This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4661

1	REVISION 2 – correction date August 8, 2014
2	Cathodoluminescence dependence on feldspar mineral structure and implications for
3	forensic geology
4 5 6 7 8	Sarah A. Brokus ^{1,2a} , Danielle K. Silletti ^{1,2b} , J. Mark Lunderberg ^{2c} , Paul A. DeYoung ³ , Graham F. Peaslee ^{1,2} , Dyanne E. Carpenter ^{1d} , and JoAnn Buscaglia ⁴ ¹ FBI Laboratory, Visiting Scientist Program, Counterterrorism and Forensic Science Research Unit,
9 10 11 12 13 14 15	Quantico, VA 22135, U.S.A. ² Hope College, Chemistry Department, Holland, MI 49423, U.S.A. ³ Hope College, Physics Department, Holland, MI 49423, U.S.A. ⁴ FBI Laboratory, Counterterrorism and Forensic Science Research Unit, Quantico, VA 22135, U.S.A. ^a Present address: Northern Illinois University, Geology Department, DeKalb, IL 60115, U.S.A. ^b Present address: Loyola University Chicago, Burn and Shock Trauma Research Institute, Maywood, IL 60153, U.S.A.
16 17 18 19	^c Present address: University of Chicago, Chicago, IL 60637, U.S.A. ^d Present address: FBI Laboratory, Latent Print Operations Unit, Quantico, VA 22135, U.S.A.
20 21	ABSTRACT
21 22	A collection of 42 feldspar mineral samples from a wide geographical range of North America
23	was examined by cold-cathode cathodoluminescence (CL) spectroscopy. Characteristic
24	wavelength peaks, which were determined to be independent of geographic origin, were
25	associated with each feldspar phase. Most of these peaks were attributed to previously assigned
26	Mn ²⁺ and Fe ³⁺ luminescent centers and structural defects. An unattributed set of infrared (IR)
27	peaks was observed in many samples; one uncommon ultraviolet (UV) peak was observed in
28	samples from two locations. The peak centroids associated with the Mn^{2+} and Fe^{3+} luminescent
29	centers vary with stoichiometric changes in the K-Na-Ca composition of the feldspars. For both
30	alkali and plagioclase feldspars, shifts in CL peak centroids correlate well with lattice size, as
31	measured by x-ray diffraction (XRD). Additional analyses of the feldspar samples by electron
32	microprobe analysis (EMP), particle-induced x-ray emission spectroscopy (PIXE), energy-
33	dispersive micro-X-ray fluorescence spectroscopy (μ XRF), and/or laser-ablation inductively

34	coupled plasma mass spectrometry (LA-ICP-MS) were conducted for confirmation of elemental
35	composition. These results demonstrate the potential of CL spectroscopy, a relatively
36	nondestructive analytical technique, to facilitate rapid discrimination between feldspar samples.
37	The addition of CL spectroscopy of feldspars to existing forensic analytical protocols for
38	geologic materials has the potential to provide support for casework, both to discriminate sources
39	in a forensic comparison, as well as to constrain the provenance of an unknown sample.
40	
41	Keywords: Luminescence, feldspar, forensic geology, spectroscopy
42	
43	INTRODUCTION
44	
45	Mineral luminescence can occur when electrons excited by the passage of ionizing radiation
46	relax and release photons. Luminescence is only possible when the deposited energy of the
47	incident radiation is sufficient to allow electrons to jump the band gap of a crystal lattice.
48	Specific trace elements as well as lattice defects within the mineral's crystal structure create
49	intermediate energy levels between valence bands and conduction bands for additional electron
50	transitions, allowing certain minerals to luminesce brightly at specific wavelengths in the
51	ultraviolet, visible, and near infrared (UV-vis-NIR) regions following irradiation (Götze et al.
52	2000; Götze 2002). Although these electronic transitions occur at specific wavelengths,
53	interactions with non-shielding electrons produce broad peaks typical of a cathodoluminescence
54	(CL) spectrum (Götze 2000; Götze 2002). The peak centroids of these transitions are dependent
55	on the crystal field experienced by the luminescent center and on the chemical composition of
56	the mineral (Krbetschek et al. 2002).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4661

9/3

57	
58	Although the mechanisms that give rise to mineral luminescence are widely known, most CL
59	experimental studies remain qualitative in nature because the relative peak intensity within
60	samples is highly variable. This variability of luminescence intensities has been attributed to
61	many factors, including instrumental/analytical factors (e.g., incident radiation intensity
62	variation, (Thomas 1987)), crystal-chemical factors (e.g., defect/element concentration (Götze et
63	al. 1999; Haberman 2002; Parsons et al. 2008), sensitizing, quenching (Kabler 1964), etc.), and
64	interactions between the solid and the incident electron beam (e.g., orientation angle dependence
65	of the crystalline sample with respect to the ion beam (Walderhaug and Rykkje 2000; Finch et al.
66	2003; Munisso et al. 2007; Garcia-Guinea et al. 2007)). Recently, a quantitative use of CL peak
67	centroid wavelengths has been proposed as a forensic method to identify minerals and
68	characterize the mineral chemistry of geological trace evidence (Palenik and Buscaglia 2007).
69	The study reported in this paper describes the reproducibility of CL spectra from feldspar
70	samples and the forensic utility of geographical source attribution using CL signatures from
71	commonly encountered feldspar minerals.
72	
73	Feldspars are found ubiquitously on the earth's crust; therefore, techniques that specifically
74	determine feldspar provenance may be important tools in future forensic investigations (Ruffell
75	and McKinley 2005; Pye and Blott 2009). Geographic provenance of geological samples has
76	utility in forensic science when dealing with intelligence and criminal matters. For the purposes
77	of this study, we define provenance to be the geological origin of the mineral, rather than a
78	purely forensic science definition. CL microspectrophotometry may make it possible to rapidly
79	analyze sediment samples and characterize the bulk mineral chemistry of large numbers of

80 diverse feldspar minerals based on their CL spectrum. Although CL peak intensities vary 81 dramatically even between mineral grains of the same phase within a source, CL peak centroids 82 remain constant within a homogenous sample because they result from the crystal field 83 experienced by the luminescent centers within the mineral (i.e., mineral structure). For CL data 84 to be utilized forensically, the within-source variability should be small relative to the betweensource variability. That is, (1) similar minerals from the same location should yield similar CL 85 86 spectral peak positions and (2) similar minerals from different locations should yield CL spectra 87 with different peak centroids. If the CL peak centroids vary by geographic location, just as 88 mineral formations vary, then these data could provide insight about the provenance of a sample. 89 Cold-cathode CL spectroscopy could then be used to quickly show distinctive characteristics of 90 the feldspars within each sample. The purpose of this particular study is to demonstrate the 91 potential for CL measurements of any particular feldspar sample to yield reproducible peak 92 centroids that vary significantly in different geographical regions of North America. This is a 93 necessary first step with museum-quality samples required to show that such a technique could 94 be used to distinguish feldspar provenance. Although further studies will be necessary to 95 demonstrate that feldspar crystals of one rock complex are homogeneous enough to provide 96 useful information for forensic geological investigations, this initial study demonstrates that this 97 method could be a viable forensic tool.

- 98
- 99

METHODS

Forty-two feldspar samples, including 20 alkali feldspars (referring to any feldspar with the general formula K[AlSi₃O₈]) and 22 plagioclase feldspars (referring to any feldspars of the general formula (Na,Ca)[Al(Si,Al)Si₂O₈]), of known provenance were obtained from the

103	Department of Mineral Sciences of the Smithsonian Institution National Museum of Natural
104	History and Ward's Science. The provenance of the feldspar samples encompasses a broad
105	geographic area of North America and the samples include a range of feldspar types from well-
106	characterized geological formations. The lithological unit that describes each formation from
107	which feldspar samples were collected was identified in Bernard and Hyršl (2004); details of
108	these samples and their locations are listed in Appendix 1.
109	
110	Each mineral sample was mechanically fractured into fragments \sim 300-700 μ m in diameter and
111	each fragment was evaluated visually using reflected light (RL) stereomicroscopy. Specimens
112	were excluded if the inner surfaces of the fragments exhibited extensive weathering or any sort
113	of visual impurity, such as the mixture of two visible minerals. Because RL microscopy does not
114	provide a complete sample characterization, homogeneity of every sample is not guaranteed;
115	however, obvious heterogeneous fragments were excluded from our analyses.
116	
117	From each fractured feldspar sample, six replicate crystal fragments were analyzed with CL,
118	followed by ion-beam induced luminescence (IBIL). After the luminescence spectra were
119	obtained by CL and IBIL analysis to demonstrate the variety of luminescent signatures available
120	across the sample set, the elemental composition of these grains was determined by energy-
121	dispersive micro-X-ray fluorescence (μ XRF) spectroscopy. The major and minor chemical
122	element composition of each feldspar sample was confirmed using energy-dispersive micro-X-
123	ray fluorescence spectroscopy (μXRF), using the same grains that were nondestructively studied
124	by CL and IBIL. Some of the feldspar samples, although not the same grains on which CL and

IBIL were obtained, were also analyzed using electron microprobe analysis (EMP) and particle-125

