	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5001
1	Revision 1
2	Phase relationships in the system K ₂ CO ₃ -CaCO ₃
3	at 6 GPa and 900-1450°C
4	
5	Anton Shatskiy ^{1,2*} , Yuri M. Borzdov ¹ , Konstantin D. Litasov ^{1,2} , Igor S. Sharygin ^{1,2} ,
6	Yuri N. Palyanov ^{1,2} , Eiji Ohtani ³
7	
8	¹ V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science,
9	Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia
10	² Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
11	³ Department of Earth and Planetary Material Science, Tohoku University, Sendai
12	980-8578, Japan
13	
14	Abstract
15	Phase relations in the system K ₂ CO ₃ -CaCO ₃ have been studied in the
16	compositional range, X(K ₂ CO ₃), from 100 to 10 mol%, at 6.0 GPa and 900-1450 °C.
17	At 900-950 °C the system has three intermediate compounds: $K_6Ca_2(CO_3)_5$,
18	$K_2Ca(CO_3)_2$ and $K_2Ca_3(CO_3)_4$. The $K_2Ca(CO_3)_2$ compound decomposes to the
19	$K_6Ca_2(CO_3)_5 + K_2Ca_3(CO_3)_4$ assembly above 950 °C. The $K_6Ca_2(CO_3)_5$ and
20	K ₂ Ca ₃ (CO ₃) ₄ compounds melt congruently slightly above 1200 and 1300 °C,
21	respectively. The eutectics were established at 64 and 44 mol% near 1200 °C and at
22	23 mol% near 1300 °C. K_2CO_3 remains as a liquidus phase at 1300 °C and 75 mol%
23	and melts at 1425±20 °C. Aragonite remains as a liquidus phase at 1300 °C and 20
24	mol% and at 1400 °C and 10 mol% . CaCO3 solubility in K_2CO_3 and K_2CO_3 solubility
25	in aragonite are below the detection limit (<0.5 mol%).

8/13

26	Infiltration of subduction-derived K-rich Ca-Mg-Fe-carbonatite into the Fe ⁰ -
27	saturated mantle causes the extraction of (Mg,Fe)CO3 components from the melt,
28	which shifts its composition toward K-Ca-carbonatite. According to our data this melt
29	can be stable at the P - T conditions of subcratonic lithosphere with geothermal
30	gradient of 40 mW/m ² corresponding to temperature of 1200 °C at 6 GPa.

31

Keywords: alkaline carbonates; buetschliite; fairchildite; high-pressure
experiment; carbonatite; Earth's mantle.

34

35 Introduction

36 Carbonates are one of the important classes of compounds in the Earth's mantle which lower solidi of mantle rocks resulting in an appearance of carbonatite melt 37 38 (Wyllie and Huang, 1975; Wallace and Green, 1988; Sweeney, 1994; Dalton and 39 Presnall, 1998; Luth, 2006; Litasov, 2011). The latter is known as an effective 40 metasomatic agent altering mantle geochemistry (Green and Wallace, 1988; Haggerty, 41 1989) and as a solvent-catalyst promoting crystallization of sublithospheric diamonds 42 (Akaishi et al., 1990; Pal'yanov et al., 2002; Shatskii et al., 2002; Palyanov and Sokol, 43 2009). Besides, carbonates are important carbon carriers responsible for the carbon 44 inflow into the mantle with subducting slabs and outflow with deep magmas 45 (Dasgupta and Hirschmann, 2010; Dobretsov and Shatskiy, 2012).

The specific feature of deep carbonatite melts is high alkali contents
(particularly K) as follows from studies of the melt inclusions in diamonds (Navon,
1991; Schrauder and Navon, 1994; Izraeli et al., 2004; Klein-BenDavid et al., 2004;
Tomlinson et al., 2006; Weiss et al., 2009; Zedgenizov et al., 2009; Logvinova et al.,
2011; Zedgenizov et al., 2011) and high-pressure experiments on partial melting of

51 carbonatites (Litasov et al., 2013), kimberlites (Litasov et al., 2010b; Sharygin et al., 52 2013), carbonated peridotites (Dasgupta and Hirschmann, 2007; Brey et al., 2011), 53 eclogites (Dasgupta et al., 2004; Yaxley and Brey, 2004; Litasov et al., 2010a) and 54 pelites (Grassi and Schmidt, 2011). Experimental data on synthesis of K-bearing 55 clinopyroxene (Harlow, 1997) suggests that clinopyroxenes from inclusions in 56 diamonds and diamond-bearing metamorphic rocks with up to 1 wt% K₂O (Sobolev et 57 al., 1972; Sobolev and Shatsky, 1990; Harlow and Veblen, 1991; Sobolev et al., 1991; 58 Shatsky et al., 1995) are crystallized from ultrapotassic carbonate-silicate melts 59 containing 15-28 wt% K₂O.

60 It is thus essential to know phase relations in binary and more complex 61 carbonate systems under mantle conditions. Since carbonates could participate in a 62 variety of mantle processes (kimberlite magma generation, mantle metasomatism and diamond formation) which have been occurred at the base of subcratonic mantle (150-63 64 230 km depths), pressure of about 6 GPa is most interesting for the study of those 65 systems. Although phase relations in the CaCO₃-MgCO₃ (Buob et al., 2006), CaCO₃-66 FeCO₃ (Shatskiy et al., 2014), K₂CO₃-MgCO₃ (Shatskiy et al., 2013c), Na₂CO₃-67 MgCO₃ (Shatskiy et al., 2013a) and Na₂CO₃-CaCO₃ (Shatskiy et al., 2013d) systems 68 were already studied at 6 GPa, the data on phase relations in the K_2CO_3 -CaCO₃ 69 system are limited by pressures ≤ 0.1 GPa (Niggli, 1916; Eitel and Skaliks, 1929; 70 Kröger et al., 1943; Ragone et al., 1966; Chattaraj et al., 1973; Cooper et al., 1975; 71 Malik et al., 1985; McKie, 1990; Jago and Gittins, 1991; Arceo and Glasser, 1995) 72 (Fig. 1). Therefore, in this paper we present experimental data on phase relations in 73 the system K₂CO₃-CaCO₃ at 6 GPa and 900-1450°C.

74

75 Experimental method

76 Experiments have been conducted using a pressless split-sphere apparatus 77 "BARS" (Pal'yanov et al., 1997; Shatskiy et al., 2011a) equipped with an 8-6 type 78 multianvil system at the V.S. Sobolev IGM SB RAS (Novosibirsk, Russia) (Palyanov 79 et al., 2010) and a Kawai-type wedge and DIA uniaxial presses at Tohoku University 80 (Sendai, Japan) (Lloyd et al., 1963; Osugi et al., 1964; Shatskiy et al., 2011b). BARS has been chosen due to its large sample volume (V = $3.14 \times 5^2 \times 8 = 628 \text{ mm}^3$) allowing 81 82 loading over 40 1-mm samples in a single experiment and study phase relations in 83 several carbonate systems simultaneously. The Kawai-type cell assembly with smaller sample volume (V = $3.14 \times 2^2 \times 6 = 75 \text{ mm}^3$) containing 16 samples have been 84 85 employed to verify eutectic and melting temperatures depending on sample drying 86 conditions.

87 In the BARS experiments, we employed a ZrO₂ pressure medium (PM) shaped 88 as tetragonal prism ($20.4 \times 20.4 \times 25.2$ mm) and tubular graphite heater, 13/12 mm in 89 outer/inner diameter and 19 mm length (Fig. 2). The PM was compressed by two 90 anvils with 16×16 mm square and four anvils with 16×20 mm rectangular truncations. 91 Temperature was monitored with a Pt₉₄Rh₆/Pt₇₀Rh₃₀ thermocouple calibrated at 5.7-92 6.3 GPa using the melting points of Al, Ag, Au, Ni, Pt, and Ni-C eutectic (Pal'yanov 93 et al., 2002; Shatskii et al., 2002; Sokol et al., 2007). Pressure was calibrated by the 94 graphite-diamond equilibrium in the Ni-C system (Kennedy and Kennedy, 1976) (Fig. 95 3, 4). The pressure and temperature were measured with the accuracy ± 0.1 GPa and 96 ±20 °C.

