1	First-principles study of sulfur isotope fractionation in pyrite-type disulfides						
2	Revision 2 Shanqi Liu ¹ , Yongbing Li ^{1*} , Jianming Liu ² , Yaolin Shi ¹						
3	1 Key Laboratory of Computational Geodynamics, University of Chinese Academy of						
4	Sciences, Beijing, 100049, China						
5	2 Key Laboratory of Mineral Resources, Institute of Geology and Geophysics,						
6	Chinese Academy of Sciences, Beijing, 100029, China						
7	Abstract The sulfides are an important group of minerals. As a geochemical tracer,						
8	the sulfur isotope fractionation in sulfides can be used to analyze the ore-forming						
9	process and the ore-forming material source . Fe, Co, Ni and Mn are the first row						
10	transition metal, and pyrite (FeS ₂), cattierite (CoS ₂), vaesite (NiS ₂) and hauerite						
11	(MnS_2) crystallize in the pyrite-type structure. However, there are few studies on the						
12	sulfur isotope fractionation in these disulfides. So studying the isotope fractionation						
13	between them provide the opportunity to examine the various members of a structural						
14	group in which only the metal atom is changed, thereby providing information that						
15	permits a systematic development of concepts regarding sulfur isotope fractionation in						
16	transition-metal disulfides. In the present paper, the sulfur isotope fractionation						
17	parameters for pyrite, cattierite, vaesite, and hauerite with the pyrite-type structure						
18	have been calculated using first-principles methods based on density-functional theory						
19	in the temperature range of 0-1000°C. The structure parameters of these four minerals,						
20	and the vibration frequencies of pyrite are in good agreement with previous						
21	experimental values. The metal-sulfur distance increases in the order FeS_2 , CoS_2 , NiS_2						

^{*} Corresponding author. Tel.: +86 010 88256476

E-mail address: yongbingli@ucas.ac.cn

22	and MnS_2 , the sulfur-sulfur distance decreases in the order FeS_2 , CoS_2 , MnS_2 and
23	NiS ₂ , these two sequences agree with the experimental results. Our calculations show
24	that the order of heavy isotope enrichment is pyrite > cattierite > vaesite > hauerite. It
25	seems that the sulfur isotope fractionation in disulfides depends mainly on the
26	metal-sulfur bonds.
27	Keywords: Sulfur isotope fractionations; disulfides; pyrite; First-principles; DFPT
28	Introduction
29	Sulfides have great economic importance as the major source of most of metals.
30	Among them, pyrite is the most abundant metal sulfide mineral in nature and occurs
31	in a wide range of geological environments (metallic mineral deposits , sedimentary
32	rocks, metamorphic rocks, granite, basic-ultrabasic magmatic rocks and pyrolite)
33	(Craig and Vaughan, 1981; Wang et al. 1989; Vaughan et al. 1991). The pyrite
34	structure, based on NaCl structure, is common to a complete series of first row
35	transition metal disulfides extending from Mn to Zn (Temmerman et al., 1993). This
36	family of minerals exhibits a fascinating diversity in structural chemistry, electrical,
37	magnetic, and other physical properties (Wuensch and Ribbe, 1974; Vaughan and
38	Craig, 1978). So studying the sulfur isotope fractionation of pyrite (FeS ₂), cattierite
39	(CoS ₂), vaesite (NiS ₂) and hauerite (MnS ₂), which crystallize in the pyrite-type
40	structure, may provide the opportunity to examine the various members of a structural
41	group in which only the metal atom is changed, thereby providing information that
42	permits a systematic development of concepts regarding sulfur isotope fractionation in
43	transition-metal sulfides.

Since the work of Urey and Greiff (1935) and Urey (1947) on isotopic exchange 44 45 equilibria and the thermodynamic properties of substances, using stable isotope 46 fractionations to estimate the temperature of minerals formation in geochemical systems has been well established by experiment and theoretical calculation. And the 47 rapid development of new analytical techniques provide an excellent opportunity to 48 increase the scope of isotope geochemistry: the emergence of 'nontraditional' stable 49 isotopes of metals, the invention of clumped isotope geochemistry, new capabilities 50 for measurements of position-specific isotope effects in organic compounds, and a 51 52 great expansion of mass-independent isotope geochemistry (Eiler et al., 2014). For sulfur element, it has four stable isotopes, ³²S, ³³S, ³⁴S and ³⁶S with an average 53 abundance of 95.02, 0.75, 4.21, and 0.02%, respectively (Macnamara and Thode, 54 1950), and in the last decade, multiple sulphur isotopes have become a hot topic of 55 research (Farquhar et al., 2003; Otake et al., 2008; Danielache et al., 2008; Balan et al., 56 2009; Guy et al., 2012; Halevy, 2013). And the recent study in determining the δ^{33} S 57 and δ^{36} S values of terrestrial samples has stemmed from the finding by Farguhar et al. 58 (2000) that some sulfide and sulfate minerals in sedimentary rocks older than \sim 2.0 Ga 59 do not fall on the mass-dependent fractionation lines; this abnormal fractionation is 60 termed "mass independent sulfur isotope fractionations (S-MIF)." However, the 61 isotopic effects of the various mechanisms suggested to generate S-MIF are unclear, 62 63 major theoretical and experimental efforts will be required to understand them (Eiler et al., 2014). For these, this study only deals with the sulfur mass dependent sulfur 64 isotope fractionations. 65