126	induced X-ray emission (PIXE) spectroscopy to confirm the characterization by μ XRF. An
127	additional replicate fragment of each feldspar sample was analyzed with minimal destruction
128	using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate
129	the presence of trace elements of interest using a more sensitive analytical method. Additional
130	replicates were also selected and mechanically ground into a fine powder for measurement by X-
131	ray diffraction (XRD) for crystallographic information.
132	
133	Spectrometer wavelength calibration was verified for the luminescence spectral analysis
134	techniques (CL and IBIL) using a sample of zircon that was obtained from the John P.
135	Wehrenberg reference collection (Montana State University, Missoula, MT); this zircon sample
136	was chosen because of the numerous rare-earth element lines with narrow peak widths across its
137	CL spectrum.
138	
139	All luminescence spectra collected had background baselines subtracted to minimize the effect of
140	background light noise. Because the relatively broad luminescence peaks observed are not
141	Gaussian in wavelength space, the background-subtracted luminescence spectra were converted
142	to energy space, deconvolved and fit with 4-6 peaks using the commercial software, OriginLab®
143	(http://www.originlab.com) and converted back to wavelength space.
144	
145	CL
146	Six replicate hand-selected mineral grains from each of the 42 feldspar and 1 zircon mineral
147	samples were mounted on double-sided, spectroscopic-grade carbon tape adhered to aluminum
148	slides. Excitation was conducted in vacuo using a CITL MK 5-2 cold-cathode CL system with an

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4661 9/3
149	accelerating voltage of ~11.6 kV, a current of ~400 μ A, and a beam spot size of approximately 1
150	cm ² . The cold-cathode CL vacuum stage with a leaded glass optical window was centered under
151	a Leica S8 APO stereomicroscope with a 10X objective. Spectroscopic measurements in the
152	range of 350-1050 nm were made using a fiber-optic cable attached to an Ocean Optics
153	USB4000 spectrometer fit to the dual-port stereomicroscope; the entire spectral region was
154	measured at one time for each replicate measurement. Typical acquisition times for the
155	spectroscopic measurements were 1-16 s. Blank backgrounds were manually subtracted offline
156	using the OriginLab [®] software for each spectrum. All CL spectral data reported in this paper
157	were collected with this system.
158	
159	Interlaboratory analyses were conducted using a second CL system. For the purposes of this
160	paper, the data acquired using this second CL system are included solely for the discussion of the
161	wavelength dependence of detection efficiency for cold-cathode instrumentation in general and
162	the implications for forensic science applications. The second CL system, a cold-cathode
163	Luminoscope ELM-3R CL system, was used for sample excitation in vacuo, with an accelerating
164	voltage of 10 kV and a current of 1 mA. The electron beam was focused onto the sample using

165 permanent magnets for a beam spot size of approximately 0.3 cm². The cold-cathode CL vacuum

166 stage with a leaded glass optical window was centered under a Nikon Eclipse E800 polarized

167 light microscope with a 10X extra-long working distance objective. Spectroscopic measurements

168 in the range of 300-1100 nm were made using a fiber-optic cable attached to a Horiba Jobin-

- 169 Yvon TRIAX 320 spectrometer, with a 1 mm slit width, a 1200 groove/mm grating, and a
- 170 Horiba Jobin-Yvon Symphony[®] CCD detector. Two 2.5-s acquisitions at each wavelength were
- 171 obtained from each sample and averaged to give a final spectrum; the entire spectral region was

172	measured at one time for each replicate measurement. Blank backgrounds were subtracted in
173	SynerJY TM (Horiba Jobin-Yvon) software upon collection.

174

175 **IBIL**

176 The six feldspar samples from Ward's Science and one zircon calibration sample were exposed

to a 3.4 MeV proton beam produced at the Hope Ion Beam Analysis Laboratory; for each

analysis, the exact same mineral grains as those analyzed by the CITL-MK 5-2 cold-cathode CL

179 system were used. IBIL measurements used low beam currents of ~1 nA and micro-focused

180 beam spots of ~50 µm diameter to prevent sample degradation. For all sample analyses, the spot

181 size was smaller than the target mineral grains and multiple locations per grain were sampled.

182 Spectroscopic measurements in the range of 350-1050 nm were made using light collected from

183 a lens mounted at ~145° to the beam and ~2 cm from the target via a fiber-optic cable attached to

184 an Ocean Optics USB4000 spectrometer (the same spectrometer as used for the CITL-CL

185 measurements). The entire spectral region was measured at one time for each replicate

186 measurement. Blank backgrounds of the target were subtracted offline using the PeakFit[®]4.0

187 software for Windows to account for the effect of background light noise.

188

189 **µXRF**

190 The elemental compositions of the same six replicates of 42 individual mineral grains that were

analyzed by CL and IBIL were determined using μ XRF. A Horiba XGT-7000V X-ray

microscope with a rhodium excitation source, 400 µm monocapillary, and a liquid nitrogen-

193 cooled, high-purity Si detector was used to acquire the µXRF spectra. An accelerating voltage of

194 30 kV was used, and the X-ray tube current was auto-adjusted for optimum dead time; each

195	spectrum was acquired for 1200 live seconds. The samples were measured in two orientations
196	relative to the excitation beam in order to distinguish interfering diffraction peaks from
197	characteristic X-ray emission peaks. An external soda-lime silica glass standard reference
198	material, NIST SRM 1831 (National Institute for Standards and Technology, Gaithersburg MD)
199	was analyzed multiple times with each analytical run as a system performance check and used as
200	a single-point calibration standard.
201	
202	XRD
203	One separate subsample of each mineral sample was ground into a fine powder, which was
204	placed on a mono-crystalline-silicon, zero-background sample holder, and analyzed using a
205	PANalytical X'Pert Pro diffractometer. Analysis conditions included: a nickel filter, 0.04 radian
206	Soller slits, a fixed divergence slit (0.25°), 0.08° step size, 1 deg/s, 16 spins/min, and a 2 θ range
207	of 5-75°. The commercial software program, X'Pert HighScore version 2.2e (2.2.5, release date
208	02-03-2009, PANalytical B.V. 2003) was used to evaluate the data; data were searched using
209	several International Centre for Diffraction Data databases, including PDF-2 (2008), PDF-4+
210	with SIeve+ (2010), and the Joint Committee on Powder Diffraction Standards' PDF cards
211	(Berry 1974).
212	
213	LA-ICP-MS
214	Direct solid sampling of one additional replicate mineral grain from each feldspar sample (other

215 than those grains on which CL, IBIL, and µXRF measurements were made) was carried out

- 216 using a New Wave Research UP-213 Nd:YAG 213 nm laser ablation system. Ablation was
- 217 conducted using helium gas flow through the sample cell, with argon make-up carrier gas. The

218	laser conditions were: 70% power, pulse frequency of 20 Hz, and a 160 μ m spot size. Three
219	replicate 90-s ablation spots were acquired per feldspar grain. For each ablation, a background
220	signal was collected for 32 seconds, 30 seconds of which were integrated for background
221	correction to allow for slight inconsistencies in the manual start of mass spectral data acquisition.
222	The ablated material was analyzed with a Hewlett-Packard 4500plus quadrupole ICP-MS; 60
223	seconds of signal during ablation were integrated per isotope. Data for the following isotopes
224	were acquired: ²³ Na, ²⁵ Mg, ²⁷ Al, ²⁹ Si, ³⁹ K, ⁴² Ca, ⁴⁹ Ti, ⁵⁷ Fe, ⁸⁵ Rb, ⁸⁸ Sr, ⁹⁰ Zr, ¹³⁷ Ba, ¹³⁸ Ba, ¹³⁹ La,
225	¹⁴⁰ Ce, ¹⁴⁶ Nd, ¹⁵³ Eu, and ^{206, 207, 208} Pb. To correct for instrument drift over long analytical runs, an
226	external glass standard reference material NIST SRM 612 (National Institute of Standards and
227	Technology, Gaithersburg, MD) and a sample of reference glass FGS1 (Latkoczy et al. 2005)
228	were analyzed multiple times within each run.
229	
230	PIXE
231	The same mineral grains analyzed by CL and IBIL were also analyzed by PIXE spectroscopy. X-
232	rays were detected in a lithium-drifted silicon detector mounted at 145° to the beam of 3.4 MeV
233	protons that were focused to a \sim 50 μ m spot on multiple locations within each mineral grain.
234	Approximately 1-2 nA of beam was delivered for 600 s for a total charge deposition of
235	approximately 0.5-1 μ C. The beam current was integrated before and after each run with a
236	Faraday cup and an absolute normalization was obtained from backscattered protons detected in
237	a surface barrier silicon detector at 168° to the beam. The X-ray spectra were analyzed using a
238	thick target artics in CUDIXWin activity (Manual et al. 1005). A solid target NIST SDM
	thick-target option in GUPIXWin software (Maxwell et al. 1995). A solid-target NIST SRM
239	2586 standard was used to normalize the absolute elemental concentrations.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4661

241 **EMP**

242	Feldspar reference samples obtained from Ward's Science were analyzed with the University of
243	Georgia Department of Geology's JEOL 8600 EMP using a 15 kV accelerating voltage and 5 or
244	10 nA beam currents. Quantitative analyses were performed with a wavelength dispersive
245	spectrometer (WDS) automated with Geller Microanalytical Laboratory's dQANT software,
246	using 10-s counting times, and both natural and synthetic mineral standards (Smithsonian
247	Microbeam Standards, http://mineralsciences.si.edu/facilities/standards.htm#1). Analyses were
248	calculated using Armstrong's (1988) Phi-Rho-Z matrix correction model. Backscattered electron
249	photomicrographs were acquired using Geller Microanalytical Laboratory's dPICT imaging
250	software. A 10 μ m diameter beam was used when possible, but exsolution lamella in some of the
251	samples necessitated using 1 or 5 μ m beam diameters.
252	
253	
254	RESULTS AND DISCUSSION
255	
256	Elemental composition
257	The elemental compositions obtained via μXRF are plotted on a traditional feldspar ternary
258	diagram (Fig. 1) and are tabulated in Appendix 1. The μ XRF data were selected for presentation
259	in Fig. 1 because they were acquired from the same particles as those measured with CL and
260	IBIL, thereby permitting direct comparison of the spectroscopic results to the elemental
261	composition.
262	

263	To confirm the μXRF characterization of the samples, the elemental composition obtained by
264	more penetrating probe techniques (PIXE and EMP) on replicate samples were compared to the
265	μ XRF results. An example of this comparison is shown in Fig. 2 for the calcium content in five
266	feldspar samples obtained from Ward's Science. There is good agreement between all three
267	elemental characterization techniques for all but the bytownite sample, which suggests that the
268	incident beam penetration depth (~70-100 μ m for μ XRF) was sufficient for bulk analysis of the
269	samples and accurately represents the percent orthoclase, anorthite, and albite composition for
270	each sample.
271	
272	Despite our careful selection using RL stereomicroscopy, in which we attempted to choose only
273	highly homogeneous samples, most feldspars exhibit some sample microheterogeneity. Due to
274	this mineral sample heterogeneity and the microsampling of the LA method, higher variability in
275	the calculated elemental concentrations was noted for some grains with LA-ICP-MS than with
276	μ XRF. In addition to the different sensitivities of the two methods, some of the differences
277	between the results calculated with LA-ICP-MS and μXRF are likely due to the fact that the
278	same feldspar grains displaying microheterogeneity were not analyzed with both techniques.
279	Further, variations in and differences between elemental analyses may also be caused by zoning
280	in the feldspar grains.
281	
282	Peak assignment
•••	

283 Representative luminescence spectra obtained from CL and IBIL spectroscopy are shown in Fig.
284 3. Each of the peaks is labeled with its respective luminescence source.