In the Kawai experiments, we used the ZrO₂ PM shaped as a 20.5-mm
octahedron with ground edges and corners (see Fig. 1a in (Shatskiy et al., 2013c).
Graphite heater, 4.5/4.0 mm in outer/inner diameter and 11 mm in length, was used to
heat samples. The sample temperature was monitored using a W₉₇Re₃/W₇₅Re₂₅

101 thermocouple; no correction for the effect of pressure on thermocouple electromotive 102 force was applied. The temperature was maintained within 0.5-2.0 °C of the desire 103 value. Details of pressure calibration are given in figure 2 in (Shatskiy et al., 2013c). 104 Deviation of pressure from the desirable value during heating to 900-1500 °C in the 105 given cell and press load did not exceed \pm 0.5 GPa, as confirmed by *in situ* X-ray 106 diffraction experiments at the BL04B1 beamline of the SPring-8 synnhrotron 107 radiation facility.

108 All experiments were performed using multiple graphite sample capsules 109 (cassettes). No noble-metal outer capsule was used in our experiments. Because of its 110 chemical inertness and high-melting point, graphite is preferable capsule material for 111 the extremely mobile and reactive carbonate melts (Kanda et al., 1990; Shatskii et al., 112 2002). Besides, cheapness of graphite allows manufacturing thick-walled (≥ 0.4 mm 113 in thickness) multi-sample holders, whereas its softness greatly facilitates the multi-114 charged assembly preparation, cutting and polishing recovered cassettes with samples. 115 Maximum radial and axial thermal gradients across the sample charges were

examined using thermal modeling software (Hernlund et al. 2006) and were found to be 4 and 5 °C/mm in the BARS experiments and 5 and 10 °C/mm in the Kawai experiments (Fig. 3 in (Shatskiy et al., 2013c). Thus, the maximum temperature difference between samples did not exceed 20 °C.

We conducted two sets of experiments. In the first one, the samples in graphite cassettes were dried at 100°C for 12 hours. These experiments were conducted using both BARS and Kawai-type apparatuses. In the second set of experiments conducted using the Kawai-type wedge uniaxial press, the samples were dried at 300 °C for 3-5 hours and PM with other ceramic parts were fired at 950 °C for 2 hours. Then assembly was stored at 130°C for 6-12 hours in vacuum prior to experiment. During opening the vacuum oven was filled with air from a drying oven rather than ambient air. Similar drying procedure allowed growth of nearly anhydrous ($<68\pm4$ wt ppm H₂O) Mg₂SiO₄ wadsleyite single crystals using K₂Mg(CO₃)₂ as a solvent (Shatskiy et al., 2009). Experimental conditions of the first and second sets of experiments are listed in Table 1 and 2, respectively.

131 The K₂CO₃-bearing samples are very hydroscopic and adsorb large amounts of 132 water within minute under atmosphere conditions. Therefore, a special care was taken 133 to minimize the time of contact between the samples and air. Recovered samples were 134 mounted into an epoxy resin and polished in low-viscosity oil using 400-, 1000- and 135 1500-mesh sandpapers and 3-µm diamond paste. We used low-viscosity grade of 136 epoxy, which can be drawn into pores and cracks by vacuum impregnation. The 137 sample surface was cleaned using an oil spray between each step of polishing. The 138 samples were always covered by a film of oil during polishing and checking up on the 139 polishing progress under binocular microscope. Finally we used petroleum benzene to 140 remove oil after polishing immediately prior to coating and loading the sample into a 141 scanning electron microscope. Samples were studied using a JSM 5410 scanning 142 electron microscope equipped with Oxford Instruments Link ISIS Series 300 energy-143 dispersive X-ray spectroscopic (EDS) microanalysis system at Tohoku University 144 (Sendai, Japan). EDS spectra were collected by rastering the electron beam over a 145 surface area available for the analysis with linear dimensions from 10 to 300 um at 15 146 kV accelerating voltage and 1 nA load current. No beam damage or change in 147 measured composition with time was observed at these settings. The correctness of 148 the EDS measurements was confirmed under the same conditions using post-149 experimental samples with known compositions and homogeneous textures obtained 150 below the solidus.

8/13

151

152 **Experimental results**

153 Representative BSE images of sample cross-sections are shown in Figures 5 and 154 6. The subsolidus samples were represented by homogeneous aggregates of carbonate 155 phases, with grain size varying from several tens to hundred micrometers. In non-156 stoichiometric mixtures, the limiting reagents, i.e. K_2CO_3 at $X(K_2CO_3) < 60$ mol% and 157 $CaCO_3$ at $X(K_2CO_3) > 25$ mol% have been consumed completely (Table 1, 2). In 158 stoichiometric mixture, $X(K_2CO_3) = 60 \text{ mol}\%$ both reagents, K_2CO_3 and $CaCO_3$, were 159 completely consumed to form the $K_6Ca_2(CO_3)_5$ compound (Table 1, 2). This suggests 160 that reactions have gone to completion and equilibrium has been achieved.

161 An aggregate of carbonate crystals up to 200 μ m in size in the cool region and 162 a quenched melt segregated to the hot region of the sample capsule were observed in 163 the run products below the liquidus (Fig. 5 and 6). The melts guenched with a rate of 164 about 60°C/sec, were represented by dendritic aggregates. Extensive quench 165 crystallization is common feature of the carbonate and carbonate-silicate melts 166 (Ragone et al., 1966; Eggler, 1975; Buob et al., 2006; Keshav and Gudfinnsson, 2013), 167 which is attributed to their low viscosity (Dobson et al., 1996; Guillot and Sator, 168 2011) and high component diffusivities (Genge et al., 1995; Shatskiy et al., 2013b). 169 The liquid-crystal interface outlines (Fig. 5 and 6) coincide with the typical shape 170 expected for an isotherm in a high-pressure cell (see Fig. 2 in this manuscript and Fig. 171 3b in (Shatskiy et al., 2013c). For example, in the BARS experiments, the melt 172 segregates from the heater side (Fig. 5f,h) in samples from the middle cassette (Fig. 2). 173 In the Kawai experiments, the melt segregates at the sample ends (Fig. 6e,k,o) located 174 at the heater center. In all cases the melt segregates in the high-temperature region independently from the gravity vector. The cause of liquid and solid phases 175

176 redistribution in the thermal gradient field and formation of the rounded interface has

177 been discussed in our previous study (Shatskiy et al., 2010).

178 Alkali-carbonate melts are known as very mobile and extremely reactive 179 compounds, which are difficult to seal in a high-pressure cell. To overcome this 180 encapsulation problem we used tightly closed graphite capsules (Fig. 2). Since our 181 multicharge experiments also contained carbonate samples with different cation 182 compositions such as Na-Ca, Na-Mg, or K-Mg, which in some cases were loaded into 183 the same cassette, it was easy to monitor the performance of those capsules at given 184 *P-T* conditions and run durations in terms of proper carbonate melt sealing. EDS 185 analysis did not show any foreign cations in our post-experimental samples.

186 Both K_2CO_3 and $CaCO_3$ melts are known as solvent catalysts for the graphite-to-187 diamond transformation (Akaishi et al., 1990; Pal'yanov et al., 1998; Pal'yanov et al., 188 1999; Shatskii et al., 2002). Although our experiments were performed in the field of 189 thermodynamic stability of diamond (Kennedy and Kennedy, 1976), no diamonds 190 were found in the run products even after sample annealing at 1400 °C and 6 GPa for 191 6 hours. This is consistent with previous results for the system K_2CO_3 -C, in which no 192 diamonds appeared even after 40 hours at 5.7 GPa and 1420 °C (Pal'yanov et al., 193 2002), while diamond nucleation was established at 6.3 GPa, 1650 °C with the same 194 run duration (Shatskii et al., 2002). This can be explained by the long time required 195 for diamond to nucleate in the carbonate systems, which diminishes with increasing 196 temperature and pressure from \geq 40 hours at 5.7 GPa and 1420 °C to 20 minutes at 7 197 GPa and 1700-1750 °C (Pal'yanov et al., 1999).

