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ABSTRACT 9 

Chlorine - hydroxyl diffusion was measured in pargasitic amphibole from Yunnan 10 

province, China at 1.0 GPa, 625 to 800 °C. Experiments were performed by 11 

immersing unoriented crystals in water-bearing NaCl in a piston cylinder for 12 

durations from 100 to 454 hours. Diffusion profiles were on the order of > 10's of 13 

micrometers in length, and electron microprobe analysis allow us to extract 14 

semi-quantitative diffusivities from these experiments. The preliminary diffusion 15 

coefficients for chlorine in amphibole in the water-bearing experiments are 2.6 × 10-16 16 

m2 s-1 at 625 °C, 4.9 × 10-16 m2 s-1 at 650 °C, 7.6 × 10-16 m2 s-1 at 700 °C, 1.8 × 10-15 17 

m2 s-1 at 750 °C, 2.8 × 10-15 m2 s-1 at 800 °C. For temperatures between 625 and 18 

800 °C, the Arrhenius relation for chlorine - hydroxyl diffusion has an activation 19 

energy of 106.6 ± 7.8 kJ/K mol and a D0 of 4.53 (+7.3, -2.8) × 10-10 m2 s-1. Our 20 

measurements do not show evidence of anisotropy in the diffusion of Cl-OH into 21 

amphibole, but future experiments need to better investigate this possibility.  22 
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crystal-chemistry, high temperature and pressure 24 



2 
 

 25 

INTRODUCTION 26 

Understanding the exchange of volatiles in geochemical reservoirs and recycling 27 

in Earth’s interior are one of the central issues of terrestrial geodynamics (e.g. 28 

Magenheim et al., 1995; Philippot et al., 1998; Su et al., 2004; Wallace, 2005; Wood 29 

and Normand, 2008). The major volatiles in Earth's crust and upper mantle are H2O, 30 

CO2, S, F, and Cl (e.g. Symonds et al., 1994; Philippot et al., 1998; Wallace, 2001; 31 

Berlo et al., 2004; Self et al., 2008; Koleszar et al., 2007; Aiuppa et al., 2009; Rowe et 32 

al., 2009), but their partitioning between various phases and their mechanisms of 33 

transport in the crust and upper mantle still remain somewhat enigmatic despite 34 

decades of research. In particular, the behaviour of chlorine and fluorine at high-grade 35 

metamorphic conditions is little understood (Xiao et al., 2005; Liu et al., 2009). 36 

Knowledge of F-Cl-OH partitioning between various minerals as a function of 37 

temperature and pressure will help to constrain the Cl and F budgets of the Earth (e.g. 38 

Zhu et al., 1991; Siahcheshm et al., 2012; Rasmussen and Mortensen, 2013). 39 

Amphiboles are important reservoirs for volatile components such as H2O, Cl and 40 

F (e.g. Kullerud, 1996; McCormick et al., 1999) and are stable in a wide range of 41 

pressure-temperature conditions (e.g. Wones and Gilbert, 1982; Maresch et al., 2007; 42 

Ruiz Cruz, 2010). They can be used as indicators of temperature, pressure, volatile 43 

content, and oxidation state of their host rocks (e.g. Popp et al., 1995; Hawthorne et al., 44 

1998; King et al., 1999; 2000; Evans, 2007; Oberti et al., 2007). They also provide 45 

information on the petrogenesis and thermo – mechanical evolution of rocks through 46 
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their structural phase transitions and crystal – chemical behavior (Boffa Ballaran et al., 47 

2004; Iezzi et al., 2006; Oberti et al., 2007; Tiepolo et al., 2007; Welch et al., 2007; Su 48 

et al., 2009).  49 

Cl concentrations in amphibole can be used to study the salinity of the fluid with 50 

which they were last in equilibrium (e.g. Vanko, 1986; Stakes et al., 1991; Markl et al., 51 

1998a; 1998b; Philippot et al., 1998). If brine is involved in metamorphism this fluid 52 

can not only affect the stability of the minerals in the rocks, but its presence should be 53 

also recorded in the compositions of minerals (Philippot et al., 1995; Glassley, 2001; 54 

