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Abstract The bond-valence model (BVM) posits an inverse relationship between bond valence (essentially bond order) and bond length, typically described by either exponential or power-law equations.  To assess the value of these forms for describing a wider range of bond lengths than found in crystals, we first assume that the bond critical point density (ߩ௕, reported in e-/Å3) is at least roughly proportional to bond valence.  We then calculate ߩ௕-distance curves for a number of diatomic pairs using electronic structure calculations (CCSD/aug-cc-pVQZ) and Atoms-In-Molecules (AIM) analysis.  The shapes of these curves cannot be completely described by the standard exponential and power-law forms, but are well described by a three-parameter hybrid of the exponential and power-law forms.  The ߩ௕-distance curves for covalent bonds tend to exhibit exponential behavior, while metallic bonds exhibit power-law behavior, and ionic bonds tend to exhibit a combination of the two.  We next use a suite of both experimental and calculated (B3LYP/Def2-TZVP) molecular structures of oxo-molecules, for which we could infer X-O bond valences of ~1.0 v.u. or ~2.0 v.u., combined with some crystal structure data, to estimate the curvature of the bond valence-length relationship in the high-valence region.  Consistent with the results for the ߩ௕-distance curves, the standard forms of the bond valence-length equation become inadequate to describe high-valence bonds as they become more ionic.  However, 
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some of these systems demonstrate even higher curvature changes than our three-parameter hybrid form can manage.  Therefore, we introduce a four-parameter hybrid form, and discuss possible reasons for the severe curvature.  Although the addition of more parameters to the bond valence-length equation comes at a cost in terms of model simplicity and ease of optimization, they will be necessary to make the BVM useful for molecular systems and transition states.     
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Introduction The bond-valence model (BVM) is a simple, empirical bonding model, notable for its ability to predict favorable combinations of bond lengths in complex condensed-phase structures, including both solids and liquids (Brown, 2002; Bickmore et al., 2009; Brown, 2009).  It has, for the most part, been developed within the framework of the ionic (Madelung) bonding model, using electric flux lines between ions as the physical basis for bond valence.  Non-ionic effects on bond length are largely incorporated through empirical calibration of separate bond-valence parameters for different cation-anion pairs (Brown, 1981; Preiser et al., 1999; Brown, 2002; 2013).   The fact that the BVM is at least in some respects conceptually unrealistic could be seen as a point in its favor, because such models are often the most useful, at least within their limited domains of applicability (Cotton, 1964).  If we plan to expand the domain of applicability, however, it should be done with reference to more fundamental theory, i.e., quantum mechanics.  Taken by itself, the BVM does not have any fundamental basis in quantum mechanics. However, some have developed links to quantum mechanics on the basis of similar predictions of chemical behavior.  Burdett and Hawthorne (1993), for instance, related key aspects of the BVM to molecular orbital theory.  Gibbs has long argued for using Bader’s Atoms in Molecules (AIM) theory as a basis for rationalizing the BVM (Gibbs et al., 2001; Gibbs et al., 2014).  One possible area for expansion of the BVM is to incorporate bond-valence terms into molecular mechanics potential energy models.  This has already been done (Adams and Swenson, 2002; Grinberg et al., 2002; Cooper et al., 2003; Shin et al., 2005; Adams and Rao, 2009; Grinberg et al., 2009; Liu et al., 2013a; Liu et al., 2013b), using bond-valence 
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parameters calibrated on crystal structures.  The range of bond lengths for a given cation-anion pair, however, is limited in crystals, so it is questionable whether bond-valence-bond-length curves calibrated on crystals accurately cover the wide range of bond lengths one might expect to encounter in a molecular dynamics simulation, or even in gas-phase molecules (Brown, 2002; 2009).   Two main types of bond valence-length relationships have been proposed:  exponential and power-law forms.  But it is unclear whether one would outperform the other over a broader range of bond lengths.  As noted above, one approach to addressing issues such as this is to draw inspiration from demonstrated links between the BVM and quantum mechanics.  One promising avenue is the Quantum Theory of Atoms in Molecules (QTAIM or AIM) of Bader (Bader, 1991; Popelier, 2000), which provides an intriguing method for reducing the complex electron density distributions in molecules and crystals to a manageable set of descriptors that have been shown to be quite useful for rationalizing chemical structure and reactivity.  Gibbs and coworkers (Gibbs et al., 2001; Gibbs et al., 2003; Gibbs et al., 2004; Gibbs et al., 2006; Gibbs et al., 2008a; Gibbs et al., 2008b; Gibbs et al., 2014) have demonstrated a strong correlation between bond valence and one of the primary AIM descriptors, the bond critical point electron density, in oxide crystals and some analogous molecules.  If so, this suggests that one could use this relationship by way of analogy to generate hypotheses about the proper form of the bond valence-length relationship.  Here we show how this can be done, by performing electronic structure calculations on molecules, and AIM analysis of the electron density. 
Theory 

The Bond-Valence Model 
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Bond valence can be thought of as essentially the same thing as bond order, i.e., the number of valence electron pairs involved in a bond (Brown, 2002).  The difference between this and other bond-order schemes is that bond valence is related solely to inter-nuclear distance, rather than more complex quantities like bond overlap populations, and bond valence-length curves are empirically calibrated to conform to a certain criterion, called the valence sum rule.  Equations 1 and 2 are two forms of the equation relating the valence of a bond between ions i and j (sij) to the bond length (R).  In both cases, R0 is the length of a bond with a valence of 1.0 valence units (v.u.), and B is a “softness” parameter that governs the curvature of the relationship.  The value of sij is taken to be positive in the direction from cation to anion.      หݏ௜௝ห ൌ ݁ሺோబିோሻ ஻⁄      (1)     หݏ௜௝ห ൌ ሺܴ/ܴ଴ሻିଵ ஻⁄      (2) Bond-valence parameters (R0 and B) for individual ion pairs are generally calibrated on numerous empirically determined crystal structures by enforcing the valence sum rule (Eqn. 3), which requires that the valence sum of bonds incident to an ion i from counter-ions j is equal to negative the atomic valence (Vi), i.e., the formal charge, of ion i.       ∑ ௜௝௝ݏ ൅ ௜ܸ ൌ 0     (3)  The empirical calibration is a very important feature of the model, because it implicitly rolls in effects on bond length other than those related to bond order, such as Van der Waals interactions (Brown, 2002).  The BVM has, therefore, been very successful at predicting favorable combinations of bond lengths for bonds incident to individual atoms (Brown, 2002).  However, this also places an important limitation on our ability to exactly 



