1	REVISION #2.
2	A Rock Fragment Related to the Magnesian Suite in Lunar
3	Meteorite Allan Hills (ALHA) A81005
4	Allan H. Treiman ¹ , and Juliane Gross ² .
5	¹ Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston TX 77058-1113.
6	treiman@lpi.usra.edu
7	² Department of Earth and Planetary Sciences, American Museum of Natural History, Central
8	Park West at 79 th Street, New York NY 10024.
9	
10	ABSTRACT
11	Among the lunar samples that were returned by the Apollo missions are many cumulate
12	plutonic rocks with high Mg# (molar Mg/(Mg+Fe) in %) and abundances of KREEP elements
13	(Potassium, Rare Earth Elements, Phosphorus, U, Th, etc.) that imply KREEP-rich parental
14	magmas. These rocks, collectively called the magnesian suite, are nearly absent from sampling
15	sites distant from Imbrium basin ejecta, including those of lunar highlands meteorites. This
16	absence has significant implications for the early differentiation of the Moon and its distribution
17	of heat-producing elements (K, Th, U). Here, we analyze a unique fragment of basalt with the
18	mineralogy and mineral chemistry of a magnesian suite rock, in the lunar highlands meteorite
19	Allan Hills (ALH) A81005. In thin section, the fragment is 700 x 300 μ m, and has a sub-ophitic
20	texture with olivine phenocrysts, euhedral plagioclase grains (An97-90), and interstitial
21	pyroxenes. Its minerals are chemically equilibrated. Olivine has Fe/Mn \sim 70 (consistent with a

22	lunar origin), and Mg# \sim 80, which is consistent with rocks of the magnesian suite and far higher
23	than in mare basalts. It has a rich suite of minor minerals: fluorapatite, ilmenite, Zr-armalcolite,
24	chromite, troilite, silica, & Fe metal (Ni=3.8%, Co=0.17%). The metal is comparable to that in
25	chondrite meteorites, which suggests that the fragment is from an impact melt. The fragment
26	itself is not a piece of magnesian suite rock (which are plutonic), but its mineralogy and mineral
27	chemistry suggest that its protolith (which was melted by impact) was related to the magnesian
28	suite. However, the fragment's mineral chemistry and minor minerals are not identical to those
29	of known magnesian suite rocks, suggesting that the suite may be more varied than apparent in
30	the Apollo samples. Although ALHA81005 is from the lunar highlands (and likely from the
31	farside), Clast U need not have formed in the highlands. It could have formed in an impact melt
32	pool on the nearside and been transported by meteoroid impact. Lunar highlands meteorites
33	should be searched for rock fragments related to the magnesian-suite rocks, but the fragments are
34	rare and may have mineral compositions similar to some meteoritic (impactor) materials.
35	
36	Key words: ALHA 81005, Moon, lunar, petrology, 'magnesian suite,' armalcolite, 'impact melt,'

- 37 'lunar meteorite.'
- 38

39 40

41 **INTRODUCTION** 42 Among the samples returned from the Apollo landing sites are many fragments of 43 magnesian plutonic rocks: norites, gabbros, troctolites, and dunites. These rocks are distinct from mare basalts (and their kin) in being far more magnesian [with higher Mg# = molar Mg/(Mg+Fe) 44 45 in %], and distinct from lunar ferroan anorthosites in being more magnesian and containing 46 much less plagioclase. These plutonic rocks are considered to be a broadly-related group, the 47 'magnesian suite,' derived from Mg-rich basaltic magmas that were enriched in igneous 48 incompatible elements, the KREEP component (Fig. 1; James and Flohr 1983; Norman and 49 Ryder 1980; Shearer and Papike 2005; Elardo et al. 2011). In the canonical view of lunar 50 petrology, magnesian suite magmas post-date formation of the lunar crust from the magma 51 ocean, solidification of the magma ocean with formation of the KREEP component as its last 52 fractionate, and gravitational overturn of the lunar mantle (Snyder et al. 1995; Shearer and 53 Papike 1999; McCallum and Schwarz 2001; Shearer et al. 2006; Wieczorec et al. 2006; Elkins-54 Tanton et al. 2011). The chemistry of the magnesian suite suggests that its sources formed as 55 mixtures of KREEP and early magnesian cumulates from the magma ocean, mixed during the 56 overturn of the Moon's mantle, and perhaps brought to partial melting by heat generated in the 57 overturn. Magnesian suite magmas intruded the anorthosite crust as layered basic intrusions, and 58 our samples of magnesian suite rock are fragments excavated (by impact) from those intrusions. 59 This model does present some problems of chronology and geochemistry (Elkins-Tanton et al. 60 2011; Gross et al. 2014), but suffices here as a broad geological background. 61 Rocks of the Stillwater complex, a large layered basaltic intrusion (McCallum 1996), 62 have played a significant role in interpretation of lunar magnesian suite samples. Recognition

3

that the lunar crust was anorthositic (Wood et al. 1970) brought attention to terrestrial analogs. 63 64 The Stillwater complex was prominent among the analogs because it includes thick layers of 65 massive anorthosite, was accessible to geologists in North America, and was being intensely 66 studied for its economic potential. The close similarities of mineral composition trends in the 67 Stillwater to those in lunar highland samples (Raedeke and McCallum 1980), suggested that the 68 Moon could be viewed as a series of overlapping layered basic intrusions. Although that model is 69 not in the canonical picture of the Moon, the similarity remains and informs our understanding of 70 lunar crustal processes. 71 In the years since the First Conference on the Lunar Highlands, in 1980, lunar meteorites 72 have greatly expanded our understanding of the lunar surface. Approximately 75 distinct lunar 73 meteorites are now known, nearly all of which are regolith breccias full of rock fragments 74 (Korotev 2014). The lunar meteorites appear to represent a random sampling of sites across the 75 whole lunar surface, mare and feldspathic highlands, with most hailing from regions outside 76 those sampled by Apollo and Luna missions (Korotev 2005). Feldspathic meteorites from areas 77 near the Apollo landing sites are recognized by their similarity to returned samples: abundant 78 clasts of ferroan anorthosite, some clasts of magnesian-suite rock, and KREEPy bulk 79 compositions. Such meteorites include Y983885 (Arai et al. 2005), NWA5406 (Korotev et al. 80 2009), and MIL090034 (Liu et al. 2011). 81 The majority of feldspathic meteorites are distinct from returned samples in having 82 abundant clasts of magnesian granulites and anorthosites, rare clasts of ferroan anorthosite, and 83 nearly no clasts of magnesian-suite rock (Gross et al. 2014). Bulk compositions of these 84 feldspathic meteorites are magnesian (Mg# of \sim 75; see Fig. 1), and contain very low abundances 85 of KREEP elements (Korotev et al. 2003, 2006, 2012); these characteristics are consistent with

4

86	orbital chemical data for the lunar highlands (Jolliff et al. 2000), and are most consistent with
87	origins in the lunar farside highlands (Pieters et al. 1983; Kallemeyn and Warren 1983; Korotev
88	et al. 1983; Isaacson et al. 2013). The granulites and anorthosites in farside feldspathic
89	meteorites have mineral compositions (An in plagioclase, Mg# in olivine and pyroxenes) that are
90	consistent the magnesian suite (Fig. 1), but their minor- and trace-element chemistries suggest a
91	different origin (Korotev et al. 2003; Treiman et al. 2010).
92	Clasts of magnesian suite rock are nearly absent from these feldspathic lunar meteorites
93	(e.g., Jolliff et al. 1991; Daubar et al. 2002; Korotev et al. 2003; Cahill et al. 2004; Korotev
94	2005; Sokol et al. 2008; Snape et al. 2011; Gross et al. 2014). Only a few clasts or groups of
95	clasts with mineralogy and mineral chemistry that could be ascribed to the magnesian suite have
96	been reported, and none is documented in detail. [1] In meteorite ALHA81005 (thin section ,9),
97	Treiman and Drake (1983) ascribed their clast U to the magnesian suite based on the
98	compositions of plagioclase and mafic minerals, and the presence of Zr-bearing armalcolite
99	(Treiman and Gross 2013). [2] In the Calcalong Creek meteorite, Marvin and Holmberg (1992)
100	reported a clast of partially remelted spinel troctolite with olivine of Fo ₉₀₋₉₂ . [3] In the Dhofar
101	305 and 307 meteorites (paired with Dhofar 489, 309, and others), Demidova et al. (2003)
102	reported clasts with An of 88-92 and Mg# of ~75, which are consistent with a magnesian suite
103	parentage. No additional data are available. [4] In Dhofar 025, Cahill et al. (2004) reported that a
104	rock fragment (# 25.8) contains plagioclase of $\sim An_{91}$ and mafics (olivine, low-Ca pyroxene) with
105	Mg $\#$ of ~89. These mineral compositions place the clast near the magnesian suite field, Figure 1.
106	[5] In meteorite Y86032, Yamaguchi et al. (2010) reported fragments of anorthosite with
107	plagioclase of An91-94 and mafic silicates (olivine, augite, low-Ca pyroxene) with Mg# of 78-
108	85, which are consistent with mineral compositions of the magnesian suite, Figure 1. However,

5

the breccia that hosts these fragments is geochemically distinct from the magnesian suite (as
known from Apollo samples) and more characteristic of ferroan anorthosite in being anorthositic,
having low abundances of incompatible elements, and having a high Ti/Sm ratio (Yamaguchi et
al. 2010).

