Chlorine - hydroxyl diffusion in pargasitic amphibole

Wen Su1, Don.R. Baker2, Luping Pu3, Liping Bai2, Xin Liu4, Cedrick O'Shaughnessy2

1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2Earth and Planetary Sciences, GEOTOP-UQAM-McGill Research Centre, McGill University, 3450 rue University, Montreal, QC, Canada H3A OE8;
3Guilin University of Technology, Guilin 541004, China

ABSTRACT

Chlorine - hydroxyl diffusion was measured in pargasitic amphibole from Yunnan province, China at 1.0 GPa, 625 to 800 °C. Experiments were performed by immersing unoriented crystals in water-bearing NaCl in a piston cylinder for durations from 100 to 454 hours. Diffusion profiles were on the order of > 10's of micrometers in length, and electron microprobe analysis allow us to extract semi-quantitative diffusivities from these experiments. The preliminary diffusion coefficients for chlorine in amphibole in the water-bearing experiments are $2.6 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$ at 625 °C, $4.9 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$ at 650 °C, $7.6 \times 10^{-16} \text{ m}^2 \text{ s}^{-1}$ at 700 °C, $1.8 \times 10^{-15} \text{ m}^2 \text{ s}^{-1}$ at 750 °C, and $2.8 \times 10^{-15} \text{ m}^2 \text{ s}^{-1}$ at 800 °C. For temperatures between 625 and 800 °C, the Arrhenius relation for chlorine - hydroxyl diffusion has an activation energy of $106.6 \pm 7.8 \text{ kJ/K mol}$ and a D_0 of $4.53 (+7.3, -2.8) \times 10^{10} \text{ m}^2 \text{ s}^{-1}$. Our measurements do not show evidence of anisotropy in the diffusion of Cl-OH into amphibole, but future experiments need to better investigate this possibility.

Keywords: diffusion, chlorine - hydroxyl, pargasitic amphibole, crystal-chemistry, high temperature and pressure
INTRODUCTION

Understanding the exchange of volatiles in geochemical reservoirs and recycling in Earth’s interior are one of the central issues of terrestrial geodynamics (e.g. Magenheim et al., 1995; Philippot et al., 1998; Su et al., 2004; Wallace, 2005; Wood and Normand, 2008). The major volatiles in Earth's crust and upper mantle are H₂O, CO₂, S, F, and Cl (e.g. Symonds et al., 1994; Philippot et al., 1998; Wallace, 2001; Berlo et al., 2004; Self et al., 2008; Koleszar et al., 2007; Aiuppa et al., 2009; Rowe et al., 2009), but their partitioning between various phases and their mechanisms of transport in the crust and upper mantle still remain somewhat enigmatic despite decades of research. In particular, the behaviour of chlorine and fluorine at high-grade metamorphic conditions is little understood (Xiao et al., 2005; Liu et al., 2009).

Knowledge of F-Cl-OH partitioning between various minerals as a function of temperature and pressure will help to constrain the Cl and F budgets of the Earth (e.g. Zhu et al., 1991; Siahcheshm et al., 2012; Rasmussen and Mortensen, 2013).

Amphiboles are important reservoirs for volatile components such as H₂O, Cl and F (e.g. Kullerud, 1996; McCormick et al., 1999) and are stable in a wide range of pressure-temperature conditions (e.g. Wones and Gilbert, 1982; Maresch et al., 2007; Ruiz Cruz, 2010). They can be used as indicators of temperature, pressure, volatile content, and oxidation state of their host rocks (e.g. Popp et al., 1995; Hawthorne et al., 1998; King et al., 1999; 2000; Evans, 2007; Oberti et al., 2007). They also provide information on the petrogenesis and thermo – mechanical evolution of rocks through
their structural phase transitions and crystal – chemical behavior (Boffà Ballaran et al.,
2004; Iezzi et al., 2006; Oberti et al., 2007; Tiepolo et al., 2007; Welch et al., 2007; Su et al., 2009).

Cl concentrations in amphibole can be used to study the salinity of the fluid with
which they were last in equilibrium (e.g. Vanko, 1986; Stakes et al., 1991; Markl et al.,
1998a; 1998b; Philippot et al., 1998). If brine is involved in metamorphism this fluid
can not only affect the stability of the minerals in the rocks, but its presence should be
also recorded in the compositions of minerals (Philippot et al., 1995; Glassley, 2001;
Svensen et al., 2001; Liu et al., 2009). Therefore, the study of Cl concentrations in
amphiboles is particularly helpful in interpretation of the chlorinity of the fluid, and
the variation of Cl concentrations in amphibole possibly provides information on the
compositional evolution of fluids during tectonic evolution (e.g., Thompson and
England, 1984; Sharp and Barnes, 2004; Rowe et al., 2009; Engvik et al., 2011).

The rate of attainment of equilibrium concentrations of Cl in amphibole is most
probably controlled by Cl diffusion in many cases. However investigations of Cl
diffusion in amphibole are lacking (Cherniak and Dimanov, 2010; Farver, 2010),
although the diffusion kinetics of the hydrogen, oxygen, F-OH, Sr and Ar were
measured in amphiboles by Graham et al. (1984), Ingrin and Blanchard (2000, 2006),
Farver and Giletti (1985), Brabander et al. (1995), Brabander and Giletti (1995),
Harrison (1981) and Baldwin et al. (1990), respectively. In order to improve
knowledge of Cl diffusion in amphibole, reconnaissance experiments were performed
at 1.0 GPa and temperatures between 625 and 800 °C in the presence of a binary
(H₂O–NaCl) brine to measure the diffusion coefficients of chlorine in pargasitic amphiboles. Although diffusion itself cannot explain large scale transport properties, this process represents a fundamental mechanism in the modeling of chlorine behavior in amphiboles.