 6

relate bond valence to quantities derived from quantum mechanics, such as bond critical point densities.  The exponential form of the bond-valence equation (Eqn. 1) is equivalent to the bond-order equation proposed by Pauling (1947), whereas two power-law forms essentially equivalent to Eqn. 2 were proposed by Brown and Shannon (1973).  It should be emphasized that the two forms cannot be made exactly equivalent by allowing for different 
R0 and B values.  If these equations are calibrated on crystal structures and applied to crystal structures, it probably matters little which form of the equation is used, because crystals exhibit a limited range of bond lengths for a given ion pair, and either form could be fit well to the data over such a limited range.  However, if one intends to use a bond-valence equation over a broader range of bond lengths, including shorter bonds found in molecules and transition states, as well as longer, secondary bonds, the form of the equation may become important (Brown, 2002; 2009).  Here we explore the possibility of using AIM theory to inform the process. 
Atoms in Molecules and the BVM AIM is fundamentally a method for describing the total electron density distribution (ߩ), which is a quantum mechanical observable, in molecules and crystals in a way that is useful for making connections with molecular structure and reactivity (Bader, 1991; Popelier, 2000).  It defines chemical bonds and boundaries between atoms in terms of the critical points in the shape of the total electron density.  These partitions can represent atoms or bonds or other aspects of the molecular structure.  The critical points in the surface are all points where ߩ׏ ൌ 0; e.g., maxima, minima, or saddle points. Certain saddle points are called bond critical points (BCPs), because they have two negative directions of 
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curvature and one positive, and are usually located near a straight line axis between two atoms. Bonds are described by the features of the electron density around BCPs, e.g., the bond critical point density (ߩ௕) and the ellipticity (߳) of ߩ in the vicinity.  By defining atoms and bonds in terms of these key features in the electron density, AIM provides a simple mechanism for extracting information from a quantum mechanical wave function.  Although AIM provides a fairly high-level (i.e., fundamental) view of molecular structure, some have attempted to relate AIM-derived quantities, such as ߩ௕, to lower-level concepts more familiar to chemists.  For instance, some (Bader et al., 1982; Popelier, 2000; Firme et al., 2009) have proposed an exponential relationship between bond order and ߩ௕.    Recently, some relevant work has been published relating AIM descriptors to bond order in a more complex manner (Matta, 2014). These have used ρb, ∇2ρb (the Laplacian of 
ρb), and bond ellipticity to relate bond order to the bond length, or a newer quantity called the delocalization index (Matta, 2014). Here, the bond order is posited to be based on the delocalization matrix and is approximately equal to the count of the electrons at a bond critical point. This idea has been developed for the case of strong bonding (Matta and Hernández‐Trujillo, 2003), and  has been explored thoroughly for H…H bonding, where a similar relationship was observed (Cukrowski and Matta, 2010).  A similiar relationship has also been observed for biological molecules (Zhurova et al., 2006). Finally, an examination of extremely short bonds, featuring an interesting case of strong Ti-C bonds, was undertaken, in which a deviation from the expected monotonic increase was observed, (Zhurova et al., 2006).  Such relationships raise the possibility of a close correspondence between AIM descriptors and bond valence.  The definition of a chemical bond varies between different 
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models, so direct comparisons are often problematic (Rzepa, 2009), e.g., between models that define bonds based on counting electron pairs or an inverse strength-distance relationship.  Gibbs et al. (2014), however, surveyed sij and ρb in a number of oxide minerals and molecular analogues, and observed the relationship shown in Eqn.4, where 
RM-O is the metal-oxygen bond length, sM-O is the Pauling bond strength (i.e. an averaged bond valence calculated by dividing the atomic valence of the cation by its coordination number), and r is the row number of the element (taking the second row starting with Li as 
r = 1). 
ெିைݏ     ൎ ௕ߩ ൌ ݎ ቀ ఘ್ோಾషೀቁସ.଻଺    (4) On the one hand, the relationship in Eqn. 4 must be partially serendipitous, because the units used for ρb are e-/Å3, and a different choice of volume units would remove the 1:1 correspondence.  Even an approximately linear relationship between the two seems significant, on the other hand, and should be further explored. Formally, bond order is about the nodal structure of the wavefunction.  However, it seems reasonable to suppose that there would be a connection between the magnitude of ρb and various measures of bond order, because otherwise Density Functional Theory, and specifically the local density approximation, would not work.   There are reasons to expect some divergence between the BVM’s sij value and AIM’s ߩ௕, however.  First, calculation of ρb takes into account contributions of all atoms (via the Schrödinger Equation). This means that even if the positions of the two bonded atoms are not altered, alterations of the positions of other atoms will affect the calculated value of ρb (see Schema 1).  In the BVM, however, bond valence is calculated solely on the basis of the 
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bond length between two atoms, and does not take into account the positions of any other atoms bonded to those two, or even whether there are any other bonded atoms.   Nevertheless, here we simply assume that ρb is at least roughly proportional to sij, the bond valence, and therefore the shapes of the ρb-distance curve for a given bond type should be similar to the sij-distance curve.  Given this hypothesis, we can only draw tentative conclusions about the shapes of sij-distance curves, but we go on to devise an independent test of the hypothesis based on experimental and calculated molecular structures.   
Methods We generated ρb-distance curves via a series of electronic structure calculations on atom pairs from the first two rows of the periodic table, separated by variable distances, and performing AIM analysis. The electronic structure calculations were performed using Gaussian 09 (Frisch et al., 2010). All heterodiatomic and homodiatomic molecules from H to F (excluding He) were calculated at the CCSD/aug-cc-pVQZ level of theory.  CCSD stands for coupled cluster theory with single and double excitations included, and the aug-cc-pVQZ basis set has four Gaussian functions per valence atomic orbital, and is specifically designed for coupled cluster calculations.  The spin states used in the calculations are listed in Table S1 of the online supplement.  The scans were from 0.5 Å to 4 Å in 0.5 Å increments, with an additional point at 6 Å. Most of the calculation parameters were set to defaults, but where possible, output wavefunctions were used as input for the next calculation in the series. Wavefunction (.wfn) files were generated for input into AIMAll (aim.tkgristmill.com) to identify the critical points in the structure and extract the electron density at those points (Keith, 2013) . 
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Our method of choice for the calculations was something of a guess. There is extremely limited benchmarking of the stability of electron densities. What has been published is at a much lower level of theory and showed that basis set size was at least as important as methodology (Jabłonski and Palusiak, 2010).  To test the hypothesis that sij-distance curves behave similarly to ρb-distance curves, we performed bond-valence analysis on the structures of a number of small oxo-molecules in which the bonds to the O atoms could be inferred to be close to single or double bonds.  Experimental structures for these molecules were taken mainly from the NIST Computational Chemistry Comparison and Benchmark Database (http://cccbdb.nist.gov), and then supplemented with structures generated using hybrid density functional theory structure optimizations in Gaussian 09, at the B3LYP/Def2-TZVP level.  The bond-valence analysis was performed using both exponential and power-law forms of the bond valence-length equation, using appropriate parameter sets calibrated on crystal structures (Brown and Shannon, 1973; Brown and Altermatt, 1985; Adams, 2001). We also fit tentative bond-valence curves using the MATLAB curve-fitting toolbox.  The code is available on request from B. R. Bickmore. 
Results and Discussion Table 1 shows the ρb-distance curves calculated for all the diatomic pairs.  Attempts to fit these curves with exponential (Eqn. 1) and power-law (Eqn. 2) bond valence-length equations met with varying success, which we have illustrated using the curve for the LiF pair in Figure 1.  The ρb-distance curve for LiF is shown in its normal (Fig. 1a) and log-linear (Fig. 1b) forms, along with best-fit exponential (Eqn. 1) and power-law (Eqn. 2) curves. On a log-linear plot the exponential function is linear, and the power function is 
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curved.  This particular type of plot works well for illustrating the quality of the different fits at both long and short range.  Neither form fits the data over the entire range, but either one would more adequately fit the data over a narrower range of bond lengths.   (It should be noted that we fit logarithmic forms of Eqns. 1 and 2 to log(ρb) vs. distance, so as to more accurately capture the overall curvature at both long and short distances.)  Assuming ρb is roughly proportional to sij, it is apparent that a two-parameter exponential or power-law bond valence-length relationship is not sufficient over such a broad range of bond lengths.  We have therefore explored hybrid models with more parameters.  One such model is shown in Eqn. 5, created simply by taking a weighted geometric mean of the two forms (Eqns. 1-2).  Here w is the weighting factor (0 < w < 1), equal to 1 when the curve is fully exponential, and 0 when is fully power-law.    ߩ௕ ן หݏ௜௝ห ൌ ሺܴ/ܴ଴ሻିሺଵି௪ሻ ஻⁄ ݁ሺோబିோሻ௪ ஻⁄     (5) A best-fit three-parameter curve (Eqn. 5) is plotted with the LiF data in Figures 1a and 1b. One could also consider four and five parameter variants of Eqn. 5, first allowing the two B values to differ and then ultimately the two R0 values. Each of these variants would provide a small additional increase in flexibility. The fit is nearly perfect over the entire scan, even outside of the range one could conceivably find real equilibrium bond lengths. Thus, such a curve might be accurate even for non-equilibrium structures sampled in molecular dynamics simulations, such as transition states, and long, secondary bonds.   We were able to obtain excellent fits of Eqn. 5 to all the ρb-distance curves.  Table 2 shows the optimized model parameters (Eqns. 1, 2, and 5) for the full set of ρb scans.  Table 3 breaks out the hybrid w values for both the Eqn. 5 fits to highlight trends related to bond type.  Instead of ordering by atomic number, which would put H next to the metals, we 