198 *Experiments under "wet" conditions.* Phase relations established in the first set 199 of experiments with samples dried at 100 °C are illustrated in Fig. 7a. At 900 °C, the 200 system has three intermediate compounds: $K_6Ca_2(CO_3)_5$, $K_2Ca(CO_3)_2$ and

201	$K_2Ca_3(CO_3)_4$. The second compound undergoes subsolidus breakdown above 900 °C
202	according to the reaction: $7K_2Ca(CO_3)_2 = 2K_6Ca_2(CO_3)_5 + K_2Ca_3(CO_3)_4$. The distinct
203	liquid compositions at 1100 °C below and above 60 mol% $K_2 CO_3$ and at 1150 °C
204	below and above 25 mol% K ₂ CO ₃ suggest a eutectic type phase diagram (Table 1, Fig.
205	7a). This is also supported by a coexistence of liquid with two solid phases in near
206	eutectic compositions at 50 mol% K ₂ CO ₃ and 1000 °C (Fig. 5f). The topology of the
207	phase diagram implies congruent melting of K ₆ Ca ₂ (CO ₃) ₅ above 1100 °C and
208	$K_2Ca_3(CO_3)_4$ above 1150 °C (Fig. 7a). The eutectics were established at $X(K_2CO_3) =$
209	66 mol% between 1000 and 1100 °C, at 46 mol% near 1000 °C and at 23 mol% near
210	1150 °C (Fig. 7a). The carbonate K ₂ CO ₃ does not melt up to 1200 °C, while complete
211	melting was established at 1300 °C and $X(K_2CO_3) = 90 \text{ mol}\%$ (Table 1). Measurable
212	amounts of CaCO ₃ in K ₂ CO ₃ suggest an existence of limited solid solutions of CaCO ₃
213	in K ₂ CO ₃ at given experimental conditions (Fig. 5a, b, Table 1). The maximum
214	CaCO ₃ solubility in K ₂ CO ₃ of about 20 mol% was established at 1000 °C (Fig. 7a).
215	CaCO ₃ was observed as a subliquidus phase at $X(K_2CO_3) = 20$ mol% and 1150 °C and
216	at $X(K_2CO_3) = 10 \text{ mol}\%$ up to 1300 °C. The K solubility in aragonite does not exceed
217	the detection limit of EDS employed in our study (i.e. $\leq 0.5 \text{ mol}\% \text{ K}_2\text{CO}_3$) (Table 1).
218	Experiments under "dry" conditions. Phase relations established in the second
219	set of experiments with samples dried at 300 °C are illustrated in Fig. 7b. At 1150 °C,
220	the system has two intermediate compounds: $K_6Ca_2(CO_3)_5$ and $K_2Ca_3(CO_3)_4$. At

221 $X(K_2CO_3) = 60 \text{ mol}\%$, most of the sample consists of the $K_6Ca_2(CO_3)_5$ compound, 222 and minor amount of quenched melt at the high-temperature sample end (Fig. 6f). The 223 melt composition coincides (within measurement error of melt composition) with the 224 composition of starting mixture and solid phase (Table 2). The same composition of 225 solid and liquid phases suggests congruent melting of K₆Ca₂(CO₃)₅. The simultaneous

226	occurrence of solid and liquid phase is due to the axial thermal gradient along the
227	sample charge. At 1300 °C and $X(K_2CO_3) = 30$ mol%, the $K_2Ca_3(CO_3)_4$ compound
228	coexists with melt containing 33 mol% K ₂ CO ₃ , whereas at $X(K_2CO_3) = 20$ and 10
229	mol% aragonite coexists with melt containing 22 mol% K2CO3. This indicates
230	congruent melting of K ₂ Ca ₃ (CO ₃) ₄ , which occurs between 1300 and 1400 °C (Fig. 7b)
231	Similar to the first set of experiments, the distinct liquid compositions at 1200
232	°C and X(K ₂ CO ₃) below and above 60 mol% and at 1300 °C below and above 25
233	mol% suggest a eutectic type phase diagram (Table 2, Fig. 7b). The eutectics were
234	established at $X(K_2CO_3) = 63 \text{ mol}\%$ between 1150 and 1200 °C, at 44 mol% near
235	1200 °C and at 23 mol% near 1300 °C (Fig. 7b). The liquidus lines were drown based
236	on the melt compositions measured by EDS (Fig. 7b). As shown in Table 1, K_2CO_3
237	does not melt up to 1400 °C. Melting of K ₂ CO ₃ was established in additional run in
238	the pure K ₂ CO ₃ system at 1450 °C. CaCO ₃ , whose melting temperature is about 1680
239	°C at 6 GPa (Suito et al., 2001; Shatskiy et al., 2014), was observed as a subliquidus
240	phase at $X(K_2CO_3) = 20 \text{ mol}\%$ and 1300 °C and at $X(K_2CO_3) = 10 \text{ mol}\%$ and 1400 °C.
241	It was identified by the Raman spectroscopy as aragonite.

242

243 **Discussion**

The results clearly demonstrate that insufficient sample drying significantly (by about 200 °C) lowers eutectic temperatures and widen the field of the K_2CO_3 solid solutions (Fig. 7). At the same time the drying conditions have no significant effect on the eutectic compositions. A gas chromatography measurements of recovered samples from high-pressure experiments in sealed capsules show that water is a major volatile in quenched carbonate melts (Sokol et al., 2000). Sokol et al. have concluded that most of water detected in their samples was trapped during sample storage at 90 °C in

251 the oven. The water absorption during carbonate powder loading into the capsules 252 without subsequent drying is another possible reason for sample hydration (Shatskiy 253 et al., 2009). The latter possibility is also suggested by significant variations in the 254 water contents in the recovered samples (from 0 to 0.45 wt% H₂O) reported by Sokol 255 et al. (2000). In the second set of experiments we employed the drying procedure 256 similar to that we used for growth of nearly anhydrous ($<68\pm4$ wt ppm H₂O) Mg₂SiO₄ 257 wadsleyite single crystals from $K_2Mg(CO_3)_2$ melt (Shatskiy et al., 2009). Therefore, 258 we assume that starting materials in the first set of experiments were contaminated by 259 water, i.e., conducted under wet conditions, whereas the second one was conducted 260 under nominally dry conditions. The water contamination can be associated with the 261 formation of K_2CO_3 ·1.5H₂O, which is almost impossible to prevent in air (Schneide 262 and Levin, 1973; Deshpande et al., 1993).

The established melting temperature of K_2CO_3 at 6 GPa is about 250 °C higher than that at 3.2 GPa reported by (Liu et al., 2006). According to their data a slope (dT/dP) of the K_2CO_3 fusion curve decreases with pressure and begins to flatten at ~ 2.5 GPa (Fig. 8). At this pressure the density of the melt should be similar to that of the solid phase. In contrast, our data suggest a sharp increase in the dT/dP slope at higher pressures. This might occur due to a pressure-induced phase transition in solid K_2CO_3 (Cancarevic et al., 2006).

The stoichiometry of subliquidus K-Ca carbonates established at 6 GPa differs from that at 1 bar and 0.1 GPa pressures (Cooper et al., 1975; Arceo and Glasser, 1995) (Fig. 1 and 7). At 6 GPa, the "low-pressure" $K_2Ca(CO_3)_2$ compound (Cooper et al., 1975) appears only at 900°C under "wet" conditions (Fig. 7a), whereas at higher temperatures it is replaced by the $K_6Ca_2(CO_3)_5 + K_2Ca_3(CO_3)_4$ assemblage (Fig. 7). We also did not observed the $K_2Ca_2(CO_3)_3$ and $K_4Ca_5(CO_3)_7$ compounds which were

about 400°C for the K-rich side and by \sim 500°C for the Ca-rich side of the K₂CO₃-

279 CaCO₃ join (Fig. 1 and 7b).

The high eutectic temperature of $K_2Ca_3(CO_3)_4$ + aragonite assemblage (near 1300 °C at 6 GPa) suggests that the $K_2Ca_3(CO_3)_4$ compound can be one of the potential host of potassium at the *P*-*T* conditions of subcratonic lithosphere. The binary carbonate with similar stoichiometry, Na₂Ca₃(CO₃)₄, was also established in the Na₂CO₃-CaCO₃ system at 900-1300 °C and 6 GPa (Shatskiy et al., 2013d).