66	As for sulfides, the complexities of the sulfide system and the difficulty in					
67	making experiments on sulfur isotopic fractionations between sulfides make the					
68	studies on sulfur isotope fractionation in sulfides relatively weak. So far, the					
69	experimental researches, which aim at sulfur isotope fractionations in sulfides, have					
70	focused on a few minerals, such as ZnS, PbS, FeS2, CuFeS2, CuS, CuS2, AgS and					
71	Bi ₂ S ₃ (Grootenboer and Schwarcz, 1969; Kajiwara et al., 1969; Rye and Czamanske,					
72	1969; Czamanske and Rye, 1974; Kajiwara and Krouse, 1971; Salomons, 1971;					
73	Kiyosu, 1973; Smith et al., 1977; Hubberten, 1980; Bente and Nielsen, 1982). And the					
74	theoretical calculations of sulfur isotope fractionation are also few. Sakai (1968) used					
75	Debye-Einstein model calculating the isotopic properties of sulfur compounds in					
76	hydrothermal processes; Hulston (in Groves et al., 1970) also used Debye-Einstein					
77	model calculating the reduced partition function ratios (β -factors) of ZnS and PbS;					
78	Elcombe and Hulston (1975) obtained the sulfur isotope fractionation between ZnS					
79	and PbS by lattice dynamical model; Li and Liu (2006) calculated the sulfur isotope					
80	fractionation of ZnS, PbS, FeCuS ₂ , FeS, CdS, Cu ₅ FeS ₄ , Cu ₃ VS ₄ , CuFe ₂ S ₃ and FeNi ₂ S ₄					
81	over a temperature range from 0 °C to 1000 °C using the modified increment method;					
82	Blanchard et al. (2009) computed the sulfur isotope fractionation of FeS ₂ , ZnS and					
83	PbS using first-principles density functional method.					

In this paper, we use first-principles calculations based on density functional theory to calculate the reduced partition function ratios of pyrite-type FeS₂, CoS₂, NiS₂ and MnS₂ as a function of temperature.

87

Calculation methods

88	In the present study, sulfur isotope fractionation is assumed to be mass dependent,						
89	driven by changes in vibrational energies in crystals (Urey, 1947; Bigeleisen and						
90	Mayer, 1947; Kieffer, 1982). Other potentially isotope-dependent effects on lattice						
91	energy are ignored, since they are expected to be insignificant for moderate-mass						
92	elements (Schauble, 2011). Fractionation can be considered in terms of isotopic						
93	exchange reactions, which are driven thermodynamically toward equilibrium. Thus,						
94	isotopic equilibrium of one exchangeable atom, between two substances, AY and BY,						
95	can be described by an isotopic exchange reaction such as:						
96	$AY_l + BY_h = AY_h + BY_l \tag{1}$						
97	where, Y_l and Y_h refer to the light and heavy isotopes of an element respectively.						
98	The isotope fractionation factor of the element Y between the substances AY and						
99	BY, α_{AY-BY} , is defined as the ratio of their isotope ratios. It can also be written as the						
100	ratio of the reduced partition functions (also called β -factors):						
101	$\alpha_{AY-BY} = \beta_{AY} / \beta_{BY} $ (2)						
102	where β_{AY} is the isotopic fractionation factor of <i>Y</i> between the substance <i>AY</i> and a						
103	perfect gas of Y atoms (Richetet al., 1977).						
104	The β -factors of each substance can be calculated from their harmonic						
105	vibrational frequencies (Méheut et al., 2007; Méheut et al., 2009; Blanchard et al.,						
106	2009) as following:						
	$3N_{i}$ $-hv_{hai}/(2kT)$ $-hv_{lai}/(kT)$						

107
$$\beta_{AY} = \left[\prod_{i=1}^{3N_A} \prod_{\{q\}} \frac{\nu_{hq,i}}{\nu_{lq,i}} \frac{e^{-h\nu_{hq,i}/(2kT)}}{1 - e^{-h\nu_{hq,i}/(2kT)}} \frac{1 - e^{-h\nu_{lq,i}/(kT)}}{e^{-h\nu_{lq,i}/(2kT)}}\right]^{1/(N_qN)}$$
(3)

108 where, N_A is the number of atoms in the unit-cell; N_q is the number of *q*-vectors in 109 the Brillouin zone; N is the number of sites for the Y atom in the unit-cell;