EXPERIMENTAL AND ANALYTICAL TECHNIQUES

Starting material

Sample JL used in this study was collected from marble of Yunnan province, China. The rock is composed of very coarse homogeneous crystals of amphibole (Fig. 1a, b), clinopyroxene, orthopyroxene, epidote, plagioclase (Fig. 1b-d, Table 1). The fine grained matrix mainly consists of calcite, dolomite (Fig. 1a, b, c) and minor quartz, biotite, titanite, apatite, zircon, magnetite, ilmenite and chromite (Fig. 1c, d, Table 1). The amphibole is emerald-green, translucent to transparent, with a vitreous luster. The individual crystals are large (from 12 to 15 × 8 to 10 mm, and sometimes as large as 36 × 14 mm) and well-formed (Fig. 1a). The amphiboles are optically pure and free of major fractures and inclusions. Table 1 lists the chemical composition of the starting amphibole. Electron microprobe analysis and back-scattered electron images show that the amphibole crystal is homogeneous in composition from core to rim (Table 1, Fig. 1e). Crystal chemical formulae were calculated on the basis of 23 oxygens with all iron considered to be ferrous. According to the classification of Leake et al. (1997), sample JL is a pargasite. These pargasitic amphiboles are characterized by higher MgO (20.4 wt %), CaO (13.5 wt %) contents, and the lower
FeO_T contents (0.15 wt %) (Table 1), than parasites from other geological environments (e.g., Liu et al., 2009). They contain a high fluorine content with 0.34 - 0.38 wt% (Table 1), which is similar to that of Mg-rich amphiboles in high-temperature marbles (e.g., Petersen et al., 1982; Valley et al., 1982). They also contain low chlorine concentrations, ranging from 0.036 to 0.041 wt% (average 0.039 wt %).

The rock was crushed with a hammer, and the amphibole crystals hand-picked. The crystals were cleaved into sub-cubic pieces by hand with an average grain size of approximately 1-2 mm on edge for loading into capsules. Other portions of the amphiboles were ground under alcohol in an agate mortar and pestle to powder of less than 50 micrometers in size. This powder was mixed with reagent-grade NaCl in a weight ratio of 2:1 (NaCl to amphibole).

Experimental procedure

Experiments on chlorine - hydroxyl diffusion of pargasitic amphibole were performed at a piston cylinder at Earth and Planetary Sciences in McGill University. The capsules used in the experiment are platinum tubes with a 3.0 mm outer diameter that cut to 6.0-7.0 mm in length, and cleaned in concentrated hydrofluoric acid, repeatedly washed with distilled water, cleaned in the ultrasonic bath, annealed to orange heat, and the bottom crimped and welded. For each diffusion experiment a Pt capsule was approximately half-filled with the amphibole-NaCl mixture then a randomly oriented piece of amphibole crystal was loaded followed by more of the
amphibole-NaCl mixture. Water (0.23-3.81 µg, Table 2) was also introduced into the
capsule prior to the addition of the amphibole-NaCl mixture. The Pt capsule was
welded closed without volatile loss, and put into the oven a 120 °C for 24 hours, and
weighed again to check for leakage. The Pt capsule was then placed inside a graphite
cylinder with a 3.0 mm inner diameter and covered with graphite lid. Two Pt capsules
(one with water, another without water) were inserted into a graphite cylinder, placed
into crushable alumina and surrounded by pyrophyllite powder to ensure that the
water was not lost during experiments. The capsules were located in the center of a
19.1 mm crushable alumina – graphite – Pyrex – NaCl assembly (Baker, 2004). The
assemblies were pressurized and heated to 1.0 GPa, and temperatures between 625
and 800 °C in a piston-cylinder apparatus. The run procedure consisted of
simultaneously pressurizing and heating the assembly. A constant heating rate of
100 °C /min was used, which resulted in less than a 5 °C overshoot of the run
temperature. Temperatures were measured with type C thermocouples. Pressures were
controlled within ± 0.08 GPa and temperatures within ± 2 °C of desired conditions.
All experimental durations (between 100 and 454 hours, Table 2) are based upon the
time at which the experiment reached the desired run temperature. Samples were
quenched from run temperature within 30 s by turning off the power of the
piston-cylinder. After quenching, the capsules were mounted in epoxy, sectioned
longitudinally and polished for electron microprobe analysis of the Cl concentrations
to acquire the diffusion profiles.
Electron microprobe analysis (EMPA) was first performed using the JEOL 8900 Electron Microprobe at McGill University. The accelerating voltage was 15 kV, with a beam current of 20 nA; the beam size was 1 μm in diameter. One of the main caveats associated with diffusion modeling is ensuring that the chemical profile used within the model is of sufficient spatial resolution so as to avoid complications linked with overlapping analyses and the smearing out of profiles that result in convolution effects (e.g., Ganguly et al. 1988; Costa and Morgan 2010). The effects of convolution become less severe as the diffusion profile lengthens (Ganguly et al. 1988). To minimize the convolution problem, the diffusion profiles were also measured by the JXA-8100 Electron Microprobe at the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The diffusion profile was analyzed using a step size of 3 micrometers by sweeping the electron beam across the interface of a diffusion couple of a fixed sample stage, with a beam size of 1 μm in diameter. The standards were diopside for Si, Ca and Mg, hematite for Fe, orthoclase for Al and K, albite for Na, chromite for Cr, rutile for Ti, spessartine for Mn, fluorite for F and vanadinite for Cl. The accelerating voltage was 15 kV, with a beam current of 40 nA. A counting time of 20 s on the peak was used for all the elements except F and Cl. 40 s and 80 s counting time on the peak was used for F (LDE1) and Cl (PETH) measurements, respectively. Backgrounds were measured for half the counting times used on the peaks. Additionally, X-ray distribution maps of the Cl, Fe, Mg concentrations in the amphiboles were performed using a
Camcea SX Five Electron Microprobe. The accelerating voltage was 15 kV, with a beam current of 200 nA and dwell of 100 ms; the step size for the maps was 1 μm and the map size was 1024 × 1024 pixels.