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ordered in terms of Pauling electronegativity.  The values form a triangular distribution with the most metallic bonds at one vertex, the most ionic bonds at another vertex, and the most covalent bonds at the third vertex, similar to the Ketelaar triangle (Ketelaar, 1958).  (Note that we are referring to metal-metal bonds as “metallic” even in diatomic molecules, although we recognize that metallic properties require a more extended system.)  This point is also illustrated by the contour plot shown in Figure 2a, where the shading indicates the w value for the Eqn. 5 fit, respectively, and the x- and y-axes (χ1 and χ2) represent the Pauling electronegativities of the two atoms (Allred, 1961).  We see that, while both the exponential and power-law forms generally provide reasonably good fits, they are not equally good for all element pairs.  Although the hybrid model (Eqn. 5) will obviously always provide the best fit, it is clear that the power-law form (Eqn. 2) is better than the exponential form (Eqn. 1) for metal-metal (metallic) bonds (w < 0.5 for the hybrid models), while the reverse is true for covalent bonds between nonmetals (w > 0.5).  Ionic bonds have intermediate w values in the hybrid model, indicating that neither the exponential nor the power-law forms are preferred.  Figure 2b shows a second-order polynomial fit to the w values based on χ1 and χ2, to highlight periodic trends.  Figure 2c shows the w values predicted with the polynomial fits vs. those fitted to the ρb-distance curves, to illustrate the quality of the polynomial fits.  The periodic trends in the model parameters make good chemical sense. That is, they depend both on the character of the atoms (metal, metalloid, and nonmetal), and on the polarity of the bonds (non-polar covalent, polar-covalent, ionic). Metal atoms tend to have more depleted valence electron densities, but metallic bonds extend over a larger range, so metal-metal ρb values increase gradually as the bond length becomes shorter, but 
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then very rapidly at close range.  This behavior would be more conducive to a power-law relationship (see Fig. 1).  The opposite would be true of bonds between non-metals, and ionic bonds should show intermediate behavior.   There are two elements of particular interest, Boron and Fluorine. Boron seems to behave more as a metal when it is bound to a metal, and prefers more power character in the hybrid fit. When it is bound to a non-metal it behaves more like a non-metal and an exponential fit is preferred. When bound to itself, Boron prefers a more equal balance of power and exponential curvature, like ionic materials. The second element of interest is Fluorine, for which the w values dip slightly from the maximum of 1. We suspect this is a result of the high electron density around the fluorine, which will pack into anti-bonding orbitals, pushing the density outward.  Finally, however, BF is an ionic bond (not polar covalent), so here Boron does not show its usual deferential quality.  Even supposing bond valence-length curves behave similarly, however, the bond lengths in our ρb-distance curves extend to as low as 0.5 Å, which is quite extreme for any type of bond.  Given that adding a third or fourth parameter to the bond valence- length equation comes at a cost in terms of model simplicity, we need to show that such a model is needed to address the range of bond lengths one might actually find in real or calculated chemical systems.  We can do that by using standard bond-valence calculations on simple molecules for which we can infer relatively accurate bond valences for strong bonds.  For example, assuming the valence sum rule (Eqn. 3) applies, one could infer that the Si-O bonds in the disiloxane molecule, (H3Si)2O, or the Li-O bonds in the Li2O molecule, are single bonds (~1 v.u.).  Similarly, the M-O bonds in CO2 or MgO are double bonds (~2 v.u.).   Table 4 lists the bond lengths for a number of such molecules.  All of these bonds should 
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have bond valences of either ~1 v.u., or ~2 v.u., but Table 4 also shows bond valences calculated for these bond lengths using Eqn. 1 (the exponential form) and R0 and B parameters obtained from either Brown and Altermatt (1985), for which B is always set to 0.37 Å, or the SoftBV parameters of Adams (2001), for which B is a free parameter.  Table 4 also shows bond valences calculated using two different power-law relationships and associated parameter sets proposed by Brown and Shannon (1973). Figure 3 shows the deviation of the calculated bond valences from their inferred values (∆sij) plotted vs. the fraction ionic character of the bonds (Ib), obtained from Eqn. 7 (Pauling, 1960), where χ1 and χ2 are the Pauling electronegativities of the two atoms (Allred, 1961).       ܫ௕ ൌ 1 െ ݁ି଴.ଶହሺఞభିఞమሻమ     (6) Figs. 3a and b show the results for the exponential form (Eqn. 1), using the Brown and Altermatt (1985) and SoftBV (Adams, 2001) parameters, respectively.  The plots clearly show that the inferred valences of more covalent single and double bonds tend to be calculated fairly accurately via the exponential bond-valence equation, but are systematically under-predicted as the bonds become more ionic.  This is less the case for single-bond valences calculated with the Brown and Altermatt (1985) parameters, because a single “average” B value is assumed, and there both the most covalent and the most ionic bonds are under-predicted.  Double bonds are systematically under-predicted as a function of ionicity for both parameter sets, however.  Figures 6c and d show the results for two power-law forms proposed by Brown and Shannon (1973), one using parameters for individual cation-O pairs and the other with parameters that are universal for cations with the same number of core electrons, and both similar to Eqn. 2.  Once again, both the single- 
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and double-bond valences are systematically under-predicted as a function of the bond ionicity.   These results were initially surprising because, while we expected the exponential form to underestimate the valences of the more ionic bonds, we also expected the power-law forms to overestimate the valences of the more covalent bonds (see Fig. 1).  While it does turn out that the exponential form generally underestimates to a slightly greater degree, the reason for the observed behavior has more to do with the limited range of bond lengths available in calibration sets that include only crystals. Bonds of a given type in crystals tend to occur within a fairly narrow range around a certain expectation value.  Brown and coworkers (Brown and Shannon, 1973; Brown, 1988; Brown and Skowron, 1990) estimated many of these expectation values for X-O bonds in oxides, called the “Lewis Acid Strength” (LA,X) of each cation, by dividing each cation’s atomic valence (VX) by its average observed coordination number ሺ ഥܰ௖ሻ in a large set of oxide crystals (see Eqn. 7).     ܮ஺,௑ ൌ ௏೉ேഥ೎     (7) This value is highly correlated with the electronegativity of the cations, and therefore we expect that more ionic bonds will tend to have lower bond valences in crystals (see Eqn. 7).  A consequence of this is that bond valence-length models for more ionic bonds, fit to calibration sets of crystal structures, would necessarily have to be extrapolated far outside the bond lengths found in crystals to reach 1-2 v.u.  Meanwhile, the model parameters would be tailored to match the curvature of the valence-length relationship in the range found in crystals, which is typically not as strong in the low-valence region.     Figure 4 illustrates this point by plotting sij vs. bond length for four bond types involving Oxygen:  Mg-O (Ib = 0.68), Be-O (Ib = 0.58), Si-O (Ib = 0.45), and Ge-O (Ib = 0.40). 
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These bond types were chosen because they cover a range of ionicity, single- and double-bond lengths were available in Table 4, both exponential and power-law bond-valence parameters were available, and LA,X estimates were also available (Brown, 1981; Brown and Skowron, 1990).  For each bond type, we show points representing the ~1 and ~2 v.u. bond lengths from molecules in Table 4, another point representing LA,X, with the corresponding bond length calculated via Eqn. 1 and Brown and Altermatt’s (1985) parameter set, and two bond lengths from empirically determined crystal structures.  The two crystals chosen for each bond type (see Table 5) had two different cation coordination numbers and very symmetrical cation coordination polyhedra (variations in bond lengths no more than a few hundredths of an Å).  Thus, an average bond length could be accurately associated with the average bond valence (the cation valence divided by the coordination number.  Figure 4 also shows for each bond type an exponential bond valence-length curve with parameters taken from Brown and Altermatt (1985), and a power-law curve with parameters taken from Brown and Shannon (1973).  In all four cases, the exponential and power-law curves (both optimized on suites of crystal structures) are almost identical in the region around LA,X and the crystal values, but might differ significantly at much longer or shorter bond lengths.   As our example bonds become progressively more ionic, the curves become steeper and steeper in the high-valence (1-2 v.u.) region, consistent with our results for the ρb-distance curves.  We optimized exponential (Eqn. 1), power-law (Eqn. 2), and three-parameter hybrid (Eqn. 5) models to fit the 1 and 2 v.u. points and the crystal values, but surprisingly, even Eqn. 5 was inadequate for the strong curvature needed to describe the more ionic bonds.   
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In addition, we have plotted in Figure 4 the optimized three-parameter hybrid (Eqn. 5) curves, as well as another curve representing the optimized four-parameter hybrid model in Eqn. 8.  This is similar to Eqn. 5, except that it is a weighted arithmetic, rather than geometric, mean of the exponential (Eqn. 1) and power-law (Eqn. 2) forms, and separate softness parameters (Bexp and Bpow) are allowed for the two forms.  The optimized parameter and misfit values for Eqn. 5 and Eqn. 8 are shown in Table 6.  (It should be noted that the optimized w values in Table 6 are all zero for the Eqn. 5, but this merely reflects the fact that even a power-law function cannot match the high curvature exhibited by the data.)     หݏ௜௝ห ൌ ሺ1 െ ሻሺܴ/ܴ଴ሻିଵݓ ஻೛೚ೢ⁄ ൅݁ݓሺோబିோሻ ஻೐ೣ೛⁄ ,    (8) Clearly, Eqn. 8 can produce the desired curvature, whereas Eqn. 5, or even a variant of Eqn. 8 with a single B parameter, cannot.  Forms involving an arithmetic mean, similar to Eqn. 8, are uniformly more flexible than geometric means, given the same number of parameters.  We conclude, therefore, that a more flexible curve shape than Eqns. 1-2, and even Eqn. 5, is very likely needed to describe bond valence-length relationships over the full range of bond lengths one might find in crystals, molecules, and transition states for certain element pairs. In fact, this problem can sometimes be detected even for the strongest bonds found in crystals for very ionic bond types. Bickmore et al. (2013), for instance, showed that while the alkali metal oxides (Li2O, Na2O, K2O, and Rb2O) all have 4-coordinated metals, and so should have X-O bond valences of only ~0.25  v.u., the SoftBV valence parameters (Adams, 2001) under-predict the valence sums on the ions by up to ~40-50% for the structures with the most ionic bonds (K2O, and Rb2O).  This is the case even though the SoftBV parameters are specifically designed to have stronger interactions 
