Revision 3

INTRINSIC CONDITIONS OF MAGMAS FROM THE LUNAR CRATER VOLCANIC FIELD

10	(NEVADA): IMPLICATIONS FOR INTERNAL PLUMBING AND MAGMA ASCENT.
11	
12	
13	
14	
15	
16	Joaquín A. Cortés ^{1,2*} , Eugene I. Smith ³ , Greg A. Valentine ¹ , Racheal Johnsen ³ , Christine
17	Rasoazanamparany ⁴ , Elisabeth Widom ⁴ , Mai Sas ^{3,5} , Dawn Ruth ¹ .
18	
19	
20	
21	
22	
23	
24	Department of Geology, 411 Cooke Hall, Buffalo, NY 14260, University at Buffalo, State University
23	01 New 101K, USA. ² School of Coosciences. The University of Edinburgh Cront Institute. The King's Duildings. West
20	Moine Dood Edinburgh EH0 21W LIK
21	³ Department of Gooscience 4505 S. Maryland Parkway, Las Vagas, NV 80154. University of Neveda
20	Las Vegas USA
30	⁴ Department of Geology 114 Shideler Hall Oxford OH 45056 Miami University USA
31	⁵ Department of Geology 516 High Street Bellingham WA 98225-9080 Western Washington
32	University USA
33	
34	
35	[*] Corresponding Author, caco@buffalo.edu
36	
37	
38	
39	
40	
41	
42 43	American Mineralogist, special issue "Volcanic Rocks"

ABSTRACT

44

45

46 The northern part of the Lunar Crater Volcanic Field (central Nevada, USA) contains more than one 47 hundred Quaternary basaltic cones and maars and related eruptive products. We focused on four 48 informal units of different ages and locations in the field to test the compositional variability and 49 magma ascent processes within the time span of an individual eruption and the variability between very 50 closely spaced volcanoes with different ages. Based in whole-rock chemistry, mineral chemistry and 51 the calculation of intrinsic properties (pressure, temperature and oxygen fugacity) we found that 52 individual magma batches were generated in the asthenospheric mantle from a heterogeneous garnet 53 lherzolite/olivine websterite source by ~3-5% partial melting. Each magma batch and temporary deep 54 reservoir was a separate entity rather than part of a continuous long-lived reservoir. Magmas ascended 55 relatively fast, stalled and crystallized in the uppermost several kilometres of the mantle near the base 56 of the crust and also stalled at mid-crustal levels with minor or no geochemical interaction with 57 surrounding rocks. Our data also suggest that volcanoes erupting within certain time windows have 58 similar source characteristics and ascent processes whether they are located within a few hundred 59 meters of each other or are separated by many kilometres. 60 Keywords: Lunar Crater Volcanic Field, monogenetic volcanism, whole-rock chemistry, mineral 61 62 chemistry, geothermobarometry. 63 64 **INTRODUCTION**

65

Most of Earth's volcanism occurs at plate boundaries, in association with rifting or subduction, or in high magma-flux intraplate hotspots. However, substantial volcanism also occurs within continents and ocean basins, forming intraplate volcanic fields with relatively low magma fluxes and 69 commonly consisting of small-volume mafic volcanoes with alkaline affinities. Continental intraplate 70 volcanic fields can consist of one to several hundred individual volcanoes, most of which are 71 monogenetic (erupt in a single episode lasting weeks to years), and have lifespans of a few million 72 years (Connor and Conway, 2000). Unlike "hotspot" systems, these fields tend to have a diffuse spatial 73 distribution of eruptive centers and in many cases have no clear migration of eruptive activity with 74 time. Volcanic landforms in intraplate fields are dominated by scoria cones, spatter/agglomerate ramparts, lava fields, maars, and tuff cones, in proportions that depend upon the relative dominance of 75 76 explosive versus effusive activity and the local hydrologic environment (Valentine and Gregg, 2008; 77 White and Ross, 2011; Brown and Valentine, 2013).

78 Petrologic studies of intraplate volcanism have tended to focus on "big picture" questions such 79 as the nature of the mantle, or the broad evolution of regional magmatic activity over millions of years; 80 however, recent studies have begun to explore the details of volcanic fields with much higher spatial 81 and temporal resolution, including the complexities often recorded within individual monogenetic 82 volcanoes. An advantage of a study of low magma-volume monogenetic volcanoes is that they may 83 display compositional complexities that are closely related to mantle source characteristics, which may 84 be totally overprinted by crustal reservoir processes in higher volume-flux, long-lived volcanoes. 85 Geochemical and volcanological data from the Plio-Pleistocene Southwest Nevada Volcanic Field in 86 the western U.S.A. for example, suggest that individual volcanoes tap domains of partial melt that are 87 progressively decreasing in volume and degree of partial melting with time (Valentine and Perry, 88 The domains are inferred to reflect local enrichments in volatile components within the 2007). 89 lithospheric mantle source that has been subjected to repeated metasomatic events over ~1 Ga. 90 Valentine and Perry (2006, 2007) suggested that the length scales of the partial melt domains are on the 91 order of kilometers in size and the size of each volcano is proportional to its melt domain size. Brenna 92 et al. (2012) showed how the Jeju Volcanic Field (South Korea) records deepening, increasing degree 93 of melting, and increased melt volumes through time. Detailed studies of individual volcanoes within

94 the Jeju field indicate that each eruption tapped a domain of partial melt on the order of a few 95 kilometers in size and each with a slightly unique composition that may vary within individual 96 eruptions, reflecting mantle heterogeneity (Brenna et al., 2010). The Auckland Volcanic Field (New 97 Zealand) shows similar behavior, with the volumes of individual volcanoes being correlated positively 98 with the degree and spatial scale of partial melting in the asthenospheric source, but with large-volume 99 melt batches interacting more extensively with lithospheric melts compared to smaller batches (McGee 100 et al., 2013). Within the Auckland field, detailed data from the Motukorea volcanic center illustrates 101 complex magma source history even within an individual monogenetic eruption that would commonly 102 be assumed to be a "single batch." Other detailed studies support the perspective that despite their relatively small volumes (typically less than $\sim 1 \text{ km}^3$) and short lives; monogenetic volcanoes are 103 104 accompanied by relatively complex processes related to magma sources, ascent, and temporary storage 105 (e.g; Paricutín: Rowe et al., 2011; Erlund et al., 2009; Pioli et al., 2008; Luhr and Simkin, 1993; 106 Jorullo: Johnson et al., 2008). Questions remain, however, as to whether the temporal and spatial 107 scales of mantle source domains and the subsequent ascent and eruption of magmas have consistent 108 relationships within and between volcanic fields.

109 In this work we focus on the products of four monogenetic volcanoes in the Lunar Crater 110 Volcanic Field (central Nevada, USA) to explore two questions. (1) What are the compositional variability and magma ascent processes within the time span of an individual eruption? (2) What is the 111 112 variability between very closely spaced volcanoes with different ages? Trace element data presented 113 here suggest some degree of small-scale heterogeneity in the asthenospheric mantle, consistent with 114 isotopic data (Rasoazanamparany et al., in review). Thermodynamic calculations of intrinsic variables 115 show that parent melts ascended through two types of magma feeding systems: one in which magma 116 ponded at or just below the base of the crust, and a second where magmas also ponded at mid-crustal 117 levels. The volcanoes were fed by small magma batches that had essentially no chemical interaction 118 with the crust, and ascended rapidly between storage levels and to the surface. In the cases studied,

two early eruptions tapped slightly variable mantle source rocks, and the two younger eruptions tapped a different source but one that was relatively homogeneous in space over a length scale of several kilometres and across a time span of several tens of thousands of years. Differences in composition and feeding systems between individual volcanoes seems to be more sensitive to time windows than to spatial variability in the source or crustal plumbing systems.

- 124
- 125

GEOLOGICAL SETTING AND PREVIOUS WORK

126

127 The Lunar Crater Volcanic Field (LCVF) lies at the northern end of a belt of scattered, Plio-128 Pleistocene basaltic fields that extends north-northeast from Death Valley (California) into central 129 Nevada (Vaniman et al., 1982). The field is in the Basin and Range Province, a broad area of 130 extensional tectonics, but is located centrally within the Province while most other young volcanic 131 fields are found around its edge (e.g., Smith and Leudke, 1984; Brown et al. 2010; Gazel et al., 2012). 132 The LCVF contains more than 100 individual cones with attendant lava fields, and four maars 133 (Valentine et al., 2011; Hintz and Valentine, 2012; Valentine and Cortés, 2013), covering an area of 80 134 by 20 km extending from the Reveille Range to the Pancake Range (Figure 1).

135 Previous work in the LCVF has focused on geochemical and petrologic evolution of the field as 136 a whole or of major parts of it, differently from our focus on more local scales (Scott, 1969; Scott and 137 Trask, 1971; Bergman et al., 1981; Bergman, 1982; Lum, 1986; Kargel, 1986); see summary by Foland 138 and Bergman (1992). Several authors used isotopic compositions of LCVF rocks along with samples 139 from many volcanic fields in the western U.S.A. to define regional mantle isotopic domains (Lum et 140 al., 1989; Menzies, 1989; Farmer et al., 1989). In general, isotopic, trace element, and xenolith 141 geothermometry data (Smith, 2000) suggest that the LCVF magmas are sourced in the asthenosphere 142 with characteristics of ocean island basalt (OIB) (Foland and Bergman, 1992), and with evidence of 143 early contamination by crustal rocks (mainly carbonates beneath the early Pliocene Reveille Range

9/24

144 volcanoes; Yogodzinski et al., 1996) and by lithospheric mantle (potentially veinlets of intermediate
145 composition in the younger Pancake Range volcanoes; Dickson, 1997).
146
147 FIELD DESCRIPTION, STRATIGRAPHY AND PETROGRAPHY

148

149 We focus on four different basaltic eruptive units (red area in Figures 1, 2), which are here 150 informally named (from youngest to oldest): Marcath (a.k.a. Black Rock, with cosmogenic exposure age of 38 ± 10 ka; Shepard et al., 1995), Giggle Springs and Mizpah (40 Ar/ 39 Ar ages of $< 81 \pm 5$ ka and 151 152 620-740 ka, respectively; Heizler, 2013) and Hi Desert basalts. Note that we infer the Giggle Springs 153 age to be close to its 81 ka maximum based on the degree of lava surface modification. Field 154 relationships indicate that Hi Desert basalt is older than Giggle Springs, but it is uncertain whether it 155 predates or postdates the Mizpah eruption. The vents for the Giggle Springs, Mizpah, and Hi Desert 156 basalts are located within ~500-600 m of each other, and allow us to assess variations between closely 157 spaced, but different aged, volcanoes as well as potential variations within individual units. The vent 158 for Marcath is ~6 km southeast of these three, allowing to test for variability in magmatic processes 159 that might be related to time rather than co-location.

160

161

162 Hi Desert Basalt (Qhib, age undetermined)

163

The Hi Desert basalt (Figure 2) crops out as remnants of two small agglomerate cones, 10-20 m high and ~150 m diameter, that are surrounded and partly buried by later lavas and sediments. Hi Desert products are basalts to trachybasalts (Figure 3) notable in the field for the abundant euhedral plagioclase megacrysts, ~1-1.5 cm in size and rarely up to 5 cm. In thin section (neglecting megacrysts), the rock contains ~20% phenocrysts of subhedral olivine (2 and 3 mm in size), 5-10% of

169 phenocrysts of subhedral clinopyroxene (0.5 to 2 mm), and 10% euhedral plagioclase (1 to 2 mm), in a 170 groundmass of plagioclase and ferromagnesian minerals. 171 172 Mizpah Basalt (Qmzb; 620-740 ka) 173 174 The Mizpah products form an elongate (~2.5 km long, ~800 m wide, 10-15 m thick) lava field 175 with a subdued surface that extends westward from its small, 40 m-high scoria cone source (Figure 2). 176 Mizpah rocks are trachybasalts (Figure 3) and typically porphyritic, containing < 10% subhedral 177 olivine (0.1-0.2 mm) with sparse ~2 mm olivine phenocrysts; 5% subhedral to euhedral clinopyroxene 178 (0.1-0.2 mm); and <10% euhedral plagioclase phenocrysts (0.3-0.6 mm) in some cases with sieve 179 textures. The groundmass has a trachytic texture containing plagioclase and ferromagnesian minerals.

180

181 Giggle Springs basalt (Qgsb; $<81 \pm 5$ ka)

182

183 Giggle Springs products consist of two tephrite/basanite lava fields (5 km and 1.6 km long, 2-5 184 m thick; Figures 2, 3) that emanate from the ends of an agglomerate rampart (fissure vent), and partly 185 overlie and partly surround Mizpah lava. The two Giggle Springs lava fields have moderately 186 modified lava surfaces, where rafts of proximal agglomerate are preserved as mounds but areas 187 between mounds have significant accumulations of eolian sediment and desert pavement. Lava levees 188 and a drained lava channel are well preserved within a few hundred meters of the vent area. 189 Megacrysts of olivine and clinopyroxene (up to ~2 cm) and plagioclase (up to ~1 cm) are abundant and 190 ubiquitous in Giggle Springs products. Samples of the lavas contain (neglecting the megacrysts) <5% 191 phenocrysts of subhedral olivine and clinopyroxene (0.1 - 0.2 mm) in an intergranular groundmass of 192 plagioclase and ferromagnesian minerals.