113 The rarity of magnesian suite lithologies in feldspathic lunar meteorites presents a 114 geological conundrum. Magnesian suite rocks in the Apollo collection all formed from magmas 115 with significant proportions of the KREEP component: "The KREEP signature, though, seems 116 invariably tied to [magnesian]-suite petrogenesis, as there are no [magnesian]-suite rocks in the 117 sample collection without the KREEP signature that is prevalent in many lithologies from the 118 [Procellarum KREEP terrane]" (Elardo et al. 2011). This association of Apollo magnesian suite 119 rocks with KREEP has led to hypotheses that KREEP is essential for their parent magmas, 120 perhaps through its high abundances of the heat-producing elements K, Th, and U (Shearer and 121 Papike 2005). If this argument holds, the lunar highlands far from the Procellarum KREEP 122 Terrane should be as devoid of magnesian suite rocks as it is of KREEP component (Jolliff et al. 123 2000; Gillis et al. 2004; Kobayashi et al. 2012), except perhaps within the South Pole - Aitken 124 basin. On the other hand, many rock fragments (granulites and other impactities) in meteorites 125 from the highlands have mineral compositions that are consistent with those of magnesian suite 126 rocks (Fig. 1), but lack a detectable signature from KREEP (e.g., Korotev et al. 2003; Takeda et 127 al. 2006; Treiman et al. 2010). Could these rock fragments represent rocks of the magnesian 128 suite, extensively modified by meteorite impact? Or could they represent mixing with other, as 129 yet uncharacterized, lithologies (Treiman et al. 2010), possibly including magnesian plutonic 130 rocks derived from magmas with little KREEP component (Korotev et al. 2003)? Quoting 131 Elardo et al. (2011): "However, the discovery of low-KREEP Mg-suite rocks from the far side,

132 perhaps from South Pole Aitken Basin sample return, would be an enormous aid in placing 133 constraints on the nature of Mg-suite magmatism, its connection to KREEP, and post-LMO crust 134 building processes, as well as the differentiation and composition of the Moon." 135 This study documents a single rock fragment, clast U in ALHA81005, that has been 136 ascribed to the magnesian suite (Treiman and Drake 1983; Treiman and Gross 2013). We will 137 test its affinity to the magnesian suite, determine if it is different from magnesian suite rocks of 138 the Apollo collection, and establish criteria for recognition of magnesian suite lithologies and 139 fragments in other lunar meteorites.

140 SAMPLE AND METHODS

141 Clast U is exposed in thin section ALHA81005,9 (Treiman and Drake 1983), which was 142 made available here by the Meteorite Working Group, and the Curator of Antarctic Meteorites, 143 NASA Johnson Space Center. ALHA81005 was the first meteorite to be recognized as coming 144 from the Earth's Moon (Marvin 1983); it is a regolith breccia composed of rock fragments 145 (mostly rich in plagioclase) in a glassy agglutinitic matrix (Fig. 2a; Kurat and Brandstätter 1983; 146 Marvin 1983; Warren et al. 1983). ALHA81005 contains scattered fragments of mare basalts, 147 mostly Very Low Titanium (Treiman and Drake 1983; Robinson et al. 2012), and rare fragments 148 of unusual lithologies (Goodrich et al. 1984, 1985; Gross and Treiman 2011). Chemically, 149 ALHA81005 is rich in plagiophile elements (Al, Ca, Eu), and has a small proportion of a 150 KREEP component (Boynton and Hill 1983; Kallemeyn and Warren 1983; Korotev et al. 1983). 151 Clast U is a small fragment, ~300 µm by ~600 µm and roughly elliptical in outline (Fig. 152 2, 3). Its surroundings are typical for the meteorite: other rock and mineral fragments, cemented 153 together by agglutinitic glass. Clast U is too small, and with mineral grains too large, to permit 154 reconstruction of a precise bulk composition (and interpretation thereof; Warren 2012), but its

155 mineralogy and mineral compositions are indicative of its origin.

156	Clast U was investigated via optical microscopy (Fig. 2), backscattered electron (BSE)
157	imagery (Fig. 3), X-ray element maps, and chemical analyses of its minerals. Quantitative
158	mineral analyses were obtained with the Cameca SX-100 electron microprobes of the ARES
159	Directorate, NASA Johnson Space Center, and the Department of Earth and Planetary Sciences,
160	American Museum of Natural History (AMNH). For both machines, analyses were obtained at
161	electron accelerating potentials of 15kV. Analyses of mafic silicate minerals and oxides were
162	obtained with a focused beam, 20 nA beam current, and count times on peak and backgrounds of
163	20-60 seconds (Tables 1, 2). Analyses of plagioclase feldspar were obtained with a 10 μm
164	defocussed beam at a current of 10 nA (Table 1). Standards included well-characterized natural
165	and synthetic materials. In each run, secondary standards were analyzed as unknowns to confirm
166	analytical accuracy. Qualitative chemical analyses were obtained by energy dispersive X-ray
167	analysis on these microprobes.
168	Quantitative analyses for Ni and Co and other minor elements in olivine were obtained
169	independently at the AMNH microprobe, at 15 kV accelerating potential, with a focused electron
170	beam, and beam current of 100 nA. Count times on peak (and total background) as follows: Ni
171	and Co, 240 sec; Al and Ca, 180 sec; Ti and Cr, 120 sec; and Mn, 90 sec. Standards were as
172	above for the AMNH, Table 3. The lower background position for the CoK α X-rays overlaps
173	slightly with the FeK β X-ray peak; the Cameca analysis software corrected for this overlap. We
174	collected 17 individual analyses across three separate olivine grains. Under these conditions,
175	each individual analysis has 3σ detection limits for Ni and Co of ~40 ppm. Individual analyses
176	for Co range from <0 to 25 ppm, and so are all below detection. Individual analyses for Ni range
177	from 10 to 90 ppm, and the uncertainty on each from counting statistics is ~6 ppm (2 σ). The

8

178 population of 17 Ni analyses (Table 3) has a median value of 53 ppm and a mean of 51 ± 33 ppm 179 (2 σ).

180	This mean value represents the sum of all 17 analyses (i.e., a total duration on peak of
181	4080 seconds), and a total of 9867 counts of 'peak minus background'. This summed analysis
182	would have a 3σ detection limit (counting statistics) of ~10 ppm Ni. We accept the Ni abundance
183	from the sum of analyses (and its lower detection limit), because it seems reasonable that the 17
184	individual analyses represent a statistical distribution around a single value. First, it is likely that
185	Ni abundances in the olivines have been homogenized by diffusion. Diffusion coefficients for Ni
186	in olivine are nearly identical to those of Fe, Mg, and Mn (e.g., Petry et al. 2004; Qian et al.
187	2010; Chakraborty 2010), so that homogeneity in the latter three elements would suggest
188	homogeneity in Ni. Abundances of MgO, FeO, and MnO are essentially constant (Table 3) at
189	43.2 \pm 1.3%, 16.0 \pm 0.7% and 0.22 \pm 0.02% (2 σ). Similarly, the Mg# of the olivine, molar
190	Mg/(Mg+Fe), is also constant at 83±1% (Table 3). Thus, it seems likely that Ni has been
191	homogenized by diffusion, as were Mg, Fe, and Mn. Second, the 17 individual Ni abundances
192	are consistent with a random distribution about a single value, because the mean and median of
193	the population are essentially identical (see above), and because the distribution of Ni
194	abundances approximates a Gaussian curve. The standard error on the average Ni analysis, ± 33
195	ppm (2 σ), is larger than the nominal analytical accuracy from counting statistics of ~0.2 ppm
196	(2σ) , which could imply that Ni is actually inhomogeneous in the olivine. However, all elements
197	have larger standard errors of the mean than their nominal accuracy from counting statistics; e.g.
198	0.02% vs $0.003%$ for MnO. Thus, the difference between the standard error on the population of
199	analyses and their nominal analytical accuracy is inherent to the EMP analyses, and does not
200	suggest that Ni is inhomogeneoustly distributed.

9

201 X-ray element maps (Fig. 4) were obtained in wavelength-dispersive mode, with 202 spectrometers tuned to the peaks of K α X-ray emissions for the selected elements (Mg, Si, Al, 203 Ti, Fe, Ca, S, P, Zr, Na, K). X-ray maps were also obtained using the JEOL 5700 FEG-SEM in 204 the ARES Directorate, NASA Johnson Space Center, from energy-dispersive spectra. 205 Mineral proportions were calculated from X-ray element maps (e.g., Fig. 4) using the multispectral image processing code Multispec[©] (Biehl and Landgrebe 2002; Lydon 2005; 206 207 Maloy and Treiman 2007). To obtain abundances of major minerals, it was only necessary to use 208 X-ray maps of Mg, Al, Ca, and Fe. The classification was supervised, with training areas 209 selected manually.

210 MINERALOGY & PETROGRAPHY

211 **Petrography**

212 Clast U is composed of plagioclase, pyroxene, olivine, iron-sulfides, and minor minerals 213 such as apatite, armalcolite, rutile, silica, and FeTi-oxides. Texturally, it is a subophitic basalt -214 anhedral pyroxene grains fill spaces among euhedral (or subhedral) crystals of plagioclase 215 feldspar (Figs. 3a, 4; Williams et al. 1954). Olivine crystals are anhedral to subhedral (right side 216 of Fig. 4a), contain rare inclusions of plagioclase, and are in contact with plagioclase and 217 pigeonite pyroxene. Olivine is not in contact with augite pyroxene. Conversely, the minor 218 minerals rich in incompatible elements (apatite, armalcolite, rutile, silica) are not associated with 219 olivine, but are concentrated along boundaries between plagioclase and augite (Fig. 4). These 220 textures are consistent with crystallization of a typical basaltic magma, with minerals appearing 221 in the sequence: olivine, plagioclase, pigeonite, augite, and then apatite etc. 222 These original igneous textures have been disturbed somewhat by shock. All mineral 223 grains are intensely cracked (Figs. 3b, c), and some of its plagioclase has been melted (or

annealed) after cracking (Fig. 3b); these effects may be attributed to shock from impacts (e.g.,

225 Ostertag 1983). However, there is no evidence that the rock texture has been disturbed by the

shock event, i.e. by faulting or brecciation.