285 Since carbonate would be the major contributors to the incipient melting in the 286 oxidized mantle domains under anhydrous conditions, it is interesting to compare 287 phase relations in the Na/K₂CO₃-Ca/MgCO₃ binary diagrams at 6 GPa (Fig. 9). All 288 these systems contain intermediate compounds, which melt congruently. The 289 Na/K_2CO_3 -MgCO₃ systems have one intermediate compound (Fig. 9a,b), whereas the 290 Na/K₂CO₃-CaCO₃ systems have two intermediate compounds, which melt 291 congruently and one compound, which decomposes under subsolidus conditions (Fig. 292 $9c_{,d}$). In contrast to K_2CO_3 , the solid Na_2CO_3 dissolve measurable amount of MgCO₃ 293 (up to 9 mol%) and $CaCO_3$ (up to 8 mol%). The lowest temperature eutectics occur 294 near 1200 °C on the alkali-rich side of these binary systems. The highest melting 295 eutectics locate near 1250 °C on the Mg-rich side and near 1300 °C on the Ca-rich 296 side of the corresponding binary systems (Fig. 9).

297 Compared with the eutectics determined in the binary carbonate systems, the 298 solidi of K-bearing carbonated peridotite, $T_{\text{Solodus}} \leq 1100$ °C at 6 GPa (Brey et al., 299 2011), and K-bearing carbonated pelite, $T_{\text{Solodus}} \sim 1070$ °C near 6 GPa (Grassi and 300 Schmidt, 2011), are at lower temperatures. This difference undoubtedly reflects the301 influence of additional constituents, such as MgCO₃.

302

303 Implications for interaction of subduction-derived carbonatite melt with 304 Fe⁰-saturated mantle

305 Volatiles (H₂O and CO₂) are recycled back into the Earth's interior in the 306 subduction zones. Thermodynamic modeling suggests that significant portion of 307 carbonates stored in the sediment and basaltic layers can survive melting and 308 devolatilization under the island arcs and be preferentially transported to the deep 309 mantle, in contrast to H₂O and hydrous minerals (Kerrick and Connolly, 2001a; b). As 310 subducting slabs sink to 200-300 km depths and warm up to 1100 °C sediments 311 (carbonated pelites) undergo partial melting and vield potassic ankerite-dolomite melt 312 $37(K_{<0.94}Na_{>0.06})$ 2CO₃·63(Ca_{0.62}Mg_{0.16}Fe_{0.22})CO₃ (0.6 мол% SiO₂) (Grassi and 313 Schmidt, 2011). Owing to its low density (Genge et al., 1995; Guillot and Sator, 314 2011), enhanced wetting properties (Hunter and McKenzie, 1989; Minarik and 315 Watson, 1995; Yoshino et al., 2010), and ability to transport silicate components 316 (Shatskiy et al., 2013b), the carbonate melt can stem from subducted oceanic 317 lithosphere and percolate upwards along grain boundaries (Hammouda and Laporte, 318 2000).

In contrast to oxidized subduction zones, the redox conditions in the lowermost upper mantle and transition zone may be controlled by presence of ~0.1 wt% Fe⁰ which forms as a result of disproportionation reaction Fe^{2+} (olivine) = Fe^{0} (metal) + Fe³⁺ (garnet) at pressures > 7 GPa (Rohrbach et al., 2007; Frost and McCammon, 2008). Therefore, subduction-derived carbonate melt must be partially reduced by metallic iron. Recent experimental study by Palyanov et al. (2013) shows that the

325	redox reaction, $CaCO_3 \cdot MgCO_3 \cdot FeCO_3$ (melt) + $4Fe^0$ (metal) = $CaCO_3$ (melt) +
326	MgO·5FeO (magnesiowustite) + 2C(diamond), causes the extraction of (Mg,Fe)CO ₃
327	components from the melt and shifts the melt composition to essentially calcitic
328	(Palyanov et al., 2013). The phase relations in the CaCO ₃ -MgCO ₃ -FeCO ₃ system
329	(Shatskiy et al., 2014) suggest that such change in the melt composition should cause
330	its freezing and crystallization of Mg- and Fe-bearing calcite at temperature
331	conditions of average mantle geotherm. In contrast, the partial reduction of the
332	potassic ankerite-dolomite melt established by Grassi and Schmidt (2011) should shift
333	its composition toward K-Ca carbonate melt. According to our data this melt can be
334	stable at the P - T conditions of subcratonic lithosphere with geothermal gradient of 40
335	mW/m^2 corresponding to temperature of 1200 $^\circ C$ at 6 GPa (Pollack and Chapman,
336	1977; McKenzie et al., 2005).

337

338 Acknowledgements

We are very grateful to Dionysis Foustoukos and Shantanu Keshav for thorough review and Keith Putirka and Bjorn Mysen for editorial handling and personal attention. Special thanks to Robert Luth for the time he spent reviewing early versions of the manuscript, for his helpful suggestions and comments. This work was supported by the Russian Scientific Fund (proposal No. 14-17-00609) and performed under the project of the Ministry of education and science of Russian Federation (No. 14.B25.31.0032).

346

347	Table 1. Compositions (in mol% K_2CO_3) of the run products in the system K_2CO_3 -CaCO ₃ at 6 GPa
348	under hydrous conditions.

Run No.,	Run	$X(K_2CO_3)$ in the system, mol%								
<i>T</i> , time	products	90	75	60	55	50	40	30	20	10
B1487/2	K_2CO_3	-	-	-	-	-	-	-	-	_
1300°C	Aragonite	-	-	-	-	-	-	-	×	0.4
2 h	Liquid	89.8(2.2)	+	+	+	50.3	39.6	29.7	×	13.2
B1488/2	K ₂ CO ₃	97.6(1.0)	_	_	_	_	_	_	×	_
1200°C	Aragonite	-	-	-	-	-	-	-	×	0.5
10 h	Liquid	85.0(1.5)	+	+	54.4(3)	49.2	41.8(4)	30.0(2)	×	16.6(6)
T2018	K ₂ CO ₃	92.3(3)	91.8	_	×	_	_	_	_	_
1150°C	$K_6Ca_2(CO_3)_5$	_	-	_	×	_	_	_	_	_
14 h	$K_2Ca_3(CO_3)_4$	_	_	_	×	_	24.5	25.0	24.7	24.6
	Aragonite	-	_	_	×	-	-	_	0.2(2)	0.3(0)
	Liquid	70.6(2)	67.5(2.4)	61.0(5)	×	+	+	+	21.7(2)	+
T2019	K ₂ CO ₃	85.4(1.3)	86.2	_	×	_	_	_	_	_
1100°C	$K_6Ca_2(CO_3)_5$		59.7	60.3(2)	×	59.0(3)	_	_	_	_
15 h	$K_2Ca_3(CO_3)_4$	_	_	_	×		25.2	25.0	24.4	24.1
	Aragonite	_	_	_	×	_	_	0.4	0.1	0.5
	Liquid	-	67.7	62.1(2)	×	52.1(9)	44.6(2)	43.9	_	_
ES335	K ₂ CO ₃	×	×	_	×	_	_	_	_	_
1050°C	$K_6Ca_2(CO_3)_5$	×	×	59.5(2)	×	58.6	-	_	_	_
19 h	$K_2Ca_3(CO_3)_4$	×	×	_	×	25.0(4)	24.9(4)	24.8(3)	24.5	24.5
	Aragonite	×	×	-	×	_	-	_	0.3(2)	0.1
	Liquid	×	×	-	×	48.0(2)	45.1(8)	44.3(3)	-	-
B1002/1	K ₂ CO ₃	90.0(1.6)	80.5(6)	×	_	_	_	_	×	_
1000°C	$K_6Ca_2(CO_3)_5$	-	60.4(2.9)	×	58.1(7)	59.8(2)	58.5(2)	59.6(4)	×	_
30 h	$K_2Ca_3(CO_3)_4$	-	_	×	25.2(0)	25.8	25.1(1.2)	24.6(0)	×	24.1
	Aragonite	-	_	×	-	-	-	-	×	0.4(2)
	Liquid	-	_	×	49.3(1)	45.9(7)	46.4(1.6)	46.4(5)	×	-
T2011	$K_2Ca(CO_3)_2$	×	×	×	×	×	51.2	×	_	_
950°C	$K_2Ca_3(CO_3)_4$	×	×	×	×	×	26.1	×	26.0	25.1
36 h	Aragonite	×	×	×	×	×	_	×	0.5(2)	0.4(2)
B1000/1	K ₂ CO ₃	92.7(5)	91.9	×	_	_	_	_	×	_
900°C	K ₆ Ca ₂ (CO ₃) ₅	59.8(1.5)	58.5	60.1(3)	59.1	_	_	_	×	-
38 h	$K_2Ca(CO_3)_2$	-	-	×	50.3(1)	50.0(5)	50.3(7)	50.3(3)	×	_
	$K_2Ca_3(CO_3)_4$	-	-	×	-	-	24.5	24.9(1.7)	×	25.5
	Aragonite	-	-	×	-	-	-	-	×	0.0