193

7

194 Marcath/Black Rock Basalt (Qm; 38 ± 10 ka)

195

196 Marcath volcano consists of a ~150 m high, elongate scoria/agglomerate cone with a basal 197 diameter of 900 \times 500 m. The cone partly buries a >900 m-long agglomerate rampart that likely 198 records an early fissure-fed phase of the eruption, and is open to the west where as lavas flowed 199 outward to form two compound lava fields as flows diverted around an older cone onto the adjacent 200 valley floor (Figure 2). The 10-25 m-thick lava fields are 3.2 and 3 km long, and have maximum 201 widths of 1.7 and 1.4 km, respectively. Tephra fall deposits extend south and northeast from the 202 volcano, with thicknesses >4 m near the cone; the northeast lobe can be traced continuously up to 5 km 203 from the vent (Johnson et al., 2014); local patches of ash suggest that it originally extended farther, but 204 wind and water reworking have made it impossible to define the original outer edge of the deposit. The 205 Marcath products are basanites to trachybasalts (Figure 3), ubiquitously containing centimeter-sized 206 megacrysts of plagioclase, olivine, clinopyroxene and amphibole. Under the microscope the samples 207 (neglecting megacrysts) are porphyritic with $\sim 10\%$ of phenocrysts of subhedral olivine (0.1 and 0.2 208 mm), and ~10% of euhedral (0.1-0.3 mm) plagioclase. The groundmass is microcrystalline with 209 microlites of plagioclase and ferromagnesian minerals. 210

- 211
- 212

ANALYTICAL TECHNIQUES

213

214 A suite of 24 samples (Table 1) was collected from the four units that are the focus of the study 215 for petrography, whole-rock chemistry, mineral chemistry and geochronology. Samples were also 216 collected for isotopic analyses (Rasoazanamparany et al., in review.). Petrography was determined 217 using the petrographic microscope combined with the study of back-scattered electron images taken 218 with a Hitachi S-4000 scanning electron microscope (SEM) at the University of Buffalo, equipped with

9/24

an energy dispersive X-ray spectrometer to qualitatively determine the composition of the main mineralphases in the samples.

221 Whole rock chemistry samples were chipped using a Bico Badger and powdered in a Bico 222 Shatterbox for three minutes. Approximately 20 g of powdered samples were weighed in porcelain 223 crucibles and placed in a furnace at 110 °C for two hours, cooled and weighed again, and then placed in 224 a 1000 °C furnace for an additional 1.5 hours in order to measure the loss on ignition. For major-225 element analyses with x-ray fluorescence spectrometry (XRF), sample powders were mixed with a 50-226 50 mix of Li-tetraborate and Li-metaborate, melted, and rapidly cooled to form glass disks. The glass 227 disks were ground on 30-micron diamond abrasion pads to expose a fresh and flat analytical surface 228 and then cleaned with isopropanol. Sample powders were prepared for trace element analysis on the 229 XRF by mixing 3 g of binder and 12 g sample powder. Samples were then placed on a Buehler 230 Specimen Mount Press and pressed to pellets. A Panalytical Axios wavelength dispersive XRF was 231 used for both major and trace element analyses at University of Nevada Las Vegas (UNLV). Elements 232 analyzed with the glass fusion disks include SiO₂, Al₂O₃, TiO₂, Fe₂O₃(t), MgO, Na₂O, K₂O, MnO, 233 CaO, and P₂O5, all reported in weight percent. Elements analyzed with the pressed pellets include Sc, 234 V, Ni, Cu, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Hf, Pb, Th, and U, all reported in parts per million (ppm). The 235 detection limits for most elements is <5 ppm, except La (30 ppm) and Nb (10 ppm).

Rare earth elements were analyzed at Activation Laboratories in Ancaster, Ontario, using a Li tetraborate-Li-metaborate fusion method on an ICP-MS (see <u>www.actlabs.com</u> for analytical procedure
 and detection limits)

Main mineral phases were analysed using the JEOL JXA-8900 electron microprobe at UNLV and at the Cornell Center for Materials Research (CMMR) at Cornell University. Conditions of the analysis on both instruments were 15 kV current, a 5-µm beam for ferromagnesian phases, and a 10µm beam for plagioclase. In the latter, sodium was analysed first in order to avoid loss in the counts of this element. Consistent with hand specimen and petrographic studies, important phenocrysts phases

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4812 9/24
244	are olivine, clinopyroxene, plagioclase and some amphibole, as well as gabbroic and ultramafic
245	enclaves from the Marcath unit. Analyzable glass was not found in the groundmass of the samples
246	Melt inclusions were not detected in any mineral phases; therefore, calculations of the intrinsic
247	conditions of the different systems are based on the equilibrium between mineral phases, rather than
248	between mineral phases and glass (Putirka, 2008).
249	
250	ANALYTICAL DATA AND RESULTS
251	
252	Major and Trace Elements
253	
254	Samples from the four volcanoes are tephrites/basanites and basalts to trachybasalts (Table 2,
255	Figure 3) with SiO ₂ varying from 43 to 50 wt. %, MgO from 6 to 12 wt. %, and CaO from 8 to 11 wt.
256	%; this range occurs across the four volcanoes as well as within two of the individual volcanoes.
257	Although the Hi Desert basalt seems to be slightly more evolved than the other units, overall no clear
258	trends can be observed in a set of element-versus-MgO variation diagrams (Figure 4).

259 Rare-earth elements compared to OIB basalts strongly suggest an OIB source for the melts 260 (Table 2, Figures 5, 6; Sun and McDonough, 1989). Slight differences in the slope of the REE plots 261 (Figure 5) are well illustrated in a plot of La/Yb vs. Zr/Nb (Figure 7a); Marcath and Giggle Springs units are similar and relatively tightly clustered, while Hi Desert and Mizpah have broader, overlapping 262 263 fields. Consistent with the main crystallizing phases (olivine, orthopyroxene, clinopyroxene), we have 264 selected Th and Ta as incompatible elements and Cr as compatible (Table 4a) to test for degree of partial 265 melting and further mineral fractionation of these melts. In a plot of Th/Ta vs. Cr/Ta (Figure 7a), no 266 significant differences in the degree of fractionation (Th/Ta) of the source are observed although the 267 figure suggests a variable degree of partial melting (Cr/Ta) in the units (Ta is slightly more incompatible 268 than Th; Tables 4a,b). In a plot of Dy/Yb vs La/Yb (Figure 7b) to test for garnet or spinel in the source,

269	no clear differences in the ratio Dy/Yb are observed (~0.08 to 0.18). Following Barth et al., (2000), we
270	have also plotted the ratio La/Nb vs Nb [ppm] (Figure 8a) and the ratio Nb/Ta vs Nb [ppm] (Figure 8b)
271	to test for crustal contamination. Overall, the samples cluster close to the chondritic ratio although the
272	amount of Nb is several orders of magnitude higher than the sources proposed by Barth et al. (2000).
273	
274	Mineral Chemistry
275	
276	Olivine phenocrysts occur in all the units, both as phenocrysts and in the groundmass, and have
277	a range of compositions from Fo57 to Fo87 for Hi Desert, Fo63 and Fo87 for Mizpah, Fo67 and Fo87 for
278	Giggle Springs and for Marcath (Table 3a, Figure 9a), although intermediate-composition olivine is
279	less abundant in Marcath units.
280	Clinopyroxene phenocrysts and groundmass crystals are generally less common than the olivine
281	phase, but occur in all samples. The main pyroxene phase is diopside in Hi Desert and Mizpah samples,
282	and both diopside and augite (based on the classification of Morimoto, 1989) in Giggle Springs and
283	Marcath. The fact that several of the analyses plot above the diopside limit (Table 3b, Figure 9b) is due
284	to a relatively high Al ³⁺ content in their formula, as they contain amounts of the jadeite end-member
285	(NaAlSi ₂ O ₆), equivalent to a subtle omphacitic component in clinopyroxenes from Hi Desert, Giggle
286	Springs, and Marcath. This suggests relatively higher-pressure crystallization conditions compared to a
287	normal Ca-Mg-Fe ²⁺ clinopyroxene (Morimoto, 1989) and requires the charge balance proposed by
288	Papike et al., (1974) and Cameron and Papike (1981) to estimate iron speciation in the pyroxene

289 formula.

Plagioclase (Table 3c, Figure 9c) has a relatively narrow range of labradoritic compositions in Mizpah, Giggle Springs, and Marcath rocks (An_{61-68} , An_{60-69} , and An_{57-72} , respectively), with a few phenocrysts of an andesine-oligoclase-like phase (~ An_{30}). A similar andesine-oligoclase phase was observed in Hi Desert, however plagioclase phenocrysts range in composition between An_{48} and An_{71} ;

a wider range than found in the other three units.
Amphibole was found exclusively in products from Marcath volcano as a phenocryst phase and
also as the main phase of <4-cm mafic inclusions that are common around the Marcath edifice and in
the proximal areas of Marcath lava flows (Figure 2). Marcath amphibole compositions vary from
pargasite to magnesiohastingite and kaersutite (Table 3d, Figure 9d) based on the Leake et al. (1997)
cation allocation scheme and classification.

300

301 Intrinsic conditions of crystallization

302

The methods used here to calculate pressure, temperature and oxygen fugacity are based on mineral equilibria of the main crystallizing phases. There are two fundamental aspects considered in these calculations: (1) whether the pairs of mineral phases are in thermodynamic equilibrium (a nontrivial issue in volcanic rocks), and (2) how to determine one value of a given intrinsic condition, based on the calculation of such a value from a data set that is often composed of hundreds microprobe analyses.

309

Thermometry. Crystallization temperature was estimated using an olivine – clinopyroxene thermometer. There are several formulations of this equilibrium, originally developed by Powell and Powell (1974), all of them based of the interchange of Mg-Fe between olivine and augite:

313

317 One of its current formulations was proposed by Loucks (1996), wherein the equilibrium constant of 318 Equation (1) depends on temperature through a non-linear relationship that can be solved with a

319 numerical method. In order to assess whether the two mineral phases are in equilibrium we rely on the 320 equilibrium window proposed by Cortés et al. (2005). In their model, since the equilibrium olivine-321 melt can be equated with the equilibrium clinopyroxene-melt assuming the same melt, the value of the 322 equilibrium constant of the reaction (Equation 1) is constrained if the mineral phases are in 323 equilibrium. According to Cortés et al. (2005) the equilibrium constant, expressed as iron-magnesium 324 ratios, varies between 0.64 and 1.88 with a mean of 1.22. We also rely on the petrography of the 325 samples and assume that equilibrium is attained between two mineral phases in physical contact, 326 although the calculation is not performed on analyses on the interface between the two grains, to avoid 327 Ostwald ripening and elemental diffusion issues between the involved phases.

328

329 The composition of each mineral phase in Equation 1, using a large number of analyses, should 330 be normally distributed due to the inherent randomness in crystallization. Because expressing the free 331 energy at equilibrium *implies the calculation of a ratio* between two random variables in which each 332 follow a normal distribution (e.g. the chemical analyses of the mineral phases), the result of the 333 calculation will be a random variable that follows a Cauchy-Lorentz distribution. Since the expected 334 value and variance of a Cauchy-Lorentz distribution are undefined, the best estimation of a measure of 335 central tendency is the median while half the sample interquartile range (HIQR) is a robust estimator of 336 the spread of the statistical sample (e.g. all the calculations performed). The procedure is then used to 337 first calculate all the possible outcomes of temperature for mineral pairs that are assumed in 338 equilibrium, and then to select the median and HIQR of the calculated temperatures. Resulting 339 crystallization temperatures for Hi Desert and Mizpah rocks are between 1050-1100°C, compared to 900-1050°C for the younger Giggle Springs and Marcath units. 340

341

342 **Pressure.** The lack of glass also precludes crystallization geobarometric calculations based 343 upon melt-mineral phase equilibrium (e.g., clinopyroxene-melt; Putirka, 2008). Nimis and Ulmer

344 (1998) and Nimis (1999) suggest an alternative geobarometer that is based on the structural lattice of 345 clinopyroxene formed in equilibrium with a basaltic melt, such that its composition is not explicitly 346 needed. This geobarometer is relatively insensitive to temperature in alkaline compositions such as 347 those studied here. Because the calculation is performed directly from the composition of 348 clinopyroxene, it is desirable that the distribution of pressures follows a normal distribution if there is 349 one population of clinopyroxene. With this condition, it is straightforward to calculate the mean and 350 standard deviation of the pressure values. Calculated Hi Desert and Mizpah crystallization pressures 351 range between 0.9-1.3 GPa (~30-45 km). The younger units (Giggle Springs and Marcath) have 352 bimodal crystallization pressures with values between 1-1.3 GPa and between 0.3-0.6 GPa (~35-45 km 353 and 10-20 km, respectively).

354 Empirical observations of amphiboles from calc-alkaline intrusions (Hammarstron and Zen, 355 1986) show that the amount of total aluminium in amphiboles is proportional to pressure of 356 crystallization (see Ridolfi et al., 2010, for a summary of the different calibrations). Recently, Ridolfi 357 and Renzulli (2012) and Simakin et al. (2012a) have extended the original calibration to mafic products 358 and mafic enclaves, however more work remains to be done in order to have a robust geobarometer 359 based on this mineral phase. The accuracy of the Ridolfi et al. (2010) geobarometer is ± 0.3 GPa 360 (Simakin, pers. comm.) while the Simakin et al., (2012a) model has an accuracy of ± 0.05 GPa. We applied the Ridolfi and Renzulli (2012) model to a set of amphibole phenocrysts found in mafic 361 362 inclusions within the Marcath lava flow (Table 3d). According to this model, crystallization pressures 363 vary between 0.69-0.75 GPa, overlapping the lower range of values of the clinopyroxene-based 364 crystallization pressures described above. On the other hand, the Simakin et al., (2012a) model did not 365 produce meaningful results in our analyses (negative values), hence we favour the Ridolfi and Renzuli 366 (2012) model, conscious that it is an over-estimation of the pressure with an error of ~25%. The Ridolfi 367 and Renzulli (2012) model also provides temperature estimates between 1037-1070 °C (consistent with 368 the olivine-clinopyroxene-based crystallization temperatures stated above, taking into account the large

369 error in the calculation), oxygen fugacity between Δ NNO -0.2 and Δ NNO +0.5, and estimated water 370 content in the melt between 5-7 wt%. This range of water content is comparable to those estimated for 371 trachybasalts in the Southwest Nevada Volcanic Field, the nearest Quaternary volcanic field, ~200 km 372 to the south (Nicholis and Rutherford, 2004), and with the higher part of the water content range 373 determined for the Big Pine field, ~250 km west-southwest of LCVF (Gazel et al., 2012).

374

375 **Oxygen fugacity.** Oxygen fugacity estimates are based on the speciation of iron in the 376 clinopyroxene unit formula (Cortés et al., 2006, Simakin et al., 2012b). If the speciation of iron in the 377 clinopyroxene is not known (as it is always the case from a typical electron microprobe analysis), such 378 speciation is calculated based on the charge balance proposed by Papike et al., (1974) and Cameron 379 and Papike (1981). The calculation must also include the contribution of elements such as Na, Ti, Fe^{3+} 380 and Cr, which are not considered in the pyroxene quadrilateral. The intrinsic oxygen fugacity of the 381 system is then estimated assuming equilibrium between the clinopyroxene formula and the melt, 382 although the composition of the melt is not directly needed for the calculation (Cortés et al., 2006). If 383 the temperature is calculated using an independent method, it is possible to additionally determine the 384 absolute oxygen fugacity of the system. As with the barometry described above, one population of 385 clinopyroxene phenocrysts ought to produce values of intrinsic oxygen fugacity that are normally 386 distributed. Cortés et al. (2006) estimated that this approach has a sensitivity of ± 1 OFM unit.

