng et al. 59 2011; Zheng et al. 2010; Berghout et al. 2010; Tunega et al. 2012).

60 The study of calcite/montmorillonite interface is particularly of great importance since it helps 61 to clarify many issues on the nuclear waste disposal. In fact, in the Underground Research 62 Laboratory in France, an excavation damaged zone (EDZ) is observed around galleries in the 63 Callovo- Oxfordian argillite (ANDRA 2005). It is characterized by the appearance of micro-64 fissures whose density decreases as the distance from the wall increases. Argillite is a mineral 65 rock used for the isolation of the high-level radioactive wastes. It is mainly constituted of clay 66 (20-60%) and calcite (10-75%). The analysis of this mineral especially the interaction 67 between calcite and clays at the atomic level will give a clear picture about the strength of the 68 bonds and the mechanical behaviour of such rock at the storage conditions.

In this paper, we focus on the structural and energetic properties of the interface between the calcite (104) and montmorillonite (001) surfaces using nanoscale tools. We will discuss the conditions to obtain a stable interface of the assembly. Our first goal is to describe the

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5068

72 interatomic bonding between the atomic constituents of calcite and clay at the interface. Then, 73 we will evaluate some thermodynamic properties of CaCO₃ and montmorillonite, taken 74 separately. Finally, we will study the lattice mismatch between the two compounds at the 75 interface, the adhesion energy, the work of separation, as well as the elastic energy at the 76 interface.

77

78 II. Description of the potential model and construction of the supercell

79 Several force fields have been developed to describe the interactions in $CaCO_3$ to mainly 80 reproduce the structural and thermodynamic properties of carbonates (Pavese et al. 1992. De 81 Leeuw and Parker 1998; Archer et al. 2003; Pavese et al. 1996; Raiteri et al. 2010; Raiteri et 82 al. 2010; Fisler et al. 2000). On the other hand, empirical potential models have been 83 proposed to explore the bulk properties and surface of CaCO₃ (Sekkal and Zaoui 2013; 84 Sekkal et al. 2008; Paverse et al. 1996; Dove et al. 1992; Catti et al. 1993). Parker et al. 85 (Parker et al. 1993). Recently, a special attention was devoted to develop new potential 86 models to describe the interactions between $CaCO_3$ and water. In 2011, Xiao et al. (Xiao et al.) 87 2011) derived a new set of parameters for calcium carbonate, which accurately reproduces the 88 elastic and shear moduli of the aragonite phase. It is a new forcefield taking into account the 89 aqueous environment using the TIP3P water model (Jorgensen et al. 1983). This is the 90 potential model that we have used for (104) surface of CaCO₃. The clay mineral model considered here is a Wyoming-type Montmorillonite, with the unit cell formula 91 $Na_{0.75} \left[Si_{7.75}AI_{0.25}\right] \left(AI_{3.5}Mg_{0.5}\right) O_{20} \left(OH\right)_4 \ln H_2 O$. We have used the ClayFF potential model 92

93 (Cygan, 2004), which was well tested for clays.

At the interface, we have described the interactions between the last layer of the calcite ($Ca^{2+}CO_{3}^{2+}$) and the first layer of clay (SiO₂) using the model of Guillot-Sator (Guillot and Sator 2007) according to the following formula:

97

98
$$E(interface) = Z_i Z_j / r_{ij} + B_{ij} e^{-rij} / \rho_{ij} - C_{ij} / r_{ij}^6$$

99

100 Where R_{ij} is the interatomic distance and Z is the ionic charge. *B*, *C*, and ρ are the empirical 101 parameters given in Table 1.

To ensure a good accommodation at the interface, we built a "supercell" by duplicating the unit cell of calcite 11 times in the x direction and 4 times in the y direction (Figure 1). For clay system, we duplicate the unit cell 3 times in the x direction and 5 times in the y direction. Therefore, the obtained lattice mismatch is 1.58% for the x direction and 2.9% for the y direction. Thus, the dimension of the simulation box is (5.53 x 10.39 x 70.50) nm, $\alpha = 90^{\circ}$ and the number of atoms is 26 280 (Figure 2). Calculations are performed using Molecular
Dynamics method in NPT ensemble allowing all individual ionic coordinates and lattice
parameters to vary.