227 Mineralogy

228 **Plagioclase** is the most abundant mineral in Clast U, constituting ~64% of its area in the 229 thin section. The plagioclase is intensely cracked in some areas and uncracked and dense in 230 others (Fig. 3b), which are interpreted to reflect intense shock, partial conversion to maskelynite, 231 and possibly shock-melting. Hence, it was difficult to obtain good chemical analyses by EMP, 232 both from lack of electrical continuity (cracking) and Na loss (amorphization; see Table 1). Most 233 of the plagioclase is An94-97, with a few analyses near An90 (Table 1). X-ray element maps 234 show that the most sodic plagioclase is adjacent to the pyroxene grains and in areas rich in minor 235 minerals. 236 Pyroxenes account for 25% of Clast U, 19% pigeonite and 6% augite (Figs. 3a, 4a; Table 237 2). The pyroxenes have consistent Mg# of 79-83 (Fig. 5), but vary widely in Ca content from 238 Wo_{02} to Wo_{40} ; one spot is more calcic at Wo_{47} . The zoning is spatially coherent, as seen best in 239 the pyroxene grain at the center of Figure 4a; that pyroxene grades, from the top of Figure 4a 240 downwards, from Ca-poor pigeonite (reddest = richest in Mg) to Ca-rich pigeonite (darker = 241 poorer in Mg) to augite (greenish brown). This zoning is consistent with a fractionation trend 242 from primitive Ca-poor pyroxene to evolved Ca-rich pyroxene. Superimposed on this zoning in 243 the largest pigeonite grain are spots and streaks with higher brightness in BSE, which appear to 244 be exsolutions of high-Ca pyroxene. The brighter spots and streaks become more abundant 245 toward the areas of pure augite. The pyroxene grain at the left edge of the clast in Fig. 3a shows 246 thin stripes brighter and darker in BSE imagery, which may be a lamellar exsolutions of augite

11

247 and pigeonite. The augite has nearly constant proportions of Ca, Mg, and Fe (Fig. 5). It alternates 248 with lower-Ca pyroxene in a zone at their contacts, which likely represents exsolution lamellae. 249 Cr abundances are identical in all pyroxenes (Fig. 6a). Abundances of Al are constant in each 250 pyroxene species, with augite containing more Al than pigeonite (Fig. 6b). Abundances of Ti 251 increase strongly with Ca content in both pigeonite and augite (Fig. 5c). 252 **Olivine** accounts for 9% of clast U (Fig. 3a), and is chemically homogeneous at Mg# =253 $80\pm 2\%$ (Table 1, 3; Fig. 4). The olivines have Fe/Mn \approx 71, consistent with a lunar origin (Karner 254 et al. 2003). The olivine is also homogeneous in minor element content, with CaO at 0.09 -255 0.41% and Ni at 55 \pm 33 ppm (2 σ). The olivine grains of clast U contain scattered inclusions of plagioclase and possibly chromite towards their edges, but no melt inclusions. 256 257 **Minor Minerals** are present in a diverse assemblage, including phosphate, sulfide, metal, 258 and several oxides. 259 Clast U contains ~0.03% apatite, Ca₅(PO₄)₃(F,Cl,OH), as six small grains embedded in 260 plagioclase and associated with other minor minerals between plagioclase and pyroxene (Fig. 261 4a). The apatite grains are too small, $< 4 \,\mu m$ across, for quantitative analysis (see Goldoff et al. 262 2012), but are likely to be chlorian fluorapatite based on the relative heights of the FK α and 263 $ClK\alpha$ peaks in energy dispersive X-ray spectra (Figure 7). The hydroxyl content of the apatite is 264 not known. This proportion of apatite implies a bulk P content of ~ 65 ppm, or 0.05 x CI. 265 Clast U contains five oxide minerals: armalcolite, ilmenite, rutile, chromite, and silica. 266 Armalcolite is present as a few small grains, $\sim 0.02\%$ of the clast, sited between plagioclase and 267 pyroxene crystals. The chemical analysis here (Table 4) differs from that of Treiman and Drake 268 (1983) only in its Fe/Ti ratio. This armalcolite contains significant proportions of Ca and Zr, and 269 thus is of 'Type 2' of Haggerty (1973). Its chemical analysis and formula do not charge-balance

12

if all of the Ti is tetravalent (Table 4), which suggests that ~13-23% of the Ti is trivalent (Stanin
and Taylor, 1980).

272 The clast contains several grains of ilmenite, in the same general areas as the armalcolite. 273 The compositions are \sim Ilm₈₀Geik₁₅ (Table 4), with small proportions of pyrophanite and other 274 components. Rutile was reported by Treiman and Drake (1983) and detected here on X-ray 275 maps, but not analyzed. Clast U includes a few small grains of chromite spinel (Table 4), which 276 contains ~65% (Mg,Fe)Cr₂O₄ and ~25% (Mg,Fe)Al₂O₄ components. Clast U also contains a 277 single grain of silica, identified by its energy dispersive spectrum, among other minor minerals 278 near one of the augite grains. We have no data on its crystallinity or which polymorph it might 279 be. 280 Metal and troilite are the dominant opaque phases in Clast U, and together constitute 281 $\sim 0.4\%$ of its area. The metal is principally Fe with 3.8% Ni and 0.17% Co, in agreement with the 282 analyses of Treiman and Drake (1983). The Ni/Co ratio is within uncertainty of the 'cosmic' 283 value of ~20 (Smith and Steele 1976; Papike et al. 1991; Wittmann and Korotev 2013). Troilite 284 is nearly pure FeS, with only 0.2% Ni & 0.02% Co. Analytical totals are from 99.7 to 100%, 285 indicating little or no solid solution toward pyrrhotite, as would be consistent with equilibration 286 with Fe-rich metal.

287

DISCUSSION

288 Basalt or Impact Melt?

Texturally, clast U is a sub-ophitic basaltic (see above; Fig. 3). To understand its genesis,
it is important to know if clast U could be an erupted basalt (reflecting mantle melting and
subsequent fractionation), or if it is a basaltic impact melt. Data available here (mineral

292 compositions, mineral proportions, and textures) are not definitive, but suggest that clast U is a

293 fragment of impact melt.

294 First, the composition of the metal in clast U is consistent with that of chondritic metal, 295 and thus that the clast is impact melt. The Fe metal has Ni and Co in a mass ratio of 22, 296 consistent with the canonical ratio in meteoritic metal (vis. Wittmann and Korotev 2013). 297 However, there is no unique correlation between metal composition and provenance of lunar 298 materials: "As a result of newer data, it is now clear that these earlier boundaries are no longer 299 valid for distinguishing between lunar and meteoroid metal and that there is extensive overlap 300 between the two. If the composition of metal lies within the "meteoritic" field ..., this does not 301 imply that it is of meteoroid origin; it may have an indigenous lunar origin. Nor does a 302 composition of Fe metal outside this area mean that it is lunar in origin" (Papike et al. 1991). The 303 metal in clast U is similar to those of erupted Apollo 12 basalts (Papike et al. 1991), but is not 304 similar to that in Apollo Mg-suite rocks (Ryder et al. 1980). 305 The mineral proportions in clast U are unusual for an erupted basalt, although the clast's 306 proportions may not be representative of a larger rock mass. The clast's ~65% plagioclase is 307 significantly greater than in mare basalts (Taylor et al. 1991) and in most terrestrial basalts, and 308 is similar to that in many recognized impact melts (Vaniman and Papike 1980) consistent with an 309 impact melt origin (e.g., from a plagioclase-rich source rock like a Mg-suite norite or 310 gabbronorite). On the other hand, if its mineral proportions are taken as representative, then Clast 311 U could represent an erupted basalt with excess (accumulated) plagioclase, or as a partially 312 crystallized basalt that lost some late magma (i.e. by 'filter-pressing'). 313 Finally, the mineral texture of clast U is that of a sub-ophitic basalt: equant olivine 314

14

9/10

phenocrysts, abundant plagioclase euhedra, and interstitial pyroxenes. These textures are not

- 315 typical of impact melts, which commonly contain lithic inclusions, and elongated and/or
- 316 dendritic crystals of plagioclase, pyroxene, and olivine (Vaniman and Papike 1980). However,
- 317 clast-free melt rocks with sub-ophtic textures are known as fragments in lunar regolith (e.g.,
- 318 Stöffler et al. 1985); these could have formed in pools of impact melt that cooled slowly enough
- 319 to develop typical basalt textures. Unfortunately, clast U is too small to apply criteria from
- 320 crystal size distributions (Fagan et al. 2013), and textures also remain ambiguous.
- 321 Thus, it seems likely that Clast U represents an impact melt, as indicated by it mineral
- 322 and bulk compositions. However, an origin as a true basalt (possibly modified by fractionation of
- 323 crystals or melt) cannot be excluded.

324 Metamorphism

325 Whether clast U originated as an impact melt or an erupted basalt, the compositions of its 326 olivine and pyroxenes have been modified significantly by thermal metamorphism. Its olivine is 327 chemically homogeneous (Tables 1,3) in its abundances of Fe, Mg, Mn, Ni, Co, Ca, and Cr. 328 The pyroxenes of clast U all have the same Fe/Mg ratio, and that ratio is consistent with 329 chemical equilibrium with the olivine (Fig. 5). Abundances of Cr and Al in the pyroxenes vary 330 little, and so appear to have equilibrated (Figs. 6a, b); at least, they are not zoned as one would 331 expect from igneous fractionation. However, Ca in the pyroxenes is strongly zoned in a manner 332 consistent with igneous fractionation from a noritic melt (Fig. 5) - from Ca-poor pigeonite 333 through Ca-rich pigeonite to sub-calcic augite (Figs. 4a, 5). Similarly, Ti abundances in 334 pyroxenes are strongly zoned, and increase monotonically with Ca abundances (Fig. 6c). This 335 zoning could be a relic of original igneous zoning in the pyroxenes.

336 Chemical Affinity: Magnesian Suite

337 The focus of this work is an understanding the petrologic affinities of Clast U; i.e.

338 whether it is derived from or representative of a known suite of lunar rocks, like mare basalts, 339 ferroan anorthosites, Mg-suite plutonics, and magnesian feldspathic granulites. Treiman and 340 Drake (1983) suggested that clast U was related to the magnesian suite plutonic rocks because of 341 its major mineral compositions (plagioclase, olivine, pyroxenes), and its suite of minor minerals. 342 The data developed here confirm their conclusions, and permit a detailed documentation of the 343 affinity of clast U to the magnesian suite. 344 It is clear that Clast U is not related to known mare basalts, even though it may be a 345 basalt itself. Its minerals' compositions (and bulk composition) are far more magnesian than 346 those of mare basalts (Fig. 5), and the olivine in Clast U contains far less Ni and Co than those in 347 mare basalts (Fig. 9). Similarly, Clast U is not related to ferroan anorthosites; it is too magnesian, 348 has too little plagioclase, and its olivine contains too little Co (Fig. 9b). 349 Clast U does have chemical affinities with lunar magnesian feldspathic granulites, a 350 group of metamorphic rocks with distinctive trace-element compositions (Korotev and Jolliff 351 2001; Treiman et al. 2010), but cannot be closely related. Clast U is similar to magnesian 352 feldspathic granulites in being: rich in plagioclase, containing olivine and two pyroxenes, and 353 having Mg# s of ~ 78-88 (Table 5; Treiman et al. 2010). The olivine in clast U contains less Ni 354 and Co than olivines in most magnesian feldspathic granulites (Fig. 9), but this dissimilarity is 355 based on data from only four granulite fragments. Abundances of minor minerals (and their trace 356 elements) are more telling, and suggest that clast U is not closely related to the magnesian 357 feldspathic granulites (Table 5). Clast U contains a rich suite of minor minerals, as noted above, 358 which is not seen in the granulites; the few granulites for which data are available contain $\sim 1/30$ 359 of the proportion of phosphate mineral in clast U, and are not reported to contain minerals with 360 abundant Zr, like the armalcolite here (Treiman et al. 2010).