387 Oxygen fugacity calculations using both Cortés et al. (2006) and Simakin et al. (2012b) 388 methods give comparable values of the oxidation state in the samples. For the older units (Hi Desert 389 and Mizpah) intrinsic oxygen fugacity relative to QFM buffer is estimated between Δ NNO+2 and 390 Δ NNO+4. For the younger magmas (Giggle Springs and Marcath) are relatively reduced with values of 391 intrinsic fugacity between Δ NNO+1 and Δ NNO+2, comparable with amphibole oxygen geobarometry 392 results.

9/24

393 Depth of partial melting and origin of the basaltic melts. Depths of partial melting were 394 estimated using two approaches: a silica-melt barometer (Lee et al., 2009), and an orthopyroxene-395 liquid geobarometer (Putirka, 2008); both calculations are performed using the whole-rock composition 396 of the basaltic products as a proxy of the equilibrium melt. The Lee et al. (2009) technique applies a 397 silica-based barometer that is based solely on the activity of silica in the melt. As a result, it is more 398 reliable and less sensitive to incompatible element variability and mantle composition than earlier 399 barometers (e.g. Wang et al., 2001). The Lee et al. (2009) barometer was calibrated using 433 basalt 400 compositions in equilibrium with olivine and orthopyroxene over a range of temperatures from 1110 to 401 1800 °C and pressures of 1 atmosphere to 7 GPa. Barometer calibration yielded an uncertainty of \pm 402 0.20 GPa (Lee et al., 2009). The thermometer generated is consistent with the barometer and has an 403 uncertainty of $\pm 3\%$ (Lee et al., 2009). When using this barometer, it is critical that the primary magma 404 contains both olivine and pyroxene. Further, the barometer is not calibrated for silica-undersaturated 405 rocks with < 40 wt. % SiO₂, and it is best to choose the most primitive basalt with MgO > 8.0 wt.% for 406 pressure and temperature calculations.

The orthopyroxene-barometer (Putirka, 2008) is calibrated for basalts with SiO_2 contents as low as 35 wt. %, will work for basalt with olivine and both clinopyroxene and orthopyroxene, and is independent of source composition (as long as pyroxene and olivine are in equilibrium with the source at the time of partial melting). Using clinopyroxene + olivine results in almost no increased error relative to olivine + orthopyroxene (Putirka et al., 2012).

Using the method of Lee et al. (2009) in the most primitive whole-rock chemical analyses from our dataset produces temperatures of partial melting of the mantle of the order of $1500-1700^{\circ}$ C with pressures between 3-6 GPa, which, for an average density of ~3000 kg/m³, implies depths of the partial melting between ~100-200 km. The Putirka (2008) calibration indicates that partial melting occurred at temperatures ranging from 1460 to 1650 °C and pressures between 1.7-3.8 GPa, which implies depths of ~60-130 km, consistent with the depth of the asthenospheric mantle in the region (e.g. Fisher et al.,

418 2010; Kumar et al., 2012).

419 An important caveat for the Lee et al. (2009) approach is that to apply the model, the source 420 rock is assumed to be a peridotite. In order to assess this condition for the magmas of interest here, we 421 estimate the mineralogy of the mantle sources based on olivine mineralogy (Sobolev et al., 2000). In Figure 10a, we plotted Fe^{2+}/Mn in olivine vs. %Fo, while in Figure 10b we plotted $100xCa/Fe^{2+}$ vs 422 100xMn/Fe^{2+} for the olivine analyses with %Fo > 85, following Sobolev et al. (2007). Based on these 423 424 plots, we conclude that the most likely source for these magmas has a modal mineralogy that lies 425 between the pyroxenite and peridotite (lherzolite) fields as defined by Sobolev et al. (2007), although 426 nickel content in olivine reported by Sobolev et al., (2007) is higher compared with LCVF olivine. 427 Source identification based on olivine composition is consistent with the approach of Hirschmann 428 (2000) and Petermann and Hirschmann (2003) based on the whole-rock composition, because FeO/MnO_(melt) is proportional to the ratio $Fe^{2+}/Mn_{(ol)}$. Thus because the Lee et al. (2009) method 429 430 assumes a peridotite source, Putirka's (2008) method, which can be applied to a variety of sources as 431 long as they are olivine and pyroxene saturated is favored here.

432

433 MELTS modelling. Geothermometry and geobarometry calculations were compared with the 434 MELTS and pMELTS thermodynamic models (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998; 435 Ghiorso et al., 2002) as a preliminary, but rough validation, since the LCVF conditions are indeed 436 beyond the working limits defined by Ghiorso et al. (2002). We specifically aimed for a preliminary 437 estimation of liquidus temperatures at the calculated pressures by the silica activity barometer, and at 438 the crystallization pressures calculated using the clinopyroxene barometer described above. We also used these thermodynamic models to estimate the potential crystallizing mineralogy to compare with 439 440 products of the four volcanoes. No calculations of the liquid line of descent were performed because 441 evolved magmas are not present at Lunar Crater. Instead, compositions cluster around SiO₂ ~44-46 442 wt%.

9/24

443	Liquidus temperatures at the pressures of interest were calculated for the most primitive sample
444	of our dataset (sample LC10-20; $SiO_2 = 44.02$ wt%; Table 5), as well as, for comparison, for a
445	reference pyroxenite sample (Table 2) from the Earth Reference database (http://earthref.org); oxygen
446	fugacity $\Delta QFM+2$ was assumed in both cases in order to constrain the iron speciation in the samples,
447	and 2% of H ₂ O was assumed in sample LC10-20 consistent with a conservative "wet" liquidus. The
448	temperatures predicted using the Lee et al. (2009) or Putirka (2008) models are comparable to
449	pMELTS-calculated liquidus temperatures (1584°C-1664°C) for both the basalt and pyroxenite given
450	estimated partial melting pressures not higher than 3.8 GPa. The pMELTS model also predicts that the
451	crystallizing phases at 35-45 km depth (equivalent to the crystallization pressures calculated above for
452	Mizpah and Hi Desert, and the deeper of two crystallization pressures that were calculated for Giggle
453	Springs and Marcath) are plagioclase, olivine, clinopyroxene, and orthopyroxene, as well as amphibole
454	and biotite. Except for biotite, all these phases were observed in the volcanic products.
455	
456	Crystal Size Distribution (CSD)
457	

458 Crystal size distributions (CSD; Marsh, 1988, 1998; Higgins, 2006) of olivine, clinopyroxene, 459 and plagioclase were measured from back-scattered electron images of samples from the Mizpah, 460 Giggle Spring and Marcath units. Note that olivine CSD was not measured for Marcath products because olivine is rare in these units (Figure 10a). Images were imported into ImageJ freeware 461 462 (http://rsb.info.nih.gov/ij/) in which long and short axes of the different mineral phases were measured; 463 a total of 200 measurements were performed on each mineral phase in order to have a representative 464 sample of each CSD (Mock and Jerram, 2005; Morgan and Jerram, 2006). Mean crystal aspect ratios 465 were determined using the CSDSlice method (Morgan and Jerram, 2006), fabric was considered 466 massive (e.g. with no foliation), and measurements were not corrected for crystal roundness. All these 467 values as well as the measurements were exported into CSDCorrections 1.4 (Higgins, 2006) in order to

468 calculate the crystal size distribution of each mineral phase. The total slide area, volumetric phase 469 abundance and vesicularity of the samples were determined using built-in features of ImageJ and 470 estimated from the petrography of the samples.

471 Proximal products of Giggle Springs volcano have smaller sizes than the more distal lava, and 472 there is a partial overlap of the CSDs of the main phenocryst phases although groundmass CSDs are 473 different. The CSD of the olivine phase in Giggle Springs and Mizpah has an inflexion point in the 474 distribution at approximately 0.1 mm for some samples (Figure 11a); olivine phenocrysts in both units 475 have similar distributions except at the smallest sizes. The slope of the CSD of olivine phenocrysts is ~ -16 $[mm^{-4}]$ (r² ~ 0.96) and ~ -58 $[mm^{-4}]$ (r² ~ 0.95) for groundmass microlites (cut off at 0.1 mm), 476 477 suggesting residence time of few hours for the phenocrysts using growth rates of 0.2-0.4 mm per day 478 reported for olivines in Hawaiian tholeiites (Maaløe, 2011).

The clinopyroxene CSDs (Figure 11b) are similar between samples from Giggle Springs and Mizpah, but different from Marcath samples, which has consistently larger crystals. The plagioclase CSDs for the different units agree in an intermediate range of sizes between ~0.1 and ~0.3. While this is the upper range for Giggle Springs and Mizpah, it is the lower range for the samples from Marcath (Figure 11c). Oxides (Figure 11d) are substantially different in all the samples (even those from the same unit), suggesting late crystallization events.

- 485
- 486

DISCUSSION

487 Melting depths and source composition

Independent of the age and location of the four studied volcanoes, the geochemical data strongly indicate sources located in the asthenosphere, at depths between 60 and 130 km based on the Putirka (2008) orthopyroxene barometer. Considering Fe^{2+}/Mn and Ca/Mg in olivine phenocrysts with %Fo > 85, the source material is likely to have a modal mineralogy between pyroxenite and peridotite (Petermann and Hirschmann, 2003; Tuff et al., 2005; Sobolev et al., 2007; Herzberg, 2011). The most

493 likely source is an olivine websterite, although the nickel content in the LCVF olivine is lower (less 494 than 2000 ppm) than the reported values by Sobolev et al., (2007) for pyroxenite or peridotite (between 495 2000 and 4000 ppm). The lower concentration of nickel in olivine suggests a low-Ni source (Herzberg, 496 et al., 2013), although Ni content in whole-rock analyses is within reasonable values (120 to 330 ppm). 497 A possible explanation for this difference might be related to the oxidation state of the magmas. 498 Oxidation state of the depleted and enriched mantle is thought to be close to QFM and NNO+1 499 respectively (Balhaus, 1993). Our estimation of the oxygen fugacity by the clinopyroxene and 500 amphibole formulas seems to indicate more oxidizing conditions for these basalts thus implying 501 changes in oxygen fugacity during ascent and the main crystallization event. The more oxidizing conditions might have affected Ni³⁺ concentrations in the basaltic melt, a species that cannot enter in 502 503 the olivine formula due to its charge, although the specific relation of the oxygen fugacity and the 504 speciation of nickel is not yet completely understood. A plausible explanation for the more oxidizing 505 conditions during crystallization is likely to be related to the water content of these magmas. The 506 presence of amphibole seems to indicate a relatively high amount of water, which, depending on its 507 speciation, has been linked to changes in the oxidation state of melts (e.g. Barker and Rutherford, 508 1996).

509 Rare-earth element ratios are helpful for estimating the depth of partial melting as well as the 510 mineralogy and chemistry of the source, because of the different solid/melt distributions of REE in 511 spinel vs. garnet bearing peridotite/pyroxenite. Heavy rare-earth elements like Yb are highly 512 compatible in garnet while light-rare earth elements like La are incompatible; therefore partial melting 513 of peridotite or pyroxenite containing garnet will produce melts with high La/Yb. Variable degrees of 514 partial melting will result in changes in La/Yb such that the higher degree of melting, the lower La/Yb. 515 Further, middle-rare earth element (MREE)-heavy rare earth element (HREE) ratios are sensitive to 516 whether garnet exists as a residual phase in the source, because HREEs like Yb are retained by garnet 517 during a melting event. This produces large changes in MREE/HREE in magmas generated by melting

518 of a garnet-bearing source, a change that is especially prominent with larger degrees of partial melting. 519 Garnet is a relatively refractory mineral and does not significantly contribute to the melt phase until 520 larger degrees of melting. At small melt fractions, melting of olivine or pyroxene results in little to no 521 change in in MREE/HREE (Dy/Tb) because of similar partition coefficients for Dy and Tb in olivine 522 and pyroxene (e.g., D_oDy/D_oYb=0.75 to 1.5 for clinopyroxene; Chazot et al, 1996). This results in 523 melting trajectories that are relatively flat (or with slightly decreasing Dy/Yb) until about 30% melting. 524 For higher degrees of melting, Dy/Yb decreases rapidly as garnet is melted. In the case of the Lunar 525 Crater volcanoes La/Yb varies from 3 to 15 with the higher ratios suggesting a garnet source (Figures 526 7a,c, 12a,b). The mode of a typical garnet lherzolite is 60% olivine, 20% orthopyroxene, 8% 527 clinopyroxene and 12% garnet (Thirwall et al, 1994). This source produces melts that are too high in 528 Dy/Yb to match Lunar Crater magmas (Figure 12a). If, however, garnet is not as abundant in the 529 source (5 to 8%), modelled melts provide a much better match to the sample set. We also modelled the 530 melting of a spinel lherzolite with 57.8% olivine, 27% orthopyroxene, 11.9% clinopyroxene and 3.3% 531 spinel. Although this source produced melts with relatively constant Dy/Yb, the value of the ratio was 532 much to low to match the dataset. Based on Figure 10b and following Sobolev et al., (2007), we have 533 also modelled the source as an olivine websterite (i.e. a composition between lherzolite and pyroxenite) 534 with 30-35% olivine, 30-40% orthopyroxene, 20-30% clinopyroxene, and 5-11% garnet (Table 4b). 535 Results using this source are similar to the lherzolite models (Figure 12b) except that the final melt has 536 a lower Dy/Yb. Our conclusion is that the source of Lunar Crater magma has a composition between a 537 garnet lherzolite and an olivine websterite containing 5 to 8% garnet. Consistency between this result and that of the independent method based upon olivine Fe²⁺/Mn and 100xCa/Mg ratios reinforces this 538 539 interpretation. Note that we did not calculate major element models involving partial melting because 540 of the sensitivity of melt chemistry to source composition. Meaningful major element models would 541 require knowledge of major element chemistry of the source. This information is at present not known 542 well enough for Lunar Crater.