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at long distances, which should partially counterbalance underestimates of the high-valence bonds.   The severe curvature shown in Fig. 4 brings up a certain difficulty for our endeavor, however, if we want to develop the BVM to correctly predict things like bond dissociation energies and bond force constants (representing the stiffness of the bond at equilibrium).  That is, for the most ionic bond type shown (Mg-O), the length of the nominal single bond (1.765 Å) is very close to that of the double bond (1.749 Å).  Is it reasonable to suppose that the bond valence-length curve is so steep in this region that there can be a change of 1 v.u. over a distance of only a few hundredths of an Å?  We drew this conclusion by simply assuming that the valence sum rule (Eqn. 3) is applicable to our suite of molecular structures, but this is not necessarily the case.  By comparing bond dissociation energies in various compounds, for instance, Sanderson (1983) concluded that the bonds in the diatomic molecules of Group II oxides (including MgO) can only be single bonds, rather than double bonds, in effect making these molecules diradicals.  He rationalized this by noting that the bonding orbitals about the Group 2a atoms (sp hybrids) are oriented opposite from one another, and therefore a double bond is geometrically impossible to form.   Given that the valence sum rule is the first axiom of the BVM, it seems reasonable to simply assume it, rather than arguing about whether an MgO bond is “really” a double bond, however.  But if so, we still have to deal with the fact that in regions where there is abnormally high curvature in the bond valence-length curves, something different is probably occurring with respect to the relationship between bond valence and bond energy.   
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The likely culprit is changing bond character with bond length.  Up to this point, we have used Pauling electronegativity differences to calculate the “fraction ionic character” of different bond types via Eqn. 6, which provides a single value for each bond type.  However, it is well known that this is an oversimplification.  Charge separation in most solids, for instance, decreases with increasing pressure (Batsanov and Batsanov, 2012); i.e., more compressed bonds in solids generally become more covalent, although there are some exceptions.  It is also well known that, even given the same nominal bond order, bond energies can differ radically as a function of bond character, with more polar bonds heavily energetically favored (Pauling, 1960; Sanderson, 1983).  Thus, if the change in charge separation for some types of bonds occurs more rapidly as the bonds are compressed in the high-valence (1-2 v.u.) region, becoming more covalent, it seems reasonable to suppose that the bond energy would change less rapidly with distance, leading to a smaller change in bond length for an equivalent change in bond valence.   This interpretation of increasing atomic charge makes sense from a quantum mechanical perspective. That is, an ion’s charge is not located at a point at the center of mass but rather distributed over an approximately spherical volume. As two ions are brought together via a multiple bond, their electron clouds overlap to a much greater extent, reducing the partial charges on the individual ions. This pattern can be illustrated by the net dipoles of a series of hydrogenated molecules with C–O triple, double, and single bonds: CؠO (0.122D), H2C=O (2.33D), and H3C–OH (1.69D).  At first glance, the lower dipole moment of the last molecule would seem to suggest lower charge separation, but the methanol net dipole is the result of the sum of two partially opposed CH3–O and O–H dipole vectors, and actually indicates a much stronger separation of charge.  
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The specific format of Eqn. 8, with a single R0 value but separate B values, dictates that the zone of rapid transition will be around 1 v.u.  In fact, one could make an argument based molecular orbital theory that this is correct.  Multiple bonds are characterized by a mixture of π and σ bonding, while single bonds and partial bonds are expected to exhibit purely σ character. As one distends a bond (in an equilibrium molecular configuration), from triple to double to single the π bonding is expected to fall off rapidly while the σ bonding is expected to be relatively unaffected. After a single bond is reached, the sigma bond diminishes proportionately (c.f., Haaland, 2008). This is clearly an oversimplification, but there is a transition that does occur in the electronic structure at just slightly above a single bond.  As mentioned above, however, adding a third or fourth parameter to the bond-valence equation comes at a cost in terms of model simplicity, and also ease of optimization.  In fact, adequately constraining a three- or four-parameter curve such as Eqn. 5 would likely require data in at least four distinct bond length regimes, all with approximately determined bond orders.  At minimum, one would need to augment calibration sets of crystal structures with molecular structures such as the ones employed here, and in some cases one would need alternative sources of information.   Utilizing established relationships between vibrational force constants and bond order (Johnston, 1966), along with periodic trends in vibrational force constants (Badger, 1934), seems a likely avenue to obtain such information.  Care also needs to be taken in going that route, however, for two reasons.  First, bond orders determined from force constants (or other methods) should usually be quite similar to those determined via the BVM, but the exact relationship is unclear, because different assumptions are associated 
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with each method.  Second, we have seen that assuming the valence sum rule can lead to unexpected behavior such as the severe curvature noted in some of the bond valence-length curves in Fig. 4, and similar unexpected results may come from estimating bond order from force constants. We would expect the force constants for C–O bonds, for instance, to follow the traditional relationship of double and triple bonds having 2 and 3 times the force constant of a single bond, but this is not the case; e.g., CO (19.02 N/cm) is generally considered to have a triple bond, CO2 (16.00 N/cm) to have double bonds, and CH3OH (5.42 N/cm) to have a single C-O bond (Haynes, 2013). However, if we take methanol as the standard, CO2 has nearly a triple C-O bond; or taking CO2 as the standard, the methanol C-O bond has a bond order of only 5/8 and CO only about 2 1/3. Either way, we need to rethink simple Molecular Orbital assumptions about bonding for both crystals and molecules to relate them to the BVM.  
Implications Although it is probably not possible to relate ρb and bond valence in a quantitative manner, assuming at least a rough correspondence between the two has allowed us to draw out a striking implication.  That is, the shape of the bond valence-length curve should change as a function of bond character (covalent, ionic, or metallic), with the curve becoming steeper in the high-valence range for more ionic and metallic bonds.  This makes good chemical sense in terms of both the electronic structures of different types of atoms and the behavior of different types of bonds.  We have, furthermore, shown that standard exponential and power-law forms of the bond valence-length relationship tend to systematically under-predict the bond valence of more ionic, high-valence bonds (1-2 v.u.) in oxide molecules, and that this behavior is consistent with our hypothesis.  Crystals with 
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more ionic bonds tend not to exhibit such high-valence bonds, but our previous work (Bickmore et al., 2013) has demonstrated that this systematic under-prediction of bond valence could be a major problem even for bonds as weak as 0.25 v.u., in cases where very electropositive metals exhibit abnormally low coordination numbers.   These simple demonstrations show that, regardless of the true nature of the relationship between ρb and bond valence, a more flexible bond valence-distance curve shape (e.g., Eqn. 8) is needed for some purposes.  While the standard exponential and power-law forms are probably adequate for modeling equilibrium geometries in most crystals, they will exhibit systematic deficiencies as their application broadens to include different bond types (O'Keeffe and Brese, 1992; Wander et al., in press) and non-equilibrium energy calculations (Adams and Swenson, 2002; Grinberg et al., 2002; Cooper et al., 2003; Shin et al., 2005; Adams and Rao, 2009; Grinberg et al., 2009; Liu et al., 2013a; Liu et al., 2013b). We have also raised the possibility that the valence sum rule (Eqn. 3), and hence the concept of bond valence itself, is not really applicable to all the types of molecules examined here.  Objections like these, however, would necessarily be rooted in attempts to rationalize bond valence in terms of particular physical concepts, such as electric flux between point charges, ρb, or some alternative method of estimating bond order.  Given some precise definition of bond valence, one could argue that the variation in bond valence-length curve shape we have shown here indicates fundamental differences in the meaning of bonds having the same valence.  For instance, a 2 v.u. bond in an MgO molecule might not “mean” the same thing as a 2 v.u. C=O bond in a formaldehyde (H2CO) molecule.   
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While these attempts at rationalization are both useful and necessary, it should always be remembered that the true power of the BVM has always been in its empirical calibration, based on the enforcement of the valence sum rule for equilibrium geometries.  This enforcement necessarily involves combining multiple phenomena under the bond-valence heading, including electrostatic interactions, Pauli repulsion, and Van der Waals interactions (Brown, 2002).  And if so, the exact physical “meaning” of a given bond valence is necessarily dependent on the identities (i.e., electronic structures) of the bonded atoms.   Such variations are expected, and could actually be an asset for the model if they can be shown to be systematic.  Here we have argued that the bond valence-length curve shape should vary systematically as a function of bond character, but it has long been known that other properties, such as the dissociation energies of bonds with the same nominal bond order, also vary quite strongly as a function of bond character (Pauling, 1960; Sanderson, 1983; Wander et al., in press).   Therefore, if we intend to expand the BVM to be capable of modeling more than equilibrium structures in condensed phases, it seems reasonable to keep the valence sum rule as the basis for determining bond valence, and then further explore systematic variations in bond properties as a function of bond valence in combination with other considerations such as bond character.   
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Table 1.  Calculated ρb values in e-/Å3 for all the diatomic pairs at various interatomic distances.  The ρb values for a few elements could not be calculated at 6 Å because the electron density profile was too weak to form a saddle point.  In essence, the atoms are completely unbound.  The ρb value for the HF pair at 0.5 Å could not be calculated, because The ρb has only one maximum corresponding to the region around the F nucleus. 
  Distance (Å) 
Atom1 Atom 2 0.5 1 1.5 2 2.5 3 3.5 4 6 