349 *Notes:* "-" - phase was not established in the run products; "+" - complete melting; × - no data. Standard deviations

are given in parentheses, where the number of measurements is more than one. Letters in the run number, denote the type of multianvil apparatus, ES = wedge, T = DIA and B = BARS.

^{8/13}

353 354 Table 2. Compositions (in mol% K₂CO₃) of the run products in the system K₂CO₃-CaCO₃ at 6 GPa under 11

nominally	dry conditions.								
Run No., Run $X(K_2CO_3)$ in the system, mol%				ol%					
T, time	products	90	75	60	50	40	30	20	10
ES346	K ₂ CO ₃	100.0 ^A	×	×	×	×	_	_	_
1400°C	Aragonite	_	×	×	×	×	_	_	0.2
6h	Liquid	-	×	×	×	×	31.0	+	12.9(2)
ES344	K ₂ CO ₃	99.9	100.0	_	-	-	_	_	_
1300°C	$K_6Ca_2(CO_3)_5$	-	-	_	-	_	_	_	_
4h	$K_2Ca_3(CO_3)_4$	-	_	_	-	_	25.7	_	25.4
	Aragonite	_	_	_	_	_	_	0.1	0.4(3)
	Liquid	71.1	70.6(1)	60.2(1)	49.2(2)	40.0(3)	32.6(4)	22.1(2)	22.2
ES341	K ₂ CO ₃	99.3	100.0	_	_	_	_	_	_
1200°C	$K_6Ca_2(CO_3)_5$	61.0	59.2	59.7	57.9	_	_	_	_
12h	$K_2Ca_3(CO_3)_4$	-	_	_	25.3	25.4	25.0	24.5	23.1
	Aragonite	_	_	_	_	_	_	0.2	0.4(1)
	Liquid	+	65.1(6)	61.9	45.2	44.1(6)	44.5(4)	_	-
ES347	K ₂ CO ₃	99.2	99.1	_	_	_	_	_	_
1150°C	$K_6Ca_2(CO_3)_5$	60.1	61.3	59.5	60.3	60.3	59.1	_	_
18 h	$K_2Ca_3(CO_3)_4$	_	_	_	25.6(2.4)	25.0	24.9	24.6	24.2
	Aragonite	_	_	_	_	_	_	0.3	0.4

Notes: "–" – phase was not established in the run products; "+" – complete melting; × – no data. Standard deviations are given in parentheses, where the number of measurements is more than one. Letters in the run number, "ES" denotes the uniaxial press with wedge-type guide-block. ^A – The pure K_2CO_3 system. 355 356

357

358

8/13

Fig. 1. Phase relations in the system K_2CO_3 -CaCO₃ at 1 bar CO₂ pressure (Arceo and Glasser, 1995) (a) and at pressure of 0.1 GPa (Cooper et al., 1975) (b). K_2 $-K_2CO_3$; K_{2SS} – CaCO₃ solid solution in K_2CO_3 ; BU – buetschliite, $K_2Ca(CO_3)_2$; FC - fairchildite, $K_2Ca(CO_3)_2$; K_2Ca_2 – $K_2Ca_2(CO_3)_3$; K_4Ca_5 – $K_4Ca_5(CO_3)_7$; Cal – calcite; Cal^D – disordered calcite; L = liquid; F = CO₂ fluid.

8/13

367

373

Fig. 2. High-pressure cell assembly employed to study phase relations in
carbonate systems at 6 GPa using pressless split-sphere apparatus (BARS) (Palyanov
et al., 2010). The temperature distribution along the cell obtained using the thermal
modeling software (Hernlund et al., 2006) is given at the right side of the figure in °C.
TC – PtRh(30/6) thermocouple; PM – pressure medium.

374

Fig. 3. An assembly design in the calibration experiments for BARS. (a) The
sample chamber arrangement and temperature distribution are shown in °C. (b)
Scheme of Ni melting and diamond crystallization. Dia – diamond; FG – film growth;
TGG – thermal gradient growth; TC – PtRh(30/6) thermocouple junction. Melting
point of the metal wire was detected by resistance jump.

381

382

Fig. 4. Pressure calibration of a 8-6 type multianvil system with TEL 16 and 20 mm and ZrO_2 PM shaped as tetragonal prism (20.4×20.4×25.2 mm). We placed composite metal gaskets between anvils near truncations to minimize extrusion of the PM and to improve stress distribution inside anvils (Shatskiy et al., 2011; Yoneda et al., 1984).

388

389

8/13

Fig. 5. Representative BSE images of sample cross-sections illustrating phase relations in the system K_2CO_3 -CaCO₃ at 6 GPa under "wet" conditions (i.e. in samples dried at 100 °C). Sample axes are horizontally disposed on each image. In the experiments, the sample exes were disposed vertically. Melt always segregates in high-temperature region independently of gravity. $K_2 = K_2CO_3$ solid solution; K_6Ca_2 $= K_6Ca_2(CO_3)_5$; $K_2Ca = K_2Ca(CO_3)_2$; $K_2Ca_3 = K_2Ca_3(CO_3)_4$; L = liquid.

Fig. 6. Representative BSE images of sample cross-sections illustrating phase relations in the system K_2CO_3 -CaCO₃ at 6 GPa under nominally "dry" conditions (i.e. in samples dried at 300 °C). Sample axes are horizontally disposed on each image. In the experiments, the sample axes were tilted by 54.7°. The upper sample end is located on the right side of each image. Melt always segregates in high-temperature region independently of gravity. $K_2 = K_2CO_3$; $K_6Ca_2 = K_6Ca_2(CO_3)_5$; $K_2Ca_3 =$ $K_2Ca_3(CO_3)_4$; Arg = aragonite; L = liquid.

Fig. 7. Phase relations in K_2CO_3 -CaCO₃ system at 6 GPa under "wet" and "dry" conditions, i.e. in samples dried at 100 and 300 °C, respectively. $K_2 = K_2CO_3$; $K_{2SS} =$ CaCO₃ solid-solution in K_2CO_3 ; $K_6Ca_2 = K_6Ca_2(CO_3)_5$; $K_2Ca = K_2Ca(CO_3)_2$; $K_2Ca_3 =$ $K_2Ca_3(CO_3)_4$; Arg = aragonite; L = liquid. Grey circles indicate the melt composition measured by EDS. White circles mark the composition of CaCO₃- K_2CO_3 solid solution. Grey segments in hexagons denote phases observed at the lower temperature side of the samples.