543

544 Magma evolution

545 The variation of Th/Ta is used here to determine the degree of fractionation because both 546 elements are incompatible, however Ta is more incompatible than Th (Table 4b) while Cr/Ta varies 547 with different degrees of partial melting in a source containing an olivine websterite component (Cr is 548 highly compatible in both ortho- and clinopyroxene). The narrow range of Th/Ta values relative to 549 Cr/Ta (Figure 7b) indicates variable differences in the degree of partial melting within units, while the 550 trace element variability (e.g., Figure 6) is consistent with small variations in source composition. On 551 the other hand, there is little evidence for systematic fractionation processes in the resulting magma 552 batches as evidenced by nearly constant Th/Ta ratios (Figure 7b).

553 In order to generate the basaltic compositions similar to those reported in Table 2, the required 554 amount of partial melting of a olivine websterite/lherzolite source is ~3-5% based on the batch model 555 calculations presented in Figures 12a,b.

556

557 Source Heterogeneity

558 Source heterogeneity is evident between different, but closely spaced, volcanoes (e.g., Giggle 559 Springs compared to Hi Desert; Figure 7a) and within individual volcanoes (e.g., Mizpah, and possibly 560 Hi Desert). The spatial scale of subtle mantle variability must be similar to the scale of the partial melt 561 domains tapped by the older Hi Desert and Mizpah feeding systems. These observations suggest lateral 562 length scales of ~500 m or less for compositional heterogeneity in the source, if the magmas were 563 sourced at similar depths. In contrast, the two younger volcanoes (Giggle Springs and Marcath) had 564 essentially identical sources based upon the data presented here, even though the volcanoes are $\sim 6 \text{ km}$ 565 apart and have age differences of several tens of thousands of years; furthermore, their sources were 566 homogeneous on the scale of the individually tapped melt domains. We realize that melts can travel 567 laterally from source to surface, implying that in some cases, source areas may not lie directly below

568 vents. If this is the case for the northern Lunar Crater volcanoes, our stated spatial scale of source 569 heterogeneity should be regarded as a minimum estimate. Figures 8a,b suggest that although the 570 samples are close to chondritic Nb/Ta and La/Nb, Nb [ppm] is several order of magnitude higher than 571 the mantle or the upper crust and is especially enriched in the younger units (up to 90 ppm in Marcath). 572 This result strongly suggests the addition of an additional crustal (oceanic) component. Isotopic data 573 (Sr Nd Pb, Hf and Os) also indicate a heterogeneous source over very small spatial scales, likely related 574 to ancient subduction processes and consistent with our interpretation (Rasoazanamparany et al. in 575 review).

576

577 Magma Ascent and lithospheric contamination

578 Crystallization occurred at depths of 30-45 km beneath the four volcanoes, with additional 579 crystallization at 10-20 km for the two younger units. Crustal thickness in the area is estimated at 30-580 35 km (Gilbert and Sheehan, 2004). Thus, enriched melts generated in the asthenospheric mantle 581 travelled relatively unimpeded to near or just beneath the base of the crust, where all four magma 582 batches ponded and underwent up to 50% crystallization as determined from MELTS modelling. The 583 intrinsic variables and the lack of evidence for crustal contamination (Rasoazanamparany et al., in 584 review) indicate that magmas feeding the two older volcanoes, Mizpah and Giggle Springs, ascended 585 rapidly from near the base of the crust to the surface without intermediate ponding.

In contrast, the younger Giggle Springs and Marcath magmas apparently stalled at mid-crustal depths and underwent further crystallization. Fundamental differences in the CSD of their main mineral phases suggest that their mid-crustal reservoirs were not connected to each other, which is also consistent with the likely age difference between the two $(38\pm10 \text{ ka} \text{ and } 81\pm5 \text{ ka} \text{ for Marcath and}$ Giggle Springs, ~620-740 ka for Mizpah). Amphibole crystallized in Marcath's crustal reservoir, and is present in the eruptive products as megacrysts. This phase has only been observed at Marcath, implying either that: (1) there was a slight difference between the crystallization conditions of Marcath and

9/24

593 Giggle Springs such as higher water content in the former, while pressure, temperature and oxygen 594 fugacity were similar; or (2) that the amphibole efficiently separated from or was completely 595 assimilated by the soon-to-be-erupted Giggle Springs magma. Arguing against complete assimilation 596 is the observation that resorption of >1 cm amphiboles during the short time scale of final ascent might 597 not be feasible. Mafic enclaves at both Marcath and Giggle Springs volcanoes likely represent 598 crystallization products of these or other ponded magma batches that had not yet solidified; in the latter 599 case, temporary stalling allowed for thermal and chemical interactions that facilitated entrainment of 600 the enclaves (e.g., Valentine and Hirano, 2010).

601 Despite the mid-crustal ponding of Giggle Springs and Marcath magmas, the lack of evidence 602 of crustal contamination (supported both by the major and trace element chemistry, and by isotopic 603 data; Rasoazanamparany et al., in review) indicates that ascent between storage levels, and between the 604 crustal reservoir and the surface, was rapid. Rapid ascent is a common feature of intraplate, small 605 volume alkali-basalt volcanoes (e.g., Luhr et al., 1995; Valentine and Perry, 2007; Smith et al., 2008; 606 Muffler et al., 2011). The lack of contamination, even though the magma did pond in the mid-crust, is 607 consistent with the volcanoes being fed by small, single batches of magma. When a small batch of 608 magma ponds it is expected that the margins will rapidly chill, increasing in local viscosity and 609 potentially solidifying. This isolates of the inner part of the intrusion from country rocks both 610 chemically and mechanically, until crystallization causes the volatile content to increase sufficiently in 611 the melt to drive dike propagation and final magma ascent to the surface. In contrast, relatively large 612 and repeated magma batches might convect vigorously and retard development of a thick chilled 613 margin and provide enough heat to partly melt and assimilate wall rocks.

An alternative explanation of the deeper-derived phenocrysts is that the Giggle Springs and Marcath magmas did not stall at the deeper 30-45 km level, but simply entrained crystals from that depth that had formed during ponding of earlier (e.g., Mizpah, Hi Desert) magmas. We view this as unlikely because if younger magmas were entraining material as they migrated upwards we would

618 expect them to sample a variety of upper mantle and crustal rocks, not just the products of earlier 619 magma batches.

The final stage on the evolution of these volcanic products is eruption after the ponded magmas have crystallized olivine, clinopyroxene, plagioclase and traces of amphibole. The composition of the amphibole crystals (kaersutite to pargasite/magnesiohastingite) and its stability suggest that this phase is derived either from a metasomatized lithospheric mantle or crystallized from an alkaline melt derived from a peridotite + olivine websterite source (Mayer et al., 2014). Our data are consistent with the latter, phenocrystic origin, for this phase.

The CSDs of one the younger volcanic products (Giggle Springs lava) suggest short crustal residence time, and the further crystallization and growth of olivine, clinopyroxene and an oxide phase, during eruption. Most of the samples have well developed groundmasses rather than glassy matrixes, indicating that subsolidus temperatures were reached slowly after the lava was emplaced in its final location.

- 631
- 632
- 633

IMPLICATIONS

634

635 The original motivation for this study was to address two questions: (1) what are the 636 compositional variability and magma ascent processes within the time span of an individual eruption? 637 The results presented here indicate two main behaviors of the four studied volcanoes. Individual 638 magma batches were fed by slightly heterogeneous source material for the two older volcanoes, but the 639 younger of the two volcanoes' source rocks were relatively homogeneous even over distances of 640 several kilometres and time differences of tens of thousands of years. Each magma batch stalled and 641 crystallized in the uppermost several kilometres of the mantle near the base of the crust. Even for the 642 closely spaced volcanoes (Mizpah, Hi Desert, and Giggle Springs), the age differences of 10s to 100s

25

643 ka and lack of substantial fractionation suggest that each magma batch and temporary deep reservoir 644 was a separate entity rather than part of a continuous long-lived reservoir. Magmas feeding the 645 Marcath and Giggle Springs volcanoes also stalled at mid-crustal levels. From the evidence at hand it 646 appears that ascent rates from source to storage levels, and from final storage to eruption, were relative 647 rapid with no geochemical interaction with surrounding rocks. (2) What is the variability between very 648 closely spaced volcanoes with different ages? The Mizpah and Hi Desert magmas have subtle 649 compositional variability, but time is a major factor as well. Volcanoes erupted within certain time 650 windows (an older time window for Mizpah and Hi Desert, and a younger 0-100 ka window for Giggle 651 Springs and Marcath) have similar source characteristics and ascent processes whether they are located 652 within a few hundred meters of each other or are separated by many kilometres. If each monogenetic 653 volcano is fed by a single small-volume batch of magma, with source and feeder system length scales 654 on the order of hundreds of meters to a few kilometres (e.g., Valentine and Perry, 2006, 2007; Valentine 655 and Keating, 2007; Brenna et al., 2012), it is not clear why volcanoes that are several kilometres and 656 tens of thousands of years apart would have such similar magma dynamics. Preliminary data from 657 other parts of the Lunar Crater Volcanic Field are suggesting that this time window-dependent behavior 658 might be general over larger distances; testing this and developing a field-scale conceptual model are 659 topics of current research.

660

661

662

ACKNOWLEDGEMENTS

The authors acknowledge the editorial management of Thomas Shea and the reviews of Alexander Simakin, Cin-Ty Lee and an anonymous reviewer, whose suggestions substantially improved this paper. Discussions with Keith Putirka greatly improved the depth of melting section of the paper. This work was supported by the U.S. National Science Foundation through grant 1016100.

667

REFERENCES

9/24

668	

669

- Asimow, P.D., and Ghiorso, M.S., (1998) Algorithmic Modifications Extending MELTS to Calculate
 Subsolidus Phase Relations. American Mineralogist, 83, 1127-1131.
- 672
- Baker, L., Rutherford, M.J., (1996) The effect of dissolved water on the oxidation state of silicic melts.
- 674 Geochimica et Cosmochimica Acta, 60, 2179-2187

675

- 676 Balhaus, C., (1993) Redox states of lithospheric and asthenospheric upper mantle. Contributions to
- 677 Mineralogy and Petrology. 114:331-348.

678

- 679 Barth, M.G., McDonough, W.F., Rudnick, R.L. (2000) Tracking the budget of Nb and Ta in the 680 continental crust. Chemical Geology, 165, 197-213.
- 681
- Bergman, S., Foland, K., and Spera, F. (1981) On the origin of the amphibole-rich vein in a peridotite
- inclusion from the Lunar Crater Volcanic Field, Nevada, U.S.A. Earth Planetary Science Letters, 56,343-361.

685

- 686 Bergman, S.C., (1982) Petrogenetic aspects of the alkali basaltic lavas and included megacrysts and
- nodules from the Lunar Crater Volcanic Field, Nevada, U.S.A. Ph.D. dissertation, Ohio State
- 688 University, Columbus, Ohio.

689

- Brenna, M., Cronin, S.J., Smith, I.E., Sohn, Y.K., and Németh, K., (2010) Mechanisms driving
 polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions to
- Mineralogy and Petrology, 160, 931-950.

693	
694	Brenna, M., Cronin, S.J., Smith, I.E.M., Maas, R., and Sohn, Y.K., (2012) How small-volume basaltic
695	magmatic systems develop: a case study from the Jeju Island Volcanic Field, Korea. Journal of
696	Petrology, 53, 985-1018.
697	
698	Brown, B., Bursik, M., Deming, J., Louros, M., Martos, A., and Stine, S., (2010) Eruption chronology
699	and petrologic reconstruction of the ca. 8500 yr B.P. eruption of Red Cones, southern Inyo chain,
700	California. Geological Society of America Bulletin, 122, 1401-1422.
701	
702	Brown, R.J., and Valentine, G.A., (2013) Physical characteristics of kimberlite and basaltic intraplate
703	volcanism and implications of a biased kimberlite record. Geological Society of America Bulletin,
704	125, 1224-1238.
705	
706	Cameron, M., and Papike, J.J., (1981) Structural and chemical variations in pyroxenes. American
707	Mineralogist, 66, 1-50.
708	
709	Chazot, G., Menzies, M.A. and Harte, B. (1996) Determination of partition coefficients between
710	apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: Implications for
711	wet melting of the lithospheric mantle. Geochimica et Cosmochimica Acta, 60, 423-437.
712	
713	Connor, C.B., and Conway, F.M., (2000) Basaltic volcanic fields. Encyclopedia of Volcanoes,
714	Academic Press, New York, pp. 331-343.
715	
716	Cortés, J. A., Wilson, M., Condliffe, E., Francalanci, L., and Cherkoff, D.G., (2005) The evolution of

9/24

the magmatic system of Stromboli Volcano during the Vancori period (26-13.8 ky). Journal of

717

718 Volcanology and Geothermal Research, 147, 1-38.

719

Cortés, J.A., Wilson, M., Condliffe, E., and Francalanci, L., (2006) The occurrence of forsterite and
highly oxidising conditions in basaltic lavas from Stromboli volcano. Italy. Journal of Petrology, 47,
1345-1373.

723

- 724 Cortés, J.A., and Palma, J.L., (2012) PetrologicalINput Graphical oUtput.
- 725 <u>https://vhub.org/resources/pingu</u>.

726

727 Deer, W.A., Howie, R.A., and Zussman, J., (1996) An Introduction to the Rock-Forming Minerals (2nd

728 Edition). 712 p, Pearson Education Limited, Essex, England.

729

Dickson, L.D., (1997) Volcanology and geochemistry of Pliocene and Quaternary basalts on Citadel
Mountain, Lunar Crater Volcanic Field, Pancake Range, Nevada. M.S. Thesis, University of Nevada

T32 Las Vegas.