110

111

112 **III. Discussion**

113 III. 1. Thermodynamic properties of calcite and montmorillonite

We have conducted, first, a comparative study of the thermodynamic properties of calcite and montmorillonite by evaluating the heat capacity at constant volume (C_v) and entropy (S) of the two systems:

$$C_{v} = \frac{\partial E_{tot}}{\partial T} \Big|_{v}$$
$$S = R lnZ + RT \left(\frac{\partial lnZ}{\partial T} \right)$$

117

118 E_{tot} is the total energy of the system, T is the temperature, Z is the partition function.

For calcite, we have applied a set of temperatures from 300K to 1000K. Calculations are performed in NPT ensemble where temperature and pressure are kept constant during the simulation. Using the "Gear-Predictor-Corrector" algorithm, the equations of motion are solved using a timestep of 1 femtosecond. After equilibration, the optimum total energy is obtained, from which we have evaluated the heat capacity and the entropy as shown in Figures 3.

125 We noticed, first, that the quantities C_v and S vary positively with the change of temperature.

Furthermore, we find that the variation of C_{ν} is higher for montmorillonite: the slope of the curve is equal to 2.78E⁻⁶ for CaCO₃ and 3.32E⁻⁵ for montmorillonite. The same holds for the

entropy: $6.285E^{-6}$ for CaCO₃ and $7.54E^{-5}$ for montmorillonite. These results show that under temperature effect, there is a presence of a thermal agitation and a disorder which is higher in

the case of montmorillonite.

131

132 III.2. Evaluation of the lattice mismatch, the elastic energy, the adhesion energy and the 133 work of separation at the interface

We evaluate, here, the lattice mismatch between the two surfaces. Each atom has an intrinsic energy called elastic energy that is released during relaxation. In this part, we will see how atoms relax at the interface (Figure 4) and then we will calculate the change in the elastic energy based on the lateral stress applied to the interface. 138 We have considered two procedures: First, we applied a lateral stress in the x direction once 139 on calcite and once on montmorillonite, taken separately. In other words, we have expanded 140 the lattice parameter "a" of calcite up to the value of the clay; while for clay, we have 141 compressed the lattice parameter "a" up to the value of calcite. For each constraint, we have 142 equilibrated the system until it reaches its optimal energy. The obtained results are plotted in 143 Figure 4. We remark that in the case of calcite, the energy difference between the final state 144 (calcite with the lattice parameter of the clay) and the initial state is equal to 73.25 eV, 145 whereas for clay, this difference is too much higher (several orders of magnitude). Therefore, 146 we conclude that in the x direction, it is easier for calcite to provide energy to relax and to 147 accommodate with the atoms of montmorillonite at the interface.

148 The same procedure is performed in the y direction, by compressing calcite and expanding 149 clay (Figure 5). The obtained energy difference for calcite is of $7.35.10^8$ eV; for 150 montmorillonite it is equal to 149.74 eV. Therefore, in the y direction, it is easier for the clay 151 to provide the necessary energy to relax and accommodate its atoms at the interface with 152 those of calcite.

We discuss now the parameters which ensure the stability of the assembly. Indeed, the whole interface is associated to the appearance of excess free energy called interface energy. This is given by the energy of adhesion (E_{ad}) and later by the work of adhesion (W_{ad}), which are expressed through the Dupré equation:

157

158 $E_{ad} = \gamma c + \gamma a - \gamma c$

159 $W_{ad} = \gamma c + \gamma a - \gamma c/a$

- 160 where
- 161 γc : surface free energy of calcite,
- 162 γa : surface free energy of clay,
- 163 $\gamma c/a$: Energy of the calcite / clay interface.
- 164

165 The variation of the adhesion energy (or separation) and the work of separation as a function 166 of the distance of separation are shown in Figure 6. These calculations are performed by 167 varying the distance of separation between clay and calcite surfaces from 1.5 Å to 4 Å in 168 order to set the ideal distance between the two systems constituting the interface. The 169 adhesion energy is found to be 0.26 eV and the work of separation being 4.61×10^{-5} eV / Å². 170 We have deduced from Figures 6 the separation distance between the clay and the calcite 171 which is about 3 Å.