110	$v_{lq,i}$ and $v_{hq,i}$ are the frequencies of the phonon with wavevector q and branch index i
111	=1, $3N_A$, and the italic subscripts <i>l</i> and <i>h</i> mean the vibrational frequencies in AY with
112	the light and heavy isotopes, respectively, T is the temperature, h is the Planck
113	constant and k is the Boltzmann constant. In Eq. (3), the three translational modes at
114	the center of the Brillouin zone, where $v_{lq,i}^0 = 0$ and $v_{hq,i}^0 = 0$, are not considered.
115	The β -factors were obtained from Eq.(3) using the phonon frequencies,
116	$v_{lq,i}$ and $v_{hq,i}$, computed based on the density-functional perturbation theory (DFPT)
117	(Baroni et al., 2001) and the linear response method. They were derived from the
118	second-order derivative of the total energy with respect to atomic displacements.
119	Pseudopotentials were generated using Vanderbilt's method (Vanderbilt, 1990). The
120	generalized gradient approximation (GGA) proposed by Perdew et al. (1996) have
121	been used for the exchange-correlation functional. Local density approximation (LDA)
122	(Perdew and Zunger, 1981) was also used for the exchange correlation functional to
123	calculate the crystal structures of the four minerals. Dynamical matrices were
124	computed on regular q mesh and then interpolated in a dense q mesh to obtain the
125	vibrational density of state of minerals. For all of the four minerals, the plane wave
126	cutoff is set to be 50Ry and the Brillouin zones are sampled on $4 \times 4 \times 4$ meshes
127	(Monkhorst and Pack, 1976). On the other hand, dynamical matrices are computed at
128	$4 \times 4 \times 4q$ -vectors in the Brillouin zone. The effects of using the larger cutoff, K points
129	and q points on the calculated properties are found insignificant.
130	Atomic relaxations were performed with the PWSCF code (Baroni et al., 2001;

131 http://www.pwscf.org) until the residual forces on atoms became less than 10^{-4} Ry/a.u.

132 The cell parameters were also optimized.

133

Results and discussion

134 Crystalline structure

The pyrite-type structure has cubic structures and belongs to the space group Pa3, 135 136 and there are four formula units per unit cell. The primitive cell in our calculations 137 includes 12 atoms. Its crystal structure is based on that of NaCl, where the Na and Cl sites are occupied by metals atom and S_2 dimers, respectively. In the pyrite-type 138 139 structure, the metal atoms occupy the face-centered cubic lattice positions, and the 140 sulfur atoms lie in pairs along the trigonal axes of the lattice, with each S located about three-eighths of the length of the diagonal from a metal atom (Berry et al., 141 142 1983). Each Fe atom is coordinated by six S atoms in a slightly distorted octahedron, and each S atom is tetrahedrally coordinated to three Fe atoms and one S atom. 143

144 The four minerals exhibit a rich diversity of magnetic properties: MnS₂ is an 145 antiferromagnetic semiconductor (Hastings et al., 1959), FeS₂ is a nonmagnetic semiconductor (Antonov et al., 2008), CoS₂ is a ferromagnetic metal (Miyahara and 146 Teranishi, 1968; Antonov et al., 2008), NiS₂ is an antiferromagnetic insulator 147 (Antonov et al., 2008). So for MnS₂, CoS₂ and NiS₂, calculations were spin-polarized. 148 In addition, for MnS₂ and NiS₂, calculations were set up to the antiferromagnetic, and 149 150 for CoS_2 calculations were set up to the ferromagnetic structure. Magnetic moments 151 were free to relax.

152 Our calculated structures of pyrite, cattierite, vaesite and hauerite are given in 153 Table 1 together with experimental results. It is found that the calculated lattice

154	constants from GGA are closer to the experimental results. For pyrite, cattierite,						
155	vaesite and hauerite, our calculations by GGA underestimate the experimental lattice						
156	parameters by 0.2%, 0.4%, 1.1% and 0.7%; but the LDA underestimates the						
157	experimental lattice parameters by 2.4%, 3.4%, 3.7% and 2.5%. This indicates that						
158	our results based on GGA are in good agreement with experimental values (Brostigen						
159	and Kjekshus, 1969; Andresen et al., 1967; Nowack et al., 1991; Hastings et al., 1959).						
160	It is also found that the calculated interatomic distances by GGA are consistent with						
161	the available experiments much better. Therefore, GGA is a good exchange						
162	correlation for the structures and β -factors of the minerals.						

163 Vibrational properties of pyrite

164 The number and symmetries of the Raman and infrared-active modes of pyrite 165 have been determined using group theoretical methods (Lutz et al., 1974). The 166 irreducible representations of the vibrations of pyrite are

167
$$\Gamma = A_{g} + E_{g} + 3T_{g} + 2A_{u} + 2E_{u} + 6T_{u}$$
(4)

The gerade vibrations ($A_g + E_g + 3T_g$) are all active in the Raman spectrum and 168 the ungerade vibrations are divided into the IR-active $(5T_{\mu})$ and optically inactive 169 $(2A_u + 2E_u)$ modes, plus the three acoustic modes. The harmonic phonon frequencies 170 of pyrite, computed at the center of the Brillouin zone (Γ -point) using GGA, are 171 shown in Table 2. There is good agreement between our calculated frequencies with 172 173 the experimental data and previous DFT studies of the pyrite phase (Bührer et al., 1993; Blanchard et al., 2009; Spagnoli et al., 2010). The majority of the phonon 174 frequencies are lower than the corresponding experimental values. In general, 175

theoretical frequencies underestimate by a few percents the measured infrared and

177 Raman frequencies. This systematic error is typical of the GGA approximation.

178 Uncertainty in theoretical β -factors

Figure 1 shows the comparison of the three sets of computed phonon frequencies at the center of the Brillouin zone (Γ -point) of pyrite with experimental data. In the three sets of calculations, a good agreement with measurements can be obtained by a uniform scaling of the GGA frequencies. To quantify the scaling factor, we consider the slope of the best linear fit of our calculated points in Figure 1. The scaling factor is 1.028.