733

734 Erlund, E.J., Cashman, K.V., Wallace, P.J., Pioli, L., Rosi, M., Johnson, E., Delgado-Granados, H.,

735 (2009) Compositional evolution of magma from Paricutín volcano, México. Journal of Volcanology

- and Geothermal Research, 197, 167-187.
- 737
- 738 Farmer, G.L., Perry, F.V., Semken, S., Crowe, B., Curtis, D., and DePaolo, D.J., (1989)
- 739 Isotopic evidence on the structure and origin of subcontinental lithospheric mantle
- in southern Nevada. Journal of Geophysical Research, 94, 7885-7898.
- 741
- Foland, K.A., and Bergman, S.C., (1992) Temporal and spatial distribution of basaltic volcanism in the

- 743 Pancake and Reveille Ranges north of Yucca Mountain. Proceedings International Nuclear Waste
- Symposium, 2, American Nuclear Society and American Society of Civil Engineers, 2366-2371.
- 745
- 746 Gazel, E., Plank, T., Forsyth, D.W., Bendersky, C., Lee, C.-T. A., and Hauri, E.H., (2012) Lithospheric
- 747 versus asthenospheric mantle sources at the Big Pine Volcanic Field, California. Geochemistry
- 748 Geophysics Geosystems, 13, Q0AK06, doi:10.1029/2012GC004060.
- 749
- Gilbert, H.J. and Sheehan, A.F. (2004) Images of crustal variations in the intermountain west. Journal
 of Geophysical Research, 109, B03306. doi:10.1029/2003JB002730.
- 752
- Ghiorso, M. S., and Sack, R. O., (1995) Chemical Mass Transfer in Magmatic Processes. IV. A Revised
 and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of LiquidSolid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to
 Mineralogy and Petrology, 119, 197-212.
- 757
- Ghiorso, M. S., Hirschmann, M.M., Reiners, P.W., and Kress, V.C., (2002) The pMELTS: A revision of
 MELTS aimed at improving calculation of phase relations and major element partitioning involved in
 partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems, 3,
 10.1029/2001GC000217.
- 762
- Hammarstrom, J.M., and Zen, E.A., (1986) Aluminium in hornblende—an empirical igneous
 geobarometer. American Mineralogist, 71, 1297–1313.
- 765
- 766 Heizler, M.T., (2013)⁴⁰Ar/³⁹Ar geochronology results for Lunar Crater Volcanic Field basalts, Nevada.
- 767 New Mexico Geochronological Research Laboratory Report NMGRL-IR-792.

768 <u>https://vhub.org/resources/2503</u>.

769

- Herzberg, C., (2011) Identification of Source Lithology in the Hawaiian and Canary Islands:
 Implications for Origins. Journal of Petrology, 52, 113-146.
- 772
- Herzberg, C., Asimow, P.D., Ionov, D.A., Vidito, C., Jackson, M.G., Geist, D. (2013) Nickel and
- helium evidence for melt above the core-mantle boundary. Nature, 493, 393-397.

775

- Higgins, M. D., (2006) Quantitative Textural Measurements in Igneous and Metamorphic Petrology.
- 777 276 p. Cambridge University Press.

778

Hintz, A. R., and Valentine, G. A., (2012) Complex plumbing of monogenetic scoria cones: New
insights from the Lunar Crater Volcanic Field (Nevada, USA).Journal of Volcanology and Geothermal
Research, 239-240, 19-32.

782

- Hirschmann, (2000) Mantle solidus: experimental constraints and the effect of peridotite composition.
 Geochemistry, Geophysics, Geosystems, 1, doi: 10.1029/2000GC000070.
- 785
- Johnson, P., Valentine, G.A., Cortés, J.A., Tadini, A. (2014) Basaltic tephra from monogenetic
 Marcath Volcano, central Nevada. Journal of Volcanology and Geothermal Research, 281, 27-33.
- 788
- Johnson, E.R., Wallace, P.J., Cashman, K.V., Delgado Granados, H., and Kent, A.J.R., (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary Science Letters, 269, 478-487.

793

794	Kargel, (1986) The geochemistry of basalts and mantle inclusions from the Lunar Crater Volcanic
795	Field, Nevada; petrogenetic and geodynamic implications. M.Sc. Thesis, The Ohio State University.
796	

- Kumar, P., Yuan, X., Kind, R., and Mechie, J., (2012) The lithosphere-asthenosphere boundary
 observed with USArray receiver functions. Solid Earth, 3, 149-159.
- 799
- 800 Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C.,
- 801 Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V.,
- 802 Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L.,
- 803 Whittaker, E.J.W., and Guo, Y.Z., (1997) Nomenclature of amphiboles: report of the subcommittee on
- amphiboles of the international mineralogical association, commission on new minerals and mineral
 names. American Mineralogist, 82, 1019–1037
- 806
- Lee, C.A., Luffi, P., Plank, T., Dalton, H., and Leeman, W.P. (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth and Planetary Science Letters, 279, 20-33.
- 810
- Le Maitre R.W., Streckeisen, A., Zanettin, B., Le Bas, M.J., Bonin, B., Bateman, P., Bellieni, G.,
 Dudek, A., Efremova, S., Keller, J., Lamere, J., Sabine, P.A., Schmid, R., Sorensen, H., and Woolley,
 A.R., (2002) Igneous Rocks: A Classification and Glossary of Terms, Recommendations of the
 International Union of Geological Sciences, Subcommission of the Systematics of Igneous Rocks. 256
 p. Cambridge University Press.
- 816
- 817 Loucks, R. (1996) A precise Olivine-Augite Mg-Fe-exchange geothermometer. Contributions to

818 Mineralogy and Petrology, 125, 140-150.

819

- Luhr, J.F., and Simkin, T., (1993) Paricutín: The Volcano Born in a Mexican Cornfield. 441 p.
 Geoscience Press, Inc., Phoenix, Arizona.
- 822
- 823 Luhr, J.F., Aranda-Gómez, J.J., and Housh, T.B., (1995) San Quintín volcanic field, Baja California
- Norte, México: Geology, petrology, and geochemistry. Journal of Geophysical Research, 100, 1035310380.
- 826
- 827 Lum, C.C.L., (1986) Aspects of petrogenesis of alkali basalts from the Lunar Crater Volcanic Field,

828 Nevada. M.S. thesis, Ohio State University, Columbus, Ohio.

- 829
- Lum, C.C.L., and Leeman, W.P., (1989) Isotopic variation in continental basaltic lavas as indicators of
 mantle heterogeneity: Examples from the Western U.S. Cordillera. Journal of Geophysical Research,
 94, B6, 7871-7884.
- Maaløe, S., (2011) Olivine phenocrysts growth in Hawaiian tholeiites: evidence for supercooling.
 Journal of Petrology, 7-8, 1579-1589
- 835
- Marsh, B.D., (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of
 crystallization I. Theory: Contributions to Mineralogy and Petrology, 99, 277–291.
- 838
- Marsh, B.D., (1998) On the interpretation of crystal size distributions in magmatic systems: Journal of
 Petrology, 39, 553–600.

841	McGee, L.E., Smith, I.E.M., Millet, MA., Handley, H.K., and Lindsay, J.M., (2013) Asthenospheric
842	control on melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic
843	Field, New Zealand. Journal of Petrology, doi:10.1093/petrology/egt043.
844	

- Mayer, B., Jung, S., Romer, R.L., Pfänder, J.A., Klügel, A., Pack, A., Gröner, E., (2014). Amphibole in
- 846 alkaline basalts from intraplate settings: implications for the petrogenesis of alkaline lavas from the
- 847 metasomatized lithospheric mantle. Contributions to Mineralogy and Petrology, 167:989, doi:
- 848 10.1007/s00410-014-0989-3
- 849 Menzies, M.A., (1989) Cratonic, circumcratonic, and oceanic mantle domains beneath the Western
- United States. Journal of Geophysical Research, 94(B6), 7899-7915, doi: 10.06.1989
- 851
- 852 Mock, A., and Jerram, D.A., (2005) Crystal Size Distributions (CSD) in three dimensions: Insights
- from the 3D reconstruction of a highly porphyritic rhyolite. Journal of Petrology, 46,1525-1541.
- 854
- Morgan, D. J. and Jerram, D. A., (2006) On estimating crystal shape for crystal size distribution analysis. Journal of Volcanology and Geothermal Research, 154, 1-7.
- 857

858 Morimoto, N., (1989) Nomenclature of Pyroxenes. Canadian Mineralogist, 27, 143-156

- 859
- 860 Muffler, L.J.P., Clynne, M.A., Calvert, A.T., and Champion, D.E., (2011) Diverse, discrete, mantle-
- 861 derived batches of basalt erupted along a short normal fault zone: the Poison Lake chain, southernmost
- 862 Cascades. Geological Society of America Bulletin, 123, 2177-2200.
- 863
- 864 Naumann, T.R., Smith, E.I., Shafiqullah, M., Damon, P.E., (1991) New ages for Pliocene mafic to

865 intermediate volcanic rocks in the Reveille Range, Nevada. Isochron/West, 57, 12-16.

866

Nicholis, M.G., and Rutherford, M.J., (2004) Experimental constraints on magma ascent rate for the
Crater Flat volcanic zone hawaiite. Geology, 32, 489-492.

869

- 870 Nimis, P. and Ulmer, P. (1998) Clinopyroxene geobarometry of magmatic rocks. Part 1: An expanded
- 871 structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contributions to
- 872 Mineralogy and Petrology, 133, 122-135.

873

- 874 Nimis, P., (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for
- basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and
 Petrology, 135, 62-74.

877

Papike, J.J., Cameron, K.L., Baldwin, K. (1974) Amphiboles and pyroxenes: Characterization of
OTHER than quadrilateral components and estimates of ferric iron from microprobe data. Geological
Society of America, Abstracts with Programs, 6, 1053-1054.

881

Petermann. M., and Hirschmann, M.M., (2003) Partial melting experiments on a MORB-like
pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions
from solidus location and melting rate. Journal of Geophysical Research, 108(B2,2125), doi:
10.1029/2000JB000118.

886

- 887 Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M., and Delgado-Granados, H.,
- 888 (2008) Explosive dynamics of violent Strombolian eruptions: The eruption of Paricutín Volcano 1943-
- 889 1952 (México). Earth and Planetary Science Letters, 271, 359-368.

890

891 Powell, M., and Powell, R., (1974) An olivine-clinopyroxene geothermometer. Contributions to
892 Mineralogy and Petrology, 48, 249-263.

893

Putirka, K., (2008) Thermometers and barometers for volcanic systems. Reviews in Mineralogy and
Geochemistry, 69, 61-120

896

Putirka, K., Jean, M., Cousens, B., Sharma, Rl, Torrez, G, and Carlson, C., (2012) Cenozoic volcanism
in the Sierra Nevada and Walker Lane, California, and a new model for lithospheric degradation.
Geosphere, 8, 265-291, doi: 10.1130/GES00728.1.

900

Ridolfi, F,. Renzulli, A,. and Puerini, M., (2010) Stability and chemical equilibrium of amphibole in
calc-alkaline magmas: an overview, new thermobarometric formulations and application to subductionrelated volcanoes. Contributions to Mineralogy and Petrology, 160, 45–66, doi:10.1007/s00410-0090465-7

905

- Ridolfi, F., and Renzulli, A., (2012) Calcic amphiboles in calc-alkaline and alkaline magmas:
 thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa.
 Contributions to Mineralogy and Petrology, 163, 877-895.
- 909
- Rowe, M.C., Peate, D.W., and Peate, I.U., (2011) An investigation into the nature of the magmatic
 plumbing system at Paricutin Volcano, Mexico. Journal of Petrology, 52, 2187-2220

912

913 Scott, D., and Trask, N.J., (1971) Geology of the Lunar Crater Volcanic Field, Nye County, Nevada.

914 USGS Professional Paper 599-I, 11-22.

915

- Shepard, M. K., Arvidson, R. E., Caffee, M., Finkel, R., and Harris, L., (1995) Cosmogenic exposure
 ages of basalt flows; Lunar Crater volcanic field, Nevada. Geology, 23, 21-24.
- 918
- 919 Simakin, A., Zakrevskaya, O., and Salova, T., (2012a) Novel amphibole geo-barometer with
- 920 application to mafic xenoliths. Earth Science Research, 1, doi: 10.5539/esr.vln2p82

921

922 Simakin, A.G., Salova, T.P., Bondarenko, G.V., (2012b) Experimental study of magmatic melt
923 oxidation by CO₂. Petrology, 20(7), 593-606.

924

Smith, R.L., and Luedke, R.G., (1984) Potentially active volcanic lineaments and loci in the western
conterminous Unites States. In Explosive volcanism: Inception, evolution, and hazards: Studies in
Geophysics, National Academy Press, Washington DC, p. 47-66.

928

- Smith, I.E.M., Blake, S., Wilson, C.J.N., and Houghton, B.F., (2008) Deep-seated fractionation during
 the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contributions to
 Mineralogy and Petrology, 155, 511-527.
- 932
- Smith, D., (2000) Insights into the evolution of the uppermost continental mantle from xenolith
 localities on and near the Colorado Plateau and regional comparisons. Journal of Geophysical
 Research, 105, 16769-16781
- 936
- 937 Sobolev, A.V., Hoffmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arnt, N.T., Chung, S., Danyushevsky,
- 938 L. V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C.,

Krivolutskaya, N.A., Matvienkov, V.V., Nikogozian, I.K., Rocholl, A., Sigurdsson, I.A.,
Sushchevskaya, N. M., Teklay, M., (2007) The amount of recycled crust in sources of mantle-derived
melts. Science 316, 412-417.

942

943 Stickney, E.K., (2004) The volcanology and petrogenesis of the northern Lunar Crater Volcanic Field,

944 Nye County, Nevada. M.Sc. Thesis. University of Nevada, Las Vegas.

945

Sun, S.S., and McDonough, W.F., (1989) Chemical and isotopic systematics of oceanic basalts:
implications for mantle composition and processes. Geological Society of London, Special
Publications, 42, 313-345.

949

Thirwall, M.F., Upton, B.G.J., and Jenkins, C. (1994) Interaction between continental lithosphere and
the Iceland plume-Sr-Nd-Pb isotope geochemistry of Tertiary basalt, NE Greenland. Journal of
Petrology, 35, 839-879.

953

Tuff, J., Takahashi, E., and Gibson, S.A., (2005) Experimental constraints on the role of garnet
pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46, 2023-2058.

956

Valentine, G.A., and Cortés, J.A., (2013) Time and space variations in magmatic and phreatomagmatic
eruptive processes at Easy Chair (Lunar Crater Volcanic Field, Nevada, USA). Bulletin of Volcanology,
75, doi:10.1007/s00445-013-0752-z.

960

- 961 Valentine, G.A., and Gregg, T.K.P., (2008) Continental basaltic volcanoes Processes and problems.
- 962 Journal of Volcanology and Geothermal Research, 177, 857-873.
- 963
- 964 Valentine, G.A., and Hirano, H., (2010) Mechanisms of low-flux intraplate volcanic fields Basin and
- 965 Range (North America) and northwest Pacific Ocean. Geology, 38, 55-58.