Li Li 1.13E+01 1.11E+00 1.57E-01 1.23E-01 1.05E-01 7.76E-02 5.40E-02 3.60E-02 4.66E-03
Li Be 1.22E+01 8.92E-01 3.04E-01 2.46E-01 1.25E-01 6.41E-02 3.76E-02 2.28E-02 2.32E-03
Li B 1.22E+01 8.56E-01 4.52E-01 3.04E-01 1.42E-01 7.63E-02 4.74E-02 3.13E-02 3.01E-03
Li H 3.68E+00 9.63E-01 3.27E-01 1.40E-01 7.33E-02 4.64E-02 3.21E-02 1.67E-02 8.95E-04
Li C 1.29E+01 1.14E+00 4.69E-01 2.92E-01 1.26E-01 6.68E-02 3.27E-02 1.45E-02 1.48E-03
Li N 1.41E+01 2.64E+00 8.11E-01 2.62E-01 1.07E-01 5.09E-02 2.82E-02 1.44E-02 1.01E-03
Li O 1.51E+01 2.74E+00 7.38E-01 2.17E-01 8.26E-02 4.30E-02 2.49E-02 1.91E-02
Li F 1.81E+01 3.19E+00 6.56E-01 1.73E-01 5.71E-02 2.20E-02 9.20E-03 4.08E-03 2.63E-04
Be Be 1.23E+01 7.08E-01 5.76E-01 4.27E-01 2.10E-01 9.88E-02 4.72E-02 2.31E-02 1.26E-03
Be B 1.20E+01 1.02E+00 3.66E-01 3.66E-01 1.94E-01 8.32E-02 5.25E-02 2.52E-02 1.34E-03
Be H 4.89E+00 1.28E+00 5.02E-01 2.60E-01 1.12E-01 4.42E-02 1.91E-02 8.40E-03 3.11E-04
Be C 1.20E+01 2.33E+00 8.23E-01 3.28E-01 1.78E-01 7.21E-02 2.87E-02 1.16E-02 7.07E-04
Be N 1.22E+01 2.89E+00 9.51E-01 3.62E-01 1.65E-01 6.68E-02 2.85E-02 1.23E-02 3.99E-04
Be O 1.30E+01 3.34E+00 7.56E-01 2.42E-01 1.43E-01 6.20E-02 2.13E-02 1.21E-02 3.73E-04
Be F 1.88E+01 3.35E+00 7.09E-01 2.33E-01 1.33E-01 8.02E-02 2.16E-02 2.27E-02 5.49E-04
B B 1.12E+01 2.61E+00 1.14E+00 6.19E-01 2.73E-01 1.24E-01 5.85E-02 2.76E-02 1.43E-03
B H 6.70E+00 1.89E+00 8.30E-01 3.65E-01 1.63E-01 7.12E-02 2.94E-02 1.16E-02 3.32E-04
B C 1.06E+01 2.58E+00 1.52E+00 7.20E-01 3.25E-01 1.23E-01 4.89E-02 2.04E-02 2.87E-04
B N 1.07E+01 3.31E+00 1.21E+00 4.45E-01 2.66E-01 9.12E-02 3.70E-02 1.35E-02 1.36E-04
B O 1.47E+01 3.80E+00 1.12E+00 4.06E-01 1.26E-01 3.79E-02 1.31E-02 4.63E-03 1.44E-04
B F 2.35E+01 3.74E+00 9.13E-01 4.26E-01 1.87E-01 8.47E-02 4.17E-02 2.04E-02
H H 3.47E+00 1.02E+00 3.79E-01 1.38E-01 4.79E-02 1.69E-02 6.08E-03 2.27E-03 5.54E-05
H C 8.32E+00 2.49E+00 8.59E-01 3.35E-01 1.08E-01 3.75E-02 1.32E-02 5.36E-03 1.42E-04
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H N 1.03E+01 2.51E+00 7.88E-01 2.48E-01 7.65E-02 2.60E-02 9.23E-03 3.40E-03 6.16E-05
H O 1.18E+01 2.31E+00 7.05E-01 2.12E-01 6.03E-02 1.93E-02 9.94E-03 3.79E-03 3.04E-05
H F 2.04E+00 6.22E-01 2.21E-01 6.87E-02 2.07E-02 6.61E-03 2.20E-03 2.87E-05
C C 8.94E+00 3.72E+00 1.90E+00 7.21E-01 2.82E-01 1.00E-01 3.39E-02 1.18E-02 2.24E-04
C N 1.30E+01 4.46E+00 1.80E+00 6.42E-01 2.11E-01 6.70E-02 2.32E-02 8.71E-03 5.61E-05
C O 2.15E+01 4.81E+00 1.63E+00 5.63E-01 1.94E-01 5.94E-02 1.79E-02 5.83E-03 9.33E-05
C F 2.75E+01 4.36E+00 1.33E+00 5.09E-01 1.85E-01 3.82E-02 7.20E-04 4.76E-03 6.23E-05
N N 2.08E+01 6.16E+00 1.83E+00 5.81E-01 1.09E-01 3.08E-02 9.25E-03 2.84E-03
N O 2.68E+01 5.94E+00 1.74E+00 4.91E-01 8.13E-02 3.60E-02 1.09E-02 3.76E-03 7.80E-05
N F 1.07E+01 3.31E+00 1.21E+00 4.45E-01 2.66E-01 9.12E-02 3.70E-02 1.35E-02 1.36E-04
O O 3.19E+01 6.68E+00 1.69E+00 4.91E-01 1.40E-01 2.79E-02 5.55E-03 1.15E-03
O F 3.60E+01 6.44E+00 1.57E+00 3.59E-01 7.76E-02 1.91E-02 8.43E-03 2.67E-03 1.56E-05
F F 4.03E+01 6.83E+00 1.49E+00 3.55E-01 7.72E-02 1.75E-02 4.59E-03 1.19E-03
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Table 2. Summary of ρb-distance model fits for the exponential (Eqn. 1), power-law (Eqn. 2), three-parameter hybrid (Eqn. 5), 688 and four-parameter hybrid (Eqn. 6) forms.  The sum of squared error is also reported for all three models. 689 
  Exponential Power Hybrid Residual 