It found that a systematic correction of n^{0} on the phonon frequencies induces a 185 relative systematic correction on the logarithmic β -factors (ln β) varying between n%186 (at low temperatures) and 2n% (at high temperature) (Méheut et al., 2009). Therefore, 187 a uniform scaling of +2.8% to the phonon frequencies of pyrite, is expected to induce 188 a similar relative correction on $\ln \beta$ at maximum +5.6%. Since the fractionation 189 190 $(\ln \alpha)$ results from the difference of two logarithmic β -factors, a systematic error of 2.8% on all the phonon frequencies will lead to a relative error of at most 5.6% on the 191 192 total fractionation. However, in the present study, we do not choose to apply any frequency correction, because there is an important uncertainty in the value of the 193 194 applied scaling factors and we are not able to estimate analogous scaling factors for 195 other minerals.

196 Concluding, errors arising from the computational approach (density-functional 197 theory within the GGA approximation) are expected to the results in an

underestimation of the fractionation factors between 5 and 10% (Méheut et al., 2009).

199 β -factors

200	For sulfide minerals, the principal ratio of concern is ${}^{34}S/{}^{32}S$ (Seal, 2006). In the
201	present study, we only calculated the reduced partition function ratios of ${}^{34}\mathrm{S}/{}^{32}\mathrm{S}$
202	$(10^3 \ln \beta_{34-32})$ in the range of 0-1000°C. We fit the calculated data to least-squares
203	polynomial; a second power polynomial is sufficient to accurately fit the data over the
204	temperature range. Because mass-dependent isotopic fractionations vanish at infinite
205	temperature, the origin has been included as one of the points in the least-squares
206	analysis. The slope of the straight lines are listed in Table 3 and $10^{3} \ln \beta_{34-32}$ as a
207	functions of temperature are shown in Figure 2. We also show our calculated
208	$10^{3} \ln \beta$ data for pyrite, together with the previous theoretical calculations by Polyakov
209	et al. (2007) and Blanchard et al. (2009) in Figure 2. As shown in Figure 2, disparity
210	exists between the previous calculation, and our calculations are in between the
211	previous results. The apparent discrepancy for $10^3 \ln \beta_{34-32}$ between our results and the
212	data of Blanchard et al. (2009), comes from the fact that in Blanchard et al. (2009) the
213	theoretical frequencies were multiplied by a scaling factor for determining the
214	β -factors but not in the present study. Otherwise, these two sulfur β -factors would
215	be in good agreement. As for Polyakov et al. (2007), the data must be revised
216	(Blanchard et al., 2012). The sulfur β -factor of Polyakov et al. (2007) is an indirect
217	estimation from the experimental heat capacity of pyrite and the iron β -factor that
218	they derived using Mössbauer measurements. The Mössbauer-derived iron β -factor
219	of pyrite has recently been revised leading to a good agreement with the DFT

220	iron β -factor (Blanchard et al., 2012; Polyakov et al., 2013). Therefore the sulfur						
221	β -factor proposed by Polyakov et al. (2007) must also be revised. The						
222	revised β -factor would be in better agreement with DFT results. $10^3 \ln \beta_{34-32}$ of all						
223	minerals decrease dramatically with increasing temperature. The DFPT calculations						
224	by us show that the order of heavy isotope enrichment is pyrite > cattierite > vaesite >						
225	hauerite.						

The factors that influence the magnitude of equilibrium stable isotope 226 fractionations are temperature, chemical composition, crystal structure and pressure 227 228 (O'Neil 1986). For the present discussion, pressure will not be discussed. The effect 229 of chemical composition on stable isotope fractionations depend most upon the nature of the chemical bonds within the mineral (O'Neil 1977). And heavy stable isotope 230 231 fractionations in minerals depend principally on the nature of the bonds between the atoms of an element and the nearest atoms in the crystal. So bonds with small 232 233 interatomic distances and thus large bond strengths, tend preferentially to incorporate 234 heavy isotopes (Zheng, 1995). In general, shorter bond lengths correlate with higher reduced partition function ratios (Hill and Schauble, 2008). Also variations in ${}^{34}S/{}^{32}S$ 235 distributions among coexisting sulfides are systematic and consistent with the relative 236 strengths of metal-sulfur bonds (Bachinski, 1969). As shown in Table 1, the 237 metal-sulfur distance increases in the order FeS₂, CoS₂, NiS₂ and MnS₂; but the 238 239 sulfur-sulfur distance decreases in the order FeS2, CoS2, MnS2 and NiS2. The two 240 sequences agree with the experimental results (Elliott, 1960) very well. Sulphur-sulphur and metal-sulphur distances can give some indication of bond 241