966

- 967 Valentine, G.A., and Keating, G.N., (2007) Eruptive styles and inferences about plumbing systems at
- 968 Hidden Cone and Little Black Peak scoria cone volcanoes (Nevada, U.S.A.) Bulletin of Volcanology,
- 969 70, 105-113.

970

Valentine, G.A., and Perry, F.V., (2006) Decreasing magmatic footprints of individual volcanoes in a
waning basaltic field. Geophysical Research Letters, 33, L14305.

973

Valentine, G.A., and Perry, F.V., (2007) Tectonically controlled, time-predictable basaltic volcanism
from a lithospheric mantle source (central Basin and Range Province, USA). Earth and Planetary
Science Letters, 261, 201-216.

977

Valentine, G.A., Shufelt, N.L., and Hintz, A.R.L., (2011) Models of maar volcanoes, Lunar Crater
(Nevada, USA). Bulletin of Volcanology, 73, 753-765.

980

- 981 Vaniman, D.T., Crowe, B.M., and Gladney, E.S., (1982) Petrology and geochemistry of hawaiite lavas
- 982 from Crater Flat, Nevada. Contributions to Mineralogy and Petrology, 80, 341-357.

983

984 Wade, J., Wood, B.J., (2005) Core formation and the oxidation state of the Earth. Earth and Planetary

985 Science Letters, 236, 78-95.

986

- 987 Wang, K, Plank, T., Walker, J.D., Smith, E.I., (2001) A mantle melting profile across the Basin and
- Range, SW USA. Journal of Geophysical Research, 107(B1), doi: 10.1029/2001JB000209.

989

- 990 White, J.D.L., and Ross, P.-S., (2011) Maar-diatreme volcanoes: a review. Journal of Volcanology and
- 991 Geothermal Research, 201, 1-29.

992

- 993 Yogodzinski, G. M., Naumann, T.R., Smith, E.I., Bradshaw, T.K., and Walker, J.D., (1996) Evolution
- of a mafic volcanic field in the central Great Basin, south central Nevada. Journal of Geophysical
 Research, 101(B8), 17425-17445.

996

997 Figure Captions998

999	Figure 1: Location of the Lunar Crater Volcanic Field in the western U.S.A. and the State of Nevada
1000	showing the Pancake and Reveille Range within the volcanic field. Dashed lines are the main roads in
1001	the area. Red box encompasses the study area (see Figure 2).
1002	
1003	Figure 2: Simplified geological map of the northern part of the Lunar Crater Volcanic Field,
1004	highlighting the four volcanoes studied in this work. Outline of tephra deposits from Johnson (2013).

1005

1006 Figure 3: Total Alkali versus silica diagram according to Le Maitre et al. (2002). Hi Desert basalt

1007 (Qhib) open circle, Mizpah basalt (Qmzb) open square, Giggle Spring basalt (Qgsb) asterisk, Marcath

1008 volcano products (Qm) crosses. All whole-rock figures plotted using PINGU (Cortés and Palma, 2011).

1009

1010 Figure 4: Whole-rock major element variation diagrams versus MgO for the samples of this study.1011 Symbols as in Figure 3.

1012

1013 Figure 5: Rare Earth Element diagram normalized according to Sun and McDonough (1989). Symbols1014 as in Figure 3.

1015

1016 Figure 6: Spider diagrams normalized according to OIB from Sun and McDonough (1989). Symbols as1017 in Figure 3.

1018

1019 Figure 7: a) La/Yb vs. Zr/Nb b) Rb/Zr vs. Ni/Zr c) La/Yb vs. Dy/Yb. Symbols as in Figure 3.

1020

9/24

Figure 8: a) La/Nb vs Nb [ppm] b) Nb/Ta vs Nb [ppm]. Fields as defined in Barth et al., (2000).
Symbols as in Figure 3.

1023

Figure 9: Mineral classification based on mineral chemistry for a) olivine (Deer et al., 1996) b) pyroxenes (Morimoto, 1989) c) plagioclase (Deer et al., 1996) and d) amphiboles (Leake, 1997) from electron microprobe analyses in the studied samples. Symbols of the units as in Figure 3.

1027

Figure 10: (a) Fe^{2+}/Mn vs. %Fo=Mg/(Mg+Fe^{2+}+Mn) and (b) 100xMn/Fe^{2+} vs. 100xCa/Fe^{2+} (%Fo>85) in mineral chemistry analyses of olivine recalculated as cation per formula unit from electron microprobe analyses. Symbols of the units as in Figure 3.

1031

Figure 11. Natural logarithm of the density population (mm⁻⁴) vs. size (mm) plots of the crystal size distribution for a) olivine b) clinopyroxene c) plagioclase and d) spinel in the studied samples. Minimum crystal sizes that can be measured using ImageJ in an SEM image are ~10-20 pixels long, equivalent to ~5% of the average scale bar of ~300 pixels (around ~0.01-0.02 mm in most of our images except images for measuring oxides with minimum sizes of 0.001-0.002 mm). Black asterisk: Giggle Spring basalt (Qgsb) sampled at the vent. Light grey asterisk: Giggle Spring basalt (Qgsb) lava. Black open squares: Mizpah basalt (Qmzb), Black crosses: Marcath volcano products (Qm).

1039

Figure 12: La/Yb vs. Dy/Yb plots with different models of partial melting of a mantle source. Data points are normalized with C1 chondrite (Sun and McDonough 1989), symbols as in Figure 3. (a) Partial melting of lherzolite source: grey line and filled triangles is a model of batch melting of a garnet lherzolite with 11.5 % of garnet; black line with filled circles is a model of batch melting of a garnet lherzolite with 6% of garnet, black line with open squares is a model of batch melting of a garnet lherzolite with 2% of garnet, black line with open triangles is a model of batch melting of a spinel

1046 lherzolite. Tick marks on all curves are at 5% melting intervals. (b) Partial melting of pyroxenite
1047 source: black line and filled triangles is a model of batch melting of a garnet pyroxenite with 11%
1048 garnet; black line with filled circles is a model of batch melting of a garnet pyroxenite with 9% garnet,
1049 black line with open squares models batch melting of a garnet pyroxenite with 5% garnet. Tick marks
1050 on all curves are at 5% melting intervals.

REE plot

Rock/chondrite

Rock/OIB

Sample Number	Latitude	Longitude	Unit	Petrographic description/name
LC10-01	38.5378	-115.9557	Qgsb	Trachybasalt
LC10-02	38.5381	-115.9578	Qmzb	Porphiritic basalt of olivine and plagioclase
LC10-03	38.5391	-115.9565	Qmzb	Porphiritic basalt of olivine and plagioclase
LC10-04	38.5419	-115.9671	Qgsb	Basalt of olivine
LC10-05	38.5449	-115.9713	Qmzb	Trachybasalt
LC10-06	38.5491	-115.9747	Qhib	Basalt of olivine
LC10-07	38.5522	-115.9934	Qhib	Porphiritic basalt of olivine
LC10-08	38.5481	-115.9560	Qhib	Porphiritic basalt of olivine
LC10-09	38.5338	-115.9469	Qgsb	Basalt of olivine (oxidised)
LC10-10	38.5394	-115.9466	Qhib	Basalt of olivine and clinopyroxene
LC10-11	38.5343	-115.9587	Qhib	Trachybasalt
LC10-12	38.5328	-115.9540	Qhib	Porphiritic basalt of plagioclase
LC10-13	38.5394	-115.9509	Qmzb	Porphiritic basalt of plagioclase
LC10-16	38.4823	-115.9777	Qm	Aphanitic basalt
LC10-18	38.4810	-115.9878	Вm	Basalt of olivine
LC10-19	38.4865	-115.9768	Вm	Basalt of olivine and clinopyroxene
LC10-20	38.4886	-115.9852	Qm	Porphiritic basalt of clinopyroxene
LC10-23	38.4908	-116.0046	Вm	Trachybasalt
LC10-24	38.4998	-116.0046	Дm	Basalt of olivine and clinopyroxene
LC10-25	38.4822	-116.0149	Дm	Basalt of olivine
LC10-26a	38.4869	-115.9530	Вm	Aphanitic basalt
LC10-26b	38.4869	-115.9530	Qm	Aphanitic basalt
LC10-26c	38.4869	-115.9530	Qm	Aphanitic basalt
LC10-27	38.4929	-115.9604	Вm	Aphanitic basalt
JCLC11-3	38.4981	-115.9809	Вm	mafic enclave with Amphibole and Olivine Phenocrysts
JCLC11-4a	38.4982	-115.9889	Дm	mafic enclave with Amphibole and Olivine Phenocrysts
JCLC11-4f	38.4982	-115.9889	Qm	mafic enclave with Amphibole and Olivine Phenocrysts
Table 1 Sample	list with loc	ation and brie	ef petrogra	phic description

petrographic description
brief
and
location
with
list
Sample
. '
<u>e</u>

Page 1

Sheet1

Table 1. Samples and sample locations.