285	From literature references (Götze et al. 2000; Krbetschek et al. 2002; Gorobets and Rogojine
286	2002) and independent elemental analysis, it was observed that most of the characteristic
287	luminescent signatures could be ascribed to four sources: (1) Al-O* lattice defect peak centered
288	around 450 nm, (2) Si-O* lattice defect peak centered around 500 nm, (3) Mn^{2+} ions for the peak
289	centered at 540-620 nm, and (4) Fe^{3+} ions for the peak centered at ~680-750 nm. Two additional
290	peaks were required to fit certain samples, including: (5) a peak around 410 nm most likely
291	attributable to Cu^{2+} (Hofmeister and Rossman 1985; Johnston et al. 1992) and (6) a triplet peak
292	between 850-950 nm, possibly attributable to Pb ⁺ (Nagli and Dyachenko 1988; Fockele et al.
293	1989; Erfurt 2003; Erfurt and Krbetschek 2003). Si-O* and Al-O* defect peak centroids have
294	consistent wavelengths between samples, whereas peaks resulting from Fe^{3+} and Mn^{2+} reflect the
295	mineral's structure; the positions of the peak centroids shift and is dependent on the surrounding
296	crystal lattice.

297

298 Reproducibility

299 For these feldspar samples, which are not heavily weathered and have no major impurities, CL 300 peak centroids were consistent within minerals of the same composition (Fig. 3). These results 301 illustrate the homogeneity of the samples and the reproducibility of the peak centroid positions 302 observed for any feldspar hand samples in this study. However, using cold-cathode CL, spectral 303 peak intensities varied greatly both within replicates of a single sample and between different 304 feldspar samples with similar mineral composition. External influences, sample orientation with 305 respect to the electron beam, electron beam intensity, or electron channeling, make reproducible 306 quantification of luminescence intensity of a peak in a sample impossible for this technique. 307 However, quantitative measurements can be made for each of the observed peak centroid values. These values may be associated with separate mineral crystal structures that vary by location because they were formed under different conditions. The variety found in geological formations, based on their geographical location, is reflected through the feldspar sample's CL spectra, which are distinct from one another.

312

313 **Provenance distinction**

314 When CL spectra from feldspars of similar mineral composition from different geographical 315 locations were compared, there were notable variations resulting from the diversity of trace 316 elemental compositions, lattice sizes, and structures. This is shown for a subset of samples in 317 Fig. 4. The peak centroids corresponding to the spectra shown in Fig. 4 are listed in Table 1. 318 Although several of the primary spectral features are similar within feldspars of a certain 319 chemical composition, each of the samples measured in this study were distinguishable from all 320 of the others by the CL peak centroids when they originated from different geological 321 formations. This suggests that these spectral features could be used to suggest or constrain 322 provenance given a sufficient library of known mineral luminescence spectra. 323 324 Whereas the luminescence peak intensity is too variable to be used quantitatively, the 325 luminescence peak wavelength reflects the crystal field gradient that surrounds the *d*-orbitals of 326 the luminescent centers within the mineral. As the lattice size changes due to differences in trace 327 element composition or lattice defects, the observed peak energies change as well, allowing 328 specific signatures for each mineral to be measured and compared (Mora and Ramseyer 1992). 329 Replicate measurements on the same sample show remarkable reproducibility for the 330 luminescence peak centroids, whereas measurements of samples from different geographic

locations show significant variability in the measured spectrum. This variability allowed forcomplete discrimination of the samples in this limited study.

333

Relation to crystal structure

The red and near-IR feldspar CL peaks are due to trace Fe³⁺ ions, known to substitute for the T1 335 and T2 Al^{3+} tetrahedral coordination sites within the alkali feldspar structure (Deer et al. 1966; 336 Telfer and Walker 1978; Finch and Klein 1999). The centroid of this Fe³⁺ peak has been 337 338 previously observed to experience a hypsochromic shift in CL (Krbetschek et al. 2002) as a 339 function of chemical composition. Krbetschek et al. (2002) suggests the CL peak's 340 hypsochromic shift is due to the substitution of the larger K^+ ion for the smaller Na⁺ ion in the 341 mineral as the %Ab increases until %Ab reaches 50%, but Krbetschek et al. (2002) does not 342 confirm this conclusion with any XRD data. The crystal lattice changes dimension with 343 chemical composition changes (Ribbe 1975), presumably resulting in a change in the crystal 344 field experienced by the luminescent center. To test this hypothesis, our study measured the 345 lattice d-spacing values directly by XRD. The d-spacing values representing a given plane (002) were compared to CL Fe^{3+} peak centroids in Fig. 5. As shown in this figure, both the alkali and 346 347 Ca-rich plagioclase feldspar peak centroids reflect the effect of elemental substitution on structural parameters within the lattice. This feature, therefore, defines the Fe^{3+} CL signature. 348 349 There is also a strong correlation between the peak centroid position and Ca content in plagioclase and Ca-rich plagioclases, and K content in potassium feldspars. The Fe³⁺ peak 350 intensity varied widely between samples and only those spectra with a Fe³⁺ peak exceeding 10% 351 352 of the total spectral area were included in this analysis. Peaks with smaller areas have greater 353 uncertainties in their centroid locations and were, therefore, omitted from this analysis.

354 In Fig. 5, Ca-rich plagioclase was observed to exhibit a trend opposite of the alkali feldspar, 355 presumably because the complexity of the substitution within the plagioclase structure alters the crystal field experienced by Fe^{3+} in a different manner. This could also be explained by the use 356 357 of the plane perpendicular to the c-axis of the crystal, known to exhibit a different length and 358 ordering in the plagioclase and alkali feldspar. However, when comparing the increase in calcium with the peak position of Fe^{3+} in our data set (data not shown), we do observe the same 359 trend reported by Krbetschek et al. (2002). It is important to note that the Si-O* and Al-O* 360 lattice defect peaks, as well as the Na-rich (greater than 50% Albite) feldspar samples, do not 361 362 exhibit any peak shift in CL with change in lattice dimension. 363

364 Variation with excitation source and detection efficiency

365 It is interesting to note that some peak centroid wavelengths do not reproduce reported peak 366 centroids from similar feldspars in hot-cathode CL studies or peak centroids observed in studies that used different luminescent techniques (Rendell and Clark 1997; Correcher and Garcia-367 Guinea 2001; Krbetschek et al. 2002). For example, the observed peak centroids for Fe^{3+} range 368 369 between 670 and 725 nm in this work, whereas another study has reported peak centroids for Fe³⁺ that range between 700 and 740 nm (Krbetschek et al. 2002). This lack of reproducibility 370 371 could be due to the different feldspar samples studied, but our technique comparison (CL vs. 372 IBIL) as well as our interlaboratory CL comparison suggests that this could also be due to the 373 differences in excitation source for the luminescence, as well as significant detection efficiency 374 effects for the spectrometers involved. The variability due to the source of sample excitation was 375 confirmed by measuring an individual feldspar grain sample with CL and then measuring the 376 same grain using IBIL spectroscopy, and as described in the methods section, both

377	measurements were made with the same spectrometer. For some geological samples, consistency
378	between CL and IBIL peak centroid wavelengths was demonstrated with replicate spectra of the
379	same mineral sample. For example, the peak centroid wavelengths of the CL and IBIL spectra
380	from zircon grains shown in Fig. 6 are indistinguishable. These zircon samples luminesce
381	following irradiation because of the rare earth element (REE) luminescent center (Dy ³⁺), which
382	produces narrow bands due to highly shielded electronic transitions resulting in limited ranges of
383	excitation (orbitals f - f and f - d) (Götze 2000). Although considerably more light is produced with
384	IBIL than with cold-cathode CL, the peak positions of both the REEs and the silicate matrix are
385	indistinguishable between the two techniques (Fig. 6). However, in the feldspar samples
386	analyzed in this study, although the lattice defect peak positions were consistent for all feldspars,
387	there were observable bathochromic- and hypsochromic-shifts, primarily in the peaks
388	attributable to Fe^{3+} and the unattributed IR peak (Fig. 7), but also in the peaks ascribed to Cu^{2+} .
389	
390	The peak at ~400 nm, which is likely a result of Cu^{2+} luminescent centers (based on PIXE
391	elemental analysis and literature analyses of feldspars from Oregon), also exhibited a peak shift
392	between IBIL and CL spectra. Comparing CL and IBIL spectra collected on the same sample,
393	there is no peak centroid shift observed for the Mn^{2+} peak, the Fe ³⁺ IBIL peak centroid shows a
394	bathochromic shift relative to its CL position, and the Cu ²⁺ IBIL peak centroid shows a
395	hypsochromic shift relative to its CL position.