242	strengths, shorter distances indicating larger bond strengths, the metal-sulfur bond
243	strength decrease in the sequence $FeS_2 > CoS_2 > NiS_2$, and sulfur-sulfur bond strength
244	increase in the sequence $FeS_2 < CoS_2 < NiS_2$ (Nickel et al., 1971). So according to our
245	results of the sulfur-metal bond length, the fractionation order would be pyrite $>$
246	cattierite > vaesite > hauerite. But according to our results of the sulfur-sulfur bond
247	length, the fractionation order would be pyrite < cattierite < vaesite < hauerite, and
248	this sequence is not consistent with the fractionation sequence of these four sulfides,
249	so the sulfur fractionation mechanism in disulfides is much complex and the effects of
250	sulfur-sulfur bond seems to be unclear. Nevertheless, there may be some errors for
251	Bachinski(1969) to estimate the sulfur-metal bond strength of NiS ₂ , CoS ₂ and FeS ₂ ,
252	and according to his estimates of the metal-sulfur bond strength sequence, the sulfur
253	isotope fractionation order would be $NiS_2 > CoS_2 > FeS_2$, which is opposite to the
254	results by us and Nickel.

255 The crystal structures can influence isotope fractionations to an extent depending on how different the interatomic interactions are between the various structural forms, 256 and the heavy isotope apparently concentrates in the more closely packed or 257 258 well-ordered structures (O'Neil, 1977). Pyrite, cattierite, vaesite and hauerite have the same structure (pyrite- type structure), and the unit cell volume increases through the 259 series $FeS_2 < CoS_2 < NiS_2 < MnS_2$. According to O'Neil, the heavy isotope apparently 260 261 concentrates in the more closely packed structures, the fractionation order would be pyrite > cattierite > vaesite > hauerite. 262

263 In conclusion, our calculated reduced partition function ratios of pyrite, cattierite,

vaesite and hauerite are reasonable. It seems that the sulfur isotope fractionations mainly depend on metal-sulfur bond strength, and the effect that sulfur-sulfur bond strength on the sulfur isotope fractionations is unclear.

267

Implications

Our study shows that in pyrite-type disulfides, the variations of the metal-sulfur 268 bond length are roughly out of accord with those of the sulfur-sulfur bond length. So 269 the influence on sulfur isotope fractionation from sulfur-sulfur bond and metal-sulfur 270 271 bond seems to be different according to the relationship of bond length, bond strength and the enrichment of heavy isotopes. And intuitively, the variation of metal atoms in 272 disulfides makes the metal-sulfur bond length and sulfur-sulfur bond length different, 273 and then results in the sulfur isotope fractionation among disulfides. In mineralogy, 274 the pyrite group AX_2 is very complex, in which X may be S, Se, Te, As or Sb, and X_2 275 can be different atoms, such as FeS_2 , CoS_2 and CoAsS. CoS_2 and CoAsS have 276 277 different crystal structure, however CoS_2 and FeS_2 have the same crystal structure. So the impact on sulfur isotope fractionation caused by the substitution of metalloid 278 279 element for sulfur seems to be much more complicated.

Disulfides can exist in most of metal sulfide deposit e.g. pyrite and arsenopyrite coexist in some gold deposits. Therefore, it seems to be useful for study of the ore deposits dealt with different disulfides to figure out the influence of the substitution of S by other metalloid element on the sulfur isotope fractionation, which is of particular interest in low temperature hydrothermal sulfide deposits.

285 Acknowledgments

286	This study was supported by funding from the National Science and Technology
287	Planning Project (No.2011BAB03B09). We thank Huai Zhang, Tao Sun and Chunlin
288	Deng for their valuable suggestions and help. We are very grateful to the Associate
289	Editor Prof. Keith Refson and the two reviewers for their thoughtful and instructive
290	reviews of this manuscript.
291	References
292	Andresen, A. F., Furuseth, S., and Kjekshus, A. (1967) On ferromagnetism of CoS ₂ .

- Acta Chemica Scandinavica, 21, 833.
- Antonov, V. N., Andryushchenko, O. V., Shpak, A. P., Yaresko, A. N., and Jepsen, O.
- (2008) Electronic structure, optical spectra, and x-ray magnetic circular dichroism
 in CoS₂. Physical Review B, 78, 094409.
- 297 Bachinski, D. J. (1969) Bond strength and sulfur isotopic fractionation in coexisting
- sulfides. Economic Geology, 64, 56-65.
- 299 Balan, E., Cartigny, P., Blanchard, M., Cabaret, D., Lazzeri, M., and Mauri, F. (2009).
- 300 Theoretical investigation of the anomalous equilibrium fractionation of multiple
- 301 sulfur isotopes during adsorption. Earth and Planetary Science Letters, 284, 88-93.
- 302 Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P. (2001) Phonons and
- 303 related crystal properties from density-functional perturbation theory. Reviews of
- 304 Modern Physics, 73, 515-561.
- 305 Bente, K., and Nielsen, H. (1982) Experimental S isotope fractionation studies
- between coexisting bismuthinite (Bi_2S_3) and sulfur (S). Earth and Planetary
- 307 Science Letters, 59, 18-20.