No. No. <th>C10-01 LC1 Qgsb Qn</th> <th>55 P</th> <th>0-02 izb</th> <th>LC10-03 Qmzb</th> <th>LC10-04 Qgsb</th> <th>LC10-05 Qmzb</th> <th>LC10-06 Qhib</th> <th>LC10-07 Qhib</th> <th>LC10-08 Qhib</th> <th>LC10-09 Qgsb</th> <th>LC10-10 Qhib</th> <th>LC10-11 Qhib</th> <th>LC10-12 Qhib</th> <th>LC10-13 Qmzb</th> <th>LC10-16 Qm</th> <th>LC10-18 Qm</th> <th>LC10-19 Qm</th> <th>LC10-20 Qm</th> <th>LC10-23 Qm</th> <th>LC10-24 Qm</th> <th>LC10-25 Qm</th> <th>LC10-26a Qm</th>	C10-01 LC1 Qgsb Qn	55 P	0-02 izb	LC10-03 Qmzb	LC10-04 Qgsb	LC10-05 Qmzb	LC10-06 Qhib	LC10-07 Qhib	LC10-08 Qhib	LC10-09 Qgsb	LC10-10 Qhib	LC10-11 Qhib	LC10-12 Qhib	LC10-13 Qmzb	LC10-16 Qm	LC10-18 Qm	LC10-19 Qm	LC10-20 Qm	LC10-23 Qm	LC10-24 Qm	LC10-25 Qm	LC10-26a Qm
No. No. <th>44.57 47.41 47.33 43.52</th> <td>47.41 47.33 43.52</td> <td>47.33 43.52</td> <td>43.52</td> <td></td> <td>45.09</td> <td>43.39</td> <td>44.32</td> <td>45.87</td> <td>45.02</td> <td>46.91</td> <td>45.03</td> <td>46.40</td> <td>44.06</td> <td>45.14</td> <td>44.34</td> <td>45.46</td> <td>44.02</td> <td>44.56</td> <td>43.97</td> <td>44.97</td> <td>44.54</td>	44.57 47.41 47.33 43.52	47.41 47.33 43.52	47.33 43.52	43.52		45.09	43.39	44.32	45.87	45.02	46.91	45.03	46.40	44.06	45.14	44.34	45.46	44.02	44.56	43.97	44.97	44.54
Dist Dist <th< td=""><th>2.53 2.40 2.30 2.46</th><td>2.40 2.30 2.46</td><td>2.30 2.46</td><td>2.46</td><td></td><td>2.74</td><td>2.51</td><td>2.26</td><td>2.53</td><td>2.29</td><td>2.62</td><td>2.35</td><td>2.48</td><td>2.93</td><td>2.29</td><td>2.28</td><td>2.19</td><td>2.14</td><td>2.33</td><td>2.39</td><td>2.36</td><td>2.13</td></th<>	2.53 2.40 2.30 2.46	2.40 2.30 2.46	2.30 2.46	2.46		2.74	2.51	2.26	2.53	2.29	2.62	2.35	2.48	2.93	2.29	2.28	2.19	2.14	2.33	2.39	2.36	2.13
	15.12 15.74 15.39 14.34	15.74 15.39 14.34	15.39 14.34	14.34		15.25	14.18	14.03	14.18	14.52	15.71	14.32	15.55	15.20	14.99	14.59	14.82	14.33	15.08	14.88	15.48	13.97
	12.75 12.88 12.00 12.87 8.14 7.45 8.32 8.63	12.88 12.00 12.87 7.45 8.32 8.63	8.32 8.63 8.32 8.63	12.87 8.63		12.64 8.76	12.90 8.48	12.29 9.90	14.09 10.65	11.93 9.69	7.65	9.55	13.25 7.44	7.97	12.02 9.51	11.62 9.44	9.89	11.22	11.89 8.23	12.59 7.54	12.22 7.24	9.98
(13) (13) <th< td=""><th>4.10 4.12 3.65 3.88</th><td>4.12 3.65 3.88</td><td>3.65 3.88</td><td>3.88</td><td></td><td>3.56</td><td>4.31</td><td>3.70</td><td>3.14</td><td>3.63</td><td>3.59</td><td>3.90</td><td>3.80</td><td>3.90</td><td>3.47</td><td>3.89</td><td>3.69</td><td>3.49</td><td>4.14</td><td>4.48</td><td>4.66</td><td>3.88</td></th<>	4.10 4.12 3.65 3.88	4.12 3.65 3.88	3.65 3.88	3.88		3.56	4.31	3.70	3.14	3.63	3.59	3.90	3.80	3.90	3.47	3.89	3.69	3.49	4.14	4.48	4.66	3.88
0108 023 013 0108 013 </td <th>2.09 1.21 1.42 1.90</th> <td>1.21 1.42 1.90</td> <td>1.42 1.90</td> <td>1.90</td> <td></td> <td>1.57</td> <td>1.85</td> <td>1.77</td> <td>0.94</td> <td>1.52</td> <td>1.41</td> <td>1.80</td> <td>1.17</td> <td>1.83</td> <td>1.84</td> <td>1.59</td> <td>1.78</td> <td>1.64</td> <td>1.95</td> <td>2.02</td> <td>2.19</td> <td>1.70</td>	2.09 1.21 1.42 1.90	1.21 1.42 1.90	1.42 1.90	1.90		1.57	1.85	1.77	0.94	1.52	1.41	1.80	1.17	1.83	1.84	1.59	1.78	1.64	1.95	2.02	2.19	1.70
0000 0000 <th< td=""><th>0.225 0.202 0.180 0.221</th><td>0.202 0.180 0.221</td><td>0.180 0.221</td><td>0.221</td><td></td><td>0.188</td><td>0.227</td><td>0.208</td><td>0.182</td><td>0.208</td><td>0.180</td><td>0.213</td><td>0.195</td><td>0.194</td><td>0.201</td><td>0.212</td><td>0.195</td><td>0.196</td><td>0.223</td><td>0.226</td><td>0.224</td><td>0.203</td></th<>	0.225 0.202 0.180 0.221	0.202 0.180 0.221	0.180 0.221	0.221		0.188	0.227	0.208	0.182	0.208	0.180	0.213	0.195	0.194	0.201	0.212	0.195	0.196	0.223	0.226	0.224	0.203
	10.00 8.78 9.00 10.74 0.969 0.632 0.540 0.867	8./8 9.00 10./4 0.632 0.540 0.867	9.00 10.74 0.540 0.867	0.867		0.599	0.982	0.688	8./1 0.455	0.738	9.19 0.556	0.803	8.98 0.633	0.596	0C.01 0.699	0.700	0.632	0.601	9.98 0.885	9.82 0.902	9.60 0.856	0.642
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100.50 100.83 100.13 99.43	100.83 100.13 99.43	100.13 99.43	99.43		100.56	99.37	99.32	100.75	100.15	100.14	100.83	96.90	99.22	100.72	99.07	99.94	98.90	99.27	98.82	99.80	99.14
	186 175 204 197	175 204 197	204 197	197		230	186	199	186	197	185	175	154	225	209	202	208	215	177	178	171	n.d.
	310 130 210 420	130 210 420	210 420	420		200	400	430	220	560	150	450	110	120	400	350	420	460	250	240	210	n.d.
	258 275 264 270	275 264 270	264 270	270		266	297	307	320	289	264	224	273	223	308	288	364	337	243	300	247	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	140 130 130 160	130 130 160	130 160	160		120	170	210	260	210	130	180	120	110	230	170	330	320	140	120	110	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 40 30 50	40 30 50	30 50	50		40	50	50	50	50	30	40	40	30	70	50	120	06	50	40	40	.p.u
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110 130 <30 110	130 < 30 110	< 30 110	110		110	<u>100</u>	00 >	110	100	110	06 ÷	120	100	100	2 30 < 30	8 :	100	< 30	100	100	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5 0		<u></u> ,	<u>9</u> ç	<u></u>	<u>;</u>	Ξ¢	<u>6</u> ¢	- 19	07 -	5 0	<u>ه</u> ر	2 -	<u> </u>	ہ <u>ا</u>	ء ر	ء ر	ء ر 18	р р г
	 <td>⁶ 5 ⁶ 5</td><td>4 5 4 5</td><td>4 V 2</td><td></td><td>4 ∨ 5</td><td>4 ∨ 5</td><td>4 ∨ 5</td><td>4 ∨ 5</td><td>4 V 2</td><td>4 V 5</td><td>- 2</td><td>- 2</td><td>4 V 5</td><td>4 V 5</td><td>- 2</td><td>4 V 5</td><td>4 V 5</td><td>4 V 25</td><td>4 V 25</td><td>4 V 2</td><td>n.d.</td>	⁶ 5	4 5 4 5	4 V 2		4 ∨ 5	4 ∨ 5	4 ∨ 5	4 ∨ 5	4 V 2	4 V 5	- 2	- 2	4 V 5	4 V 5	- 2	4 V 5	4 V 5	4 V 25	4 V 25	4 V 2	n.d.
88 950 760 58 780 65 71 71 71 73 1030	52 21 30 47	21 30 47	30 47	47		31	41	, 4	15	42	26	39	18	39	, 4	41	, 4	40	47	52	52	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1090 598 553 973	598 553 973	553 973	973		808	950	760	548	780	635	742	616	718	66L	839	790	723	1030	1050	1050	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 31 27 30	31 27 30	27 30	30		27	31	28	23	29	27	27	28	27	27	27	27	25	30	31	31	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	291 198 96 267 80 11 30 80 80	198 96 267 44 36 83	96 267 30 83	267		215 55	259 80	241 70	143	240	208	225	198	251 50	245	84	246 28	225	183	293	300	n.d.
	3 2 3 3 44 50 65 44 50 65 5	2 00 00 2 4 00 4 20	00 60 4	° 4		c	00 4	2 ო	4 2 2	7 %	64 > 2 2	6 რ	47	δ 6 (f)		ę	8 %	6 ო	1 4	у 4	6 6	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	< 0.5		< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	0.5	0.6	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$< 0.2 \qquad < 0.2 \qquad < 0.2 \qquad < 0.2 \qquad < 0.2$	< 0.2 < 0.2 < 0.2 < 0.2	< 0.2 < 0.2	< 0.2		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2	2 2 2	2 2	5		5	5	5		5	5	5	5	5	5	_	5	5	5	5	5	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><0.5 < 0.5 <</pre>	<pre><0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 </pre>	< 0.5 < 0.5 < 0.5	0.5 0.5		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	n.d.
35.8 51 4.5 2.6 4.4 2.91 4.17 2.9 3.78 4.4 4.23 3.82 5.17 5.4 3.37 1.01 71.6 104 84.8 64.9 88.9 60 84.2 59.8 75.1 87 85.7 83 76.1 102 103	CUN	CUY 670 COV	349 607	09	_	C.0 ~	638	0.0 545	310	561	C.U ~	534	338	507	0.0	567	0.J	500	0.0	1.0	0.0	n d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	56.4 31.5 28.3 50.3	31.5 28.3 50.3	28.3 50.3	50.3		35.8	51	42.5	22.6	54	29.1	41.7	29	37.8	44.3	4	42.3	38.2	51.7	54	53.7	n.d.
Image: Second state in the second state in	114 65.7 56.3 103	65.7 56.3 103	56.3 103	103		71.6	104	84.8	46.9	88.9	60	84.2	59.8	73.7	87	85.7	83	76.1	102	107	105	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13.7 8.11 6.69 12.4	8.11 6.69 12.4	6.69 12.4	12.4	_	8.51	12.8	10.3	5.9	Ξ	7.52	10.5	7.53	8.97	10.5	10.5	10	9.41	12.5	13.2	12.5	n.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.4 33.9 27.2 48.9	33.9 27.2 48.9 75 6 05	27.2 48.9	48.9		34.9	51.1	41.3 ° 1	25.2	44.3 ° °	31.1	41.9 °	31.3	35.8	41.7 °	41.4	39.3	37.1	49.3 0.7	51.3	49.5 0.2	n.d.
64 8 69 55 73 63 68 65 67 69 66 61 77 79 76 nd 1 12 1 08 11 1	3.06 2.44 1.93 2.82	2.4 1.93 2.82	1.93 2.82	2.82		2.31	2.93	0.1 2.45	1.91	0.0 2.6	0.0	0 2 47	0.0 2.26	1:1	0 2.47	0.1 2.44	2.35	C. C	4 C 8 C	2.93	2.85	n d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.5 6.9 5.6 7.8	6.9 5.6 7.8	5.6 7.8	7.8		6.4	80	6.9	5.5	7.3	6.3	6.8	6.5	6.5	6.7	6.9	6.6	6.1	7.7	7.9	7.6	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2 1.1 0.9 1.1	1.1 0.9 1.1	0.9 1.1	1.1		1	1.2	1	0.8	1.1	-	-	1	1	-	1	0.9	0.9	1.1	1.1	1.1	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6 6.1 5.2 6.2	6.1 5.2 6.2	5.2 6.2	6.2		5.5	6.2	5.4	4.7	5.8	5.3	5.3	5.5	5.4	5.4	5.5	5.1	5	5.9	6.2	9	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.1	1.1		- :	1.1	- !	0.9	- 1	- !	- !	- :	- !	- !	- :	- !	0.9	1.1	1.1	1.1	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2 3 2.6 3	3 2.6 3	2.6 3	ε		2.7	3.1	2.7	2.3	2.9	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.5	ς, ι	3.1	ε	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.44 0.41 0.38 0.41 0.3 0.41	0.41 0.38 0.41	0.38 0.41	0.41		0.38	0.42	0.37	0.31	0.39	0.37	0.36	0.37	0.37	0.37	0.38	0.38	0.36	0.41	0.43	0.42	ъ.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8 2.6 2.5 2.6	2.6 2.5 2.6	2.5 2.6	2.6		2.4	2.6	2.3	1.9	2.4	2.3	2.3	2.3	2.4	2.4	2.3	2.4	2.2	2.6	2.7	2.7	n.d.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V.40 1.20 1.41 0.50 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	41 0.51 0.51 V.51	7 1 5 1 C	7 1 7 1 7		00.0 4 3	0.42 5 2	4 6	۰.29 ۲	42.0	00 4.7	00.0 4.4	0C.U	/ C.U	00 4.9	0C.U 7.1	4.8	44	0.4 2.4	0.42 5 4	0.41 5.6	n d n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.2 2.5 2.3 4.7	2.5 2.3 4.7	2.3 4.7	4.7			5.3	4.6	2.3	. 4	! ~	4.5	2.8	4.2) vr	4.2	8.4	4.4	. 4 5	. 9	9	n.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	609 647 557 644	647 557 644	557 644	- 49	_	631	738	762	744	701	606	536	618	490	805	635	951	862	576	778	611	n.d.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.1 <0.1 <0.1 <0.1 <0	< 0.1 < 0.1 < 0	< 0.1 < 0	0 V		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	n.d.
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 5 < 5 < 5 < 1 < 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 </td <td>< 5 <</td> <td>V</td> <td>6</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>< 5</td> <td>n.d.</td>	< 5 <	V	6	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5	< 5	< 5	n.d.
4.1 5.3 4.8 1.9 4.8 3 4.5 2.8 4.7 5.7 3.6 5.6 5.1 4.9 6.5 6.7 n.d. 4.1 5.1 5.1 5.6 5.1 5.9 5.5 5.1 6.7 n.d. a set of this work * normediate analysis from GLAB as 1.4 0.9 1.4 1.6 1.5 1.7 1.8 1.9 n.d.	< 0.4 < 0.4 < 0.4 < 0.4 < 0.4	< 0.4 < 0.4 < 0.4	< 0.4 < 0.4	0	4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	n.d.
1.5 1.5 1.5 1.5 1.5 1.5 1.7 1.6 1.7 1.6 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.2 2.9 2.9 5.0	2.9 2.9 2.6	2.9 2.6	0.0		1.4	5.5	4 - 8 6	1.9 2.0	8.4	ۍ ۵۵	4 - 0 6	7.8	- - -	1.6	3.0	9.6	5.1	4.4 1	6.0 0 I	0.1	л.d.
	30ck maior and trace element data for samples u	and trace element data for samples u	i l./ ≱ment data for samples ⊔	1./ samples u	se	1.5 d in this work.	* pvroxenite	1.5 analvsis from	0.0 GERMS data	1.4 abase: n.d. no	t determined:	n.a. not ava	0.9 ailable	1.4	1.0	C.1	0.1	C.1	1./	1.8	1.7	n.a.

pyroxenite*	46.27	1.47	7.16	16.04	0.92	0.64	0.16	0.38	98.14	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. D.a.	n.a.	n.a.	n.a.	11.a.	n.a.	n.a.	n.a.	n.a. n.a.	n.a.	л.а. г	n.a.	n.a.	n.a.	n.a. D.a.	n.a.	n.a.	n.a.	n.a.	n.a.	D.a.		n.a.	n.a.						
LС10-27 Qm	45.82	2.16	13.74	10.71	3.81	1.67	0.187	0.714	100.64	200	820	390	240	50	80	0 7 7	₁ ∨ •	37	808	25	178 60	8 %	< 0.5	< 0.2	2 ~ 0 ~	< 0.5	550	38.5	0 51	37.9	7.5	2.35 6.4	0.9	S	0.0 2 5 C	0.35	2.2	0.34	3.4	4.3	1010	< 0.1 < 5 <	< 0.4	4.5	1.4
LC10-26c Qm	44.78	2.12	14.34	9.19	3.85	1.80	0.210	0.728	99.32	190	440	445	170	50	100	7 7	₁ ∨ • •	43	848	27	245 74	ţm	< 0.5	< 0.2	2 ~ 0 ~	0.5	572	45.2	89.2 10.0	42.5	8.2	707	-	5.4		2.7 0.38	2.5	0.38	4.8	5	1200	< 0.1 < 5	< 0.4	5.4	1.6
LC10-26b Qm	44.68	1.96	13.85	10.17	4.06	1.70	0.201	0.652	98.73	n.d.	n.d.	n.d.	n.d.	.p.u	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	.p.u	n.d.	n.d.	n.d.	n.d.	n.d.	.p.u	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	ח.d.	n.d.	n.d.	n.d.						