Svensen et al., 2001; Liu et al., 2009). Therefore, the study of Cl concentrations in 55 

amphiboles is particularly helpful in interpretation of the chlorinity of the fluid, and 56 

the variation of Cl concentrations in amphibole possibly provides information on the 57 

compositional evolution of fluids during tectonic evolution (e.g., Thompson and 58 

England, 1984; Sharp and Barnes, 2004; Rowe et al., 2009; Engvik et al., 2011).   59 

The rate of attainment of equilibrium concentrations of Cl in amphibole is most 60 

probably controlled by Cl diffusion in many cases. However investigations of Cl 61 

diffusion in amphibole are lacking (Cherniak and Dimanov, 2010; Farver, 2010 ), 62 

although the diffusion kinetics of the hydrogen, oxygen, F-OH, Sr and Ar were 63 

measured in amphiboles by Graham et al. (1984), Ingrin and Blanchard (2000, 2006), 64 

Farver and Giletti (1985), Brabander et al. (1995), Brabander and Giletti (1995), 65 

Harrison (1981) and Baldwin et al. (1990), respectively. In order to improve 66 

knowledge of Cl diffusion in amphibole, reconnaissance experiments were performed 67 

at 1.0 GPa and temperatures between 625 and 800 °C in the presence of a binary 68 
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(H2O–NaCl) brine to measure the diffusion coefficients of chlorine in pargasitic 69 

amphiboles. Although diffusion itself cannot explain large scale transport properties, 70 

this process represents a fundamental mechanism in the modeling of chlorine 71 

behavior in amphiboles.  72 

 73 

EXPERIMENTAL AND ANALYTICAL TECHNIQUES 74 

Starting material 75 

Sample JL used in this study was collected from marble of Yunnan province, 76 

China. The rock is composed of very coarse homogeneous crystals of amphibole (Fig. 77 

1a, b), clinopyroxene, orthopyroxene, epidote, plagioclase (Fig. 1b-d, Table 1). The 78 

fine grained matrix mainly consists of calcite, dolomite (Fig. 1a, b, c) and minor 79 

quartz, biotite, titanite, apatite, zircon, magnetite, ilmenite and chromite (Fig. 1c, d, 80 

Table 1). The amphibole is emerald-green, translucent to transparent, with a vitreous 81 

luster. The individual crystals are large (from 12 to 15 × 8 to 10 mm, and sometimes 82 

as large as 36 × 14 mm) and well-formed (Fig. 1a). The amphiboles are optically pure 83 

and free of major fractures and inclusions. Table 1 lists the chemical composition of 84 

the starting amphibole. Electron microprobe analysis and back-scattered electron 85 

images show that the amphibole crystal is homogeneous in composition from core to 86 

rim (Table 1, Fig. 1e). Crystal chemical formulae were calculated on the basis of 23 87 

oxygens with all iron considered to be ferrous. According to the classification of 88 

Leake et al. (1997), sample JL is a pargasite. These pargasitic amphiboles are 89 

characterized by higher MgO (20.4 wt %), CaO (13.5 wt %) contents, and the lower 90 
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FeOT contents (0.15 wt %) (Table 1), than parasites from other geological 91 

environments (e.g., Liu et al., 2009). They contain a high fluorine content with 0.34 - 92 

0.38 wt% (Table 1), which is similar to that of Mg-rich amphiboles in 93 

high-temperature marbles (e.g., Petersen et al., 1982; Valley et al., 1982). They also 94 

contain low chlorine concentrations, ranging from 0.036 to 0.041 wt% (average 0.039 95 

wt %). 96 

The rock was crushed with a hammer, and the amphibole crystals hand-picked. 97 

The crystals were cleaved into sub-cubic pieces by hand with an average grain size of 98 

approximately 1-2 mm on edge for loading into capsules. Other portions of the 99 

amphiboles were ground under alcohol in an agate mortar and pestle to powder of less 100 

than 50 micrometers in size. This powder was mixed with reagent-grade NaCl in a 101 

weight ratio of 2:1 (NaCl to amphibole).   102 

 103 

Experimental procedure 104 

Experiments on chlorine - hydroxyl diffusion of pargasitic amphibole were 105 

performed at a piston cylinder at Earth and Planetary Sciences in McGill University.  106 