- 308 Berry, L. G., Mason, B. H., Dietrich, R. V. (1983) Mineralogy: concepts, descriptions,
- 309 determinations. San Freeman, Francisco.
- 310 Bigeleisen, J., and Mayer, M. G. (1947) Calculation of equilibrium constants for
- isotopic exchange reactions. The Journal of Chemical Physics, 15, 261-267.
- Blanchard, M., Poitrasson, F., Meheut, M., Lazzeri, M., Mauri, F., and Balan, E. (2009)
- 313 Iron isotope fractionation between pyrite (FeS₂), hematite (Fe₂O₃) and siderite
- 314 (FeCO₃): A first-principles density functional theory study. Geochimica et
- 315 Cosmochimica Acta, 73, 6565-6578.
- 316 Blanchard, M., Poitrasson, F., Méheut, M., Lazzeri, M., Mauri, F., and Balan, E.
- 317 (2012). Comment on "New data on equilibrium iron isotope fractionation among
- 318 sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and
- igneous systems" by VB Polyakov and DM Soultanov.Geochimica et
 Cosmochimica Acta, 87, 356-359.
- 321 Brostigen, G., Kjekshus, A. (1969) Redetermined crystal structure of FeS₂ (pyrite).
- 322 Acta Chem Scand, 23: 2186-2188.
- 323 Bührer, W., Lafougere, E., and Lutz, H. (1993) Lattice dynamics of pyrite FeS₂ by
- 324 coherent neutron scattering. Journal of Physics and Chemistry of Solids, 54,325 1557-1565.
- Craig, J. R., Vaughan, D. J., and Hagni, R. D. (1981) Ore microscopy and ore
 petrography. New York: Wiley.
- 328 Czamanske, G. K., and Rye, R. O. (1974) Experimentally determined sulfur isotope
- fractionations between sphalerite and galena in the temperature range 600 to

- 330 275 . Economic geology, 69, 17-25.
- 331 Danielache, S. O., Eskebjerg, C., Johnson, M. S., Ueno, Y., and Yoshida, N. (2008).
- High-precision spectroscopy of ³²S, ³³S, and ³⁴S sulfur dioxide: Ultraviolet
- absorption cross sections and isotope effects. Journal of Geophysical Research:
- Atmospheres (1984–2012), 113, D17314.
- Eiler, J. M., Bergquist, B., Bourg, I., et al. (2014). Frontiers of stable isotope
- 336 geoscience. Chemical Geology, 372, 119-143.
- 337 Elliott, N. (1960) Interatomic distances in FeS₂, CoS₂, and NiS₂. The Journal of
- 338 Chemical Physics, 33, 903-905.
- 339 Elcombe, M. M., and Hulston, J. R. (1975) Calculation on sulphur isotope
- fractionation between sphalerite and galena using lattice dynamics. Earth andPlanetary Science Letters, 28, 172-180.
- 342 Farquhar, J., Bao, H., and Thiemens, M. (2000). Atmospheric influence of Earth's
- earliest sulfur cycle. Science, 289, 756-758.
- Farquhar, J., and Wing, B. A. (2003). Multiple sulfur isotopes and the evolution of the
- atmosphere. Earth and Planetary Science Letters, 213, 1-13.
- 346 Grootenboer, J., and Schwarcz, H. P. (1969) Experimentally determined sulfur isotope
- fractionations between sulfide minerals. Earth and Planetary Science Letters, 7,
- 348 162**-**166.
- 349 Groves, D. I., Solomon, M., and Rafter, T. A. (1970) Sulfur isotope fractionation and
- fluid inclusion studies at the Rex Hill Mine, Tasmania. Economic Geology, 65,
- 459-469.

- 352 Guy, B. M., Ono, S., Gutzmer, J., Kaufman, A. J., Lin, Y., Fogel, M. L., and Beukes,
- N. J. (2012). A multiple sulfur and organic carbon isotope record from
 non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand
 Supergroup, South Africa. Precambrian Research, 216, 208-231.
- Halevy, I. (2013). Production, preservation, and biological processing of
 mass-independent sulfur isotope fractionation in the Archean surface
 environment. Proceedings of the National Academy of Sciences, 110,
 17644-17649.
- 360 Hastings, J. M., Elliott, N., and Corliss, L. M. (1959) Antiferromagnetic Structures of
- 361 MnS2, MnSe2, and MnTe2. Physical Review, 115, 13-17.
- 362 Hill, P. S., and Schauble, E. A. (2008) Modeling the effects of bond environment on
- 363 equilibrium iron isotope fractionation in ferric aquo-chloro
 364 complexes. Geochimica et Cosmochimica Acta, 72, 1939-1958.
- Hubberten, H. W. (1980) Sulfur isotope fractionations in the Pb-S, Cu-S and Ag-S
 systems. Geochemical Journal, 14, 177-184.
- 367 Kajiwara, Y., Krouse, H. R., and Sasaki, A. (1969) Experimental study of sulfur
- isotope fractionation between coexistent sulfide minerals. Earth and PlanetaryScience Letters, 7, 271-277.
- Kajiwara, Y., and Krouse, H. R. (1971) Sulfur isotope partitioning in metallic sulfide
 systems. Canadian Journal of Earth Sciences, 8, 1397-1408.
- 372 Kieffer, S. W. (1982) Thermodynamics and lattice vibrations of minerals: 5.
- 373 Applications to phase equilibria, isotopic fractionation, and high-pressure