396

A possible explanation for this shift in peak centroid wavelength could be in *d*-orbital changes
resulting from light-induced electron spin state trapping (LIESST) (Gütlich et al. 1994); LIESST
could be altering the *d*-orbital configuration of the luminescence centers within the minerals.

400 Further study is needed to elucidate the mechanism for this shift as a function of luminescence 401 technique. However, in conducting an interlaboratory comparison of cold-cathode CL instrumentation, a significant bathochromic shift was observed for broad CL peaks in the range 402 403 of 600-750 nm when identical samples were analyzed with the Horiba Jobin-Yvon spectrometer 404 (which is more sensitive in this spectral region) compared to the Ocean Optics spectrometer. For 405 the narrow calibration wavelengths of REEs or fluorescent source standards, this shift was not observed, but for the typical Fe³⁺ luminescence that spans over 100 nm in range, there was an 406 407 observed shift of ~20 nm. The significantly different detection efficiency of the respective 408 spectrometers (Palenik and Buscaglia 2007) in this wavelength range undoubtedly shift the relative intensity detected within a Fe³⁺ luminescence peak, causing the Ocean Optics system to 409 410 report peak centroids ~20 nm lower than the Horiba Jobin-Yvon spectrometer. Although the CL 411 results are encouraging for the practical application of feldspar identification and provenance 412 attribution, it is important to note that a single instrument should be used to compare samples 413 unless the detection efficiency is well characterized and normalized. The IBIL results from the 414 same mineral grains indicate that some peak centroids that result from luminescent centers may 415 also be sensitive to the ionizing radiation used, again suggesting limits on comparisons made 416 between different excitation sources.

417

418 Unattributed IR peak

Many of the spectra include an unattributed IR peak (~840-950 nm). The IR peak was present in
a greater number of samples analyzed using the CL system with the Horiba Jobin-Yvon
spectrometer, and many of these peaks were not detected using the CL system with the Ocean
Optics spectrometer, presumably due to the IR detection efficiency of the respective

100	
423	spectrometers. Preliminary trace elemental analysis using LA-ICP-MS was performed on many
424	of these feldspar samples to determine if this IR peak could be attributed to the presence of a
425	trace element. For the six samples with an IR peak reported in Appendix 1 (F1, F5, F10, F11,
426	F17 and F18), the average Pb concentration was measured to be above 570 ppb. For all the rest
427	of the samples measured (N=26, except F13), the average Pb concentration was measured to be
428	below 30 ppb. The only notable anomaly is F13, which has a very high Pb content (~3700 ppb)
429	but no detectable IR peak in the CL spectra from any of its replicates. These data suggest the
430	presence of Pb in those samples with the largest IR peaks, whereas most of the samples with no
431	detectable IR peaks also had no detectable levels of Pb. Alkali feldspars are known to have high
432	trace Pb concentrations (Deer et al. 1966), and Pb emission lines have been reported in this
433	wavelength region (Reader et al. 1980; Ralchenko et al. 2011).
434	
434 435	IMPLICATIONS
	IMPLICATIONS There is significant forensic potential for luminescence spectroscopy of common minerals such
435	
435 436	There is significant forensic potential for luminescence spectroscopy of common minerals such
435 436 437	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively,
435 436 437 438	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively, the luminescence peak position reflects the composition and size of the crystal field gradient that
435 436 437 438 439	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively, the luminescence peak position reflects the composition and size of the crystal field gradient that surrounds the <i>d</i> -orbitals of the luminescent centers within the mineral. As the lattice size
435 436 437 438 439 440	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively, the luminescence peak position reflects the composition and size of the crystal field gradient that surrounds the <i>d</i> -orbitals of the luminescent centers within the mineral. As the lattice size changes, the observed peak energies change as well, which allows specific signatures for each
 435 436 437 438 439 440 441 	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively, the luminescence peak position reflects the composition and size of the crystal field gradient that surrounds the <i>d</i> -orbitals of the luminescent centers within the mineral. As the lattice size changes, the observed peak energies change as well, which allows specific signatures for each mineral to be measured and compared. The CL spectra change with different feldspar
 435 436 437 438 439 440 441 442 	There is significant forensic potential for luminescence spectroscopy of common minerals such as feldspars. Whereas the luminescence peak intensity is too variable to be used quantitatively, the luminescence peak position reflects the composition and size of the crystal field gradient that surrounds the <i>d</i> -orbitals of the luminescent centers within the mineral. As the lattice size changes, the observed peak energies change as well, which allows specific signatures for each mineral to be measured and compared. The CL spectra change with different feldspar chemistries, allowing most feldspars to be distinguished from other feldspars based on the CL

analytical protocols for geologic materials, without additional risk of damage or loss of evidence,which may occur with some traditional chemical methods.

448

449 The forensic examination of sediment can provide both investigative information to support an 450 ongoing criminal investigation and evidence for presentation in court. Casework typically 451 consists of the comparison of a sediment sample of unknown origin (e.g., a sediment sample 452 recovered from the tire or wheel well of a suspect's vehicle) with one of known source (e.g., 453 sediment from a specific crime scene location); evaluation of a sediment sample of unknown 454 source for provenance determination can also provide valuable support in investigations. The 455 interested reader is referred to Pye and Croft (2004) and Morgan and Bull (2007) for a general 456 overview of forensic sediment analysis, and to Petraco, Kubic and Petraco (2008) and Bowen 457 and Caven (2013) for specific examples of forensic case studies and forensic provenance 458 investigations. The addition of CL spectroscopy of feldspars to these published methods has the 459 potential to provide support for casework, both to discriminate sources in a forensic comparison, 460 as well as to constrain the provenance of an unknown sample. 461 462 This study analyzed museum-quality specimens; further work is needed on weathered and 463 recycled samples, which are commonly encountered in forensic evidence, to ensure they behave 464 similarly. Replicate measurements on the same sample have shown excellent reproducibility for 465 the luminescence peak centroids, whereas measurements of different samples from around the 466 U.S. showed significant variability in the measured spectra. The intra-source spectral

467 homogeneity combined with inter-source diversity allows for source attribution of the samples in

this study. Of course, much larger libraries of spectra are necessary to use luminescence

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

469	spectroscopy routinely as a guide for provenance. However, even without large spectral
470	libraries, luminescence spectroscopy may still be useful as an additional forensic tool for the
471	comparison of sediment samples.
472	
473	
474	ACKNOWLEDGMENTS
475	
476	This work was funded by the National Science Foundation (RUI PHY-0969058; MRI 0319523),
477	and Department of Homeland Security (2008-DN-077-ER0008) and the FBI Laboratory
478	Division. This research was supported in part by an appointment to the Visiting Scientist
479	Program at the FBI Laboratory Division, administered by Oak Ridge Institute for Science and
480	Education, through an interagency agreement between the U.S. Department of Energy and the
481	Federal Bureau of Investigation, and Hope College Chemistry and Physics Departments. We
482	thank the Smithsonian Institution National Museum of Natural History Department of Mineral
483	Sciences for samples and Paul Pohwat, Dave Daugherty, Edward Hansen, Jonathan Peterson,
484	Joshua Borycz, Alyssa Cassabaum, and Robert Koons for their contributions.
485	
486	This is publication number 13-08 of the Laboratory Division of the Federal Bureau of
487	Investigation (FBI). Names of commercial manufacturers are provided for information only and
488	inclusion does not imply endorsement by the FBI. Points of view in this document are those of
489	the authors and do not necessarily represent the official position of the FBI or the U.S.
490	Government.

492

494	REFERENCES CITED
495 496	Armstrong, J.T. (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF, and phi-rho-z procedures. Microbeam Analysis, 239-246.
497 498 499 500	Bernard, J.H. and Hyršl, J. (2004) Minerals and their Localities, 823p. Granit, s.r.o., Czech Republic.
501 502 503	Berry, L.G., Ed. (1974) Selected Powder Diffraction Data for Minerals: Data Book, First Ed. Joint Committee on Powder Diffraction Standards, Swarthmore, PA.
503 504 505 506 507	Bowen, A.M. and Caven, E.A. (2013) Forensic provenance investigations of soil and sediment samples. In D. Pirrie, A. Ruffell, and L.A. Dawson, Eds., Environmental and Criminal Geoforensics, Geological Society, London, Special Publications, 384, 9-25.
508 509	Correcher, V. and Garcia-Guinea, J. (2001) On the luminescent properties of adularia feldspar. Journal of Luminescence, 93, 303-312.
510 511 512 513	Deer, W.A., Howie, R.A., and Zussman, J. (1966) An Introduction to the Rock Forming Minerals, p. 282-338. Longman Group Limited, London.
513 514 515 516	Erfurt, G. (2003) Infrared luminescence of Pb ⁺ centres in potassium-rich feldspars. Physica Status Solidi (A), 200, 429-438.
517 518 519 520	Erfurt, G. and Krbetschek, M.R. (2003) Studies on the physics of the infrared radioluminescence of potassium feldspar and on the methodology of its application to sediment dating. Radiation Measurements, 37, 505-510.
520 521 522 523 524	Finch, A.A. and Klein, J. (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contributions to Mineralogy and Petrology, 135, 234-243.
525 526 527	Finch, A.A., Hole, D.E., and Townsend, P.D. (2003) Orientation dependence of luminescence in plagioclase. Physics and Chemistry of Minerals, 30, 373-381.
527 528 529 530 531	Fockele, M., Lohse, F., Spaeth, J-M., and Bartram, R.H. (1989) Identification and optical properties of axial lead centres in alkaline-earth fluorides. Journal of Physics: Condensed Matter, 1, 13-26.
532 533 534 535	Garcia-Guinea, J., Finch, A., Can, N., Hole, D., and Townsend, P. (2007) Orientation dependence of the ion beam and cathodoluminescence of albite. Physica Status Solidi (C), 4, 910-913.
536 537 538	Gorobets, B.S. and Rogojine, A.A. (2002) Luminescent Spectra of Minerals: Reference Book, 300 p. All Russia Institute of Mineral Resources (VIMS), Moscow.