Finally, let us look to the stability of the interface when adding water molecules between the last layer of calcite (Ca^{2+}, CO_3^{2-}) and the first layer of clay (SiO₂). By varying the distance of

5

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5068

separation at the interface, we have equilibrated the system at each time, and the corresponding total energies are plotted in Figure 7. We underline that for distances less than 2.5 Å, the presence of water has the effect of absorbing the excess energy provided by the system and thereby stabilize the interface.

178

179 Implications

180 The main purpose here is to clarify the structural and energetic stability of the calcite 181 /montmorillonite interface, which directly linked to the nuclear waste disposal. In fact, an 182 excavation damaged zone (EDZ) is observed around galleries in the Callovo- Oxfordian 183 argillite, which is characterized by the appearance of micro-fissures. Before analysing the 184 behaviour of the interface between the clay and calcite under the effect of anisotropic stress, it 185 is important to evaluate the lattice mismatch between the two compounds at the interface, the 186 adhesion energy, the work of separation, as well as the elastic energy at the interface. These 187 quantities inform us about the conditions to obtain a stable interface of the assembly.

188

189 Acknowledgement

The authors would like to thank the National Radioactive Waste Management Agency
(ANDRA) for financial support. The authors are grateful to Dr F. Plas, A. Pasteau and J.C.
Robinet for valuable discussions.

- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201

202

203 **References cited**

Archer, T. D., Birse, S. E. A., Dove, M. T., Redfern, S. A. T., Gale, J. D., Cygan, R. T. (2003)
An interactomic potential model for carbonates allowing for polarisation effects.
Physics and Chemistry of Minerals, 30, 416–424.

207 Ayoub, A., Zaoui, A., and Berghout, A. (2011) High pressure structural phase transitions and

6

208	mechanical properties of calcite rock. Computational Materials Science 50, 852-857.					
209	Bakri, Z., and Zaoui, A. (2011) Structural and mechanical properties of dolomite rock under					
210	high pressure conditions: A first-principles study. Physica Status Solidi (b) 248,					
211	1894-1900.					
212	Benazzouz, B. K. and Zaoui, A. (2012) Thermal behaviour and superheating temperature of					
213	Kaolinite from molecular dynamics. Applied Clay Science 58, 44-51.					
214	Benazzouz, B. K. and Zaoui, A. (2012) Thermal behavior and superheating temperature of					
215	Kaolinite from molecular dynamics. Applied Clay Science 58, 44-51.					
216	Benazzouz, B. K. and Zaoui, A. (2012) Phase diagram of kaolinite from Molecular Dynamics					
217	calculations. Physica B: Condensed Matter 407, 2462–2470.					
218	Benazzouz, B. K. and Zaoui, A. (2012) A Nanoscale Simulation Study of the Elastic					
219	Behavior in Kaolinite clay under pressure. Materials Chemistry and Physics 132,880-					
220	888.					
221	Benazzouz, B. K., Zaoui, A., and Belonoshko, A. B. (2013) Determination of the Melting					
222	temperature of Kaolinite by means of the Z-method. American Mineralogist 98, 1881					
223	-1885.					
224	Berg, G.W. (1986) Evidence for carbonate in the mantle. Nature, 234, 50-51.					
225	Berghout, A., Tunega, D., Zaoui, A., (2010) DFT study of the hydration steps of					
226	$Na^{+}/Mg^{2+}/Ca^{2+}/Sr^{2+}/Ba^{2+}$ -montmorillonites clays. Clays and Clay Minerals 58, 174 –					
227	187.					
228	Bouibes, A., Zaoui, A. and Tunega, D. (2013). Bonds, bands and elasticity of Smithsonite					
229	rock. Solid State Communications 166, 76-82.					
230	Bouibes, A., and Zaoui, A. (2014) High-pressure polymorphs of ZnCO3: Evolutionary crystal					
231	structure prediction. Nature -Scientific Reports 4, 5172(2014).					
232	Canil, D. (1990) Experimental study bearing on the absence for carbonate in mantle-derived					
233	xenoliths. Geology, 18, 1011-1013.					
234	Catti, M. Paverse, A., and Price G.D. (1993) Thermodynamic properties of CaCO ₃ calcite and					
235	aragonite: A quasi-harmonic calculation. Physics and Chemistry of Minerals 19, 472					
236	-479.					
237	Cebula, D.J., R.K. Thomas, and J.W. White (1981) Diffusion of water in Li-montmorillonite					
238	studied by quasielastic neutron scattering. Clays and Clay Minerals, 29 (6): p. 241					
239	-248.					
240	Chang, FR.C., N.T. Skipper, and G. Sposito (1995) Computer Simulation of Interlayer					
241	Molecular Structure in Sodium Montmorillonite Hydrates. Langmuir 11 (7): p. 2734-					
242	2741.					
243	Chang, FR.C., N.T. Skipper, and G. Sposito (1997) Monte Carlo and Molecular Dynamics					
	7					