361 On the other hand, clast U's mineral proportions and compositions are entirely consistent 362 with those of magnesian suite rocks, see Figure 1 and Tables 1 - 3. Mafic silicate minerals in 363 clast U have Mg# of 79-83; olivine is slightly more ferroan than pyroxenes, as expected from Fe-364 Mg equilibrium. Plagioclase compositions range from An97 to An90, as expected in a rock of 365 the magnesian suite (Table 1, Fig. 1). The range of plagioclase compositions implies incomplete 366 chemical equilibrium (consistent with the range of Ca contents in pigeonite, Fig. 4); plutonic 367 rocks of the magnesian suite typically have plagioclase of limited compositional ranges (James 368 and Flohr 1983). The average plagioclase composition in clast U is \sim An96; thus, if it had 369 equilibrated completely, it would not be distinct in Figure 1 from the granulite and anorthosite 370 clasts in ALHA81005. 371 James and Flohr (1983) divided rocks of the magnesian suite into two chemically distinct 372 groups, magnesian norites and magnesian gabbronorites, based on the compositions of their 373 major minerals and the presence or absence of certain minor minerals (Table 5). Magnesian suite 374 norites and gabbronorites can be distinguished also by the minor element chemistry of their 375 pyroxenes (Bersch et al. 1991; Norman et al. 1995), particularly their abundances of Ti and Cr. 376 From published discriminants (James and Flohr 1983; Bersch et al. 1991; Norman et al. 1995), 377 clast U is more closely related to the magnesian norites in having a higher Mg#, more low-Ca 378 pyroxene than augite, and minor minerals rich in Ti (Table 5). In addition, the pyroxenes of clast 379 U have Ti abundances and FeO/MgO ratios that fall in and near the field defined for magnesian 380 norites (Fig. 8a); a slight enlargement of that field (Norman et al. 1995) would encompass the 381 pyroxenes of clast U. 382 However, clast U does not share all the published characteristics of magnesian norites,

383 beyond its lack of zircon and potassium feldspar (which could be ascribed to the clast's small

17

384 size). The Cr abundances in the pyroxenes are consistent with magnesian gabbronorite and <u>not</u>

- 385 norite (Fig. 8b). Similarly, the low Ni and Co contents of its olivine are more consistent with
- 386 magnesian gabbronorites than with norites (Longhi et al. 2010; Fig. 9). So, clast U has
- 387 similarities with both magnesian norites and gabbronorites, but is not fully consistent with either.

388 Variety within the Magnesian Suite

389 Although clast U is likely an impact melt, and thus could represent a mix of multiple 390 protoliths, its mineralogical and mineral-chemical affinity with the magnesian suite is clear. 391 However, its mineralogy and mineral chemistry are not an exact match to those of magnesian 392 suite rocks in the Apollo magnesian collection, notably its norites and gabbronorites (Table 5). 393 This disparity may suggest that the lunar magnesian suite could be more diverse than in the 394 Apollo collection. A putative magnesian suite protolith for clast U could have contained more Ti 395 than parent magmas of magnesian gabbronorites (despite having higher Mg# and thus being less 396 fractionated; Fig. 8a), and could have contained less Cr than a magnesian norite (despite having 397 comparable Mg#s; Fig. 8b. In other words, one could not derive a putative magnesian suite 398 protolith for clast U by fractionation of magmas parental to Apollo magnesian norites or 399 gabbronorites. 400 Even among the Apollo samples, the magnesian suite may be more diverse than generally 401 appreciated. Lindstrom et al. (1989) presented evidence that the field of the magnesian suite on

- 402 Figure 1 is not a differentiation trend, but by implication represents a series of distinct magmas
- 403 within the (broadly construed) suite of magnesian plutonic rocks.

404 Magnesian Suite Rocks Across the Whole Moon

405 At this time, clast U (or to be exact its protolith) is the only documented fragment of rock 406 related to the magnesian suite from a lunar sample inferred to have originated far from the

407 Apollo sites (Pieters et al. 1983; Kallemeyn and Warren 1983; Korotev et al. 1983; Isaacson et 408 al. 2013). Many granulites from lunar highlands meteorites (many inferred to have come from 409 the far side) have mineral compositions, An and Mg#, like those of the magnesian suite (Fig. 1; 410 e.g., Cahill et al. 2004; Treiman et al. 2010; Gross et al. 2014). However, these granulites show 411 no evidence of a KREEP signature as in rocks of the Apollo magnesian suite. Clast U is thus an 412 'exception that proves the rule' of the rarity of magnesian suite materials among lunar highlands 413 meteorites. The apparent rarity of magnesian suite rocks in lunar meteorites does not reflect an 414 inability to detect them - they truly are rare. 415 Although clast U sits in ALHA 81005, a regolith breccia inferred to be from the lunar 416 farside, we have no evidence that clast U originated on the farside. Rather, it (as an impact melt 417 rock) could have formed on the lunar nearside where magnesian suite material is relatively 418 common (Jolliff et al. 2000; Elardo et al. 2011), and been transported to the lunar farside by 419 meteoroid impacts. In fact, ALHA 81005 does contain a distinct contribution of non-local 420 material, as shown by its clasts of several sorts of mare basalts (Robinson et al. 2012). 421 Per the Elardo et al. (2011) quote in the Introduction, the search for fragments of 422 magnesian suite materials should continue. Recognition of magnesian suite materials (or their 423 absence) has important implications for lunar geologic and thermal history. One should look for 424 clasts with highly magnesian mafic minerals that have Fe/Mn consistent with a lunar origin 425 (Karner et al. 2003; Gross et al. 2010). The presence of plagioclase more sodic than ~An95 426 would distinguish such clasts from magnesian anorthosites, feldspathic granulites, and impact 427 melts from them. Minor minerals (or mineral compositions) indicative of a KREEP contribution 428 would help tie such rock fragments to the magnesian suite as known in the Apollo collection, but 429 might not be seen in hypothetical KREEP-poor magnesian suite rocks. Non-chondritic metal

19

430 compositions would argue against an impact-melt origin (but see Papike et al. 1991). A 431 complication in this search for rock fragments of the magnesian suite is the presence of meteorite 432 fragments, documented in both Apollo samples and lunar highlands meteorites (Rubin 1997; 433 Zolensky 1997; Day et al. 2006; Joy et al. 2012). These meteorite fragments can contain highly 434 magnesian olivine and plagioclase with moderate Na content, but would likely not have a high 435 Fe/Mn like lunar materials, and could have textures consistent with primitive meteorites (e.g., 436 Day et al. 2006; Joy et al. 2012 – individual mineral grains derived from meteoritic infall could 437 be difficult to distinguish from indigenous lunar materials.

438 IMPLICATIONS

439 Clast U is now the only documented fragment of rock related to the lunar magnesian suite 440 from a source outside the Apollo landing sites. Clast U is not a fragment of magnesian suite rock 441 per se, of which all known examples are plutonic; rather, the mineralogy and mineral chemistry 442 of Clast U are similar to those of some magnesian suite rocks (norite & gabbronorite). The 443 mineralogy and mineral chemistry of Clast U are not exact matches to any known rock of the 444 magnesian suite, so the magnesian suite may be more diverse than currently understood. It is 445 possible that Clast U formed originally on the lunar nearside and was transported by impact into 446 the lunar farside regolith sampled by ALHA81005 (Isaacson et al. 2013). In any case, Clast U 447 demonstrates that rock related to the lunar magnesian suite can be recognized in lunar highlands 448 meteorites, and that the rarity of magnesian suite materials in highlands meteorites is real. This 449 rarity suggests that magnesian suite materials are not widespread on the Moon, but may be 450 localized around the Apollo sampling sites (e.g., near the Procellarum KREEP terrane).

451 ACKNOWLEDGMENTS 452 We are grateful to: D.K. Ross and A. Peslier (JSC) for assistance with electron 453 microprobe analyses; to the A.E.; and to M.D. Norman, R. Korotev, and Y. Liu for extremely 454 helpful reviews. This work was supported in part by NASA Cosmochemistry Grant 455 NNX12AH64G to AHT, and a subcontract to JG from the NASA Lunar Science Institute node at 456 the LPI (contract NNA09DB33A: D.A. Kring, PI). Lunar and Planetary Institute Contribution 457 #1xxx. REFERENCES 458 459 Arai, T., Otsuki, M., Ishii, T., Mikouchi, T., and Miyamoto, M. (2005) Mineralogy of Yamato 460 983885 lunar polymict breccia with a KREEP basalt, a high-Al basalt, a very low-Ti basalt 461 and Mg-rich rocks. Antarctic Meteorite Research, 18, 17-45. 462 Bersch, M.G., Taylor, G.J., Keil, K., and Norman, M.D. (1991) Mineral compositions in pristine 463 lunar highlands rocks and the diversity of highlands magmatism. Geophysical Research 464 Letters, 18, 2085-2088. 465 Biehl, L., and Landgrebe, D. (2002) MultiSpec - A tool for multispectral-hyperspectral image 466 data analysis. Computers and Geosciences, 28, 1153-1159. 467 Boynton, W.V, and Hill, D.H. (1983) Composition of bulk samples and a possible pristine clast 468 from Allan Hills A81005. Geophysical Research Letters, 10, 837-840. 469 Cahill, J.T., Floss, C., Anand, M., Taylor, L.A., Nazarov, M.A., and Cohen, B.A. (2004) 470 Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and 471 Dar al Gani 400. Meteoritics and Planetary Science, 39, 503-529. 472 Chakraborty, S. (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Reviews in 473 Mineralogy and Geochemistry, 72, 603-639. 474 Daubar, I.J., Kring, D.A., Swindle, T.D., and Jull, A.J.T. (2002) Northwest Africa 482: A 475 crystalline impact-melt breccia from the lunar highlands. Meteoritics & Planetary Science, 476 37, 1797-1813. 477 Day, J.M.D., Floss, C., Taylor, L.A., Anand, M., and Patchen, A.D. (2006) Evolved mare basalt 478 magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of