539 540 541 542	Götze, J. (2000) Cathodoluminescence in applied geosciences. In M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter, Eds., Cathodoluminescence in the Geosciences, p. 457-477. Springer-Verlag, Berlin.
543 544 545	Götze, J. (2002) Potential of cathodoluminescence microscopy and spectroscopy for the analysis of minerals and materials. Analytical and Bioanalytical Chemistry, 374, 703-708.
546 547 548	Götze, J., Haberman, D., Neuser, R.D., and Richter D.K. (1999) High resolution spectrometric analysis of rare earth elements-activated cathodoluminescence in feldspar minerals. Chemical Geology, 153, 81-91.
549 550 551 552 553 554	Götze, J., Krbetschek, M.R., Habermann D., Wolf, D. (2000) High resolution cathodoluminescence studies of feldspar minerals. In M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter, Eds., Cathodoluminescence in the Geosciences, p. 245-270. Springer-Verlag, Berlin.
555 556 557	Gütlich, P., Hauser, A., Spiering, H. (1994) Thermal and optical switching of Iron (II) complexes. Angewandte Chemie, 33, 2024-2054.
558 559 560	Haberman, D. (2002) Quantitative cathodoluminescence (CL) spectroscopy of minerals: Possibilities and limitations. Mineralogy and Petrology, 76, 247-259.
561 562 563	Hofmeister, A.M. and Rossman, G.R. (1985) Exsolution of metallic copper from Lake County Labradorite. Geology, 13, 644-647.
564 565 566	Johnston, C.L., Gunter, M.E., and Knowles, C.R. (1992) Sunstone Labradorite from the Ponderosa Mine, Oregon. Gems and Geology, 27, 220-233.
567 568 569	Kabler, M.N. (1964) Low temperature recombination luminescence in alkali halide crystals. Physical Review, 136, A1296–A1302.
570 571 572 573	Krbetschek, M.R., Götze, J., Irmer, G., Rieser, U., and Trautman, T. (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca – composition. Mineralogy and Petrology, 76, 167-177.
574 575 576 577 578	Latkoczy, C., Ducking, M., Becker, S., Gunther, D., Hoogewerff, J., Almirall, J., Buscaglia, J., Dobney, A., Koons, R., Montero, S., van der Peijl, G.J.Q., Stoecklein, W., Trejos, T., Watling, J., and Zdanowicz, V. (2005) Development and evaluation of a standard method for the quantitative determination of elements in float glass samples by LA-ICP-MS. Journal of Forensic Sciences, 50, 1327-1341.
579 580 581 582 583	Maxwell, J.A., Teesdale, W.J., Campbell, J.L. (1995) The Guelph PIXE software package II. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 95, 407–421.

584 585 586	Mora, C.I. and Ramseyer, K. (1992) Cathodoluminescence of coexisting plagioclases, Boehls Butte anorthosite: CL activators and fluid flow paths. American Mineralogist, 77, 1258– 1265.
587	
588 589 590	Morgan, R.M. and Bull, P.A. (2007) The philosophy, nature and practice of forensic sediment analysis. Progress in Physical Geography, 31(1), 43-58.
	Munisso, M.C., Zhu, W., Leto, A., and Pezzotti, G. (2007) Stress dependence of sapphire
591 592 593	cathodoluminescence from optically active oxygen defects as a function of crystallographic orientation. Journal of Physical Chemistry A, 111, 3526-3533.
594	
595	Nagli, L.E. and Dyachenko, S.V. (1988) Influence of a v_e^- vacancy on luminescence of Pb ⁺
596 597	centres in alkali halides. Physica Status Solidi (C), 146, 295-301.
598	Palenik, C.S. and Buscaglia, J. (2007) Applications of cathodoluminescence in forensic science.
599	In R.D. Blackledge, Ed., Forensic Analysis on the Cutting Edge: New Methods for Trace
600	Evidence Analysis, p. 141-172. John Wiley & Sons Inc., New York.
601	Evidence murysis, p. 141 172. John whey & John he., New Tork.
602	Parsons, I., Steele, D.A., Lee, M.R., and Magee, C.W. (2008) Titanium as a
602 603	cathodoluminescence activator in alkali feldspars. American Mineralogist, 93, 875-879.
604	eathouorummescence activator in arkan reluspars. American inneratogist, 95, 675-679.
60 4	Petraco, N., Kubic, T.A., and Petraco, N.D.K. (2008) Case studies in forensic soil examinations.
606	Forensic Science International, 178, e23-e27.
607	Torensie Science International, 176, e23-e27.
608	Pye, K. and Blott, S.J. (2009) Development of a searchable major trace element database for use
609	in forensic soil comparisons. Science and Justice, 49, 170-181.
610	In Torensie son comparisons. Science and Justice, 49, 170-101.
611	Pye, K. and Croft, D.J. (2004) Forensic geoscience: Introduction and overview. In K. Pye and
612	D.J. Croft, Eds. Forensic Geoscience: Principles, Techniques and Applications. Geological
613	Society, London, Special Publications, 232, 1-5.
614	Society, London, Special Fuoreations, 252, 1-5.
615	Ralchenko, Y., Kramida, A.E., Reader, J., and NIST ASD Team (2011). NIST Atomic Spectra
616	Database (ver. 4.1.0), [Online]. Available: http://physics.nist.gov/asd [2012, February 15].
617	National Institute of Standards and Technology, Gaithersburg, MD.
618	National Institute of Standards and Teenhorogy, Cathersourg, MDT
619	Reader, J., Corliss, C.H., Wiese, W.L., and Martin, G.A. (1980). Wavelengths and transition
620	probabilities for atoms and atomic ions, part I. Wavelengths, part II. Transition
621	Probabilities, National Standard Reference Data Series, NSRDS-NBS 68, 415p. U.S.
622	Government Printing Office, Washington, D.C.
623	Covernment i mining office, washington, 2101
624	Rendell, H.M. and Clarke, M.L. (1997) Thermoluminescence, radioluminescence, and
625	cathodoluminescence spectra of alkali feldspars. Radiation Measurements, 27, 263-272.
626	······································
627	Ribbe, P.H. (1975) The chemistry, structure, and nomenclature of feldspars. In P. H. Ribbe,
628	Eds., Short Course Notes, Feldspar Mineralogy, vol. 2, p. 1-72. Mineralogical Society of
629	America.

630 631 632 633 634	Ruffell, A. and McKinley, J. (2005) Forensic geoscience: Applications of geology, geomorphology and geophysics to criminal investigations. Earth-Science Reviews, 69, 235-247.
635	Telfer, D.J. and Walker, G. (1978) Ligand field bands of Mn ²⁺ and Fe ³⁺ luminescence centres
636	and their site occupancy in plagioclase feldspars. Modern Geology, 6, 199-210.
637	
638	Thomas, J.K. (1987) Characterization of surfaces by excited states. The Journal of Physical
639	Chemistry, 91, 267-276.
640	
641	Walderhaug, O. and Rykkje J. (2000) Some examples of the effect of crystallographic orientation
642	on the cathodoluminescence colors of quartz. Journal of Sedimentary Research, 70, 545-
643	548.
644	

645 FIGURE CAPTIONS

646

Figure 1. Ternary plot of feldspar major elemental composition based on μ XRF data for percent orthoclase (Or) for KAlSi₃O₈ component (where %Or = K/K+Ca+Na), albite (Ab) for NaAlSi₃O₈ component (where %Ab = Na/K+Ca+Na), and anorthite (An) for CaAl₂Si₂O₈ component (where %An = Ca/K+Ca+Na), by mole fraction. Calculated error on these compositions can be found in Appendix 1.

652

Figure 2. Chemical composition (computed as mol %Ca of Ca+Na+K) results for plagioclase

654 feldspar samples from the Ward's Science Reference Series, as determined by three analytical

655 techniques used in this study.

656

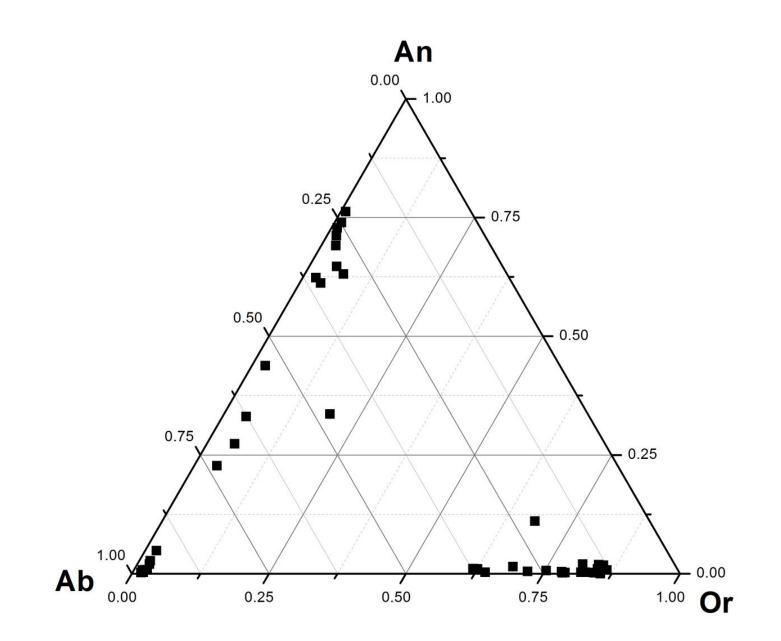
657 Figure 3. Representative CL feldspar spectra. The luminescence intensity is measured in 658 arbitrary units (A.U.). The individual curves for each mineral type represent spectra collected 659 from six replicate mineral grains from the same source. (a) Microcline from Barringer Hill, 660 Texas (F2, Appendix 1); (b) Oligoclase from Bakersville, North Carolina (F28, Appendix 1); and 661 (c) Labradorite from Lake County, Oregon (F31, Appendix 1). The spectra were smoothed for 662 Statistical error bars are not shown on the individual spectra, because the error clarity. 663 associated with channel-to-channel fluctuations in the individual data points are smaller than 664 ~3% and do not appear distinctly when plotted.