Atom 1 Atom 2 B R0 B R0 w B R0 Exp. Power Hybrid-3 Hybrid-4 

Li Li 0.8480 0.9866 0.3564 1.0567 0.0069 0.3590 1.0578 1.20E+00 3.99E-01 4.15E-01 4.15E-01 

Li Be 0.7312 1.1910 0.3212 1.1197 0.1806 0.3833 1.1608 1.20E+00 7.03E-02 4.95E-01 4.95E-01 

Li B 0.7548 1.2841 0.3335 1.1622 0.2093 0.4082 1.2196 1.17E+00 1.03E-01 5.12E-01 5.12E-01 

Li H 0.7088 0.9294 0.3268 0.9612 0.4778 0.4939 0.9834 2.31E-01 4.64E-01 5.23E-02 5.23E-02 

Li C 0.6601 1.3286 0.2958 1.1756 0.2840 0.3857 1.2568 1.18E+00 6.36E-01 4.20E-01 4.20E-01 

Li N 0.5979 1.4807 0.2694 1.2547 0.3179 0.3611 1.3706 1.12E+00 2.04E+00 4.77E-02 4.77E-02 

Li O 0.5269 1.4992 0.2958 1.2349 0.1463 0.3247 1.2903 1.21E+00 8.87E-01 3.18E-01 3.18E-01 

Li F 0.4993 1.3776 0.2240 1.2008 0.2912 0.2938 1.2917 1.54E+00 3.99E+00 4.50E-01 4.50E-01 

Be Be 0.6770 1.4171 0.3129 1.2017 0.4993 0.4802 1.3524 1.06E+00 5.44E-01 6.98E-01 6.98E-01 

Be B 0.6856 1.3814 0.3134 1.1898 0.4126 0.4518 1.3116 1.06E+00 4.94E-01 5.95E-01 5.95E-01 

Be H 0.5836 1.2190 0.2772 1.0764 0.7709 0.5060 1.2085 1.84E-01 1.38E+00 6.86E-02 6.86E-02 

Be C 0.5824 1.5282 0.2697 1.2637 0.5155 0.4186 1.4474 7.67E-01 2.39E+00 1.29E-01 1.29E-01 

Be N 0.5480 1.5829 0.2572 1.2875 0.6379 0.4328 1.5195 6.23E-01 3.42E+00 1.03E-01 1.03E-01 

Be O 0.5437 1.5302 0.2521 1.2639 0.5272 0.3944 1.4514 7.95E-01 3.33E+00 6.74E-02 6.74E-02 

Be F 0.5641 1.5807 0.2571 1.3052 0.3924 0.3651 1.4640 1.51E+00 2.87E+00 2.52E-01 2.52E-01 

B B 0.6366 1.7233 0.2995 1.3735 0.6659 0.5131 1.6542 5.50E-01 2.25E+00 1.99E-01 1.99E-01 

B H 0.5685 1.4602 0.2730 1.1995 0.9138 0.5400 1.4492 1.67E-01 2.25E+00 1.10E-01 1.10E-01 

B C 0.5427 1.7687 0.2663 1.3780 1.0000 0.5427 1.7687 1.97E-01 4.30E+00 1.97E-01 3.68E-01 

B N 0.5049 1.6971 0.2469 1.3327 1.0000 0.5049 1.6971 9.15E-02 5.29E+00 9.15E-02 2.63E-01 

B O 0.4733 1.5797 0.2224 1.2845 0.6538 0.3781 1.5198 6.19E-01 6.85E+00 1.78E-01 1.78E-01 

B F 0.5265 1.7442 0.2991 1.4122 0.2513 0.3493 1.5306 1.84E+00 1.25E+00 6.35E-02 6.35E-02 

H H 0.4981 1.0174 0.2376 0.9750 0.8216 0.4465 1.0268 8.03E-02 1.65E+00 8.09E-03 8.09E-03 

H C 0.4997 1.4378 0.2374 1.1941 0.7742 0.4342 1.4094 2.23E-01 3.85E+00 4.56E-02 4.56E-02 

H N 0.4604 1.4050 0.2178 1.1785 0.7262 0.3872 1.3730 3.92E-01 5.12E+00 2.96E-02 2.96E-02 

H O 0.4414 1.3946 0.2094 1.1708 0.7583 0.3794 1.3675 5.32E-01 5.79E+00 1.40E-01 1.40E-01 

H F 0.4462 1.2964 0.1661 1.3938 0.8973 0.4161 1.3089 8.51E-01 6.84E+01 1.04E+00 6.85E-03 

C C 0.5137 1.7546 0.2523 1.3680 1.0000 0.5137 1.7546 3.31E-01 5.64E+00 3.31E-01 6.98E-02 
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C N 0.4495 1.7504 0.2207 1.3652 1.0000 0.4495 1.7504 4.06E-01 1.02E+01 4.06E-01 1.75E-01 