In order to further identify EMPA data accuracy, \(^{37}\text{Cl}/^{30}\text{Si}\) profile of the amphibole was conducted using a CAMECA Nano-SIMS 50L at the State Key Laboratory of Lithospheric Evolution, IGGCAS. An amphibole transverse and depth profile consists of monitoring the intensities of \(^{16}\text{O}, ^{35}\text{Cl}, ^{37}\text{Cl}, ^{30}\text{Si}, \text{and} ^{19}\text{F}\) signals as the primary ion beam sputters into the amphibole using the multi-collector mode. The instrument was operated with Cs\(^+\) primary ion beam, which was accelerated at 16 keV, with an intensity of ~70 pA and a beam size of ~0.5 μm in diameter at the sample surface. The beam was scanning within an area of 1.5 μm. The mass resolution was set to 6000 (CAMECA definition) to obtain a flat top at the mass peak. There was an acquisition time of ~150 s for each analyses point, a data was obtained by 30 cycles for 15 s, and 10 sections of data in the same position.

RESULTS

Calculation of chlorine diffusion coefficients from concentration profiles

The back-scattered electron images show no evidence that the experimental amphibole crystals experience dissolution or regrowth (Fig. 2). The analytical traverses were used to calculate chlorine diffusivity. Chlorine concentrations were plotted vs. distance (Fig. 3, 4), and the diffusion coefficients were calculated for each experiment (Table 2). Diffusivities were determined from chlorine profiles using
Equation 3.13 in Crank (1975), which assumes a constant diffusivity and that the
diffusion from the surface of a single crystal has not reached the center of the sample
(hence a semi-infinite medium):

\[C(x,t) = (C_0 - C_I) \times \text{erf}(x/(2(Dt)^{0.5}) + C_I \]

(1)

where \(C(x, t) \) is the chlorine concentration along the diffusion profile plotted in a
concentration vs. distance diagram; \(x \) is the distance along the profile (in meters); and \(t \) is the experimental duration (in seconds); \(C_0 \) is the original concentration in the
sample; \(C_I \) is the surface concentration of the chlorine; \(\text{erf} \) is the error function; \(D \) is
the diffusion coefficient or diffusivity (m\(^2\)s\(^{-1}\)). The error of each diffusivity
measurement is estimated based upon multiple microprobe traverses on the same
experiment. The run products of almost all experiments were analyzed by performing
multiple microprobe traverses: 8 traverses for No. 1 (4 perpendicular to the long axis
and others parallel to the long axis, respectively); 8 traverses each for No. 3, No. 5, (4
perpendicular to the long axis and others parallel to the long axis, respectively); 6
traverses for No. 7 (all perpendicular to the long axis); 6 traverses for No. 10 (3
perpendicular to the long axis and others parallel to the long axis, respectively). The
step size for all of the traverses is 3 micrometers. In order to avoid the convolution
effect of the surrounding NaCl, each calculation of the Cl diffusion coefficient did not
use the first two points of the profile. In addition, one traverse profile of the run No. 3
of the experiment was measured by Nano-SIMS. This profile has 22 points (Fig. 4b).
The beam is rastered upon the surface of the sample to produce a homogeneously
sputtered flat-bottomed crater of approx 3 x 2\(\mu \)m area (Fig. 4a). The sputtering rate
for each analysis point in the amphibole was determined by monitoring crater depth as
a function of time. Sputtering was allowed to proceed for about 150 seconds so as to
define the complete diffusion profile and produce the $^{37}\text{Cl}/^{30}\text{Si}$ ratio to a depth of
0.66μm with 10 sections of data in the same position. The signal from each mass was
monitored for 15 seconds to provide a statistically significant count rate by measuring
30 cycles. A computer program written in Scilab was used to compute diffusivities
from each diffusion profile (Figs. 3, 4).

Diffusivity calculations for the experiments

All experiments produced extremely short diffusion profiles due to the slow
diffusivity of Cl in amphibole at metamorphic conditions. Thus, we consider the
results of this study to be preliminary, but nevertheless important because of the
paucity of Cl diffusion measurements in amphiboles and the importance of Cl in
amphibole.