479	Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007
480	Geochimica et Cosmochimica Acta, 70, 5957-5989.
481	Demidova, S.I., Nazarov, M.A., Taylor, L.A., and Patchen, A. (2003) Dhofar 304, 305, 306 and
482	307: New lunar highland meteorites from Oman. Lunar and Planetary Science 34th, Abstract
483	#1285.
484	Elardo, S.M., Draper, D.S., and Shearer, C.K.Jr. (2011) Lunar Magma Ocean crystallization
485	revisited: Bulk composition, early cumulate mineralogy, and the source regions of the
486	highlands Mg-suite. Geochimica et Cosmochimica Acta, 75, 3024–3045
487	Elkins-Tanton, L.T., Burgess, S., and Yin, QY. (2011) The lunar magma ocean: Reconciling
488	the solidification process with lunar petrology and geochronology. Earth and Planetary
489	Science Letter, s 304, 326-336.
490	Fagan, A.L., Neal, C.R., Simonetti, A., Donohue, P.H., and O'Sullivan, K.M. (2013)
491	Distinguishing between Apollo 14 impact melt and pristine mare basalt samples by
492	geochemical and textural analyses of olivine. Geochimica et Cosmochimica Acta, 106, 429-
493	445.
494	Gillis, J.J., Jolliff, B.L., and Korotev, R.L. (2004) Lunar surface geochemistry: Global
495	concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data,
496	Geochimica et Cosmochimica Acta, 68, 3791-3805.
497	Goldoff, B., Webster, J.D., and Harlov, D.E. (2012) Characterization of fluor-chlorapatites by
498	electron probe microanalysis with a focus on time-dependent intensity variation of halogens.
499	American Mineralogist, 97, 1103-1115.
500	Goodrich, C.A., Taylor, G.J., Keil, K., Boynton, W.V., and Hill, D.H. (1984) Petrology and
501	chemistry of hyperferroan anorthosites and other clasts from lunar meteorite ALHA81005.
502	Proceedings Lunar Planetary Science Conference 15th, in Journal of Geophysical Research,
503	89, C87-C94.
504	Goodrich, C.A., Taylor, G.J., and Keil K. (1985) An apatite-rich, ferroan, mafic lithology from
505	lunar meteorite ALHA81005. Proceedings Lunar Planetary Science Conference 16 th , in
506	Journal of Geophysical Research, 90, C405-C414.
507	Gross, J., and Treiman, A. H. (2010) Dispersed Fe/Mn ratios of lunar rocks: ALHA 81005's
508	view from the farside. Goldschmidt Conference 2010, Abstract #2557.

509	Gross, J., and Treiman, A.H. (2011) Unique spinel-rich lithology in lunar meteorite
510	ALHAA81005: Origin and possible connection to M ³ observations of the farside highlands.
511	Journal of Geophysical Research, 116, E10009.
512	Gross, J., Treiman, A.H., and Mercer, C.N. (2014) Lunar feldspathic meteorites: Constraints on
513	the geology of the lunar highlands, and the origin of the lunar crust. Earth and Planetary
514	Science Letters, 388, 318-328.
515	Haggerty, S.E. (1973) Armalcolite and genetically associated opaque minerals in the lunar
516	samples. Proceedings of the Fourth Lunar Science Conference (Supplement 4 to
517	Geochimica et Cosmichimica Acta), vol. 1, 777-797.
518	Isaacson, P.J., Hiroi, T., Hawke, B.R., Lucey, P.G., Pieters, C.M., Liu, Y., Patchen, A., and
519	Taylor, L.A. (2013) Lunar meteorite geologic context: New constraints from VNIR
520	spectroscopy and geochemistry. Lunar and Planetary Science Conference 44th, Abstract
521	#1134.
522	James, O.B., and Flohr, M.K. (1983) Subdivision of the Mg-suite noritic rocks into Mg-
523	gabbronorites and Mg-norites. Proceedings Thirteenth Lunar and Planetary Science
524	Conference Part 2, Journal of Geophysical Research, 88, A603-A614.
525	Jolliff, B.L., Korotev, R.L., and Haskin, L.A. (1991) A ferroan region of the lunar highlands as
526	recorded in meteorites MAC 88104 and MAC 88105. Geochimica et Cosmochimica Acta, 55,
527	3051–3071.
528	Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., and Wieczorek, M.A. (2000) Major lunar
529	crustal terranes: surface expressions and crust-mantle origins. Journal of Geophysical
530	Research, 105, 4197–4416.
531	Joy, K.H., Zolensky, M.E., Nagashima, K., Huss, G.R., Ross, D.K., McKay, D.S., and Kring, D.A.
532	(2012) Direct detection of projectile relics from the end of the lunar basin-forming epoch.
533	Science, 336, 1426-1429.
534	Kallemeyn, G.W., and Warren, P.H. (1983) Compositional implications regarding the lunar origin of
535	the ALHA81005 meteorite. Geophysical Research Letters, 10, 833-836.
536	Karner, J., Papike, J.J. and Shearer, C.K. (2003) Olivine from planetary basalts: Chemical signatures
537	that indicate planetary parentage and those that record igneous setting and process. American

538 *Mineralogist*, 88, 806-816.

539	Kobayashi, S., Karouji, Y., Morota, T., Takeda, H., Hasebe, N., Hareyama, M., Kobayashi, M.,
540	Shibamura, E., Yamashita, N., d'Uston, C., Gasnault, O., Forni, O., Reedy, R.C., Kim, K.J., and
541	Ishihara, Y. (2012) Lunar farside Th distribution measured by Kaguya gamma-ray spectrometer.
542	Earth and Planetary Science Letters, 337-338, 10-16.
543	Korotev, R.L. (2005) Lunar geochemistry as told by lunar meteorites. <i>Chemie der Erde</i> , 65, 297-346.
544	Korotev, R.L. The Lunar Meteorite List (2014)
545	http://meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm#DHO303. Viewed April
546	2014.
547	Korotev, R.L., and Jolliff, B.L. (2001) The curious case of the lunar magnesian granulitic breccias.
548	Lunar and Planetary Science Conference, 32 nd , Abstract #1455.
549	Korotev, R.L., Lindstrom, M.M., Lindstrom, D.J., and Haskin, L.A. (1983) Antarctic meteorite
550	ALHA81005-Not just another lunar anorthositic norite. Geophysical Research Letters, 10,
551	829–832.
552	Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Gillis, J.J., and Haskin, L.A. (2003) Feldspathic lunar
553	meteorites and their implications for compositional remote sensing of the lunar surface and the
554	composition of the lunar crust. Geochimica et Cosmochimica Acta, 67, 4895-4923.
555	Korotev, R.L., Zeigler, R.A., and Jolliff, B.L. (2006) Feldspathic lunar meteorites Pecora Escarpment
556	02007 and Dhofar 489: Contamination of the surface of the lunar highlands by post-basin
557	impacts. Geochimica et Cosmochimica Acta, 70, 5935-5957.
558	Korotev, R.L., Zeigler, R.A., Jolliff, B.L., Irving, A.J., and Bunch, T.E. (2009) Compositional
559	and lithological diversity among brecciated lunar meteorites of intermediate iron
560	composition. Meteoritics and Planetary Science, 44, 1287-1322.
561	Korotev, R.L., Jolliff, B.L., and Zeigler, R.A. (2012) What lunar meteorites tell us about the lunar
562	highlands crust. Second Conference on the Lunar Highland Crust. Abstract # 9003.
563	Kurat, G., and Brandstätter, F. (1983) Meteorite ALHA81005: Petrology of a new lunar highland
564	sample. Geophysical Research Letters, 10, 795-798
565	Lindstrom, M.M., Marvin, U.B., and Mittlefehldt, D.W. (1989) Apollo 15 Mg- and Fe-norites: A
566	redefinition of the Mg-suite differentiation trend. Proceedings of the 19th Lunar and
567	Planetary Science Conference, pp. 245-254.
568	Liu, Y., Patchen, A., and Taylor, L.A. (2011) Lunar highland breccias MIL 090034/36/70/75: A
569	significant KREEP component. Lunar and Planetary Science 42 nd , Abstract #1261.

24

570	Longhi, J., Durand, S.R., and Walker, D. (2010) The pattern of Ni and Co abundances in lunar
571	olivines. Geochimica et Cosmochimica Acta, 74, 784-798.
572	Lydon, J.W. (2005) The Measurement of the Modal Mineralogy of Rocks from SEM Imagery:
573	The Use of Multispec [®] and ImageJ Freeware. Geological Survey of Canada, Open File
574	4941, 37p.
575	Maloy A.K., and Treiman, A.H. (2007) Evaluation of image classification routines for
576	determining modal mineralogy of rocks from X-ray maps American Mineralogist, 92, 1781-
577	1788.
578	Marvin, U.B. (1983) The discovery and initial characterization of Allan Hills 81005: The first
579	lunar meteorite. Geophysical Research Letters, 10, 775-778.
580	Marvin, U.B., and Holmberg, B. (1992) Highland and mare components in the Calcalong Crek
581	lunar meteorite. Lunar and Planetary Science XXIII, 849-850.
582	McCallum, I.S. (1996) The Stillwater Complex, p. 441-483 in Cawthorn, R.G., ed., Layered
583	Intrusions. Amsterdam, Elsevier Science.
584	McCallum, I.S., and Schwarz, J.M. (2001) Lunar Mg suite: Thermobarometry and petrogenesis
585	of parental magmas. Journal of Geophysical Research, 106, 27,969-27,983.
586	Norman, M.D., and Ryder, G. (1980) Geochemical constraints on the igneous evolution of the
587	lunar crust. Proceedings 11th Lunar and Planetary Science Conference, 317-331.
588	Norman, M.D., Keil, K., Griffin, W.L., and Ryan, G.C. (1995) Fragments of ancient lunar crust:
589	Petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the
590	Moon. Geochimica et Cosmochimica Acta, 59, 831-847.
591	Ostertag, R. (1983) Shock experiments on feldspar crystals. Proceedings 14th Lunar and
592	Planetary Science Conference Part 1, Journal of Geophysical Research, 88, B364-B376.
593	Papike, J.J., Taylor, L, and Simon, S. (1991) Lunar Minerals. Ch. 5 in Heiken G.H., Vaniman
594	D.T, and French B.M., eds. The Lunar Sourcebook: A user's guide to the Moon. CUP
595	Archive.
596	Papike, J.J., Fowler, G.W., Adcock, C.T, and Shearer, C.K. (1999) Systematics of Ni and Co in
597	olivine from planetary melt systems: Lunar mare basalts. American Mineralogist, 84, 392-

598 399.