C O 0.4486 1.7516 0.2141 1.3834 0.8296 0.4043 1.7180 6.61E-01 1.18E+01 1.57E-01 1.57E-01 

C F 0.4124 1.6210 0.1922 1.3152 0.5698 0.3094 1.5391 1.54E+00 1.57E+01 6.13E-01 6.13E-01 

N N 0.3863 1.7027 0.2321 1.3547 1.0000 0.3863 1.7027 2.43E-01 7.51E+00 2.43E-01 7.06E-02 

N O 0.4284 1.6917 0.2003 1.3571 0.6028 0.3296 1.6100 1.34E+00 1.49E+01 5.55E-01 5.55E-01 

N F 0.5049 1.6971 0.2469 1.3327 1.0000 0.5049 1.6971 9.15E-02 5.29E+00 9.15E-02 2.63E-01 

O O 0.3481 1.7132 0.2098 1.3619 1.0000 0.3481 1.7132 1.87E-01 1.24E+01 1.87E-01 4.98E-01 

O F 0.3810 1.6760 0.1798 1.3414 0.6981 0.3142 1.6176 1.76E+00 2.57E+01 1.30E-01 1.30E-01 

F F 0.3377 1.6700 0.2002 1.3344 0.8052 0.3081 1.6279 1.20E+00 1.35E+01 3.34E-02 3.34E-02  690  691  692  693 
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Table 3. Three-parameter (Eqn. 5) and four-parameter (Eqn. 6) hybrid weighting factors (w). A value of 1 would indicate a pure exponential form, while a value of 0 would indicate a pure power-law form. Boxes bound metals, metalloids, and nonmetals. Light grey shading indicates non-polar covalent bonding, medium gray indicates polar covalent bonding, and dark grey indicates ionic bonding.  
Hybrid - 3         

Li Be B H C N O F 
Li 0.0069 x x x x x x x 
Be 0.1806 0.4993 x x x x x x 
B 0.2093 0.4126 0.6659 x x x x x 
H 0.4778 0.7709 0.9138 0.8216 x x x x 
C 0.2840 0.5155 1.0000 0.7742 1.0000 x x x 
N 0.3179 0.6379 1.0000 0.7262 1.0000 1.0000 x x 
O 0.1463 0.5272 0.6538 0.7583 0.8296 0.6028 1.0000 x 
F 0.2912 0.3924 0.2513 0.8973 0.5698 1.0000 0.6981 0.8052 
           694 
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 695 
Table 4.  Bond lengths for a number of oxo-molecules, from structures obtained either experimentally or via quantum 696 mechanical calculations.  (The molecular formulas for which we obtained experimental values are bolded and italicized.)  All of 697 these bonds should have bond valences of either ~1 v.u., or ~2 v.u.  We also report bond valences calculated for these bond 698 lengths using Eqn. 1 and R0 and B parameters obtained from either Brown and Altermatt (1985), or the SoftBV parameters of 699 Adams (2001).  Finally, we report bond valences calculated for these bond lengths using two power-law forms similar to Eqn. 700 2 and associated parameters proposed by Brown and Shannon (1973).  One form is meant for individual X-O pairs, and the 701 other is a “universal” model, where the parameters are the same for all X-O bonds for which X has the same number of core 702 electrons. 703 

Molecule Bond RX-O (Å) sij (v.u.)† sij (v.u.)‡ sij (v.u.)* sij (v.u.)# 

H2O H-O 0.958 0.815 0.826 0.797 0.791 
Li2O Li-O 1.606 0.686 0.430 0.537 0.537 K2O K-O 2.260 0.708 0.481 0.387 0.360 Na2O Na-O 1.979 0.622 0.421 0.547 0.426 
LiOH Li-O 1.582 0.732 0.451 0.570 0.571 
LiOH H-O 0.969 0.791 0.806 0.777 0.772 
NaOH Na-O 1.950 0.673 0.428 0.595 0.454 
NaOH H-O 0.941 0.852 0.856 0.828 0.822 KOH K-O 2.223 0.782 0.523 0.420 0.387 KOH H-O 0.957 0.816 0.827 0.798 0.792 O(BeH)2 Be-O 1.407 0.932 0.635 0.963 0.918 O(BH2)2 B-O 1.368 1.008 0.992 1.019 1.029 
O(CH3)2 C-O 1.410 0.948 0.974   
O(SiH3)2b Si-O 1.634 0.974 0.942 0.975 0.969 
O(GeH3)2c Ge-O 1.766 0.953 0.935 0.952 0.933 OH(BeH) Be-O 1.406 0.935 0.694 0.966 0.921 OH(BeH) H-O 0.952 0.828 0.837 0.808 0.802 OH(BH2) B-O 1.366 1.014 0.994 1.027 1.037 OH(BH2) H-O 0.967 0.796 0.81 0.781 0.776 OH(CH3) C-O 1.422 0.918 0.949   OH(CH3) H-O 0.962 0.806 0.819 0.790 0.784 
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OH(MgH) Mg-O 1.765 0.824 0.578 0.790 0.696 OH(MgH) H-O 0.949 0.834 0.841 0.813 0.807 OH(AlH2) Al-O 1.700 0.876 0.788 0.892 0.817 OH(AlH2) H-O 0.958 0.815 0.825 0.796 0.791 OH(SiH3) Si-O 1.653 0.925 0.973 0.926 0.922 OH(SiH3) H-O 0.960 0.811 0.822 0.793 0.788 OH(CaH) Ca-O 2.011 0.888 0.635 0.854 0.607 OH(CaH) H-O 0.956 0.820 0.830 0.801 0.795 OH(ScH2) Sc-O 1.851 0.995 0.787 1.133 0.881 OH(ScH2) H-O 0.956 0.819 0.829 0.800 0.795 OH(TiH3) Ti-O 1.751 1.190 0.948 1.029 1.129 OH(TiH3) H-O 0.957 0.817 0.827 0.798 0.792 OH(GeH3) Ge-O 1.795 0.881 0.869 0.871 0.845 OH(GeH3) H-O 0.962 0.806 0.818 0.789 0.784 O(BH2)(AlH2) B-O 1.336 1.099 1.016 1.118 1.134 O(BH2)(AlH2) Al-O 1.690 0.900 0.806 0.919 0.838 O(BH2)(SiH3) B-O 1.350 1.059 1.006 1.074 1.087 O(BH2)(SiH3) Si-O 1.665 0.897 0.966 0,898 0.895 O(BH2)(ZnH) B-O 1.330 1.117 1.020 1.138 1.138 O(BH2)(ZnH) Zn-O 1.766 0.846 0.934 0.814 0.932 O(BH2)(GaH2) B-O 1.345 1.073 1.009 1.09 1.104 O(BH2)(GaH2) Ga-O 1.822 0.781 0.753 0.781 0.774 O(BH2)(CdH) B-O 1.326 1.130 1.024 1.153 1.170 O(BH2)(CdH) Cd-O 1.964 0.852 0.736   O(CH3)(BH2) C-O 1.431 0.897 0.930   O(CH3)(BH2) B-O 1.343 1.079 1.039 1.096 1.110 O(AlH2)(SiH3) Al-O 1.687 0.909 0.813 0.929 0.846 O(AlH2)(SiH3) Si-O 1.623 0.987 0.987 0.990 0.982 O(SiH3)(GeH3) Si-O 1.636 0.968 0.983 0.97 0.964 O(SiH3)(GeH3) Ge-O 1.785 0.905 0.891 0.899 0.875 
HOCH2OOH C-O 1.385 1.015 1.031   
HOCH2OOH H-O 0.965 0.800 0.814 0.785  
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BeO Be=O 1.331 1.145 0.798 1.152 1.152 
HBO B=O 1.200 1.588 1.506 1.755 1.755 B2O2a B=O 1.198 1.595 1.513 1.765 1.765 
CO2 C=O 1.162 1.852 1.696   
MgO Mg=O 1.749 0.860 0.596 0.724 0.724 
CaO Ca=O 1.822 1.479 0.945 0.607 0.607 HAlO Al=O 1.598 1.155 1.002 1.217 1.066 SiO2 Si=O 1.510 1.360 1.254 1.358 1.358 H3PO P=O 1.478 1.457 1.385 1.491 1.491 
SO3 S=O 1.418 1.748 1.664 1.783 1.783 HScO Sc=O 1.673 1.609 1.127 2.076 1.385 TiO2 Ti=O 1.706 1.345 1.037 1.270 1.270 ZnO Zn=O 1.713 0.976 0.862 1.122 1.122 HGaO Ga=O 1.648 1.247 1.199 1.262 1.417 GeO2 Ge=O 1.624 1.399 1.338 1.549 1.549 
SeO3d Se=O 1.688 1.312 1.305   SrO Sr=O 1.936 1.634 1.038   ZrO2 Zr=O 1.857 1.210 0.975   CdO Cd=O 1.909 0.986 0.842   SnO2 Sn=O 1.813 1.283 1.227   BaO Ba=O 1.996 2.187 1.456   HfO2 Hf=O 1.866 1.167 0.935   HgO Hg=O 1.913 1.172 0.805   PbO2 Pb=O 1.887 1.145 1.509   † Exponential with parameters taken from Brown and Altermatt (1985). ‡ Exponential with parameters taken from Adams (2001). * Power-law with parameters for individual bond types taken from Brown and Shannon (1973). # Power-law with “universal” parameters taken from Brown and Shannon (1973). a Bond-valence parameters for B3+ were used. b, c, d Experimental structures taken from Almenningen et al. (1963), Glidewell et al. (1970), and Brassington et al. (1978), respectively.  Otherwise, experimental structures were taken from the NIST Computational Chemistry Comparison and Benchmark Database (http://cccbdb.nist.gov). 
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Table 5.  Crystal structures chosen for model fits of four bond types.  For each bond type, two crystal structures were chosen 704 that had two different cation coordination numbers and very symmetrical cation coordination polyhedra (variations in bond 705 lengths no more than a few hundredths of an Å).  Thus, an average bond length could be accurately associated with the average 706 (assumed) bond valence (the cation valence divided by the coordination number).   707  708 
Bond Crystal RM-O (avg.) sij (assumed) Source Mg-O MgO (Periclase) 2.112 0.333 (Hazen, 1976) Mg-O K6MgO4 2.024 0.5 (Darriet et al., 1974) Be-O BeO (Bromellite) 1.651 0.5 (Hazen and Finger, 1986) Be-O RbNa5Be8O11 1.5603 0.667 (Schuldt and Hoppe, 1989)Si-O SiO2 (α-Quartz) 1.609 1.000 (Kihara, 1990) Si-O SiO2 (Stishovite) 1.758 0.667 (Smyth et al., 1995) Ge-O GeO2 (quartz-like) 1.739 1.000 (Yamanaka and Ogata, 1991)Ge-O GeO2 (Argutite) 1.888 0.667 (Bolzan et al., 1997)  709  710 