The diffusivity was $2.6 \times 10^{-16} \text{ m}^2\text{ s}^{-1}$ (Fig. 3a, Table 2) in the experiment at
625 °C and 454 h. At 650 °C, 100 h, the diffusion coefficient for Cl in amphibole in
the experiment was $4.9 \times 10^{-16} \text{ m}^2\text{ s}^{-1}$ (Fig. 3b, Table 2). The 700 °C, 200 h experiment
yielded a diffusion coefficient of $7.6 \times 10^{-16} \text{ m}^2\text{ s}^{-1}$ (Fig. 3c, Table 2). At 750 °C and
200 h, the diffusion coefficients of experiment are $1.8 \times 10^{-15} \text{ m}^2\text{ s}^{-1}$ by EMP analysis
and $1.9 \times 10^{-15} \text{ m}^2\text{ s}^{-1}$ by SIMS analysis (Figs. 3d and 4, Table 2). The diffusivity of Cl
in the amphibole at 800 °C measured in the 100 h experiment is $2.8 \times 10^{-15} \text{ m}^2\text{ s}^{-1}$ (Fig.
3e, Table 2).
Although we did not orient our crystals, we used cleaved samples and performed diffusion profiles along approximately perpendicular traverses of the polished sections to search for anisotropic diffusion. Our measurements do not demonstrate any evidence of anisotropy in the diffusion on Cl into amphibole; however anisotropic effects might be smaller than our estimated uncertainty in the diffusion measurements of ± 50 relative percent.

DISCUSSION

Effect of temperature

The temperature dependency of chlorine diffusion was characterized via an Arrhenius equation (Fig. 5) at constant pressure:

\[D = D_0 \exp \left(\frac{-E_a}{RT} \right) \]

where \(D \) is the diffusion coefficient (m\(^2\) s\(^{-1}\)), \(D_0 \) is the preexponential factor, \(E_a \) is the activation energy (kJ mol\(^{-1}\)), \(R \) is the gas constant (J K\(^{-1}\) mol\(^{-1}\)) and \(T \) the temperature (degrees Kelvin).

The Arrhenius plot describing chlorine diffusion is displayed in Figure 5. Fitting the water-bearing experiments between 625 °C and 800 °C yields an activation energy for Cl diffusion of 106.6 ± 7.8 kJ/K mol and a \(D_0 \) of 4.53 (+7.3/-2.8) \times 10\(^{-10}\) m\(^2\)s\(^{-1}\) with a correlation coefficient of 0.9921 (Fig. 5). These data are for P = 1GPa.

Comparisons with the diffusion of other elements in amphibole

Very few studies have been performed on the diffusion of cations and anions in
amphiboles, although the importance of understanding metasomatic processes in such common minerals is great. Graham et al. (1984) reported the hydrogen diffusion kinetics in amphiboles for a range of compositions including hornblende, tremolite, and actinolite at 350 - 800 °C, 0.2 - 0.8 GPa confining pressure. The value of diffusion coefficients were obtained from bulk exchange with water of different hydrogen isotope composition, and yielded Arrhenius relations with activation energies of 79-84 kJ/mol for hornblende, 71.5 kJ/mol for tremolite, and 99 kJ/mol for actinolite. Ingrin and Blanchard (2000) measured the hydrogen diffusion coefficient in natural kaersutite crystals at 600 - 900 °C and 0.01 GPa pressure and found an activation energy of 104 ± 12 kJ/mol. In addition, Ingrin and Blanchard’s (2000, 2006) data clearly demonstrate that hydrogen diffusion in amphibole is anisotropic: transport along the c-axis faster than along the b-axis. The only experimental data on oxygen diffusion in amphiboles was reported by Farver and Giletti (1985); they measured oxygen diffusivity in a range of amphibole compositions including hornblende, tremolite, and fluor-richterite at 650 - 800 °C at 0.1 GPa pressure, and determined activation energies of 172 ± 25 kJ/mol for hornblende, 163 ± 21 kJ/mol for tremolite, and 238 ± 8 kJ/mol for fluor-richterite. Brabander et al (1995) measured F-OH interdiffusion in tremolite over the temperature range 500 - 800 °C and 0.2 GPa pressure and obtained an activation energy of 41 ± 5 kJ/mol and a pre-exponential factor of 3.4 × 10^{-17} m^2 s^{-1}. Measurements of Ar diffusion in amphibole were reported by Harrison (1981) and Baldwin et al. (1990).

Figure 6 summarizes all published diffusion data for amphibole and the
comparison to our results. Our measured Cl diffusivities lie between those obtained for hydrogen isotopic exchange (Graham et al., 1984), F-OH interdiffusion (Brabander et al. 1995) and oxygen isotopic exchange (Farver and Giletti, 1985). The measured activation energy in this study of Cl is similar to that of H diffusion, but significantly higher than F-OH diffusion (Fig. 6).

It is well known that both ionic charge and radius affect diffusion in crystals (Van Orman et al., 2001; Tirone et al., 2005; Carlson et al., 2012). When ions have the same charge and reside in the similar crystalline sites it is expected that the smaller ion would display a higher diffusivity than the larger ion (Zhang et al., 2006, 2010). Oberti et al. (1993) found that F and OH, with radii of 0.130 nm and 0.135 nm, respectively (Hawthorne and Oberti, 2007), are found in the O(3) amphibole site, but that larger Cl, with a 0.181 nm radius (Shannon, 1976), is found in a slightly displaced position, the O(3)' site. Because of the same charge and the occupancy of similar sites in amphibole, Cl is expected to diffuse more slowly than F, opposite to the comparison of Brabander et al.'s results (1995) and this study.

The anomalous behavior of Cl in comparison to F is reflected in its high pre-exponential factor in the Arrhenius equation. The pre-exponential factor is classically associated with the square of the distance between two stable sites multiplied by a vibrational frequency of the atom (see Eqn. 158 in Glasstone et al., 1941). We speculate that the small differences in the location of the sites for Cl and F in the amphibole structure are significant enough to affect the pre-exponential factor through modification of the distance between two stable sites and the vibrational...
frequency of the Cl. However, we have no further evidence to support this speculation and perhaps the differences in the experimental procedures (e.g., pressure, chemical potential gradients) and amphibole compositions between our study and that of Brabander et al. (1995) might play a significant role in explaining the surprising measurements of F and Cl diffusion in amphibole.