244	Simulations of Interfacial Structure in Lithium-Montmorillonite Hydrates. Langmuir
245	13 (7): p. 2074-2082.
246	Chang, FR.C., N.T. Skipper, and G. Sposito (1998) Monte Carlo and Molecular Dynamics
247	Simulations of Electrical Double-Layer Structure in Potassium-Montmorillonite
248	Hydrates. Langmuir 14 (5): p. 1201-1207.
249	Cygan, R. T., Liang. J-J., and Kalinichev A. G. (2004) Molecular Models of Hydroxide,
250	Oxyhydroxide, and Clay Phases and the Development of a General Force Field.
251	Journal of Physics and Chemistry B. 108, 1255-1266.
252	Dove, P. M.; Hochella, M. F. (1993) Calcite precipitation mechanisms and inhibition by
253	orthophosphate: In situ observations by scanning force microscopy. Geochimica.
254	Cosmochimica. Acta, 57, 705.
255	Fisler, D. K.; Gale, J. D.; Cygan, R. T. (2000) A shell model for the simulation of
256	rhombohedral carbonate minerals and their point defects. American Mineralogist, 85,
257	17-224.
258	Guillot B. and Sator N. (2007a) A computer simulation study of natural silicate melts. Part I:
259	Low pressure properties. Geochim. Cosmochim. Acta 71, 1249-1265.
260	Guillot B. and Sator N. (2007b) A computer simulation study of natural silicate melts. Part II:
261	High pressure properties. Geochim. Cosmochim. Acta 71, 4538-4556.
262	Jorgensen, W. L. Chandrasekhar, J. Madura, J. D., Impey, R. W. and Klein, M. L. (1983)
263	Comparison of simple potential functions for simulating liquid water. The Journal of
264	Chemistry and Physics 79, 926-935.
265	Katsure, T. and Ito, V. (1990) Melting and subsolidus phase relations in the MgSiO ₃ -MgCO ₃
266	system at high pressures: implications to evolution of the Earth's atmosphere. Earth
267	and Planetary Science Letters, 99, 110-117.
268	Kosakowski, G., S.V. Churakov, and T. Thoenen (2008) Diffusion of Na and Cs in
269	montmorillonite. Clays and Clay Minerals 56 (2): p. 190-206.
270	Kraft, S., Knittle, E. and Williams, Q. (1991) Carbonate stability in the Earth mantle: A
271	vibrational spectroscopic study of aragonite and dolomite at high pressures and
272	temperatures. Journal of Geophysical Research, 96, 17997-18009.
273	Leeuw N. H. de and Parker. S. C. (1998) Surface structure and morphology of calcium
274	carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. Journal
275	of Physics and Chemistry B, 102, 2914–2922,
276	Marry, V. and P. Turq (2003) Microscopic Simulations of Interlayer Structure and Dynamics
277	in Bi- hydrated Heteroionic Montmorillonites. The Journal of Physical Chemistry 107
278	(8): p. 1832-1839.