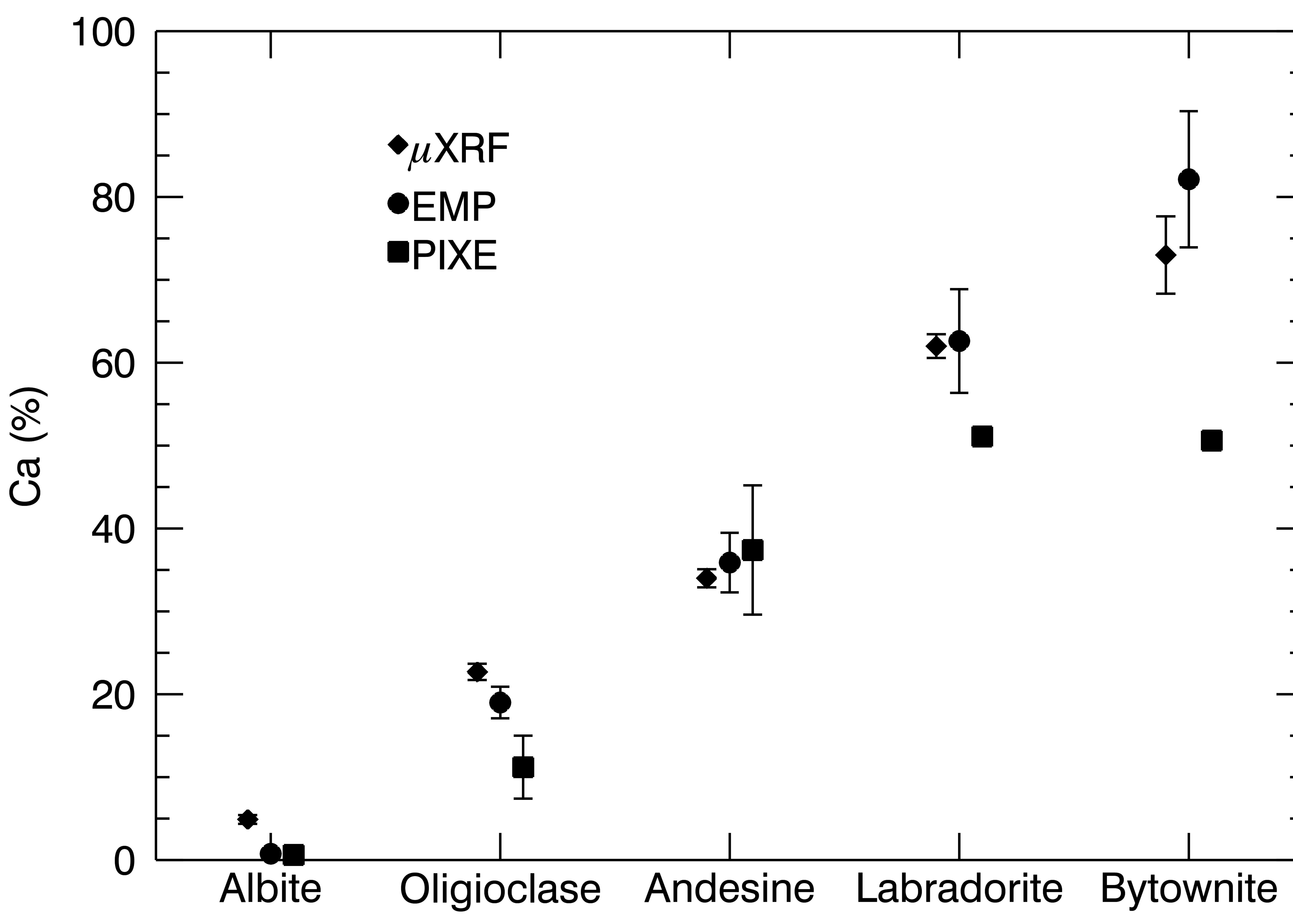
Figure 4. Examples of CL spectral variability among feldspars as a function of geographical provenance. The luminescence intensity is measured in arbitrary units (A.U.). While the mineral composition does not change for these alkali (a) or Ca-rich plagioclase (greater than 50%

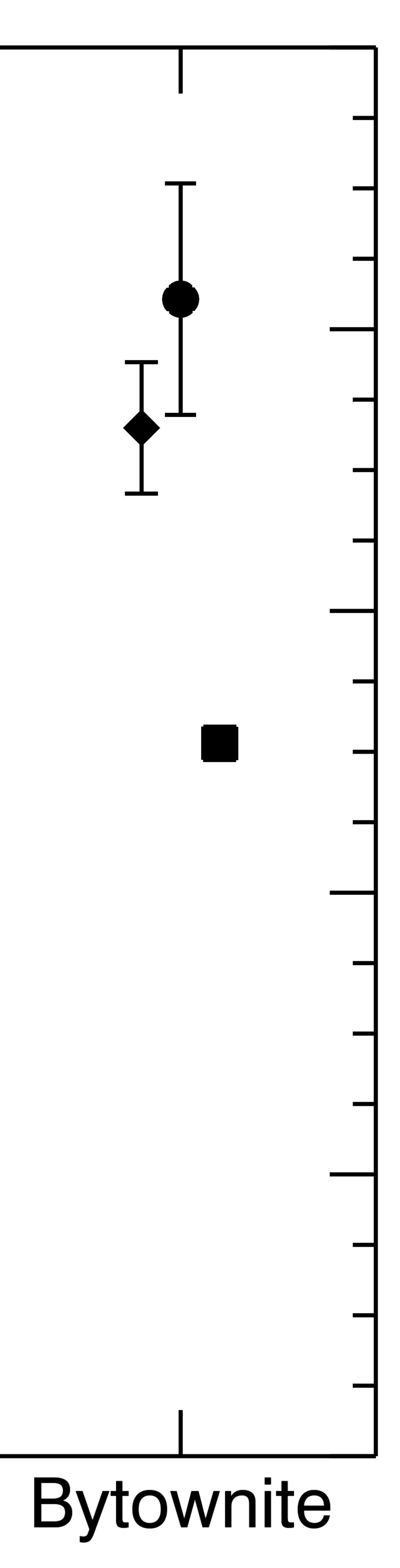
668	Anorthite) feldspars (b), subtle trace elemental substitutions within each sample leads to obvious
669	CL peak shifts between various feldspar samples from different geographic origins. All spectra
670	have been smoothed for clarity. Statistical error bars are not shown on the individual spectra,
671	because the error associated with channel-to-channel fluctuations in the individual data points are
672	smaller than ~5% and do not appear distinctly when plotted.
673	Note: Based on the variability in chemical composition within a sample, samples from each
674	mineral location are given a general feldspar classification.
675	
676	Figure 5. Observed d-spacing by XRD for the (002) plane compared to CL peak centroid
677	wavelengths measured for the Fe ³⁺ peak in a variety of feldspar samples. Only samples with Fe
678	peaks comprising more than 10% of the total CL spectrum were included in this analysis. Error
679	bars reflect averages from greater than three manual fittings of the spectra to account for the
680	variations that can occur when manually deconvolving spectra.
681	
682	Figure 6. Representative IBIL and CL spectra of a well-studied zircon. The luminescence
683	intensity is measured in arbitrary units (A.U.). Regardless of luminescence technique (CL or
684	IBIL), REE peak centroids are consistent within analytical error of ± 4 nm between the two
685	measurement techniques.
686	
687	Figure 7. Representative IBIL and CL spectra of the F31 feldspar sample. The luminescence
688	intensity is measured in arbitrary units (A.U.). When observing a representative feldspar sample
689	from this study (F31, Appendix 1), there were excitation technique-dependent inconsistencies in