599	Petry, C., Chakraborty, S., and Palme, H. (2004) Experimental determination of Ni diffusion
600	coefficients in olivine and their dependence on temperature, composition, oxygen fugacity,
601	and crystallographic orientation. Geochimica et Cosmochimica Acta, 68, 4179-4188.
602	Pieters, C.M., Hawke, B.R., Gaffey, M., and McFadden, L.A. (1983) Possible source areas of
603	meteorite ALHA81005: Geochemical remote sensing information. Geophysical Research
604	Letters, 10, 813-816.
605	Qian, Q., O'Neill H.St.C., and Hermann, J. (2010) Comparative diffusion coefficients of major
606	and trace elements in olivine at ~950 °C from a xenocryst included in dioritic magma.
607	Geology, 38, 331-334.
608	Raedeke, L.D., and McCallum, I. S. (1980) A comparison of fractionation trends in the lunar
609	crust and the Stillwater Complex. 133-153 in Papike, J.J. and MerrilL R.B., eds.
610	Proceedings of the Conference on the Highlands Lunar Crust. Lunar and Planetary Institute,
611	Houston.
612	Robinson, K.L., Treiman, A.H., and Joy, K.H. (2012) Basaltic fragments in lunar highlands
613	meteorites: Connecting sample analyses to orbital remote sensing. Meteoritics and
614	Planetary Sciences, 47, 387-399.
615	Rubin, A.E. (1997) The Hadley Rille enstatite chondrite and its agglutinate-lile rim: Impact
616	melting during accretion to the Moon. Meteoritics and Planetary Sciences 32, 135-141.
617	Ryder, G. and Ostertag, R. (1983) ALHA 81005: Moon, Mars, petrography, and Giordano
618	Bruno. Geophysical Research Letters 10, 791-794.
619	Ryder, G., Norman, M.D., and Score, R.A. (1980) The distinction of pristine from meteorite-
620	contaminated highlands rocks using metal compositions. Proceedings Lunar Planetary
621	Science Conference 11 th , 471-479.
622	Shearer, C.K. and Papike, J.J. (1999) Magmatic evolution of the Moon. American Mineralogist,
623	84, 1469-1494.
624	Shearer, C.K., and Papike, J.J. (2005) Early crustal building processes on the Moon: Models for
625	the petrogenesis of the magnesian suite. Geochimica et Cosmochimica Acta, 69, 3445-
626	3461.
627	Shearer, C.K., Hess, P.C., Wieczorek, M.A., Pritchard, M.E., Parmentier, E.M., Borg, L.E.,
628	Longhi, J., Elkins-Tanton, L.T., Neal, C.R., Antonenko, I., Canup, R.M., Halliday, A.N.,

629	Grove, T.L., Hager, B.H., Lee, DC., and Wiechert, U. (2006) Thermal and magmatic
630	evolution of the Moon. Reviews of Mineralogy and Geochemistry, 60, 365-518.
631	Smith, J.V., and Steele, I.M. (1976) Lunar mineralogy; a heavenly detective story; Part II.
632	American Mineralogist, 61, 1059-1116.
633	Sokol, A.K., Fernandes, V.A., Schulz, T., Bischoff, A., Burgess, R., Clayton, R.N., Münker, C.,
634	Nishiizumi, K., Palme, H., Schultz, L., Weckwerth, G., Mezger, K., and Horstmann, M.
635	(2008) Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009:
636	New constraints on early lunar evolution. Geochimica et Cosmochimica Acta, 72, 4845-
637	4873.
638	Snape, J.E., Joy, K.H., and Crawford, I.A. (2011) Characterization of multiple lithologies within
639	the lunar feldspathic regolith breccia meteorite Northeast Africa 001. Meteoritics and
640	Planetary Science, 46, 1288–1312.
641	Snyder, G.A., Neal, C.R., Taylor, L.A., and Halliday, A.N. (1995) Processes involved in the
642	formation of magnesian-suite plutonic rocks from the highlands of the Earth's Moon
643	Journal of Geophysical Research, 100, 9365-9388.
644	Stanin, F.T., and Taylor, L.A. (1980) Armalcolite: An oxygen fugacity indicator. Proceedings
645	Lunar and Planetary Science Conference 11 th , 117-124.
646	Stöffler, D., Bischoff, A., Borchardt, R., Burghele, A., Deutsch, A., Jessberger, E. K., Ostertag,
647	R., Palme, H., Spettel, B., Reimold, W.U., Wacker, K. and Wänke H., (1985) Composition
648	and evolution of the lunar crust in the Descartes highlands, Apollo 16. Proceedings Lunar
649	and Planetary Science Conference 15th, Journal of Geophysical Research 90, C449–C506.
650	Takeda, H., Yamaguchi, A., Bogard, D.D., Karouji, Y., Ebihara, M., Ohtake, M., Saiki, K., and
651	Arai, T. (2006) Magnesian anorthosites and a deep crustal rock from the farside crust of
652	the Moon. Earth and Planetary Science Letters, 247, 171-184.
653	Taylor, G.J., Warren, P., Ryder, G., Delano, J., Pieters, C., and Lofgren, G. (1991) Lunar Rocks,
654	p. 183-284 (Ch. 6) in Heiken, G., Vaniman, D., and French, B. (eds) Lunar Sourcebook.
655	Cambridge University Press, N.Y.
656	Treiman, A.H., and Drake, M.J. (1983) Origin of lunar meteorite ALHA81005: Clues from the
657	presence of terrae clasts and a very low-titanium mare basalt clasts. Geophysical Research
658	Letters, 10, 783-786.

Treiman, A.H., and Gross, J. (2013) Basalt related to lunar Mg-suite plutonic rocks: A fragment 659 in lunar meteorite ALHA81005. 73rd Annual Conference, Meteoritical Society, Abstract 660 #5183. 661 Treiman, A.H., Maloy, A.K., Shearer, C.K.Jr., and Gross, J. (2010) Magnesian anorthositic 662 663 granulites in lunar meteorites in lunar meteorites Allan Hills 81005 and Dhofar 309: 664 Geochemistry and global significance. Meteoritics and Planetary Science, 45, 163-180. 665 Vaniman, D.T., and Papike, J.J. (1980) Lunar highland melt rocks: Chemistry, petrology and 666 silicate mineralogy. P. 271-337 in Proceedings of the Conference on the Lunar Highlands Crust (R.B. Merrill and J.J. Papike, eds). Pergamon.N.Y. 667 668 Warren, P.H. (2012) Let's get real: Not every lunar rock sample is big enough to be 669 representative for every purpose (abstract). Second Conference on the Lunar Highlands 670 Crust, 59-60. LPI Contribution #1677. 671 Warren, P.H., Taylor, G.J., and Keil, K. (1983) Regolith breccia Allan Hills A81005: Evidence 672 of lunar origin, and petrography of pristine and nonpristine clasts. Geophysical Research 673 Letters, 10, 779-782. 674 Wieczorek M.A., Jolliff B.L., Khan A., Pritchard M.E., Weiss B.P., Williams J.G., Hood L.L., 675 Righter K., Neal C.R., Shearer C.K., McCallum I.S., Tompkins S., Hawke B.R., Peterson 676 C., Gillis J.J., and Bussey B. (2006) The Constitution and Structure of the Lunar Interior. pp. 677 221-364 in Reviews in Mineralogy & Geochemistry, 60, Mineralogical Society of America 678 Williams, H., Turner, F.J., and Gilbert, C.M. (1954) Petrography: An Introduction to the Study 679 of Rocks in Thin Sections. W.H. Freeman, San Francisco. 406 p. 680 Wittmann, A., and Korotev, R.L. (2013) Iron-nickel (-cobalt) metal in lunar rocks revisited (abstract). Lunar and Planetary Science Conference 44th, Abstract #3035. 681 Wood, J.A., Dickey, J.S.Jr., Marvin, U.B., and Powell, B.J. (1970) Lunar anorthosites and a 682 geophysical model of the Moon. Proceedings of the Apollo 11 Lunar Science Conference 1, 683 684 965-988. 685 Yamaguchi, A., Karouji, Y., Takeda, H., Nyquist, L., Bogard, D., Ebihara, M., Shih, C.-Y., Reese, Y., Garrison, D., Park, J., and McKay, G. (2010) The variety of lithologies in the 686 687 Yamato-86032 lunar meteorite: Implications for formation processes of the lunar crust. 688 Geochimica et Cosmochimica Acta, 74, 4507-4530.

689	Zolensky, M.E. (1997) Structural water in the Bench Crater chondrite returned from the Moon.
690	Meteoritics and Planetary Science, 32, 15-18.
691	
692	
693	The authors declare that they have no competing commercial interests, or other interests
694	that might be perceived to influence the results and/or discussion reported in this paper.
695	Correspondence and requests for materials should be addressed to A.H. Treiman.
696	

697 698

699 Figure 1. Mg# of mafic minerals, molar Mg/(Mg+Fe), versus An content of plagioclase, molar 700 Ca/(Ca+Na), for selected lunar samples. Fields of 'Ferroan Anorthosite' and 'Magnesian Suite' are 701 defined by Apollo returned samples (Warren et al 1983b; Shearer and Papike 2005). Other materials are: 702 black rectangle, clast U of ALHA81005, this work; star, clast 25.8 of Dhofar 025 (Cahill et al. 2004); 703 black circle, selected clasts in Dhofar 305 and 307 (Demidova et al. 2003); and gray rectangle, 'An93 704 anorthosite' of Y86032 (Yamaguchi et al. 2010.). Light-gray ellipse approximates field of magnesian 705 granulites and anorthosites of most lunar highlands meteorites, and darker gray ellipse approximates field 706 of granulites and anorthosites of ALHA81005 (Gross et al., 2014). 707 708 Figure 2. Transmitted light images. [a] Mosaic of thin section ALHA81005,9; fragments of anorthosites and granulites in a glassy agglutinitic matrix. Clast U denoted by arrow. [b] Clast U, 709 710 with typical impactite to upper right. See Fig. 2 for mineral identifications - olivine and pyroxene are colorless here, indicative of their high Mg#s. 711 712 713 Figure 3. Back-scattered electron (BSE) images. [a] Clast U, 'plag' is plagioclase, 'ol' is olivine, 714 'pig' is pigeonite, 'aug' is augite, 'sil' is silica, 'tr' is troilite, and Fe is metal. Squares show locations of detail images. [b] Detail at right side of clast, showing extensively cracked 715 716 plagioclase and uncracked plagioclase (probably amorphized or melted by shock). Note matrix 717 glass to upper right of frame, with mineral fragments and round dark bubbles. [c] Detail of core 718 of pyroxene in center of clast, showing intense cracking and lighter-tone blebby grains of augite 719 in low-Ca pyroxene, probably exsolutions. 720 721 722 Figure 4. X-ray element maps of Clast U, showing distribution of major and minor minerals. [a] 723 Red=Mg, Green=Ca, Blue=Al. 'plag'=plagioclase, 'ol'=olivine, 'pig'=pigeonite (low-Ca and 724 high-Ca pigeonite noted), 'aug'=augite, bright green spots are apatite. Purple spot at lower left is 725 a spinel grain in the matrix outside clast U. [b] Red=Ti, Green=Fe, Blue=Al. Rutile is bright red; 726 ilmenite and armalcolite are yellow and orange. 727 728 729 Figure 5. Compositions of pyroxenes and olivine in the Ca-Mg-Fe quadrilateral. For pyroxene compositions (circles): $Di = CaMgSi_2O_6$, $En = CaFeSi_2O_6$, $Fs = Fe_2Si_2O_6$, $En = Mg_2Si_2O_6$. 730 Olivine compositions (triangles) plotted as Mg-Fe. Dashed field encloses all compositions of 731 732 mare basalt pyroxenes (Papike et al. 1991). 733

Figure 6. Minor elements in pyroxenes of clast U.