LC10-26A Qm	40.03 0.00	0.06	0.02	12.10	0.19	47.36	0.00	0.29	100.06	0.99	0.00	0.00	00.00	0.25	0.00	1.75	0.00	0.01	3.00	87.29
LC10-20 Qm	39.32 0.04	0.04	0.03	17.47	0.33	43.35	0.20	0.40	101.19	0.99	00.00	0.00	0.00	0.37	0.01	1.63	0.00	0.01	3.01	81.27
LC10-23 Qm	37.28 0.00	0.06	0.19	28.25	0.62	34.34	0.04	0.63	101.51	0.99	00.0	0.00	0.00	0.62	0.01	1.35	0.00	0.02	3.00	67.95
LC10-01 Qgsb	40.39 0.01	0.08	0.03	12.05	0.16	48.21	00.0	0.27	101.21	0.99	0.00	00.0	0.00	0.25	0.00	1.76	0.00	0.01	3.01	87.56
LC10-03 Qmzb	40.25 0.01	0.04	0.01	17.48	0.24	43.12	0.17	0.22	101.54	1.01	0.00	0.00	0.00	0.37	0.01	1.61	0.00	0.01	2.99	81.27
LC10-03 Qmzb	37.66 0.05	0.01	0.00	32.15	0.83	30.37	0.03	0.42	101.51	1.01	0.00	0.00	0.00	0.72	0.02	1.22	0.00	0.01	2.99	62.14
LC10-06 Qhib	40.28 0.00	0.05	0.07	11.40	0.17	48.42	0.00	0.29	100.67	0.99	00.0	0.00	0.00	0.23	0.00	1.77	0.00	0.01	3.01	88.18
LC10-06 Qhib	38.77 0.14	0.68	0.02	22.06	0.47	39.31	0.12	0.43	101.99	0.98	0.00	0.02	0.00	0.47	0.01	1.49	0.00	0.01	2.99	75.66
Sample unit	SiO ₂	AI ₂ O ₃	Cr_2O_3	FeO	MnO	MgO	NiO	CaO	Total	Si	Ξ	AI	ŋ	Fe ²⁺	ЧN	Mg	N	Ca	Total	%Fo

Table 3a.-Representative EPMA analysis of olivine phenocrysts in wt% and in cation per formula unit, recalculated to 4 oxygens. %Fo=Mg/(Mg+Fe+Mn),

Sample	LC10-12	LC10-06	LC10-12	LC10-03	LC10-03	LC10-01	LC10-01	LC10-23	LC10-20
unit	QIIID	QIIID	QIIID	QIIIZD	QIIIZD	Qgsb	Qgsb	QIII	QIII
SiO ₂	43.05	46.92	50.07	49.84	49.47	44.61	50.51	44.38	49.55
TiO ₂	4.00	2.45	0.65	0.60	0.00	3.51	0.53	3.37	0.81
Al ₂ O ₃	9.42	6.85	7.67	5.17	5.01	8.42	7.50	8.05	7.28
Cr_2O_3	0.06	0.19	0.68	0.00	0.00	0.06	0.88	0.00	0.47
FeO	9.46	7.88	4.64	9.81	9.94	8.73	4.75	10.02	4.47
MnO	0.18	0.15	0.10	0.21	0.24	0.20	0.08	0.20	0.10
MgO	10.24	12.52	16.43	12.76	13.42	10.87	16.79	11.22	15.51
NiO	0.00	0.02	0.00	0.00	0.00	0.02	0.04	0.00	0.01
CaO	22.76	22.82	19.61	19.37	20.01	23.66	18.69	22.61	21.35
Na ₂ O	0.57	0.44	0.86	1.53	1.45	0.55	0.72	0.50	0.52
K ₂ O	0.05	0.08	0.01	0.00	0.02	0.03	0.00	0.03	0.01
P_2O_5	0.17	0.11	0.01	0.00	0.00	0.26	0.00	0.21	0.02
Total	99.97	100.45	100.78	99.29	99.57	100.91	100.49	100.60	100.10
Si	1.64	1.75	1.81	1.88	1.86	1.68	1.83	1.68	1.81
Ti	0.11	0.07	0.02	0.02	0.00	0.10	0.01	0.10	0.02
Al	0.42	0.30	0.33	0.23	0.22	0.37	0.32	0.36	0.31
Cr	0.00	0.01	0.02	0.00	0.00	0.00	0.03	0.00	0.01
Fe ³⁺	0.11	0.08	0.06	0.09	0.15	0.11	0.02	0.13	0.04
Fe ²⁺	0.19	0.17	0.09	0.21	0.16	0.16	0.12	0.19	0.09
Mn	0.01	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.00
Mg	0.58	0.70	0.89	0.72	0.75	0.61	0.90	0.63	0.85
Ni	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ca	0.93	0.91	0.76	0.78	0.81	0.95	0.72	0.92	0.84
Na	0.04	0.03	0.06	0.11	0.11	0.04	0.05	0.04	0.04
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Р	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00
Total	4.05	4.04	4.03	4.05	4.08	4.04	4.01	4.05	4.02
Mg#	0.75	0.80	0.91	0.76	0.82	0.78	0.88	0.76	0.90

Table 3b.- Representative EPMA analysis of clinopyroxene phenocrysts in wt% and in cation per formula unit recalculated to 6 oxygens. Speciation of iron was calculated following Papike (1974).

LC10-20 Qm	49.44	0.12	31.86	0.04	0.67	0.00	0.01	0.09	14.79	2.88	0.28	100.18	2.26	00.00	1.71	0.00	0.02	00.00	00.00	0.01	0.72	0.25	0.02	5.00	72.76	
LC10-26A Qm	50.15	0.29	30.87	0.00	1.30	0.00	0.01	0.23	14.32	3.39	0.41	100.99	2.28	0.01	1.65	0.00	0.04	0.00	0.00	0.02	0.70	0.30	0.02	5.02	68.35	
LC10-26A Qm	61.29	0.04	25.02	0.01	0.35	0.00	0.00	0.00	5.91	6.47	0.88	99.95	2.72	00.0	1.31	0.00	0.01	0.00	0.00	0.00	0.28	0.56	0.05	4.92	31.67	
LC10-01 Qgsb	50.35	0.14	31.56	0.10	0.76	0.00	0.00	0.05	14.24	3.24	0.29	100.72	2.28	0.00	1.69	0.00	0.03	0.00	0.00	0.00	0.69	0.29	0.02	5.00	69.63	
LC10-01 Qgsb	52.14	0.17	30.49	0.00	0.92	0.00	0.00	0.07	12.46	4.31	0.61	101.17	2.35	0.01	1.62	0.00	0.03	0.00	0.00	0.00	0.60	0.38	0.04	5.02	59.34	
LC10-03 Qmzb	50.60	0.10	31.27	0.00	0.56	0.00	0.01	0.09	14.07	3.37	0.26	100.33	2.30	00.0	1.68	0.00	0.02	0.00	0.00	0.01	0.69	0.30	0.02	5.00	68.69	
LC10-03 Qmzb	57.26	0.03	25.45	0.02	0.40	0.00	0.01	0.02	6.94	7.58	0.90	98.61	2.61	00.00	1.37	0.00	0.01	0.00	0.00	0.00	0.34	0.67	0.05	5.06	31.92	
LC10-06 Qhib	50.12	0.11	31.48	0.01	0.74	0.00	0.02	0.11	14.64	3.07	0.30	100.60	2.28	00.00	1.69	0.00	0.03	0.00	0.00	0.01	0.71	0.27	0.02	5.00	71.21	
LC10-06 Qhib	49.84	0.31	29.54	0.00	1.74	0.01	0.03	0.54	13.93	3.46	0.43	99.83	2.29	0.01	1.60	0.00	0.06	00.0	00.0	0.04	0.69	0.31	0.03	5.03	67.27	
LC10-12 Qhib	55.32	0.08	28.25	0.01	0.24	0.02	0.01	0.01	10.09	5.57	0.44	100.04	2.49	0.00	1.50	0.00	0.01	0.00	0.00	0.00	0.49	0.49	0.03	5.01	48.76	
Comment unit	SiO_2	TiO ₂	AI_2O_3	Cr_2O_3	Fe_2O_3	SrO	MnO	MgO	CaO	Na_2O	K ₂ O	Total	Si	Ξ	AI	ŗ	Fe ³⁺	Sr	MΠ	Mg	Ca	Na	¥	Total	%An	

Table 3c.- Representative EPMA analyses of plagioclase phenocrysts in wt% and in cation per formula unit, recalculated to 8 oxygens. %An=Ca/(Ca+Ni

Sample	JCLC11-4a	JCLC11-4a	JCLC11-4c	JCLC11-4c	JCLC11-4f	JCLC11-4c	JCLC11-4c	JCLC11-4c	JCLC11-4f	JCLC11-4f	JCLC11-4f
	core	core	core	core	clusion in olivi	rim	rim	rim	core	core	core
Unit	Qm	Qm	Qm	Qm	Qm	Qm	Qm	Qm	Qm	Qm	Qm
SiO ₂	41.83	41.85	41.07	41.59	40.69	41.94	41.55	42.06	40.51	40.62	40.37
TiO ₂	4.27	4.36	4.38	3.27	4.97	3.00	3.58	2.74	5.19	5.19	5.62
A ₁₂ O ₃	15.08	15.07	14.78	15.11	15.17	14.74	14.32	14.66	15.10	15.41	15.58
FeO	9.18	9.18	10.76	11.02	10.06	11.00	10.74	10.91	9.64	9.74	9.86
MnO	0.11	0.11	0.14	0.14	0.11	0.10	0.13	0.08	0.11	0.10	0.11
MgO	14.02	14.01	13.55	13.47	13.76	13.58	13.99	14.07	13.68	14.02	13.20
CaO	11.81	11.67	11.37	11.41	11.43	11.44	11.49	11.53	11.61	11.63	11.79
Na ₂ O	3.05	3.15	2.93	3.05	2.73	2.76	2.81	2.56	2.79	2.89	2.88
K ₂ O	0.50	0.47	0.97	0.89	1.14	1.29	1.18	1.40	1.18	1.06	1.07
Total	99.84	99.85	99.94	99.93	100.06	99.84	99.78	100.01	99.81	100.66	100.48
Si(T)	5.954	5.953	5.887	5.953	5.815	6.013	5.962	6.008	5.814	5.771	5.771
AI(T)	2.046	2.047	2.113	2.047	2.185	1.987	2.038	1.992	2.186	2.229	2.229
AI(C)	0.483	0.479	0.383	0.500	0.370	0.503	0.382	0.476	0.367	0.350	0.395
Ti(C)	0.457	0.466	0.472	0.352	0.534	0.323	0.386	0.294	0.560	0.555	0.604
Cr(C)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ³⁺ (C)	0.074	0.080	0.193	0.215	0.180	0.205	0.226	0.277	0.088	0.152	0.014
Mg(C)	2.976	2.971	2.895	2.874	2.932	2.902	2.992	2.997	2.927	2.970	2.813
Ni(C)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ²⁺ (C)	1.004	0.997	1.049	1.050	0.978	1.061	1.006	0.951	1.051	0.967	1.165
Mn(C)	0.006	0.007	0.008	0.008	0.007	0.006	0.008	0.005	0.007	0.006	0.009
Mg(B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ni(B)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe ²⁺ (B)	0.015	0.016	0.047	0.053	0.044	0.052	0.057	0.075	0.018	0.037	0.000
Mn(B)	0.006	0.007	0.008	0.008	0.007	0.006	0.008	0.005	0.007	0.006	0.004
Ca(B)	1.800	1.779	1.746	1.749	1.751	1.757	1.766	1.765	1.785	1.770	1.806
Na(B)	0.179	0.198	0.199	0.190	0.198	0.185	0.169	0.156	0.190	0.186	0.190
Na(A)	0.663	0.669	0.615	0.655	0.557	0.582	0.611	0.551	0.585	0.611	0.608
K(A)	0.091	0.084	0.178	0.162	0.208	0.235	0.216	0.255	0.216	0.193	0.195
T	8	8	8	8	8	8	8	8	8	8	8
C	4.53	5	5	5	4.58	5	5	5	5	4.58	4.42
В	2	2	2	2	2	2	2	2	2	2	2
A	0.75	0.75	0.79	0.82	0.//	0.82	0.83	0.81	0.80	0.80	0.80
H_2O amp (wt.%	1.97	1.97	1.97	1.96	1.96	1.97	1.97	1.99	1.99	1.98	1.98
H ₂ O melt (wt.%	5.95	6.76	5.71	5.92	5.33	5.57	5.56	5.70	7.41	6.16	7.44
P (MPa)	685.36	736.41	746.48	678.87	613.45	654.11	749.79	774.48	721.77	834.85	725.37
T (°C)	1037.14	1028.52	1052.92	1017.28	1023.94	1015.80	1059.59	1064.95	1040.15	1070.75	1041.14
ΔΝΝΟ	-0.10	0.10	-0.16	0.24	0.26	0.51	-0.31	-0.21	-0.12	-0.64	-0.09

Table 3d.- Representative EPMA analyses of Amphiboles, found in mafic inclusions in Marcath products, in wt% and recalculated to 23 oxygens,

(average of maximum and minimum estimation of ferric iron), following Leake et al., (1997). Calculations of water, temperature pressure and oxygen fugacity has been done following Ridolfi et al., (2012).

	Cr	Th	Та	Dy	La	Yb
Olivine	0.7	0.03	0.03	0.013	0.0067	0.03
Clinopyroxene	34	0.03	0.013	0.582	0.056	0.542
Orthopyroxene	10	0.04	0.0008	0.15	0.03	0.34
Garnet	2.9	0.044	0.06	3.17	0.001	11.5
Spinel	3.43	0.01	0.0004	0.01	0.01	0.01

Table 4a. Partition coefficients used in this study.

Data from Rollinson, (1993) and from the Earth Reference Database (http://earthref.org).

	D Cr	D Th	D Ta	D Dy	D La	D Yb
px1	13.6563	0.03424	0.019436	0.57067	0.027653	1.535
px2	13.6053	0.03366	0.018536	0.5074	0.0277	1.3053
рх3	13.6983	0.03604	0.021236	0.57145	0.028055	1.5368
lz1	5.488	0.03368	0.0264	0.46476	0.01462	1.50936
lz2	7.185	0.0329	0.022866	0.27496	0.01795	0.73826
lz3	7.2889	0.0321	0.019188	0.11818	0.019006	0.17454
lz4	8.877	0.03258	0.020824	0.21007	0.020819	0.42286

Table 4b. Calculated bulk partition coefficients using the modal mineralogies below

px1 =29%ol+29%opx+30%cpx+11%gt+1%sp

px2 =30%ol+40%opx+20%cpx+9%gt+1%sp

px3 =35%ol+29%opx+30%cpx+5%gt+1%sp

lz1 =60%ol+20%opx+8%cpx+12%gt

lz2 =60%ol+22%opx+13%cpx+5%gt

lz3 =58%ol+27%opx+12%cpx+3%sp

lz3 =57%ol+23%opx+18%cpx+2%gt

Pressure (Gpa)	model	sample	Liquidus (C)
0.3	MELTS	LC10-20	1276
0.6	MELTS	LC10-20	1296
0.9	pMELTS	LC10-20	1279
1	pMELTS	LC10-20	1284
1.3	pMELTS	LC10-20	1318
1.7	pMELTS	LC10-20	1370
3	pMELTS	LC10-20	1584
3	pMELTS	pyroxenite*	1581
3.8	pMELTS	LC10-20	1673
3.8	pMELTS	pyroxenite*	1664

3.8 pMELTS pyroxenite* 1664 Table 5.- Summary of MELTS and pMELTS calculated liquidus temperatures in samples (see text for deta

* pyroxenite from GERMS database