Effect of Cl on the amphibole chemistry and structure

The $M(1)$ and $M(3)$ sites of amphibole are coordinated by the $O(3)$ or $O(3)'$ site, which contains (OH), F$^-$ and Cl$^-$ or O$^{2-}$. These are the only anion sites in the amphibole structure (e.g., Leake, 1968; Leake et al., 1997; Leake et al., 2003; Hawthorne and Oberti, 2007). The bond-valence of the $<M(3)-O(3)>$ varies in different amphibole structures, such that the $<M(3)-O(3)>$ distance is 0.382 Å, 0.367 Å, 0.361 Å, 0.300 Å for pargasite, cummingtonite, tremolite, and fluororichterite, respectively (Hawthorne and Oberti, 2007). Comodi et al. (1991) found that the sequence of isothermal polyhedral bulk moduli are $KM(3) > KM(1) > KM(4) > KM(2)$ in their study of tremolite, pargasite and glaucophane to 4.0 GPa. It is obvious that $M(3)$ and $M(1)$ are more controlled by pressure, as Zhu et al. (1991) suggested the Cl$^-$ contents of fluids depend strongly on pressure when temperature is below 500°C. Variation of the $M(1)$ and $M(3)$ site volumes can lead to variations in $<M(1)-O(3)>$ and $<M(3)-O(3)>$ distances and variable occupancy of OH, F, Cl and O in the different amphiboles. Cl is negatively correlated with F in the amphiboles (Fig. 7a): Cl concentrations increase with decreasing F concentrations. This behavior implies that
the incorporation of Cl in amphibole may result in replacement of F at O(3) in the amphibole structure. Cl and F are coupled in the amphiboles studied (Figs. 2, 7b-e): Cl concentrations increase with increasing FeO and decreasing MgO (Figs. 7b and c), whereas F concentrations demonstrate the opposite behavior (Figs. 7d, e). However, how the diffusion coefficients of Fe and Mg in the amphibole compare to Cl is currently not clear. Therefore, further research on correlations between (Cl, F, OH) occupancy on the hydroxyl site and (Mg, Fe) occupancy on the octahedral site during Cl replacement with F or OH at high temperature and pressure are needed.

IMPLICATIONS

Diffusion of chlorine in amphibole is an important area of study, with applications in improving understanding of volatile transport, so the first chlorine diffusion results of the pargasitic amphibole have value. Although Cl diffusion itself cannot explain large- or micro-scale transport properties, this process represents a fundamental mechanism controlling Cl behavior during crystallization, assimilation and metamorphism. Compositionally zoned minerals, combined with kinetic modeling of chemical gradients, can be used to provide a chronological tool that can access a large range of time scales and can be applied to rocks of any age (e.g., Zellmer et al., 1999; Coombs et al., 2000; Klügel, 2001; Pan and Batiza, 2002; Morgan et al., 2004; Costa and Chakraborty, 2008), if the processes responsible for zoning and the relevant diffusivities are available. Broader implications and applications of our study are that modeling the Cl chemical gradients in amphiboles
and combining these results with modeling of other cations can provide a unique
window into the time scales of metamorphic/metasomatic process, which is
impossible to achieve by any isotopic method, because often the durations of events,
particularly retrograde metamorphic events, may be too short to measure isotopically.

ACKNOWLEDGMENTS

This study was funded by the NNSFC (No. 41172066 and 41021063), the State
Key Laboratory of Superhard Materials, and a Canadian Discovery Grant. We greatly
appreciate Mr. Tianwen Lan for very generously donated the amphibole-bearing
marble samples, Prof. Jingbo Liu for the amphibole profile of the eclogite from the
Yangkou, China, Dr. Lang Shi, Dr. Qian Mao and Jianchao Zhang for microprobe and
Nano-SIMS measurements. We also thank Dr. Youxue Zhang for critical and
constructive comments. The paper benefited considerably from the critical reviews of
Drs F. Costa, D.J. Cherniak and H. Sato.

REFERENCES CITED

Chemical Geology, 263, 1-18.

measurements at 1 atm and 10 kbar, application of transition state theory, and
diffusion in zoned magma chambers. Contributions to Mineralogy and Petrology,
104, 407-423.

American Mineralogist, 97, 1598-1618.

Cherniak, D.J. (2010) Cation diffusion in feldspars. Reviews in Mineralogy and Geochemistry, 72, 691-734.

Coyote Peak, California. Canadian Mineralogist, 36, 1253-1265.

implication for element recycling during subduction. Contributions to
Mineralogy and Petrology, 121, 29-44.

amphiboles: experimental verification. American Mineralogist, 80, 1347-1350.

evolution of (F:Cl:OH) fluid composition in barren and tungsten
skarn-associated plutons using apatite and biotite compositions: Case studies
from the northern Canadian Cordillera. Ore Geology Reviews, 50, 118-142.

basaltic melt inclusions: Evidence for subduction modification of the
lithospheric mantle, Geology, 37, 439-442.

zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western

Ruiz Cruz, M. D. (2010) Zoned Ca-amphibole as a new marker of the Alpine
metamorphic evolution of phyllites from the Jubrique unit, Alpujárride Complex,
Betic Cordillera, Spain, Mineralogical Magazine, 74, 773-796.