735

Figure 7. EDS spectrum of an apatite grain in Clast U (see Fig. B). Strong peaks for $F_K\alpha$ and

737 ClKα X-rays show that the grain is apatite, and not merrillite. Peaks for Si and Fe are from

surrounding minerals. The apatite grains are too small for quantitative analyses.

739

740 Figure 8. Pyroxene compositions in clast U compared to those of lunar highlands lithologies,

741 after Bersch et al. (1991) and Norman et al. (1995). (a) Low-Ca pyroxene compositions are

- 742 consistent with clast U being related to Mg-norites. (b) High-Ca pyroxene compositions, in
- 743 contrast, are more similar to those of Mg-gabbronorites.
- Figure 9. Nickel and cobalt in Clast U olivine (filled square) compared to those of olivine in
- 745 other lunar lithologies (Longhi et al. 2010), including magnesian feldspathic granulites.
- 746 Uncertainties on Ni and Co are 2 standard error of mean for 17 individual analyses, see Table 3.
- 747 Dashed lines are 3σ detection limits for Ni and Co, based on sum of all individual analyses. Data
- from Papike et al. (1999), Shearer and Papike (2005), and Treiman et al. (2010).

	plagioclase	plagioclase	plagioclase	plagioclase	olivine	olivine	olivine	olivine
	3/5	1/1	3/1	1206 9/17	L8 9/2	L4 5/5	L6 7/3	L7 8/3
SiO ₂	43.65	43.63	43.50	43.21	39.22	39.53	39.34	38.88
TiO ₂	0.01	0.02	0.02	0.00	0.05	0.03	0.08	0.08
Al_2O_3	35.79	35.85	35.63	34.32	0.01	0.02	0.00	0.02
Cr_2O_3	-	-	-	0.00	0.05	0.04	0.03	0.05
FeO	0.09	0.21	0.11	0.23	20.02	16.63	19.26	19.92
NiO	-	-	-	-	0.01	0.00	0.00	0.03
CoO	-	-	-	-	0.00	0.00	0.00	0.01
MnO	0.01	0.00	0.00	0.02	0.27	0.22	0.29	0.29
MgO	0.12	0.10	0.12	0.17	40.70	43.58	41.38	41.14
CaO	19.69	19.18	19.58	18.9	0.09	0.09	0.11	0.08
Na ₂ O	0.28	0.37	0.4	1.16	0.00	0.00	0.01	0.00
K_2O	0.01	0.02	0.01	0.09	0.00	0.00	0.01	0.00
P_2O_5	-	-	-	-	0.02	0.01	0.00	0.01
ZrO_2	-	-	-	0.00	0.02	0.01	0.02	0.00
Total	99.67	99.38	99.28	98.10	100.47	100.16	100.52	100.49
Normalization	5	5	5	5	3	3	3	3
To Cations	2.025	2.020	2 0 2 0	2.024	1.005	0.000	1.002	0.004
S1	2.025	2.029	2.028	2.024	1.005	0.998	1.003	0.994
11	0.000	0.001	0.000	0.000	0.001	0.001	0.002	0.001
AI	1.957	1.965	1.956	1.895	0.000	0.001	0.000	0.001
Cr	-	-	-	0.000	0.001	0.001	0.001	0.001
Fe	0.004	0.008	0.004	0.009	0.429	0.351	0.411	0.426
IN1 Ca	-	-	-	-	0.000	0.000	0.000	0.001
Co Mr	-	-	-	-	0.000	0.000	0.000	0.000
Mn	0.001	0.000	0.000	0.001	0.006	0.005	0.006	0.006
Mg	0.008	0.007	0.008	0.012	1.554	1.041	1.573	1.508
Ca No	0.979	0.930	0.977	0.949	0.005	0.002	0.003	0.002
INA V	0.023	0.034	0.028	0.103	0.000	0.000	0.001	0.000
N D	0.000	0.001	0.001	0.002	0.000	0.000	0.000	0.000
Г 7-	-	-	-	-	0.000	0.000	0.000	0.000
	-	-	0.000	0.000	0.000	0.000	0.000	0.000
Charge	-0.020	0.015	-0.015	-0.170	0.011	0.000	0.010	-0.008
					7 0 ć	0.0 4	70.2	70 7
Fo					/8.6	82.4	79.3	/8./
CaOI	07.5	064	07.0	00.6	0.1	0.1	0.2	0.1
An	97.5	96.4	97.2	89.6				
Ab	2.5	3.4	2.7	9.9				
Or	0.0	0.1	0.01	0.5				

Table 1. Plagioclase and Olivine Compositions: Clast U.

As analyzed here. Molar proportions are: Olivine, Fo - Mg_2SiO_4 , CaOl - Ca_2SiO_4 ; plagioclase An – anorthite, Ab – albite, Or - orthoclase. *Charge* is total charge on mineral formula, ideally is zero.

•

	pigeonite	pigeonite	pigeonite	pigeonite	augite	augite	augite	augite
	L1 2/26	L1 2/16	L1 6/15	L2 3/11	L3 4/05	L5 6/08	L2 3/28	L3 4/13
SiO_2	55.55	55.52	55.14	55.10	54.20	55.31	51.24	51.16
TiO_2	0.22	0.18	0.21	0.26	0.98	0.25	2.17	2.70
Al_2O_3	1.32	1.23	1.46	1.34	1.22	1.15	2.41	2.25
Cr_2O_3	0.56	0.52	0.59	0.54	0.37	0.52	0.47	0.45
FeO	10.76	10.73	10.11	10.12	12.51	7.71	9.11	7.65
NiO	0.00	0.01	0.00	0.01	0.00	0.03	0.01	0.00
CoO	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.25	0.26	0.25	0.28	0.33	0.23	0.25	0.24
MgO	29.02	28.95	27.97	26.68	22.50	24.68	17.17	16.83
CaO	2.21	2.84	4.15	6.20	8.55	10.64	17.62	19.10
Na ₂ O	0.01	0.00	0.02	0.01	0.01	0.01	0.09	0.13
K ₂ O	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
P_2O_5	0.03	0.00	0.01	0.01	0.00	0.00	0.02	0.03
ZrO_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	99.95	100.26	99.92	100.54	100.67	100.56	100.57	100.54
Normalization								
Si	1 973	1 967	1 963	1 960	1 969	1 972	1 888	1 88/
Ti	0.006	0.005	0.006	0.007	0.027	0.007	0.060	0.075
A1	0.000	0.005	0.000	0.007	0.027	0.007	0.000	0.075
Cr	0.055	0.051	0.001	0.050	0.032	0.040	0.104	0.013
Fe	0.320	0.318	0.301	0.301	0.380	0.230	0.281	0.236
Ni	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Co	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000
Μσ	1 537	1 529	1 484	1 415	1 218	1 312	0.943	0.000
Ca	0.084	0.108	0.158	0.237	0.333	0.407	0.695	0.754
Na	0.001	0.000	0.001	0.001	0.001	0.001	0.007	0.009
K	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
P	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
T 7r	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Change	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Charge	0.032	0.027	0.010	0.004	-0.045	0.019	0.012	0.027
Wo	4.3	5.5	8.1	12.1	17.2	20.9	36.2	39.4
En	79.2	78.2	76.4	72.5	63.1	67.3	49.1	48.3
Fs	16.5	16.3	15.5	15.4	19.7	11.8	14.6	12.3

Table 2. Pyroxene Compositions: Clast U.

As analyzed here. Molar proportions are: $Wo = CaSiO_3$; $En = MgSiO_3$; $Fs = MgSiO_3$. *Charge* is total charge on mineral formula, ideally is zero.

	armalcolite	*armalcolite	ilmenite	ilmenite	chromite
SiO ₂	0.15	0.81	0.23	1.18	0.70
TiO ₂	69.81	66.87	52.59	51.76	2.34
Al_2O_3	1.32	1.38	0.07	0.09	12.59
Cr_2O_3	6.07	5.73	0.40	0.44	48.32
FeO	11.31	15.70	40.17	37.22	29.49
NiO	0.01	-	0.00	0.01	0.00
CoO	0.02	-	0.00	0.01	0.02
MnO	0.20	0.14	0.69	0.50	0.40
MgO	1.84	1.87	3.81	6.52	4.28
CaO	3.97	3.65	0.70	0.54	0.23
Na ₂ O	0.00	-	0.00	0.01	0.05
K_2O	0.01	-	0.00	0.01	0.00
P_2O_5	0.00	-	0.00	0.00	0.01
ZrO_2	3.93	3.66	0.02	0.00	0.01
Total	98.64	99.81	98.70	98.28	98.43
Normalization To Cations	3	3	2	2	3
Si	0.006	0.031	0.006	0.029	0.024
Ti	2.030	1.910	0.979	0.944	0.061
Al	0.060	0.062	0.002	0.003	0.510
Cr	0.185	0.172	0.008	0.008	1.314
Fe	0.366	0.499	0.832	0.755	0.848
Ni	0.000	-	0.000	0.000	0.000
Co	0.001	-	0.000	0.000	0.000
Mn	0.007	0.005	0.014	0.010	0.012
Mg	0.106	0.106	0.140	0.236	0.219
Ca	0.164	0.148	0.019	0.014	0.008
Na	0.000	-	0.000	0.000	0.003
Κ	0.001	-	0.000	0.000	0.000
Р	0.000	-	0.000	0.000	0.000
Zr	0.074	0.068	0.000	0.000	0.000
Charge	0.464	0.254	-0.020	-0.045	-0.011
Ilm			81.4	71.3	
Geik			13.8	22.3	
Esk			0.4	0.4	

Table 4. Oxide Minerals in Clast U.