- thermodynamic properties. Reviews of Geophysics, 20, 827-849.
- 375 Kiyosu, Y. (1973) Sulfur isotopic fractionation among sphalerite, galena and sulfide
- ions. Geochemical Journal, 7, 191-199.
- 377 Li, Y., and Liu, J. (2006) Calculation of sulfur isotope fractionation in sulfides.
- Geochimica et Cosmochimica Acta, 70, 1789-1795.
- 379 Lutz, H. D., and Willich, P. (1974) Gitterschwingungsspektren. IX. Pyritstruktur.
- 380 FIR-Spektren und Normalkoordinatenanalyse von MnS₂, FeS₂ und
- 381 NiS₂. Zeitschrift für anorganische und allgemeine Chemie, 405, 176-182.
- Macnamara, J., and Thode, H. G. (1950). Comparison of the isotopic constitution of
 terrestrial and meteoritic sulfur. Physical Review, 78, 307-308.
- 384 Méheut, M., Lazzeri, M., Balan, E., and Mauri, F. (2007) Equilibrium isotopic
- 385 fractionation in the kaolinite, quartz, water system: Prediction from first-principles

density-functional theory. Geochimica et Cosmochimica Acta, 71, 3170-3181.

- Méheut, M., Lazzeri, M., Balan, E., and Mauri, F. (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: a first-principles density-functional theory study. Chemical Geology, 258, 28-37.
- Miyahara, S., and Teranishi, T. (1968) Magnetic properties of FeS_2 and CoS_2 . Journal
- of Applied Physics, 39, 896-897.
- Monkhorst, H. J., and Pack, J. D. (1976) Special points for Brillouin-zone
 integrations. Physical Review B, 13, 5188-5192.
- 394 Nickel, E. H., Webster, A. H., and Ripley, L. G. (1971) Bond strengths in the
- disulphides of iron, cobalt and nickel. The Canadian Mineralogist, 10, 773-780.

- 396 Nowack, E., Schwarzenbach, D., and Hahn, T. (1991) Charge densities in CoS2 and
- NiS2 (pyrite structure). Acta Crystallographica Section B: Structural Science, 47,
 650-659.
- O'Neil, J. R. (1986) Theoretical and experimental aspects of isotopic
 fractionation. Reviews in Mineralogy and Geochemistry, 16, 1-40.
- 401 O'Neil, J. R. (1977) Stable isotopes in mineralogy. Physics and Chemistry of
- 402 Minerals, 2, 105-123.
- 403 Otake, T., Lasaga, A. C., and Ohmoto, H. (2008) Ab initio calculations for equilibrium
- 404 fractionations in multiple sulfur isotope systems. Chemical Geology, 249,405 357-376.
- 406 Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient
 407 approximation made simple. Physical review letters, 77, 3865-3868.
- 408 Polyakov, V. B., Clayton, R. N., Horita, J., and Mineev, S. D. (2007) Equilibrium iron
- 409 isotope fractionation factors of minerals: reevaluation from the data of nuclear
- 410 inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochimica et
- 411 cosmochimica acta, 71, 3833-3846.
- 412 Polyakov, V. B., Osadchii, E. G., Chareev, D. A., Chumakov, A. I., and Sergeev, I. A.
- 413 (2013). Fe β -factors for sulfides from NRIXS synchrotron experiments
- 414 Goldschmidt. Mineralogical Magazine, 77, 1985.
- 415 Richet, P., Bottinga, Y., and Janoy, M. (1977) A review of hydrogen, carbon, nitrogen,
- 416 oxygen, sulphur, and chlorine stable isotope enrichment among gaseous
- 417 molecules. Annual Review of Earth and Planetary Sciences, 5, 65-110.

- 418 Rye, R. O., and Czamanske, G. K. (1969) Experimental determination of
- 419 sphalerite-galena sulfur isotope fractionation and application to ores at
- 420 Providencia, Mexico. In Geol. Soc. Am. Abstr 7, 195-196.
- 421 Sakai, H. (1968) Isotopic properties of sulfur compounds in hydrothermal
- 422 processes. Geochemical Journal, 2, 29-49.
- 423 Salomons, W. (1971) Isotope fractionation between galena and pyrite and between
- 424 pyrite and elemetal sulfur. Earth and Planetary Science Letters, 11, 236-238.
- 425 Schauble, E. A. (2011) First-principles estimates of equilibrium magnesium isotope
- 426 fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+)
- 427 crystals. Geochimica et Cosmochimica Acta, 75, 844-869.
- Seal, R. R. (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in
 mineralogy and geochemistry, 61, 633-677.
- 430 Smith, J. W., Doolan, S., and McFarlane, E. F. (1977) A sulfur isotope
- 431 geothermometer for the trisulfide system galena-sphalerite-pyrite. Chemical432 Geology, 19, 83-90.
- 433 Spagnoli, D., Refson, K., Wright, K., and Gale, J. D. (2010) Density functional theory
- study of the relative stability of the iron disulfide polymorphs pyrite and
 marcasite. Physical Review B, 81, 094106.
- 436 Temmerman, W. M., Durham, P. J., and Vaughan, D. J. (1993) The electronic
- 437 structures of the pyrite-type disulphides (MS₂, where M= Mn, Fe, Co, Ni, Cu, Zn)
- and the bulk properties of pyrite from local density approximation (LDA) band
- 439 structure calculations. Physics and Chemistry of Minerals, 20, 248-254.