Sato, H., Yamaguchi, Y., and Makino, K. (1997) Cl incorporation into successively
zoned amphiboles from the Ramnes cauldron, Norway. American Mineralogist,
82, 316-324.

Experimental Petrology of the 1991–1995 Unzen Dacite, Japan. Part II: Cl/OH

Sisson, V. B. (1987) Halogen chemistry as indicator of metamorphic fluid interaction with the Ponder Pluton, Coast Plutonic Complex, British Columbia, Canada.

Sotnikov, V. I., Berzina, A. N., and Berzina, A. P. (2006) The role of metasomatism of enclosing rocks in the balance of chlorine and fluorine during the ore formation

Webster, J.D., and Holloway, R. (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granite magmas. In Ore-bearing Granite Systems; Petrogenesis and Mineralizing Processes (eds. H. J. Stein and J. C. Hannah); GSA Special Paper 246. pp. 21-34.

FIGURE LEGENDS

Figure 1. Photographs of the marble sample from the Yunnan province, China. (a) The marble contains very coarse homogeneous crystals of amphibole, clinopyroxene, orthopyroxene, and epidote. The fine-grained matrix mainly consists of calcite + dolomite. Hand specimen. (b-d) Micro-photographs reveal that the mineral assemblage consists of clinopyroxene, orthopyroxene, epidote (b), calcite, dolomite (c), and plagioclase, biotite, titanite and ilmenite (d). (e) Secondary electron image of starting amphibole. It shows no compositional zonation. The spots in the figure are analysis spots of the analytical traverse. Amphibole: Amp; clinopyroxene: Cpx; orthopyroxene Op; epidote: Epi; calcite:Cc; dolomite: Dol; plagioclase: Pl; biotite: Bt; titanite: Ti; and ilmenite: Ilm.

Figure 2. Images of backscattered electron imaging and X-ray mapping of Cl, Fe, Mg of amphibole of water-bearing experimental runs performed at 1.0 GPa, 750 °C and 200 hours.

Figure 3. Measured chlorine diffusion profiles in water-bearing experiments. a: Run number JL10, T = 625 °C, P = 1.0 GPa, t = 454 h; b: Run number JL1, T = 650 °C, P = 1.0 GPa, t = 100 h; c: Run number JL5 T = 700 °C, P = 1.0 GPa, t = 200 h; d: Run number JL3, T = 750 °C, P = 1.0 GPa, t = 200 h; e: Run number JL7, T = 800 °C, P = 1.0 GPa, t = 100 h. The smooth curve is the best fit of the EMPA data with a diffusion model.

Figure 4. Traverse of 37Cl/30Si in amphibole of experiment number JL3 (T = 750 °C, P = 1.0 GPa, t = 200 h). The smooth curve is the best fit of the SIMS data.
with a diffusion model. a: micro-image of sputtered crater within the sample by FIB;
b: Traverse profile of 37Cl/30Si.

Figure 5. Arrhenius plot of Chlorine (Cl) diffusion in amphibole of runs performed at 1.0 GPa, from 625 °C to 800 °C.

Figure 7. Plots of Cl, F and other elements in amphibole from water-bearing experimental runs performed at 1.0 GPa, from 625 °C to 800 °C, respectively. a: Cl vs F; b: Cl vs FeO; c: Cl vs MgO; d: F vs FeO; e: F vs MgO.
37Cl / 30Si

Distance (micrometers)

JL3 (T=750 °C, P=1.0 GPa, t=200 h)

H1 = 650.0 nm

JL-3

b

\[
\frac{^{37}\text{Cl}}{^{30}\text{Si}}
\]

Distance (micrometers)
The image contains a graph with a logarithmic y-axis labeled "LogD (m^2/s)" and a linear x-axis labeled "10000/T (K)". The graph shows various lines labeled with different elements:
- Cl
- H(2)
- H(1)
- H(3)
- F-OH
- O(2)
- Ar
- O(1)
- O(3)
- Sr

The graph spans a temperature range of 600°C to 900°C on the x-axis and a range of -13 to -22 on the y-axis. The graph compares the diffusion rates of different elements at various temperatures.
Table 1. Electron microprobe analyses of starting amphiboles and its paragenous minerals from the marble (sample No. JL) (wt %)