The capsules used in the experiment are platinum tubes with a 3.0 mm outer diameter 107 

that cut to 6.0-7.0 mm in length, and cleaned in concentrated hydrofluoric acid, 108 

repeatedly washed with distilled water, cleaned in the ultrasonic bath, annealed to 109 

orange heat, and the bottom crimped and welded. For each diffusion experiment a Pt 110 

capsule was approximately half-filled with the amphibole-NaCl mixture then a 111 

randomly oriented piece of amphibole crystal was loaded followed by more of the 112 
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amphibole-NaCl mixture. Water (0.23-3.81µg, Table 2) was also introduced into the 113 

capsule prior to the addition of the amphibole-NaCl mixture. The Pt capsule was 114 

welded closed without volatile loss, and put into the oven a 120 °C for 24 hours, and 115 

weighed again to check for leakage. The Pt capsule was then placed inside a graphite 116 

cylinder with a 3.0 mm inner diameter and covered with graphite lid. Two Pt capsules 117 

(one with water, another without water) were inserted into a graphite cylinder, placed 118 

into crushable alumina and surrounded by pyrophyllite powder to ensure that the 119 

water was not lost during experiments. The capsules were located in the center of a 120 

19.1 mm crushable alumina – graphite – Pyrex – NaCl assembly (Baker, 2004). The 121 

assemblies were pressurized and heated to 1.0 GPa, and temperatures between 625 122 

and 800 °C in a piston-cylinder apparatus. The run procedure consisted of 123 

simultaneously pressurizing and heating the assembly. A constant heating rate of 124 

100 °C /min was used, which resulted in less than a 5 °C overshoot of the run 125 

temperature. Temperatures were measured with type C thermocouples. Pressures were 126 

controlled within ± 0.08 GPa and temperatures within ± 2 °C of desired conditions. 127 

All experimental durations (between 100 and 454 hours, Table 2) are based upon the 128 

time at which the experiment reached the desired run temperature. Samples were 129 

quenched from run temperature within 30 s by turning off the power of the 130 

piston-cylinder. After quenching, the capsules were mounted in epoxy, sectioned 131 

longitudinally and polished for electron microprobe analysis of the Cl concentrations 132 

to acquire the diffusion profiles. 133 

 134 
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Electron microprobe analysis 135 

Electron microprobe analysis (EMPA) was first performed using the JEOL 8900 136 

Electron Microprobe at McGill University. The accelerating voltage was 15 kV, with a 137 

beam current of 20 nA; the beam size was 1 μm in diameter. One of the main caveats 138 

associated with diffusion modeling is ensuring that the chemical profile used within 139 

the model is of sufficient spatial resolution so as to avoid complications linked with 140 

overlapping analyses and the smearing out of profiles that result in convolution effects 141 

(e.g., Ganguly et al. 1988; Costa and Morgan 2010). The effects of convolution 142 

become less severe as the diffusion profile lengthens (Ganguly et al. 1988). To 143 

minimize the convolution problem, the diffusion profiles were also measured by the 144 

JXA-8100 Electron Microprobe at the State Key Laboratory of Lithospheric Evolution, 145 

Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). The 146 

diffusion profile was analyzed using a step size of 3 micrometers by sweeping the 147 

electron beam across the interface of a diffusion couple of a fixed sample stage, with a 148 

beam size of 1 μm in diameter. The standards were diopside for Si, Ca and Mg, 149 

hematite for Fe, orthoclase for Al and K, albite for Na, chromite for Cr, rutile for Ti, 150 

spessartine for Mn, fluorite for F and vanadinite for Cl. The accelerating voltage was 151 

15 kV, with a beam current of 40 nA. A counting time of 20 s on the peak was used for 152 

all the elements except F and Cl. 40 s and 80 s counting time on the peak was used for 153 