279	Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Develop.
280	Sedimentol. 48, Elsevier: Amsterdam, 724 pages.
281	Morse, J.W. Arvidson, R. S., Lüttge, A. (2007) Calcium carbonate formation and dissolution.
282	Chemical. Review. 107, 342-381.
283	Nye, P.H. (1979) Diffusion of ions and uncharged solutes in soils and soil clays.
284	Advanced Agron 31 : p. 225-272.
285	Parker, S. C. Titiloye J. O. and Watson, G. W. (1993) Philosophical transactions of the Royal
286	Society of London Series A – Physical Sciences and Engineering, 344, 37.
287	Pavese, A., Catti, M., Parker, S.C., Wall, A. (1996) Modelling of the thermal dependence of
288	structural and elastic properties of calcite, CaCO3. Physics and Chemistry of Minerals,
289	23, 89–93.
290	Pavese, A., Catti, M., Price, G. D., Jackson, R. A. (1992) Interatomic potentials for CaCO3
291	polymorphs (calcite and aragonite), fitted to elastic and vibrational data. Physics and
292	Chemistry of Minerals, 19, 80–87.
293	Raiteri, P. Gale, J. D., Quigley, D., Rodger, P. M. (2010) Derivation of an Accurate Force
294	Field for Simulating the Growth of Calcium Carbonate from Aqueous Solution: A New
295	model for the Calcite-Water Interface. Journal of Physics and Chemistry C, 114, 5997
296	-6010.
297	Raiteri, P., Gale, J. D. (2010) Water Is the Key to Nonclassical Nucleation of Amorphous
298	Calcium Carbonate. American Chemical Society, 132, 17623-17634.
299	Sekkal, W. Taleb, N. Zaoui A. and Shahrour, I. (2008) A lattice dynamical study of the
300	aragonite and post-aragonite phases of calcium carbonate rock. American Mineralogist
301	93, 1608-1612.
302	Sekkal, W. and Zaoui, A. (2013) Nanoscale analysis of the morphology and surface stability
303	of calcium carbonate polymorphs. Nature -Scientific Reports 3, 1587.
304	Spoel, D.v.d., P.J.v. Maaren, and H.J.C. Berendsen (1998) A systematic study of water
305	models for molecular simulation: Derivation of water models optimized for use with a
306	reaction field. The Journal of Chemical Physics 108 (24): p. 10220-10230.
307	Sposito, G. (1981) Single-particle motions in liquid water. II. The hydrodynamic model. The
308	Journal of Chemical Physics 74 (12): p. 6943-6949.
309	Sutton, R. and G. Sposito (2001) Molecular Simulation of Interlayer Structure and Dynamics
310	in 12.4 A Cs-Smectite Hydrates. Journal of colloid and interface science 237 (2): p.
311	174-184.
312	The French National Agency for Radioactive Waste Management (ANDRA). Dossier argile.
313	Paris: The French National Agency for Radioactive Waste Management (ANDRA),
314	2005.