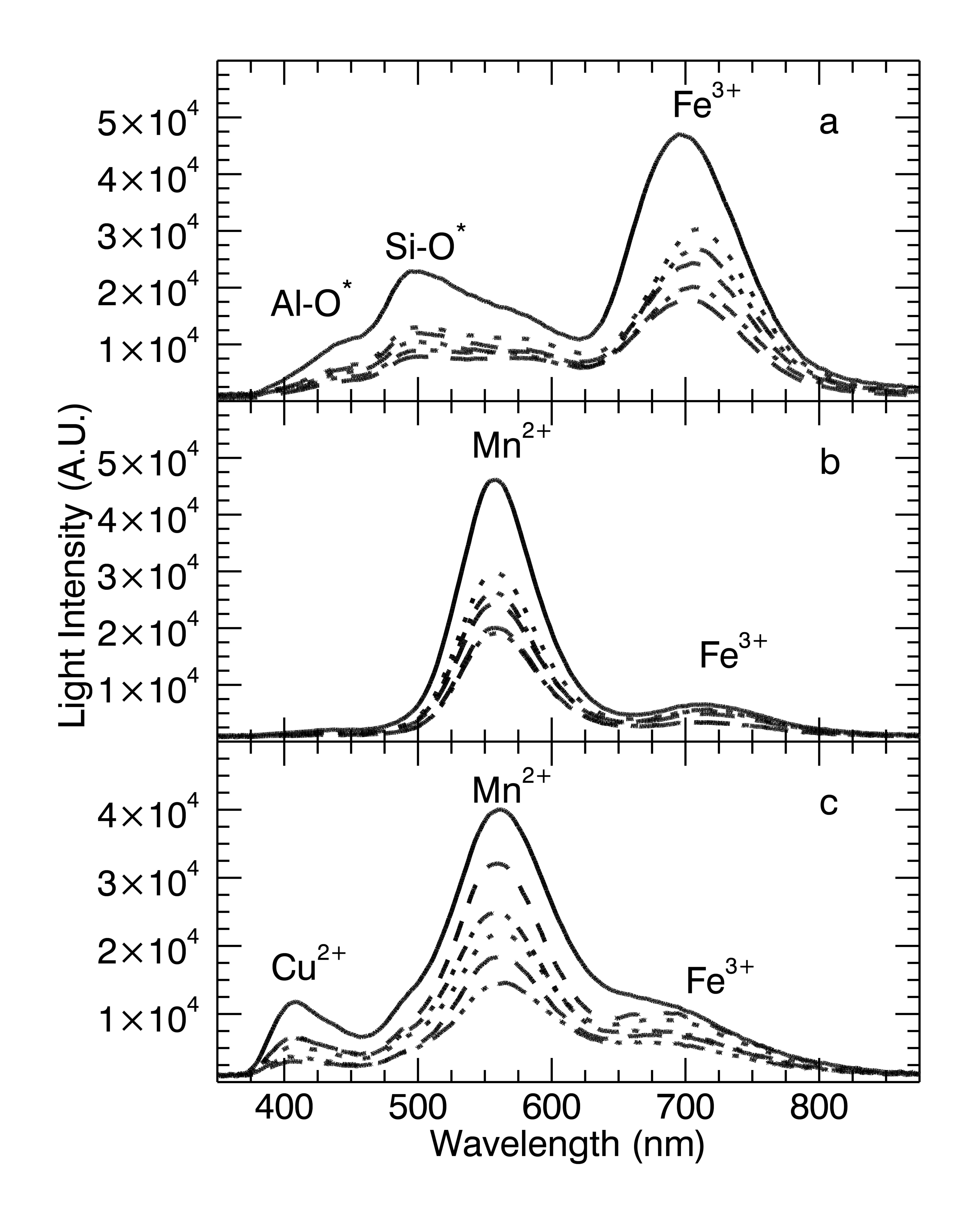
- 690 these features: blue (~400 nm Cu^{2+}) and red (~670-750 nm Fe^{3+}) peak positions reflected a
 - 28

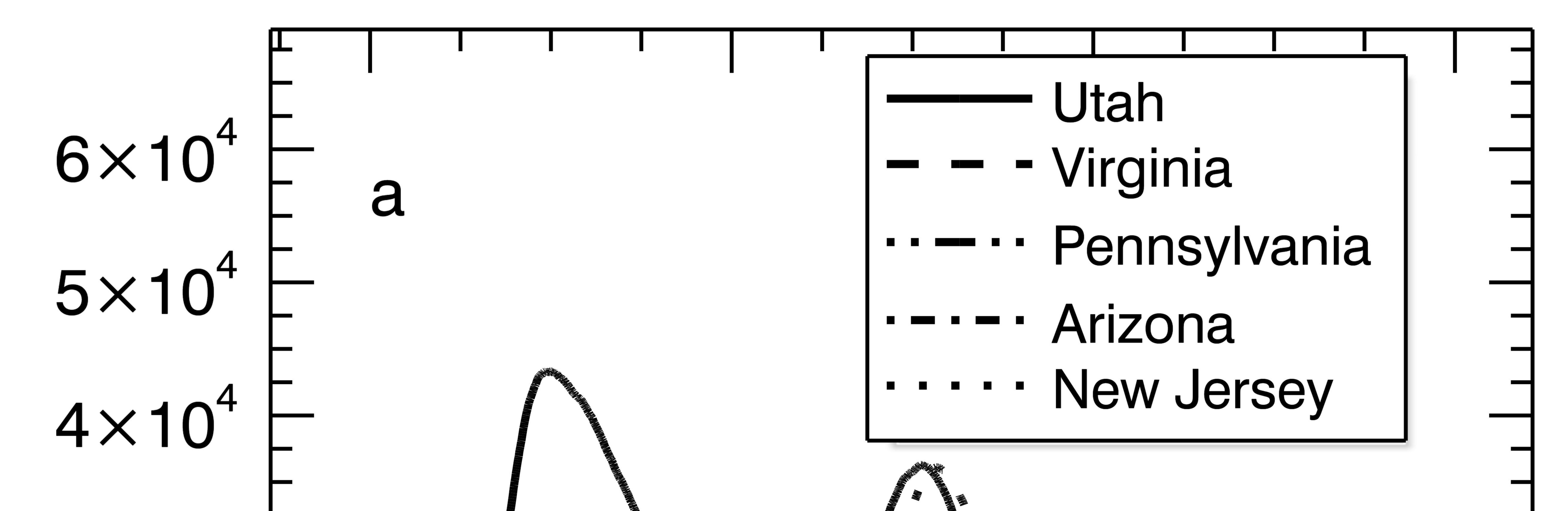
691 hypsochromic and a bathochromic shift, respectively, in the IBIL spectra when compared with