- 440 Urey, H. C., and Greiff, L. J. (1935) Isotopic exchange equilibria. Journal of the
- 441 American Chemical Society, 57, 321-327.
- 442 Urey, H. C. (1947) The thermodynamic properties of isotopic substances. Journal of
- the Chemical Society (Resumed), 562-581.
- 444 Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue
- 445 formalism. Physical Review B, 41, 7892.
- 446 Vaughan, D. J., and Craig, J. R. (1978) Mineral chemistry of metal sulfides.
- 447 Cambridge: Cambridge University Press.
- 448 Vaughan, D. J., and Lennie, A. R. (1991) The iron sulphide minerals: their chemistry
- and role in nature. Science progress, 75, 371-388.
- 450 Wang, K. (1989) Genetic mineralogy of the earth and Universe. Publishing House of
- 451 Education in Anhui.
- 452 Wuensch, B. J., and Ribbe, P. H. (1974) Sulfide mineralogy . Mineralogical Society of
- 453 Amer.
- 454 Zheng, Y. F., and Simon, K. (1991) Oxygen isotope fractionation in hematite and
- 455 magnetite: A theoretical calculation and application to geothermometry of
- 456 metamorphic iron-formations. European Journal of Mineralogy, 3, 877-886.
- 457 Zheng, Y.F. (1995) Oxygen isotope fractionation in TiO₂ polymorphs and application
- to geothermometry of eclogites. Chinese Journal of Geochemistry, 14, 1-12.
- 459 **Figure captions**
- 460 Figure 1. Comparison of experimental and theoretical vibrational frequencies. The
- 461 dashed line is a linear fit to this study.

7/23

- 462 Figure 2. Comparison of reduced partition function ratios $(10^3 \ln \beta_{34-32})$ values for
- 463 pyrite, cattierite, vaesite and hauerite.

hauerite				
Pyrite	This study -GGA	This study-LDA	Experimental ^a	
a(Å)	5.405	5.287	5.418	
$V(Å^3)$	157.902	147.784	159.044	
Fe-S (Å)	2.255	2.204	2.262	
S-S (Å)	2.189	2.165	2.177	
Cattierite	This study -GGA	This study-LDA	Experimental ^b	
a(Å)	5.506	5.341	5.528	
$V(Å^3)$	166.920	152.359	168.929	
Co-S (Å)	2.307	2.224	2.319	
S-S (Å)	2.138	2.208	2.126	
Vaesite	This study -GGA	This study-LDA	Experimental ^c	
a(Å)	5.613	5.469	5.6765	
V(Å ³)	176.842	163.578	182.912	
Ni-S (Å)	2.365	2.297	2.394	
S-S (Å)	2.073	2.081	2.074	
Hauerite	This study -GGA	This study-LDA	Experimental ^d	
a(Å)	6.054	5.946	6.097	
$V(Å^3)$	221.885	210.220	226.646	
Mn-S (Å)	2.568	2.525	2.590	
S-S (Å)	2.097	2.044	2.087	
a Brostigen and Kje	kshus, 1969; b Andresen et al.,	1967; c Nowack et al., 19	91; d Hastings et al., 1959.	

Table 1 Comparison of the calculated and experimental structure of pyrite, cattierite, vaesite and

Table 2 Calculated and ex	parimontal frag	noncios of the t	ransvarsa ontical	modes of purite	(am^{-1})
Table 2 Calculated and ex	permentai neg	uchcies of the t	ransverse optical	modes of pyrite	(cm)

Mode	Active mode	Symmetry	Calculated ^a	Calculated ^b	This study	Experimental ^c
4		A_u	217	203	214	199
5-7	IR	T_u	220	215	215	215
8-9		E_u	244	236	240	225
10-12	IR	T_u	289	283	287	289
13		A_u	334	323	327	310
14-15	Raman	E_g	346	328	332	344
16-18	IR	T_u	348	331	339	343
19-21	Raman	T_{g}	351	341	343	344
22-23		E_u	371	355	361	396
24	Raman	A_g	372	359	363	382
25-27	IR	T_u	374	368	368	402
28-30	Raman	T_{g}	390	378	379	387
31-33	IR	T_u	395	387	390	407
34-36	Raman	T_{g}	430	427	421	433
a Blancha	rd et al. (2009); b \$	Spagnoli et al. ((2010); c Bühre	r et al. (1993))	

isotope fractionation							
Mineral	Chemical formula	а	b				
Pyrite	FeS ₂	1.7702	-0.0075				
Cattierite	CoS_2	1.2833	-0.0041				
Vaesite	NiS ₂	1.1458	-0.0036				
Hauerite	MnS_2	0.9755	-0.0033				

Table 3 Fits of $10^3 \ln \beta$ based on the function $ax + bx^2$, with $x = 10^6 / T^2 (T \text{ in K})$ for ${}^{34}\text{S}/{}^{32}\text{S}$