315 Tunega, D., Bucko, T., and Zaoui, A., (2012) Assessment of ten DFT methods in predicting 316 structures of sheet silicates: importance of dispersion corrections. The Journal of 317 Chemical Physics 137, 114105-114114. 318 Usher, C.R. Michel, A. E. and Grassian, V. H. (2003) Reactions on mineral dust. Chemical 319 Review 103, 4883-4939. 320 Van Cappellen, P., Charlet, L. Stumm, W. and Wersin, P. (1993) A surface complexation 321 model of the carbonate mineral-aqueous solution interface. Geochim. Cosmochim. 322 Acta. 57, 3505-3518. 323 Xiao, S. Edwards, S. A. and Gräter, F. (2011) A New Transferable Forcefield for Simulating 324 the Mechanics of CaCO₃ Crystals. Journal of Physics and Chemistry C. 115, 20067 325 -20075. 326 Yang, W. and Zaoui, A. (2013) Uranyl Adsorption on (001) surfaces of Kaolinite: A 327 Molecular Dynamics Study. Applied Clay Science 80-81, 98-106. 328 Yang, W. and Zaoui, A. (2013) Behind Adhesion of Uranyl onto Montmorillonite Surface: A 329 Molecular Dynamics Study. Journal of Hazardous Materials 261, 224-234. 330 Zaoui, A., and Shahrour, I. (2010) Molecular dynamics study of high-pressure polymorphs of 331 BaCO₃. Philosophical Magazine Letters 90, 689–697. 332 Zheng, Y. and Zaoui, A. (2013) Temperature Effects on the Diffusion of Water and 333 Monovalent Counterions in the Hydrated Montmorillonite. Physica A: Statistical 334 Mechanisms and its Applications 392, 5994-6001. 335 Zheng, Y., and Zaoui, A. (2011) How water and counterions diffuse into the hydrated 336 montmorillonite. Solid State Ionics, 203, 80-85. 337 Zheng, Y., Zaoui, A. and Pasteau, (2014) A. Interactions between portions of clay with 338 various contacts and subjected to specific environmental conditions. Applied Surface 339 Science 292C, 311-318. 340 Zhen Y., Zaoui, A. and Shahrour, I. (2011) A theoretical Study of Swelling and Shrinking 341 of Hydrated Wyoming Montmorillonite. Applied Clay Science 51, 177-181. 342 Zheng, Y., Zaoui, A. and Shahrour, I. (2010) Evolution of the interlayer space of hydrated 343 montmorillonite as a function of temperature. American Mineralogist 95, 1493-1499. 344 345 346 347 Table 348 349

Table 1: Potential parameters for O_c-O_m, O_c-Si and O_m-Ca (Sator & Guillot, 2007). O_c is the

351 oxygen of $\text{CO}_3^{2^2}$ molecule, O_m is the oxygen of SiO_2 .

	D • • • • •		(?)	CLAGET I		
	Pair interaction	B (KJ/mol)	ρ(Α)	C(A [*] KJ/mol)		
	O _c -O _m	435285.0	0.265	4105.09		
	O _c -Si	4853815.5	0.161	4467 07		
		1000010.0	0.101	1107.07		
				1		
	O _m -Ca	15019679.1	0.178	4077.45		
353						
354						
355						
356						
357						
358						
359						
360						
361						
362						
364						
365						
366						
367						
368						
369						
370						
371			Fig	ures caption		
372			8			
373	Figure 1. Constru	action of the c	alcite/cls	av supercell Tor		
374	montmorillonite (001) (right). Blue spheres represent Calcium atoms: red spheres are Oxy					
375	atoms; green spheres are Carbon atoms; pink spheres are Silicon atoms.					

- 376 Figure 2: Atomistic assembly of the calcite/clay supercell viewed from the (xz) plane (a),
- 377 from (yz) plane (b).
- Figure 3: (a) Variation of the heat capacity with temperature. (b)Variation of entropy with temperature.
- 380 Figure 4: : Variation of the total energy with strain along x direction for calcite (a),
- 381 montmorillonite (b).
- 382 Figure 5: Variation of the total energy with strain along y direction for calcite (a), 383 montmorillonite (b).
- Figure 6: (a) Variation of the energy of separation with the interfacial distance. (b) Variationof the work of separation with the interfacial distance.
- 386 Figure 7: (a) Presence of water molecules at the interface. (b) Variation of the total energy
- 387 with the interfacial distance in the presence of water molecules.
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399 400
- 401
- 402
- 102
- 403
- 404
- 405

12