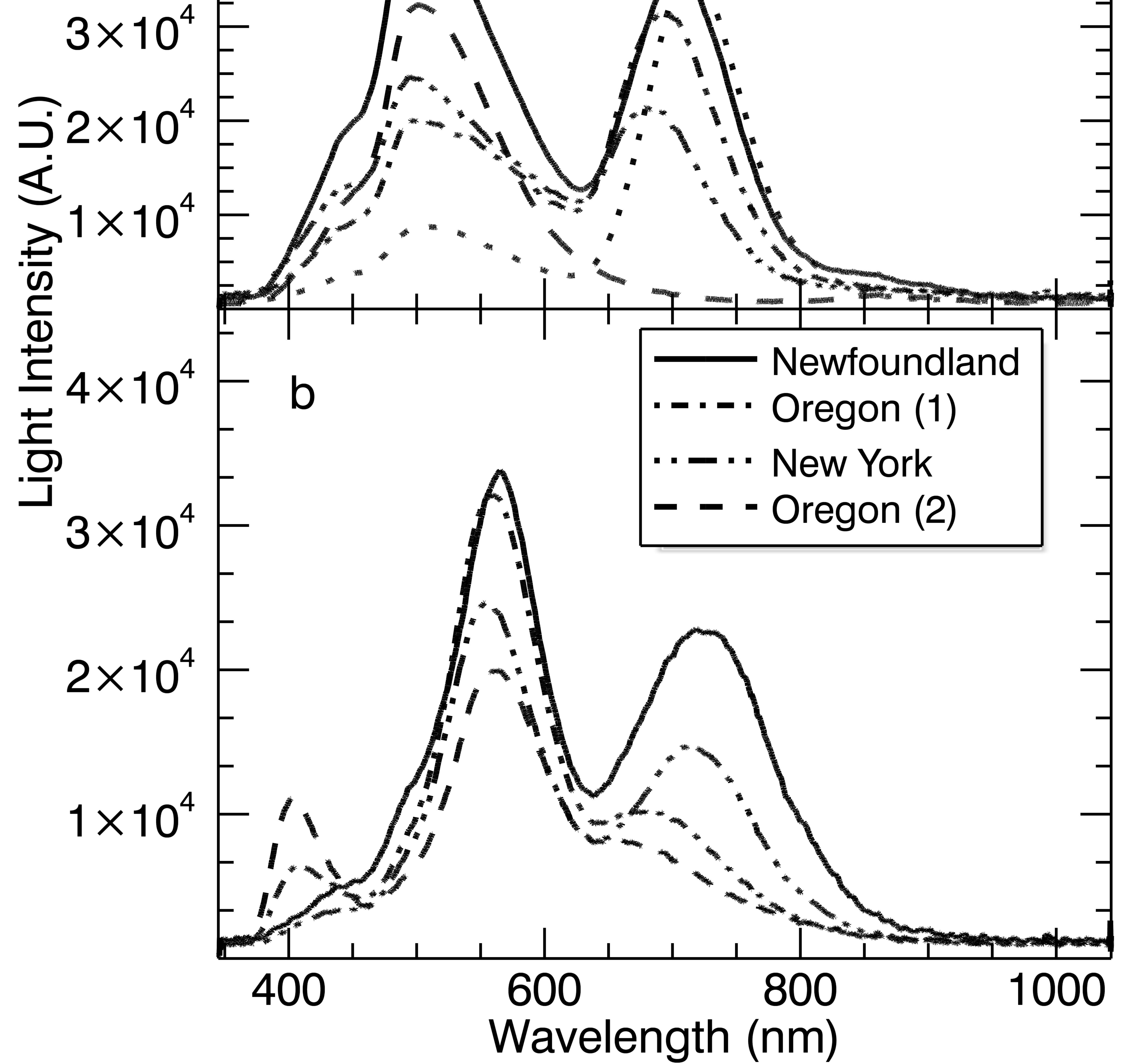

- the CL spectra.
- 693

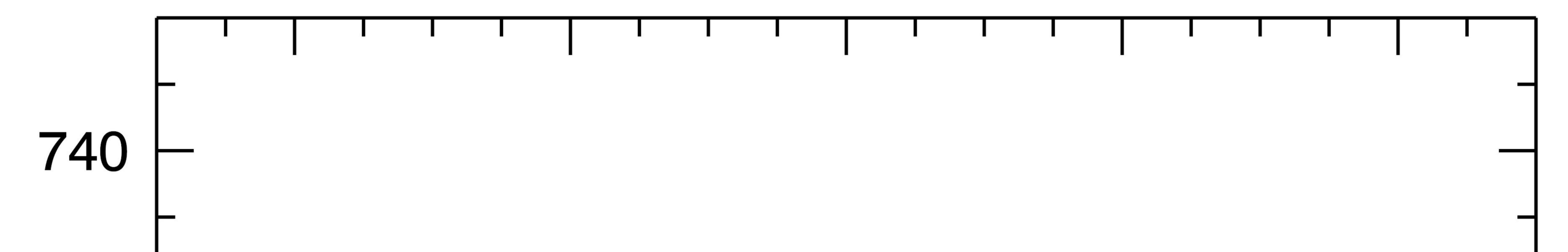

694 **TABLE CAPTIONS**

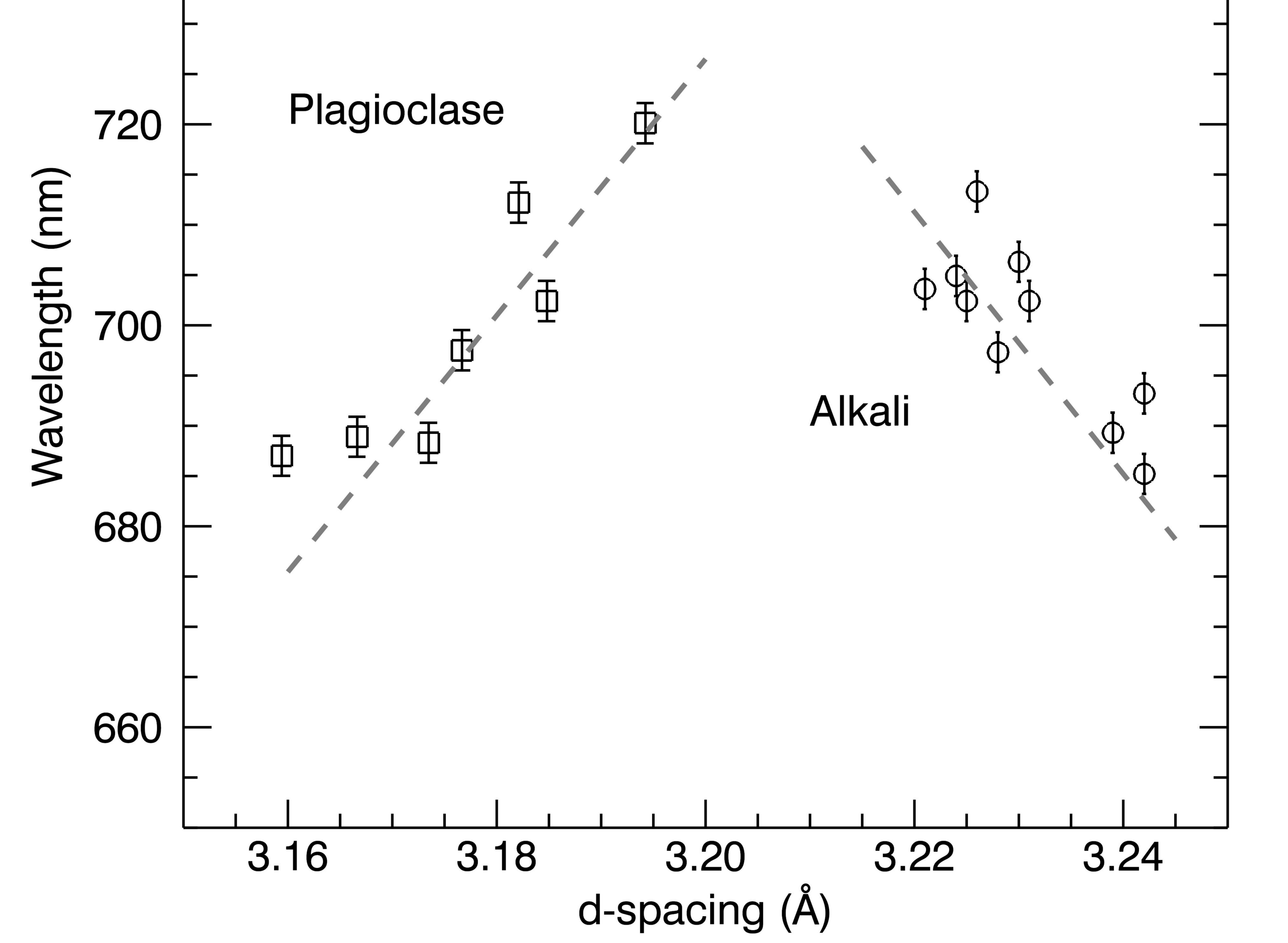

- 695 **Table 1**. Numerical peak centroid positions from the CL spectra included in Fig. 4, with
- 696 corresponding full-width at half-maximum (FWHM) and standard deviation (error) for six
- 697 replicate measurements. Peaks not detected in a sample are indicated by (-) for each value.
- 698 Based on the variability in chemical composition within a sample, samples from each mineral
- 699 location are given a general feldspar classification. Samples are identified fully in Appendix 1 by
- 700 the sample number in parentheses.

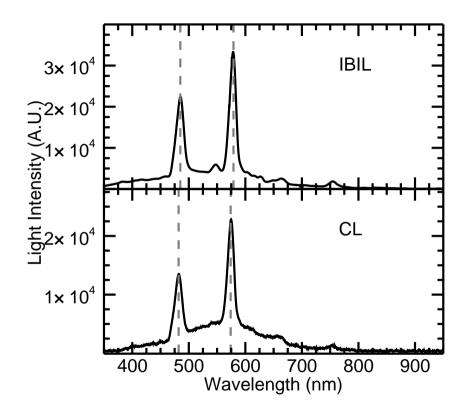

701

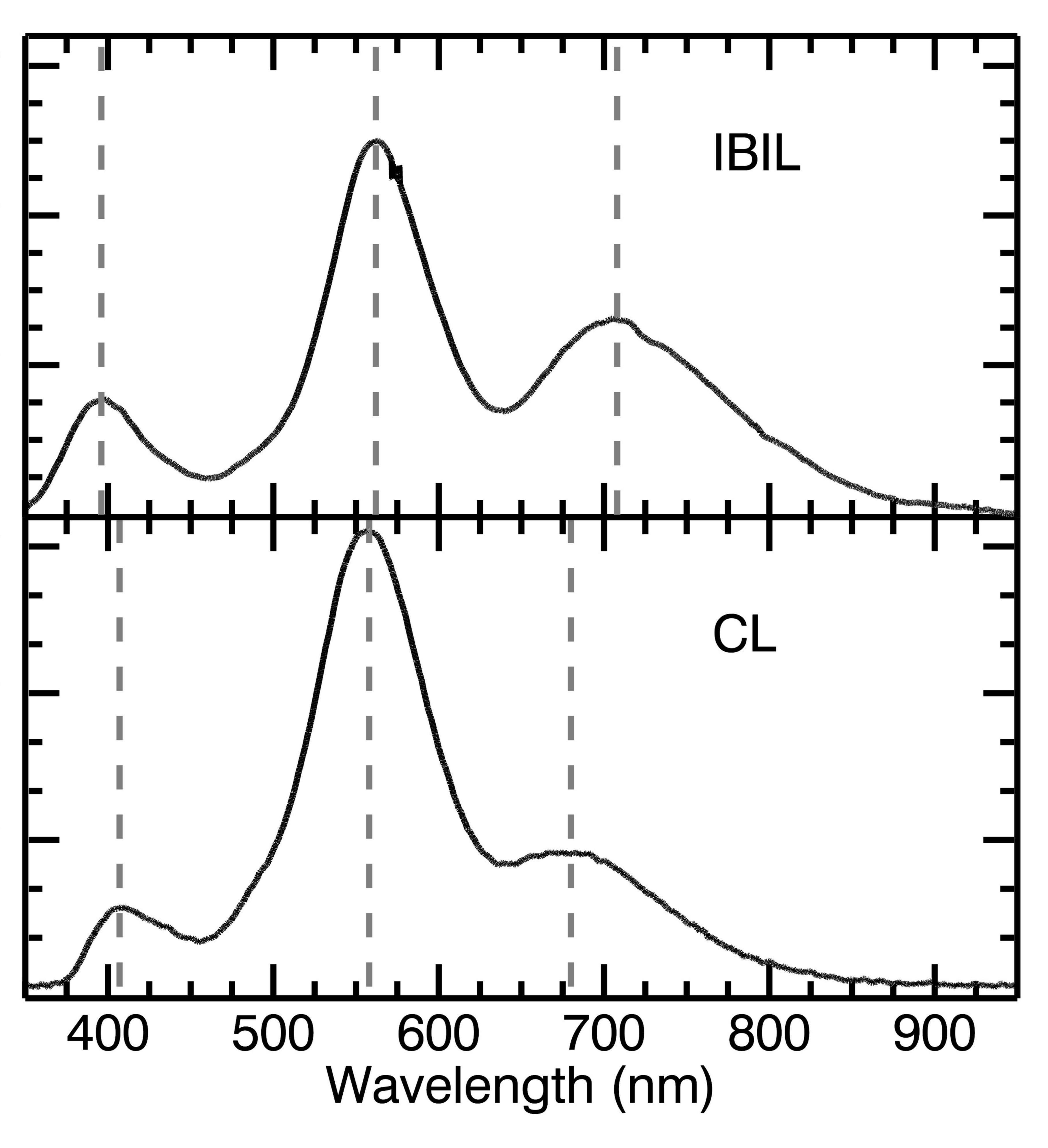

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld











 3×10^4 2×10^4 51×10^4 **型3×10** $P_{2} \times 10^{4}$ 1×10^4

Mineral Loca	tion	Fe ³⁺ Peak Centroids (nm)	FWHM (nm)
Alkali			
Utah	(F4)	697(6)	45
Virginia	(F1)	-	-
Pennsylvania	(F11)	707(8)	78
Arizona	(F9)	685(1)	79
New Jersey	(F13)	713(7)	78
Plagioclase (Ca-rich)			
Newfoundland	d (F30)	720(4)	109
Oregon (1)	(F31)	688(4)	106
Oregon (2)	(F34)	678(4)	105
New York	(F36)	712(2)	99