F (LDE1) and Cl (PETH) measurements, respectively. Backgrounds were measured 154 

for half the counting times used on the peaks. Additionally, X-ray distribution 155 

maps of the Cl, Fe, Mg concentrations in the amphiboles were performed using a 156 



8 
 

Camcea SX Five Electron Microprobe. The accelerating voltage was 15 kV, with a 157 

beam current of 200 nA and dwell of 100 ms; the step size for the maps was 1 158 

micrometers the map size was 1024 × 1024 pixels.  159 

In order to further identify EMPA data accuracy, 37Cl/30Si profile of the 160 

amphibole was conducted using a CAMECA Nano-SIMS 50L at the State Key 161 

Laboratory of Lithospheric Evolution, IGGCAS. An amphibole transverse and depth 162 

profile consists of monitoring the intensities of 16O, 35Cl, 37Cl, 30Si, and 19F signals as 163 

the primary ion beam sputters into the amphibole using the multi-collector mode. The 164 

instrument was operated with Cs+ primary ion beam, which was accelerated at 16 keV, 165 

with an intensity of ~70 pA and a beam size of ~0.5 μm in diameter at the sample 166 

surface. The beam was scanning within an area of 1.5 μm. The mass resolution was 167 

set to 6000 (CAMECA definition) to obtain a flat top at the mass peak. There was an 168 

acquisition time of ~150 s for each analyses point, a data was obtained by 30 cycles 169 

for 15 s, and 10 sections of data in the same position. 170 

 171 

RESULTS 172 

Calculation of chlorine diffusion coefficients from concentration profiles 173 

The back-scattered electron images show no evidence that the experimental 174 

amphibole crystals experience dissolution or regrowth (Fig. 2). The analytical 175 

traverses were used to calculate chlorine diffusivity. Chlorine concentrations were 176 

plotted vs. distance (Fig. 3, 4), and the diffusion coefficients were calculated for each 177 

experiment (Table 2). Diffusivities were determined from chlorine profiles using  178 
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Equation 3.13 in Crank (1975), which assumes a constant diffusivity and that the 179 

diffusion from the surface of a single crystal has not reached the center of the sample 180 

(hence a semi-infinite medium): 181 

C(x,t) = (C0 - C1) * erf (x/(2*(Dt)^0.5) + C1                  (1) 182 

 where C(x, t) is the chlorine concentration along the diffusion profile plotted in a 183 

concentration vs. distance diagram; x is the distance along the profile (in meters); and 184 

t is the experimental duration (in seconds); C0 is the original concentration in the 185 

sample; C1 is the surface concentration of the chlorine; erf is the error function; D is 186 

the diffusion coefficient or diffusivity (m2s-1). The error of each diffusivity 187 

measurement is estimated based upon multiple microprobe traverses on the same 188 

experiment. The run products of almost all experiments were analyzed by performing 189 

multiple microprobe traverses: 8 traverses for No. 1 (4 perpendicular to the long axis 190 

and others parallel to the long axis, respectively); 8 traverses each for No. 3, No. 5, (4 191 

perpendicular to the long axis and others parallel to the long axis, respectively); 6 192 

traverses for No. 7 (all perpendicular to the long axis); 6 traverses for No. 10 (3 193 

perpendicular to the long axis and others parallel to the long axis, respectively). The 194 

step size for all of the traverses is 3 micrometers. In order to avoid the convolution 195 

effect of the surrounding NaCl, each calculation of the Cl diffusion coefficient did not 196 

use the first two points of the profile. In addition, one traverse profile of the run No. 3 197 

of the experiment was measured by Nano-SIMS. This profile has 22 points (Fig. 4b). 198 

The beam is rastered upon the surface of the sample to produce a homogeneously 199 

sputtered flat-bottomed crater of approx 3 x 2μm area (Fig. 4a). The sputtering rate 200 
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for each analysis point in the amphibole was determined by monitoring crater depth as 201 

a function of time. Sputtering was allowed to proceed for about 150 seconds so as to 202 

define the complete diffusion profile and produce the 37Cl/30Si ratio to a depth of 203 