415

416 Fig. 8. The K₂CO₃ fusion curve. The open circles are the experimentally 417 determined melting temperatures from (Klement and Cohen, 1975). The open and 418 filled triangles are the experimentally determined melting temperatures from (Liu et 419 al., 2006). β -K₂CO₃ is monoclinic, *C*2/*c*, and α -K₂CO₃ is hexagonal, *P*6₃/*mmc*, K₂CO₃ 420 polimorphs (Schneide and Levin, 1973; Becht and Struikmans, 1976; Dinnebier et al., 421 2005). The α - β transition slope was experimentally determined up to 0.5 GPa 422 (Klement and Cohen, 1975).

8/13

Fig. 9. Comparison of phase relations in the binary alkali-alkaline earth carbonate
systems at pressure of 6 GPa. (a) The system K₂CO₃-MgCO₃ (Shatskiy et al., 2013c).
(b) The system Na₂CO₃-MgCO₃ (Shatskiy et al., 2013a). (c) The system K₂CO₃CaCO₃ (this study). (d) The system Na₂CO₃-CaCO₃ (Shatskiy et al., 2013d). Numbers
indicate mole fraction of alkaline component at the eutectic points.

431 **References cited**

432	Akaishi, M., Kanda, H., and Yamaoka, S. (1990) Synthesis of diamond from graphite-
433	carbonate systems under very high temperature and pressure. Journal of
434	Crystal Growth, 104(2), 578-581.
435	Arceo, H.B., and Glasser, F.P. (1995) Fluxing reactions of sulfates and carbonates in
436	cement clinkering II. The system CaCO ₃ -K ₂ CO ₃ Cement and Concrete
437	Research, 25(2), 339-344.
438	Becht, H.Y., and Struikmans, R. (1976) A monoclinic high-temperature modification
439	of potassium carbonate. Acta Crystallographica Section B: Structural
440	Crystallography and Crystal Chemistry, 32(12), 3344-3346.
441	Brey, G.P., Bulatov, V.K., and Girnis, A.V. (2011) Melting of K-rich carbonated
442	peridotite at 6-10 GPa and the stability of K-phases in the upper mantle.
443	Chemical Geology, 281(3-4), 333-342.
444	Buob, A., Luth, R.W., Schmidt, M.W., and Ulmer, P. (2006) Experiments on CaCO ₃ -
445	MgCO ₃ solid solutions at high pressure and temperature. American
446	Mineralogist, 91(2-3), 435-440.
447	Cancarevic, Z., Schon, J.C., and Jansen, M. (2006) Alkali metal carbonates at high
448	pressure. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 632(8-9),
449	1437-1448.
450	Chattaraj, B.D., Dutta, S.N., and Iyengar, M.S. (1973) Studies on the thermal
451	decomposition of calcium carbonate in the presence of alkali salts (Na ₂ CO ₃ ,
452	K ₂ CO ₃ and NaCl). Journal of Thermal Analysis and Calorimetry, 5(1), 43-49.
453	Cooper, A.F., Gittins, J., and Tuttle, O.F. (1975) The system Na ₂ CO ₃ -K ₂ CO ₃ -CaCO ₃
454	at 1 kilobar and its significance in carbonatite petrogenesis. American Journal
455	of Science, 275(5), 534-560.
456	Dalton, J.A., and Presnall, D.C. (1998) Carbonatitic melts along the solidus of model
457	lherzolite in the system CaO-MgO-Al ₂ O ₃ -SiO ₂ -CO ₂ from 3 to 7 GPa.
458	Contributions to Mineralogy and Petrology, 131(2-3), 123-135.
459	Dasgupta, R., and Hirschmann, M.M. (2007) Effect of variable carbonate
460	concentration on the solidus of mantle peridotite. American Mineralogist,
461	92(2-3), 370-379.
462	Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in
463	Earth's interior. Earth and Planetary Science Letters, 298(1-2), 1-13.
464	Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004) Deep global cycling of
465	carbon constrained by the solidus of anhydrous, carbonated eclogite under
466	upper mantle conditions. Earth and Planetary Science Letters, 227(1-2), 73-85.
467	Deshpande, D.A., Ghormare, K.R., Deshpande, N.D., and Tankhiwale, A.V. (1993)
468	Dehydration of crystalline K_2CO_3 ·1.5 H ₂ O. Thermochimica Acta, 66(1-3),
469	255-265.
470	Dinnebier, R.E., Vensky, S., Jansen, M., and Hanson, J.C. (2005) Crystal structures
471	and topological aspects of the high-temperature phases and decomposition
472	products of the alkali-metal oxalates $M-2[C2O4]$ (M = K, Rb, Cs). Chemistry-
473	a European Journal, 11(4), 1119-1129.
474	Dobretsov, N.L., and Shatskiy, A.F. (2012) Deep carbon cycle and geodynamics: the
475	role of the core and carbonatite melts in the lower mantle. Russian Geology
476	and Geophysics, 53(11), 1117-1132.
477	Dobson, D.P., Jones, A.P., Rabe, R., Sekine, T., Kurita, K., Taniguchi, T., Kondo, T.,
478	Kato, T., Shimomura, O., and Urakawa, S. (1996) In-situ measurement of

450	
479	viscosity and density of carbonate melts at high pressure. Earth and Planetary
480	Science Letters, 143, 207-215.
481	Eggler, D.H. (19/5) Peridotite-Carbonate Relations in the System CaO-MgO-SiO ₂ -
482	CO ₂ . Carnegie inst Washington Yearbook, /4, 468-4/4.
483	Eitel, W., and Skaliks, W. (1929) Some double carbonates of alkali and earth alkali.
484	Zeitschrift Für Anorganische Und Allgemeine Chemie, 183(3), 263-286.
485	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual
486	Review of Earth and Planetary Sciences, 36, 389-420.
48/	Genge, M.J., Price, G.D., and Jones, A.P. (1995) Molecular-dynamics simulations of
488	CaCO3 melts to mantle pressures and temperatures - implications for
489	carbonatite magmas. Earth and Planetary Science Letters, 131(3-4), 225-238.
490	Grassi, D., and Schmidt, M.W. (2011) The melting of carbonated pelites from 70 to
491	/00 km depth. Journal of Petrology, 52(4), 765-789.
492	Green, D.H., and Wallace, M.E. (1988) Mantle metasomatism by ephemeral
493	carbonatite melts. Nature, 336(6198), 459-462.
494	Guillot, B., and Sator, N. (2011) Carbon dioxide in silicate melts: A molecular
495	dynamics simulation study. Geochimica Et Cosmochimica Acta, 75(7), 1829-
496	
49/	Haggerty, S.E. (1989) Mantle metasomes and the kinship between carbonatites and
498	Kimberlites. In K. Bell, Ed. Carbonatites: Genesis and Evolution, p. 546-560.
499	Unwin Hyman Ltd, London.
500	Hammouda, 1., and Laporte, D. (2000) Ultrafast mantie impregnation by carbonatile
501	melts. Geology, $28(3)$, $283-285$.
502	Harlow, G.E. (1997) K in clinopyroxene at high pressure and temperature. An
503	Experimental study. American Mineralogist, 82(3-4), 259-269.
504 505	diamonds Science 251(4004) 652 655
505	Utanionus. Science, 251(4994), 052-055.
500	medal for stordy stote temporature distributions in solid medium high
507	nodel for steady-state temperature distributions in sond-medium ingi-
500	Hunter D H and McKanzia D (1080) The equilibrium geometry of earborate malter
510	in reaks of mentle composition Earth and Planetery Science Letters 02(2.4)
510	and Flanetary Science Letters, 92(3-4),
512	J_{47-330} .
512	cloudy diamonds from Koffiefontein South Africa Geochimica et
517	Cosmochimica Acta 68, 2561, 2575
515	Lago B C and Gitting I (1001) The role of fluorine in carbonatite magma evolution
516	Nature 349(630A) 56-58
517	Kanda H. Akaishi M. and Vamaoka S. (1000) Mornhology of synthetic diamonds
518	grown from Na ₂ CO ₂ solvent-catalyst Journal of Crystal Growth 106(2-3)
510	$A71_{-}A75$
520	Kennedy CS and Kennedy GC (1976) The equilibrium boundary between
520	graphite and diamond Journal of Geophysical Research 81(14) 2467-2470
522	Kerrick DM and Connolly IAD (2001a) Metamorphic devolatilization of
523	subducted marine sediments and the transport of volatiles into the Earth's
524	mantle Nature 411(6835) 293-296
525	- (2001b) Metamorphic devolatilization of subducted oceanic metabasalts:
526	implications for seismicity arc magmatism and volatile recycling Earth and
527	Planetary Science Letters, 189(1-2), 19-29.