 711 
Table 6. Summary of BV-distance model fits for the oxides in figure 4: three-parameter geometric hybrid (Eqn. 5), and four-712 parameter arithmetic hybrid (Eqn. 8) forms.  The sum of squared error is also reported for both models. 713 

 Hybrid Geometric Hybrid Arithmetic Residual 

Atom 1 Atom 2 w B R0 w Be Bp R0 Hyb-G3 Hyb-A4 

Mg O 0.0000 0.1122 1.8428 0.0029 0.0029 0.1790 1.7659 0.3912 0.0023 

Be O 0.0000 0.1355 1.4504 0.0018 0.0129 0.2388 1.4086 0.0954 0.0005 

Si O 0.0000 0.1184 1.6344 0.0002 0.0140 0.2103 1.6196 0.0383 0.0028 

Ge O 0.0000 0.1273 1.7698 0.0001 0.0144 0.2038 1.7554 0.0315 0.0095  714  715 



 37

 716 



 38

 717 
Figure 1. Electron density profile for the Li-F scan illustrated with two types of plot: (a) linear-linear plot, and (b) log-linear. 718 Best-fit lines for the exponential (Eqn. 1) and power-law (Eqn. 2) forms of the bond-valence equation are also shown.  The 719 linear-linear plot is useful for looking at the difference in fit between the functional forms for very short bonds (e.g., that one 720 might find in transition states,) while the log-linear plot is useful for comparing the relative quality of the fit across the 721 sampled range. 722  723 
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733 

 734 
 735 
Figure 3.  The difference (∆sij) between calculated X-O bond valences and the inferred bond valences (~1 v.u. or ~2 v.u.) for 736 the molecules listed in Table 4, plotted vs. the Pauling fraction ionic character of the bonds (Ib), calculated as ܫ௕ ൌ 1 െ737 ݁ି଴.ଶହሺఞಲିఞಳሻమ (Pauling, 1960), where χA and χB are the Pauling electronegativity values of the two atoms.  Bond valence values 738 were calculated using Eqn. 1 (the exponential form) and R0 and B parameters obtained from either (a) Brown and Altermatt 739 (1985), for which B is always set to 0.37 Å, or (b) the SoftBV parameters of Adams (2001), which have various B values.  Bond 740 valences were also calculated using two power-law forms and associated parameters proposed by Brown and Shannon 741 (1973), including (c) a form meant for individual X-O pairs and (d) another “universal” model, where the parameters are the 742 same for all X-O bonds for which X has the same number of core electrons. 743 
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746 

 747 
 748 
 749 
 750 
Figure 4.  Bond valence (sij) vs. bond length (R) for four bond types involving Oxygen with varying fraction ionic character (Ib):  751 (a) Mg-O (Ib = 0.68), (b) Be-O (Ib = 0.58), (c) Si-O (Ib = 0.45), and (d) Ge-O (Ib = 0.40).  For each bond type, we show points 752 representing the 1 and 2 v.u. bond lengths from molecules in Table 4 (circles), the Lewis acid strength (LA,X) value with the 753 corresponding bond length calculated using Eqn. 1 and Brown and Altermatt’s (1985) parameters (crosses), and two bond 754 lengths from crystals corresponding to easily estimated bond valances from different cation coordination numbers 755 (diamonds).  The grey dashed and dotted lines denote the exponential and power-law bond valence-length curves (Brown and 756 
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Shannon, 1973; Brown and Altermatt, 1985), respectively.  The grey solid line represents a fit of Eqn. 5 to the molecule and 757 crystal points, whereas the thicker, black solid line represents a fit of Eqn. 8.   758   759 
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 761 
Schema 1. While the molecule on the left (H2CO) will have the same bond valence for both CO and CH bonds according to the 762 BVM, AIM analysis will show different ρb values for the bonds, even though all pair distances are unchanged.  763  764   765 
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Supplemental Materials 766  767  768 
Table S1. Spin States used for calculations. Wherever possible spin states were taken from NIST’s Computational Chemistry 
Comparison and Benchmark DataBase. The remaining few were decided from molecular orbital considerations.  
Atom1 Atom2 Spin 
H H 1 
H Li 1 
H Be 2 
H B 1 
H C 2 
H N 3 
H O 2 
H F 1 
Li Li 1 
Li Be 2 
Li B 1 
Li C 2 
Li N 3 
Li O 2 
Li F 1 
Be Be 1 
Be B 2 
Be C 3 
Be N 4 
Be O 1 
Be F 2 
B B 3 
B C 2 
B N 3 
B O 2 
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B F 1 
C C 1 
C N 2 
C O 1 
C F 2 
N N 0 
N O 2 
N F 3 
O O 3 
O F 2 
F F 1 
Al H 1 
Al  O 2 
Si H 2 
Si O 1 
Al Si 2 
Si Si 3 
Al Al 3  769 