0.66μm with 10 sections of data in the same position. The signal from each mass was 204 

monitored for 15 seconds to provide a statistically significant count rate by measuring 205 

30 cycles. A computer program written in Scilab was used to compute diffusivities 206 

from each diffusion profile (Figs. 3, 4).  207 

 208 

Diffusivity calculations for the experiments 209 

All experiments produced extremely short diffusion profiles due to the slow 210 

diffusivity of Cl in amphibole at metamorphic conditions. Thus, we consider the 211 

results of this study to be preliminary, but nevertheless important because of the 212 

paucity of Cl diffusion measurements in amphiboles and the importance of Cl in 213 

amphibole.  214 

The diffusivity was 2.6 × 10-16 m2 s-1 (Fig. 3a, Table 2) in the experiment at 215 

625 °C and 454 h. At 650 °C, 100 h, the diffusion coefficient for Cl in amphibole in 216 

the experiment was 4.9 × 10-16 m2 s-1 (Fig. 3b, Table 2). The 700 °C, 200 h experiment 217 

yielded a diffusion coefficient of 7.6 × 10-16 m2 s-1 (Fig. 3c, Table 2). At 750 °C and 218 

200 h, the diffusion coefficients of experiment are 1.8× 10-15 m2 s-1 by EMP analysis 219 

and 1.9 × 10-15 m2 s-1 by SIMS analysis (Figs. 3d and 4, Table 2). The diffusivity of Cl 220 

in the amphibole at 800 °C measured in the 100 h experiment is 2.8 × 10-15 m2 s-1 (Fig. 221 

3e, Table 2).  222 
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Although we did not orient our crystals, we used cleaved samples and performed 223 

diffusion profiles along approximately perpendicular traverses of the polished 224 

sections to search for anisotropic diffusion. Our measurements do not demonstrate 225 

any evidence of anisotropy in the diffusion on Cl into amphibole; however anisotropic 226 

effects might be smaller than our estimated uncertainty in the diffusion measurements 227 

of ± 50 relative percent. 228 

 229 

DISCUSSION 230 

Effect of temperature 231 

The temperature dependency of chlorine diffusion was characterized via an 232 

Arrhenius equation (Fig. 5) at constant pressure: 233 

D = D0 exp (-Ea / RT)   (2) 234 

where D is the diffusion coefficient (m2 s-1 ), D0 is the preexponential factor, Ea is the 235 

activation energy (kJ mol-1), R is the gas constant (J K-1 mol-1) and T the temperature 236 

(degrees Kelvin). 237 

The Arrehenius plot describing chlorine diffusion is displayed in Figure 5. Fitting 238 

the water-bearing experiments between 625 °C and 800 °C yields an activation energy 239 

for Cl diffusion of 106.6 ± 7.8 kJ/K mol and a D0 of 4.53 (+7.3/-2.8) × 10-10 m2s-1 240 

with a correlation coefficient of 0.9921 (Fig. 5). These data are for P = 1GPa. 241 

 242 

Comparisons with the diffusion of other elements in amphibole 243 

Very few studies have been performed on the diffusion of cations and anions in 244 
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amphiboles, although the importance of understanding metasomatic processes in such 245 

common minerals is great. Graham et al. (1984) reported the hydrogen diffusion 246 

kinetics in amphiboles for a range of compositions including hornblende, tremolite, 247 

and actinolite at 350 - 800 °C, 0.2 - 0.8 GPa confining pressure. The value of 248 

diffusion coefficients were obtained from bulk exchange with water of different 249 

hydrogen isotope composition, and yielded Arrhenius relations with activation 250 

energies of 79-84 kJ/mol for hornblende, 71.5 kJ/mol for tremolite, and 99 kJ/mol for 251 

actinolite. Ingrin and Blanchard (2000) measured the hydrogen diffusion coefficient in 252 

natural kaersutite crystals at 600 - 900 °C and 0.01 GPa pressure and found an 253 

activation energy of 104 ± 12 kJ/mol. In addition, Ingrin and Blanchard’s (2000, 2006) 254 

data clearly demonstrate that hydrogen diffusion in amphibole is anisotropic: transport 255 