520	K 1
528	Kesnav, S., and Gudfinnsson, G.H. (2013) Silicate liquid - carbonatite liquid
529	transition along the melting curve of model, vapor - saturated peridotite in the
530	system CaO - MgO - Al2O ₃ - S1O ₂ - CO ₂ from 1.1 to 2 GPa. Journal of
531	Geophysical Research: Solid Earth, 118(7), 3341-3353.
532	Klein-BenDavid, O., Izraeli, E.S., Hauri, E., and Navon, O. (2004) Mantle fluid
533	evolution - a tale of one diamond. Lithos, 77(1-4), 243-253.
534	Klement, W., and Cohen, L.H. (1975) Solid-solid and solid-liquid transitions in
535	K_2CO_3 , Na_2CO_3 and Li_2CO_3 : Investigations to ≥ 5 kbar by differential thermal
536	analysis; thermodynamics and structural correlations. Berichte der
537	Bunsengesellschaft für physikalische Chemie, 79(4), 327-334.
538	Kröger, C., Illner, K.W., and Graeser, W. (1943) Uber die Systeme Alkalioxyd CaO-
539	AI_2O_3 -SiO ₂ -CO ₂ . XI. Die Reaktionsdrucke im System K ₂ O-CaO-SiO ₂ -CO ₂ .
540	Zeitschrift Für Anorganische Und Allgemeine Chemie, 251(3), 270-284.
541	Litasov, K.D. (2011) Physicochemical conditions for melting in the Earth's mantle
542	containing a $C-O-H$ fluid (from experimental data). Russian Geology and
543	Geophysics, 52 , $4/5-492$.
544	Litasov, K.D., Satonov, O.G., and Ontani, E. (2010a) Origin of CI-bearing silica-rich
545	melt inclusions in diamonds: Experimental evidence for an eclogite connection.
546	Geology, 38(12), 1131-1134.
54/	(2010b) Experimental experimental and the rate of allouids in the axis and
548	(2010b) Experimental constraints on the role of chloride in the origin and
549	Literov K.D. Shataliy A. Ohtani E. and Vaylay C.M. (2012) The solidus of
550	alkalina aerbanatita in the deep mentle Geology 41(1) 70.82
557	Liu O Tenner T I and Lange $\mathbf{P} \wedge (2006)$ Do carbonate liquids become denser
552	than silicate liquids at pressure? Constraints from the fusion curve of K_2CO_2 to
557	3.2 GPa. Contributions to Mineralogy and Petrology 153, 55, 66
555	Llovd F C Johnson D P and Hutton LLO (1963) Dual-wedge high-pressure
556	annaeatus Unated States Patent 3 100 912
557	Logvinova A M Wirth R Tomilenko A A Afanas'ev V P and Sobolev N V
558	(2011) The phase composition of crystal-fluid papoinclusions in alluvial
559	diamonds in the northeastern Siberian Platform Russian Geology and
560	Geophysics 52(11) 1286-1297
561	Luth, R.W. (2006) Experimental study of the CaMgSi ₂ O ₆ -CO ₂ system at 3-8 GPa.
562	Contributions to Mineralogy and Petrology, 151(2), 141-157.
563	Malik, W.U., Gupta, D.R., Masood, I., and Gupta, R.S. (1985) Kinetic study of
564	thermal decomposition of calcium carbonate in the presence of K_2CO_3 and
565	BaCO ₃ . Journal of Materials Science Letters, 4(5), 532-536.
566	McKenzie, D., Jackson, J., and Priestley, K. (2005) Thermal structure of oceanic and
567	continental lithosphere. Earth and Planetary Science Letters, 233(3-4), 337-
568	349.
569	McKie, D. (1990) Subsolidus phase relations in the system K ₂ Ca(CO ₃) ₂ -
570	$Na_2Mg(CO_3)_2$ at 1 kbar: The fairchildite _{ss} -buetschliite-eitelite eutectoid.
571	American Mineralogist, 75(9-10), 1147-1150.
572	Minarik, W.G., and Watson, E.B. (1995) Interconnectivity of carbonate melt at low
573	melt fraction. Earth and Planetary Science Letters, 133(3-4), 423-437.
574	Navon, O. (1991) High internal pressure in diamond fluid inclusions determined by
575	infrared absorption. Nature, 353(6346), 746-748.

576	Niggli, P. (1916) Gleichgewichte zwischen TiO_2 und CO_2 , sowie SiO_2 und CO_2 in
577	Alkali-, Kalk-Alkali und Alkali-Aluminatschmelzen. Zeitschrift Für
578	Anorganische Und Allgemeine Chemie, 98(1), 241-326.
579	Osugi, J., Shimizu, K., Inoue, K., and Yasunami, K. (1964) A compact cubic anvil
580	high pressure apparatus. Review of Physical Chemistry of Japan, 34(1), 1-6.
581	Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., and Khokhryakov, A.F. (2002) Fluid-
582	bearing alkaline carbonate melts as the medium for the formation of diamonds
583	in the Earth's mantle: an experimental study. Lithos, 60(3-4), 145-159.
584	Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F., Gusev, V.A., and
585	Sobolev, N.V. (1997) Growth and characterization of diamond single crystals
586	up to four carats. Doklady Akademii Nauk, 355(6), 798-800.
587	Pal'vanov Y N Sokol A G Borzdov Y M Khokhrvakov A F Shatsky A F and
588	Sobolev NV (1999) The diamond growth from Li ₂ O_2 Na ₂ O_2 K ₂ O_2 and
589	$C_{s_2}C_{O_2}$ solvent-catalysts at $P=7$ GPa and $T=1700-1750$ °C Diamond and
590	Related Materials 8(6) 1118-1124
501	Dallyanay VN Sakal A C Darzday VM Khakhryakay A E and Sahalay NV
502	(1002) Crystallization of diamond in the CaCO C MaCO C and
592	(1996) Crystallization of diamond in the CaCO ₃ -C, MgCO ₃ -C and $C_{2}M_{2}(CO)$, C_{2} constants Daliladis Also domini Neula 2(2(2), 220, 222)
593	$CaMg(CO_3)_2$ -C systems. Dokiady Akademii Nauk, 363(2), 230-233.
594	Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N.,
595	Reutsky, V.N., and Sobolev, N.V. (2013) Mantle–slab interaction and redox
596	mechanism of diamond formation. Proceedings of the National Academy of
597	Sciences, 110(51), 20408-20413.
598	Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N., and Sokol,
599	A.G. (2010) Effect of nitrogen impurity on diamond crystal growth processes.
600	Crystal Growth & Design, 10(7), 3169-3175.
601	Palyanov, Y.N., and Sokol, A.G. (2009) The effect of composition of mantle
602	fluids/melts on diamond formation processes. Lithos, 112, 690-700.
603	Pollack, H.N., and Chapman, D.S. (1977) On the regional variation of heat flow,
604	geotherms, and lithospheric thickness. Tectonophysics, 38, 279-296.
605	Ragone, S.E., Datta, R.K., Roy, D.M., and Tuttle, O.F. (1966) The System Potassium
606	Carbonate-Magnesium Carbonate. Journal of Physical Chemistry, 70(10),
607	3360-3361.
608	Rohrbach A Ballhaus C Golla-Schindler U Ulmer P Kamenetsky VS and
609	Kuzmin D V (2007) Metal saturation in the upper mantle Nature 449(7161)
610	456-458
611	Schneide S I and Levin F M (1973) Polymorphism of K_2CO_2 Journal of the
612	American Ceramic Society 56(A) 218-219
613	Schrauder M and Navon O (1004) Hydrous and carbonatitic mantle fluids in
614	fibrous diamonds from Iwanong Dotswana Coochimica Et Cosmochimica
615	April 59(2), 761,771
015	Acta, 30(2), 701-771. Sharayan IS Litagay KD Shataliy AE Calayin AV Obtani E and
010	Sharygin, I.S., Litasov, K.D., Shatskiy, A.F., Golovin, A.V., Ontani, E., and
61/	Poknilenko, N.P. (2013) Melting of kimberlite of the Udachnaya East pipe:
618	experimental study at 3–6.5 GPa and 900–1500°C. Doklady Earth Sciences,
619	448, 200-205.
620	Shatskii, A.F., Borzdov, Y.M., Sokol, A.G., and Pal'yanov, Y.N. (2002) Phase
621	tormation and diamond crystallization in carbon-bearing ultrapotassic
622	carbonate-sılıcate systems. Geologiya I Geofizika, 43(10), 940-950.
623	Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Kupriyanov, I.N., Ohtani, E., and
624	Palyanov, Y.N. (2014) Phase relations in the system FeCO ₃ -CaCO ₃ at 6 GPa