<table>
<thead>
<tr>
<th>Mineral/Spots</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Cr₂O₃</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>MgO</th>
<th>MnO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Cl</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibole</td>
<td>44.30</td>
<td>0.54</td>
<td>0.09</td>
<td>14.18</td>
<td>0.14</td>
<td>20.52</td>
<td>0.00</td>
<td>13.38</td>
<td>2.38</td>
<td>0.20</td>
<td>0.031</td>
<td>0.34</td>
<td>96.11</td>
</tr>
<tr>
<td>Line1</td>
<td>44.68</td>
<td>0.53</td>
<td>0.08</td>
<td>14.35</td>
<td>0.13</td>
<td>20.52</td>
<td>0.00</td>
<td>13.31</td>
<td>2.43</td>
<td>0.21</td>
<td>0.032</td>
<td>0.33</td>
<td>96.58</td>
</tr>
<tr>
<td>Line2</td>
<td>44.30</td>
<td>0.53</td>
<td>0.07</td>
<td>14.54</td>
<td>0.14</td>
<td>20.48</td>
<td>0.00</td>
<td>13.23</td>
<td>2.41</td>
<td>0.22</td>
<td>0.033</td>
<td>0.35</td>
<td>96.29</td>
</tr>
<tr>
<td>Line3</td>
<td>44.17</td>
<td>0.58</td>
<td>0.05</td>
<td>14.45</td>
<td>0.17</td>
<td>20.36</td>
<td>0.01</td>
<td>13.33</td>
<td>2.40</td>
<td>0.21</td>
<td>0.030</td>
<td>0.35</td>
<td>96.11</td>
</tr>
<tr>
<td>Line4</td>
<td>44.40</td>
<td>0.56</td>
<td>0.08</td>
<td>14.39</td>
<td>0.15</td>
<td>20.50</td>
<td>0.00</td>
<td>13.44</td>
<td>2.43</td>
<td>0.21</td>
<td>0.033</td>
<td>0.36</td>
<td>96.55</td>
</tr>
<tr>
<td>Line5</td>
<td>44.23</td>
<td>0.60</td>
<td>0.05</td>
<td>14.53</td>
<td>0.13</td>
<td>20.45</td>
<td>0.00</td>
<td>13.39</td>
<td>2.39</td>
<td>0.23</td>
<td>0.033</td>
<td>0.34</td>
<td>96.37</td>
</tr>
<tr>
<td>Line6</td>
<td>44.14</td>
<td>0.55</td>
<td>0.11</td>
<td>14.46</td>
<td>0.11</td>
<td>20.67</td>
<td>0.01</td>
<td>13.27</td>
<td>2.38</td>
<td>0.22</td>
<td>0.031</td>
<td>0.33</td>
<td>96.27</td>
</tr>
<tr>
<td>Line7</td>
<td>44.06</td>
<td>0.57</td>
<td>0.05</td>
<td>14.32</td>
<td>0.16</td>
<td>20.55</td>
<td>0.00</td>
<td>13.32</td>
<td>2.42</td>
<td>0.22</td>
<td>0.031</td>
<td>0.37</td>
<td>96.07</td>
</tr>
<tr>
<td>Line8</td>
<td>44.25</td>
<td>0.57</td>
<td>0.08</td>
<td>14.33</td>
<td>0.10</td>
<td>20.62</td>
<td>0.00</td>
<td>13.37</td>
<td>2.41</td>
<td>0.23</td>
<td>0.033</td>
<td>0.37</td>
<td>96.36</td>
</tr>
<tr>
<td>Line9</td>
<td>44.36</td>
<td>0.58</td>
<td>0.03</td>
<td>14.22</td>
<td>0.13</td>
<td>20.59</td>
<td>0.00</td>
<td>13.31</td>
<td>2.41</td>
<td>0.22</td>
<td>0.030</td>
<td>0.37</td>
<td>96.24</td>
</tr>
<tr>
<td>Line10</td>
<td>44.21</td>
<td>0.56</td>
<td>0.05</td>
<td>14.37</td>
<td>0.12</td>
<td>20.68</td>
<td>0.01</td>
<td>13.32</td>
<td>2.41</td>
<td>0.21</td>
<td>0.030</td>
<td>0.36</td>
<td>96.33</td>
</tr>
<tr>
<td>Line11</td>
<td>44.29</td>
<td>0.55</td>
<td>0.06</td>
<td>14.24</td>
<td>0.14</td>
<td>20.40</td>
<td>0.02</td>
<td>13.45</td>
<td>2.39</td>
<td>0.23</td>
<td>0.032</td>
<td>0.38</td>
<td>96.18</td>
</tr>
<tr>
<td>Line12</td>
<td>44.24</td>
<td>0.55</td>
<td>0.05</td>
<td>14.26</td>
<td>0.18</td>
<td>20.43</td>
<td>0.01</td>
<td>13.38</td>
<td>2.41</td>
<td>0.21</td>
<td>0.031</td>
<td>0.33</td>
<td>96.06</td>
</tr>
<tr>
<td>Line13</td>
<td>44.35</td>
<td>0.56</td>
<td>0.04</td>
<td>14.36</td>
<td>0.13</td>
<td>20.56</td>
<td>0.00</td>
<td>13.34</td>
<td>2.47</td>
<td>0.22</td>
<td>0.030</td>
<td>0.38</td>
<td>96.43</td>
</tr>
<tr>
<td>Line14</td>
<td>43.96</td>
<td>0.56</td>
<td>0.07</td>
<td>14.75</td>
<td>0.14</td>
<td>20.35</td>
<td>0.00</td>
<td>13.43</td>
<td>2.43</td>
<td>0.22</td>
<td>0.030</td>
<td>0.37</td>
<td>96.28</td>
</tr>
<tr>
<td>Line15</td>
<td>44.40</td>
<td>0.61</td>
<td>0.10</td>
<td>14.24</td>
<td>0.15</td>
<td>20.59</td>
<td>0.01</td>
<td>13.39</td>
<td>2.40</td>
<td>0.22</td>
<td>0.032</td>
<td>0.34</td>
<td>96.49</td>
</tr>
<tr>
<td>Clinopyroxene</td>
<td>53.31</td>
<td>0.18</td>
<td>0.05</td>
<td>0.74</td>
<td>7.20</td>
<td>14.55</td>
<td>0.25</td>
<td>22.49</td>
<td>0.20</td>
<td>0.03</td>
<td>0.00</td>
<td>un</td>
<td>99.00</td>
</tr>
<tr>
<td>Orthopyroxene</td>
<td>54.36</td>
<td>0.09</td>
<td>0.01</td>
<td>0.62</td>
<td>20.51</td>
<td>23.35</td>
<td>0.63</td>
<td>0.84</td>
<td>0.05</td>
<td>0.00</td>
<td>0.01</td>
<td>un</td>
<td>100.47</td>
</tr>
<tr>
<td>Epidote</td>
<td>38.44</td>
<td>0.06</td>
<td>0.01</td>
<td>28.80</td>
<td>2.50</td>
<td>23.51</td>
<td>0.01</td>
<td>23.51</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>un</td>
<td>96.16</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>56.03</td>
<td>0.07</td>
<td>0.00</td>
<td>28.18</td>
<td>0.29</td>
<td>10.70</td>
<td>0.00</td>
<td>10.70</td>
<td>5.20</td>
<td>0.24</td>
<td>0.00</td>
<td>un</td>
<td>100.74</td>
</tr>
<tr>
<td>Biotite</td>
<td>35.48</td>
<td>4.76</td>
<td>0.02</td>
<td>13.15</td>
<td>0.19</td>
<td>31.98</td>
<td>1.46</td>
<td>9.65</td>
<td>0.14</td>
<td>0.05</td>
<td>0.16</td>
<td>8.57</td>
<td>94.11</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>0.02</td>
<td>50.52</td>
<td>0.05</td>
<td>0.02</td>
<td>46.19</td>
<td>0.04</td>
<td>2.49</td>
<td>0.25</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>un</td>
<td>99.60</td>
</tr>
<tr>
<td>Titanite</td>
<td>30.78</td>
<td>36.73</td>
<td>0.08</td>
<td>0.88</td>
<td>0.68</td>
<td>28.60</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>un</td>
<td>98.85</td>
</tr>
<tr>
<td>Dolomite</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>19.52</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>un</td>
<td>50.14</td>
</tr>
<tr>
<td>Calcite</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>1.45</td>
<td>0.00</td>
<td>52.78</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>un</td>
<td>54.35</td>
</tr>
</tbody>
</table>