along the c-axis faster than along the b-axis. The only experimental data on oxygen 256 

diffusion in amphiboles was reported by Farver and Giletti (1985); they measured 257 

oxygen diffusivity in a range of amphibole compositions including hornblende, 258 

tremolite, and fluor-richterite at 650 - 800 °C at 0.1 GPa pressure, and determined 259 

activation energies of 172 ± 25 kJ/mol for hornblende, 163 ± 21 kJ/mol for tremolite, 260 

and 238 ± 8 kJ/mol for fluor-richterite. Brabander et al (1995) measured F-OH 261 

interdiffusion in tremolite over the temperature range 500 - 800 °C and 0.2 GPa 262 

pressure and obtained an activation energy of 41 ± 5 kJ/mol and a pre-exponential 263 

factor of 3.4 × 10−17 m2 s-1. Measurements of Ar diffusion in amphibole were reported 264 

by Harrison (1981) and Baldwin et al. (1990).   265 

Figure 6 summarizes all published diffusion data for amphibole and the 266 
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comparison to our results. Our measured Cl diffusivities lie between those obtained 267 

for hydrogen isotopic exchange (Graham et al., 1984), F-OH interdiffusion 268 

(Brabander et al. 1995) and oxygen isotopic exchange (Farver and Giletti, 1985).  269 

The measured activation energy in this study of Cl is similar to that of H diffusion, but 270 

significantly higher than F-OH diffusion (Fig. 6). 271 

  It is well known that both ionic charge and radius affect diffusion in crystals 272 

(Van Orman et al., 2001; Tirone et al., 2005; Carlson et al., 2012). When ions have the 273 

same charge and reside in the similar crystalline sites it is expected that the smaller 274 

ion would display a higher diffusivity than the larger ion (Zhang et al., 2006, 2010). 275 

Oberti et al. (1993) found that F and OH, with radii of 0.130 nm and 0.135 nm, 276 

respectively (Hawthorne and Oberti, 2007), are found in the O(3) amphibole site, but 277 

that larger Cl, with a 0.181 nm radius (Shannon, 1976), is found in a slightly 278 

displaced position, the O(3)' site. Because of the same charge and the occupancy of 279 

similar sites in amphibole, Cl is expected to diffuse more slowly than F, opposite to 280 

the comparison of Brabander et al.'s results (1995) and this study. 281 

The anomalous behavior of Cl in comparison to F is reflected in its high 282 

pre-exponential factor in the Arrhenius equation. The pre-exponential factor is 283 

classically associated with the square of the distance between two stable sites 284 

multiplied by a vibrational frequency of the atom (see Eqn. 158 in Glasstone et al., 285 

1941). We speculate that the small differences in the location of the sites for Cl and F 286 

in the amphibole structure are significant enough to affect the pre-exponential factor 287 

through modification of the distance between two stable sites and the vibrational 288 



14 
 

frequency of the Cl. However, we have no further evidence to support this speculation 289 

and perhaps the differences in the experimental procedures (e.g., pressure, chemical 290 

potential gradients) and amphibole compositions between our study and that of 291 

Brabander et al. (1995) might play a significant role in explaining the surprising 292 

measurements of F and Cl diffusion in amphibole. 293 

  294 

Effect of Cl on the amphibole chemistry and structure  295 

The M(1) and M(3) sites of amphibole are coordinated by the O(3) or O(3)' site, 296 

which contains (OH), F- and Cl- or O2− These are the only anion sites in the amphibole 297 

structure (e.g. Leake, 1968; Leake et al., 1997; Leake et al., 2003; Hawthorne and 298 

Oberti, 2007). The bond-valence of the <M(3)-O(3) > varies in different amphibole 299 

structures, such that the <M(3)-O(3)> distance is 0.382 A°, 0.367 A°, 0.361 A° , 0.300 300 

A° for pargasite, cummingtonite, tremolite, and fluororichterite, respectively 301 

(Hawthorne and Oberti, 2007). Comodi et al. (1991) found that the sequence of 302 

isothermal polyhedral bulk moduli are KM(3) > KM(1) > KM(4)> KM(2) in their 303 

study of tremolite, pargasite and glaucophane to 4.0 GPa. It is obvious that M(3) and 304 