625 and 900-1700 °C and its relation to the system CaCO₃-FeCO₃-MgCO₃. 626 American Mineralogist, 99(4), 773-785. 627 Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Ohtani, E., Khokhryakov, A.F., Pal'yanov, Y.N., and Katsura, T. (2011a) Pressless split-sphere apparatus 628 629 equipped with scaled-up Kawai-cell for mineralogical studies at 10-20 GPa. 630 American Mineralogist, 96(4), 541-548. 631 Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Litasov, K.D., Kupriyanov, I.N., Higo, Y., Borzdov, Y.M., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. 632 633 (2013a) Melting and subsolidus phase relations in the system Na₂CO₃-634 $MgCO_3$ +- H_2O at 6 GPa and the stability of $Na_2Mg(CO_3)_2$ in the upper mantle. 635 American Mineralogist, 98(11-12), 2172-2182. 636 Shatskiy, A., Katsura, T., Litasov, K.D., Shcherbakova, A.V., Borzdov, Y.M., 637 Yamazaki, D., Yoneda, A., Ohtani, E., and Ito, E. (2011b) High pressure 638 generation using scaled-up Kawai-cell. Physics of the Earth and Planetary 639 Interiors, 189(1-2), 92-108. Shatskiy, A., Litasov, K.D., Borzdov, Y.M., Katsura, T., Yamazaki, D., and Ohtani, E. 640 641 (2013b) Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 642 24 GPa: Implication for the melt transport by dissolution-precipitation in the 643 transition zone and uppermost lower mantle. Physics of the Earth and 644 Planetary Interiors, 225, 1-11. 645 Shatskiy, A., Litasov, K.D., Matsuzaki, T., Shinoda, K., Yamazaki, D., Yoneda, A., 646 Ito, E., and Katsura, T. (2009) Single crystal growth of wadsleyite. American 647 Mineralogist, 94(8-9), 1130-1136. 648 Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Litasov, K.D., Borzdov, Y.M., 649 Shcherbakova, A.V., Higo, Y., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. 650 (2013c) The system K₂CO₃-MgCO₃ at 6 GPa and 900-1450 °C. American 651 Mineralogist, 98(8-9), 1593-1603. 652 Shatskiy, A., Sharygin, I.S., Litasov, K.D., Borzdov, Y.M., Palyanov, Y.N., and 653 Ohtani, E. (2013d) New experimental data on phase relations for the system 654 Na₂CO₃-CaCO₃ at 6 GPa and 900-1400 °C. American Mineralogist, 98(11-12), 655 2164-2171. 656 Shatskiy, A., Yamazaki, D., Borzdov, Y.M., Matsuzaki, T., Litasov, K.D., Cooray, T., 657 Ferot, A., Ito, E., and Katsura, T. (2010) Stishovite single-crystal growth and 658 application to silicon self-diffusion measurements. American Mineralogist, 659 95(1), 135-143. Shatsky, V.S., Sobolev, N.V., and Vavilov, M.A. (1995) Diamond-bearing 660 661 metamorphic rocks from the Kokchetav massif (Northern Kazakhstan). In R.G. 662 Coleman, and X. Wang, Eds. Ultrahigh Pressure Metamorphism, p. 427-455. Cambridge University Press. 663 664 Sobolev, N.V., Bakumenko, I.T., Yefimova, E.S., and Pokhilenko, N.P. (1991) 665 Peculiarities of microdiamond morphology, sodium content in garnets and 666 potassium content in pyroxenes of 2 eclogite xenoliths from the Udachnaya kimberlite pipe (Yakutia). Doklady Akademii Nauk Sssr, 321(3), 585-592. 667 668 Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from 669 metamorphic rocks: a new environment for diamond formation. Nature, 670 343(6260), 742-746. 671 Sobolev, V.S., Sobolev, N.V., and Lavrent'yev, Y.G. (1972) Inclusions in diamond 672 from diamondiferous eclogite. Doklady Akademii Nauk SSSR, 207, 164-167. 673 Sokol, A.G., Palyanov, Y.N., and Surovtsev, N.V. (2007) Incongruent melting of 674 gallium nitride at 7.5 GPa. Diamond and Related Materials, 16(3), 431-434.

675	Sokol, A.G., Tomilenko, A.A., Pal'yanov, Y.N., Borzdov, Y.M., Pal'yanova, G.A.,
676	and Khokhryakov, A.F. (2000) Fluid regime of diamond crystallisation in
677	carbonate-carbon systems. European Journal of Mineralogy, 12(2), 367-375.
678	Suito, K., Namba, J., Horikawa, T., Taniguchi, Y., Sakurai, N., Kobayashi, M.,
679	Onodera, A., Shimomura, O., and Kikegawa, T. (2001) Phase relations of
680	CaCO ₃ at high pressure and high temperature. American Mineralogist, 86(9),
681	997-1002.
682	Sweeney, R.J. (1994) Carbonatite melt compositions in the Earth's mantle. Earth and
683	Planetary Science Letters, 128(3-4), 259-270.
684	Tomlinson, E.L., Jones, A.P., and Harris, J.W. (2006) Co-existing fluid and silicate
685	inclusions in mantle diamond. Earth and Planetary Science Letters, 250(3-4),
686	581-595.
687	Wallace, M.E., and Green, D.H. (1988) An experimental determination of primary
688	carbonatite magma composition. Nature, 335(6188), 343-346.
689	Weiss, Y., Kessel, R., Griffin, W.L., Kiflawi, I., Klein-BenDavid, O., Bell, D.R.,
690	Harris, J.W., and Navon, O. (2009) A new model for the evolution of
691	diamond-forming fluids: Evidence from microinclusion-bearing diamonds
692	from Kankan, Guinea. Lithos, 112(S2), 660-674.
693	Wyllie, P.J., and Huang, W. (1975) Peridotite, kimberlite, and carbonatite explained
694	in the system CaO-MgO-SiO ₂ -CO. Geology, 3, 621-624.
695	Yaxley, G.M., and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite
696	assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites.
697	Contributions to Mineralogy and Petrology, 146(5), 606-619.
698	Yoshino, T., Laumonier, M., McIsaac, E., and Katsura, T. (2010) Electrical
699	conductivity of basaltic and carbonatite melt-bearing peridotites at high
700	pressures: Implications for melt distribution and melt fraction in the upper
701	mantle. Earth and Planetary Science Letters, 295(3-4), 593-602.
702	Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., and Griffin, W.L. (2011)
703	Fibrous diamonds from the placers of the northeastern Siberian Platform:
704	carbonate and silicate crystallization media. Russian Geology and Geophysics,
705	52(11), 1298-1309.
706	Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., and Kagi,
707	H. (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid
708	diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos,
709	112(S2), 638-647.
710	