un—unanalysis.
Table 2. Experimental conditions and diffusion coefficients for chlorine at 1.0 GPa in the amphibole

<table>
<thead>
<tr>
<th>Run No.</th>
<th>T (°C)</th>
<th>P (GPa)</th>
<th>Time (h)</th>
<th>H₂O(ug)</th>
<th>No. traverses/ error</th>
<th>D(m²/s)</th>
<th>Analysis method</th>
</tr>
</thead>
<tbody>
<tr>
<td>JL10</td>
<td>625</td>
<td>1.0</td>
<td>454</td>
<td>Add(0.23)</td>
<td>6/20%</td>
<td>2.6×10⁻¹⁶</td>
<td>EMPA</td>
</tr>
<tr>
<td>JL1</td>
<td>650</td>
<td>1.0</td>
<td>100</td>
<td>Add(0.49)</td>
<td>8/18%</td>
<td>4.9×10⁻¹⁶</td>
<td>EMPA</td>
</tr>
<tr>
<td>JL5</td>
<td>700</td>
<td>1.0</td>
<td>200</td>
<td>Add(1.36)</td>
<td>8/16%</td>
<td>7.6×10⁻¹⁶</td>
<td>EMPA</td>
</tr>
<tr>
<td>JL3</td>
<td>750</td>
<td>1.0</td>
<td>200</td>
<td>Add(3.29)</td>
<td>8/16%</td>
<td>1.8×10⁻¹⁵</td>
<td>EMPA</td>
</tr>
<tr>
<td>JL3</td>
<td>750</td>
<td>1.0</td>
<td>200</td>
<td>Add(3.29)</td>
<td>1</td>
<td>1.9×10⁻¹⁵</td>
<td>SIMS</td>
</tr>
<tr>
<td>JL7</td>
<td>800</td>
<td>1.0</td>
<td>100</td>
<td>Add(3.81)</td>
<td>4/16%</td>
<td>2.8×10⁻¹⁵</td>
<td>EMPA</td>
</tr>
</tbody>
</table>
Table 3. Summarize best fit parameters to the Arrhenius equations for elements diffusion in the amphiboles

<table>
<thead>
<tr>
<th>Element</th>
<th>T (°C)</th>
<th>P (GPa)</th>
<th>D_0(m2/s)</th>
<th>E_a(kJ/K mol)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen</td>
<td>350 - 800</td>
<td>0.2-0.8</td>
<td></td>
<td>79-84(Hb)</td>
<td>Graham et al. (1984)</td>
</tr>
<tr>
<td>oxygen</td>
<td>650 - 800</td>
<td>0.01</td>
<td></td>
<td>104 ± 12(Kat)</td>
<td>Ingrin and Blanchard (2000)</td>
</tr>
<tr>
<td>oxygen</td>
<td>650 - 800</td>
<td>0.1</td>
<td></td>
<td>172 ± 25(Hb)</td>
<td>Farver and Giletti (1985)</td>
</tr>
<tr>
<td>F-OH</td>
<td>500 - 800</td>
<td>0.2</td>
<td>3.4×10^{-17}</td>
<td>41 ± 5</td>
<td>Brabander et al. (1995)</td>
</tr>
<tr>
<td>Sr</td>
<td></td>
<td></td>
<td>4.9×10^{-8}</td>
<td>260 ± 12(Hb)</td>
<td>Brabander and Giletti (1995)</td>
</tr>
<tr>
<td>Ar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Harrison (1981)</td>
</tr>
<tr>
<td>Ar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baldwin et al. (1990)</td>
</tr>
<tr>
<td>Cl</td>
<td>625-800</td>
<td>1.0</td>
<td>$4.53(+7.3,-2.8)\times10^{-10}$</td>
<td>106.6 ± 7.8</td>
<td>This study</td>
</tr>
</tbody>
</table>