•

As analyzed here, except * from Treiman and Drake (1983). Molar proportions are for ilmenite: $IIm = FeTiO_3$; Geik = MgTiO_3; Esk = Cr₂O₃. *Charge* is total charge on mineral formula, assumes all Ti is +4; ideally *Charge* is zero.

			Ma anita	Magnesian
		Mg-suite	<i>Mg-suite</i>	Feldspathic Granulite,
Character	Clast U	Norite	Gabbronorite	Impact Melt
Pyroxene	LoCa > HiCa	LoCa > HiCa	HiCa > LoCa	LoCa > HiCa
FeO/MgO	Lower	Lower	Higher	Lower
Cr_2O_3	Lower	Higher	Lower	Higher or Lower
Plagioclase	An89-97	> An88	< An90	An95-97
Minor Minerals				
Kspar	Absent	Present	Present	Absent
Ca-phosphate	Present	Present, more	Present, less	Rare
Cr-Al-spinel	Cr-rich	Cr-rich	Al-rich	Cr-rich and Al-rich
Ilmenite	Present	Present	Common	Rare
Armalcolite	Present	Present	Rare	Absent
Rutile	Present	Present	Rare	Absent
Zircon	Absent	Present	Absent	Absent
Zr-Nb mins	Zr-armalcolite	Present	Absent	Absent

Table 5. Comparison of Clast U Mineralogy to Magnesian Suite Noritic Lithologies and Magnesian Feldspathic Granulites & Impact melts

Criteria for classification from James and Flohr (1983) and Norman et al. (1995), see Figure 8. Characteristics of magnesian-norites in boldface, those of magnesian gabbronorites in italics. Characteristics of magnesian feldspathic granulites and impactites from Takeda et al. (2006); Treiman et al. (2010). Characteristics of Clast U that fit both or neither magnesian norite nor gabbronorite shown in normal typeface.

Set/Point	1/3	1 / 4	1 / 5	1 / 6	1 / 7	1 / 8	1/9	1 / 10	1 / 11
SiO ₂	39.14	40.09	40.87	40.13	38.93	38.89	39.00	38.94	38.39
TiO_2	0.04	0.04	0.04	0.03	0.04	0.06	0.06	0.05	0.05
Al_2O_3	0.79	0.91	0.88	0.26	0.15	0.21	0.29	0.70	0.87
Cr_2O_3	0.05	0.04	0.05	0.04	0.05	0.05	0.05	0.05	0.05
FeO	15.88	15.88	16.26	16.95	16.26	16.08	16.06	16.05	15.82
MnO	0.21	0.22	0.22	0.21	0.23	0.23	0.22	0.22	0.21
MgO	43.33	42.96	41.62	42.47	43.90	43.75	43.61	43.53	42.75
CaO	0.37	0.41	0.37	0.15	0.09	0.09	0.11	0.22	0.27
Total	99.82	100.56	100.30	100.26	99.66	99.36	99.40	99.77	98.42
Co ppm	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl	bdl
Ni ppm	58.6	27.1	41.0	62.9	53.4	71.5	74.3	57.4	72.1
Si	0.990	1.009	1.037	1.018	0.986	0.987	0.990	0.985	0.985
Ti	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Al	0.024	0.027	0.026	0.008	0.005	0.006	0.009	0.021	0.026
Cr	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Fe	0.336	0.334	0.345	0.359	0.344	0.341	0.341	0.340	0.339
Mn	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Mg	1.634	1.612	1.575	1.605	1.657	1.656	1.651	1.642	1.635
Ca	0.010	0.011	0.010	0.004	0.002	0.002	0.003	0.006	0.008
Fo	83	83	82	82	83	83	83	83	83
Fe/Mn	73	71	75	78	70	69	73	71	76
Chg	0.006	0.048	0.103	0.045	-0.022	-0.016	-0.008	-0.006	-0.001
Set/Point	1/12	1/13	1/14	1/15	2/2	2/3	3/2	3/3	average
Set/Point	1 / 12 38 70	1 / 13 38 74	1 / 14	1 / 15	2/2	2/3	3 / 2	3/3	average
Set/Point SiO ₂ TiO ₂	1 / 12 38.70 0.05	1 / 13 38.74 0.05	1 / 14 39.01 0.05	1 / 15 39.48 0.06	2 / 2 38.62 0.04	2 / 3 38.57 0 04	3 / 2 38.95 0 04	3 / 3 38.96 0.05	average 39.14 0.04
Set/Point SiO ₂ TiO ₂ Al ₂ O ₂	1 / 12 38.70 0.05 0.87	1 / 13 38.74 0.05 0.23	1 / 14 39.01 0.05 0.17	1 / 15 39.48 0.06 0.89	2 / 2 38.62 0.04 0.26	2 / 3 38.57 0.04 0.18	3 / 2 38.95 0.04 0.56	3 / 3 38.96 0.05 0.58	average 39.14 0.04 0.52
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₂	1 / 12 38.70 0.05 0.87 0.05	1 / 13 38.74 0.05 0.23 0.05	1 / 14 39.01 0.05 0.17 0.09	1 / 15 39.48 0.06 0.89 0.18	2 / 2 38.62 0.04 0.26 0.06	2 / 3 38.57 0.04 0.18 0.05	3 / 2 38.95 0.04 0.56 0.06	3 / 3 38.96 0.05 0.58 0.05	average 39.14 0.04 0.52 0.06
$\frac{\text{Set/Point}}{\text{SiO}_2}$ TiO_2 Al_2O_3 Cr_2O_3 FeO	1 / 12 38.70 0.05 0.87 0.05 15.89	1 / 13 38.74 0.05 0.23 0.05 16.08	1 / 14 39.01 0.05 0.17 0.09 16.16	1 / 15 39.48 0.06 0.89 0.18 15.46	2 / 2 38.62 0.04 0.26 0.06 16.08	2/3 38.57 0.04 0.18 0.05 16.16	3 / 2 38.95 0.04 0.56 0.06 15 34	3 / 3 38.96 0.05 0.58 0.05 15 44	average 39.14 0.04 0.52 0.06 15.99
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22	1 / 15 39.48 0.06 0.89 0.18 15.46 0.24	2 / 2 38.62 0.04 0.26 0.06 16.08 0.23	2/3 38.57 0.04 0.18 0.05 16.16 0.23	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21	3/3 38.96 0.05 0.58 0.05 15.44 0.22	average 39.14 0.04 0.52 0.06 15.99 0.22
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42 78	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55	1 / 15 39.48 0.06 0.89 0.18 15.46 0.24 42.05	2 / 2 38.62 0.04 0.26 0.06 16.08 0.23 43.10	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16
$\begin{array}{c} \hline Set/Point \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Cr_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ \end{array}$	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77	2 / 2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8	1 / 15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0	2 / 2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56 1	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51+33
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe Mn	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340 0.005	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343 0.005	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344 0.005	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332 0.005	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345 0.005	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347 0.005	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325 0.005	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327 0.005	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340 0.005
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe Mn Mg	1/12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340 0.005 1.630	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343 0.005 1.652	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344 0.005 1.650	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332 0.005 1.608	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345 0.005 1.648	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347 0.005 1.649	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325 0.005 1.657	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327 0.005 1.655	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340 0.005 1.636
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe Mn Mg Ca	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340 0.005 1.630 0.009	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343 0.005 1.652 0.002	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344 0.005 1.650 0.002	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332 0.005 1.608 0.011	2 / 2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345 0.005 1.648 0.003	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347 0.005 1.649 0.003	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325 0.005 1.657 0.009	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327 0.005 1.655 0.008	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340 0.005 1.636 0.006
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe Mn Mg Ca Fo	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340 0.005 1.630 0.009 83	1 / 13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343 0.005 1.652 0.002 83	1 / 14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344 0.005 1.650 0.002 83	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332 0.005 1.608 0.011 83	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345 0.005 1.648 0.003 83	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347 0.005 1.649 0.003 83	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325 0.005 1.657 0.009 84	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327 0.005 1.655 0.008	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340 0.005 1.636 0.006 83
Set/Point SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Total Co ppm Ni ppm Si Ti Al Cr Fe Mn Mg Ca Fo Fo Fe/Mn	1 / 12 38.70 0.05 0.87 0.05 15.89 0.23 42.78 0.32 98.89 bdl 37.2 0.989 0.001 0.026 0.001 0.340 0.005 1.630 0.009 83 68	1/13 38.74 0.05 0.23 0.05 16.08 0.23 43.41 0.09 98.88 bdl 41.9 0.989 0.001 0.007 0.001 0.343 0.005 1.652 0.002 83 68	1/14 39.01 0.05 0.17 0.09 16.16 0.22 43.55 0.08 99.33 bdl 45.8 0.992 0.001 0.005 0.002 0.344 0.005 1.650 0.002 83 73	1/15 39.48 0.06 0.89 0.18 15.46 0.24 42.05 0.41 98.77 bdl 14.0 1.013 0.001 0.027 0.004 0.332 0.005 1.608 0.011 83 65	2/2 38.62 0.04 0.26 0.06 16.08 0.23 43.10 0.09 98.48 bdl 32.5 0.990 0.001 0.008 0.001 0.345 0.005 1.648 0.003 83 70	2/3 38.57 0.04 0.18 0.05 16.16 0.23 43.13 0.11 98.47 bdl 48.8 0.989 0.001 0.006 0.001 0.347 0.005 1.649 0.003 83 71	3 / 2 38.95 0.04 0.56 0.06 15.34 0.21 43.90 0.33 99.41 bdl 56.1 0.986 0.001 0.017 0.001 0.325 0.005 1.657 0.009 84 71	3/3 38.96 0.05 0.58 0.05 15.44 0.22 43.88 0.29 99.48 bdl 65.4 0.986 0.001 0.017 0.001 0.327 0.005 1.655 0.008 84 71	average 39.14 0.04 0.52 0.06 15.99 0.22 43.16 0.22 99.37 bdl 51±33 0.995 0.001 0.016 0.001 0.340 0.005 1.636 0.006 83 71

Table 3. EMP Analyses of Olivine for Trace Elements

Analytical conditions described in text. All analyses for Co are below the 3σ detection limit of 40 ppm (bdl). Individual analyses for Ni have 3σ detection limits of ~40 ppm. Average is of all 17 points; uncertainty on Ni is 2σ of the population. For the average analysis, the 3σ detection limit for Ni is ~10 ppm. Normalizations to three cations; Fo is molar Mg/(Mg+Fe); Fe/Mn is molar; *Chg* is charge on normalized formula of 3 cations and 4 O²⁻; ideally, each analysis should be charge-balanced with *Chg* = 0.