M(1) are more controlled by pressure, as Zhu et al. (1991) suggested the Cl- contents 305 

of fluids depend strongly on pressure when temperature is below 500°C. Variation of 306 

the M(1) and M(3) site volumes can lead to variations in <M(1)-O(3)> and 307 

<M(3)-O(3)> distances and variable occupancy of OH, F, Cl and O in the different 308 

amphiboles. Cl is negatively correlated with F in the amphiboles (Fig. 7a): Cl 309 

concentrations increase with decreasing F concentrations. This behavior implies that 310 
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the incorporation of Cl in amphibole may result in replacement of F at O(3) in the 311 

amphibole structure. Cl and F are coupled in the amphiboles studied (Figs. 2, 7b-e): 312 

Cl concentrations increase with increasing FeO and decreasing MgO (Figs. 7b and c), 313 

whereas F concentrations demonstrate the opposite behavior (Figs. 7d, e). However, 314 

how the diffusion coefficients of Fe and Mg in the amphibole compare to Cl is 315 

currently not clear. Therefore, further research on correlations between (Cl, F, OH) 316 

occupancy on the hydroxyl site and (Mg, Fe) occupancy on the octahedral site during 317 

Cl replacement with F or OH at high temperature and pressure are needed. 318 

 319 

IMPLICATIONS 320 

Diffusion of chlorine in amphibole is an important area of study, with 321 

applications in improving understanding of volatile transport, so the first chlorine 322 

diffusion results of the pargasitic amphibole have value. Although Cl diffusion itself 323 

cannot explain large- or micro- scale transport properties, this process represents a 324 

fundamental mechanism controlling Cl behavior during crystallization, assimilation 325 

and metamorphism. Compositionally zoned minerals, combined with kinetic 326 

modeling of chemical gradients, can be used to provide a chronological tool that can 327 

access a large range of time scales and can be applied to rocks of any age (e.g., 328 

Zellmer et al., 1999; Coombs et al., 2000; Klügel, 2001; Pan and Batiza, 2002; 329 

Morgan et al., 2004; Costa and Chakraborty, 2008), if the processes responsible for 330 

zoning and the relevant diffusivities are available. Broader implications and 331 

applications of our study are that modeling the Cl chemical gradients in amphiboles 332 
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and combining these results with modeling of other cations can provide a unique 333 

window into the time scales of metamorphic/metasomatic process, which is 334 

impossible to achieve by any isotopic method, because often the durations of events, 335 

particularly retrograde metamorphic events, may be too short to measure isotopically. 336 

 337 
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FIGURE LEGENDS 705 

Figure 1. Photographs of the marble sample from the Yunnan province, China. (a) 706 

The marble contains very coarse homogeneous crystals of amphibole, clinopyroxene, 707 

orthopyroxene, and epidote. The fine-grained matrix mainly consists of calcite + 708 

dolomite. Hand specimen. (b-d) Micro-photographs reveal that the mineral 709 

assemblage consists of clinopyroxene, orthopyroxene, epidote (b), calcite, dolomite 710 

(c), and plagioclase, biotite, titanite and ilmenite (d). (e) Secondary electron image of 711 

starting amphibole. It shows no compositional zonation. The spots in the figure are 712 

analysis spots of the analytical traverse. Amphibole: Amp; clinopyroxene: Cpx; 713 

orthopyroxene Opx; epidote: Epi; calcite:Cc; dolomite: Dol; plagioclase: Pl; biotite: 714 

Bt; titanite: Ti; and ilmenite: Ilm. 715 

Figure 2. Images of backscattered electron imaging and X-ray mapping of Cl, Fe, 716 

Mg of amphibole of water-bearing experimental runs performed at 1.0 GPa, 750 °C 717 

and 200 hours. 718 

Figure 3. Measured chlorine diffusion profiles in water-bearing experiments. a: 719 

Run number JL10, T = 625 °C, P = 1.0 GPa, t = 454 h; b: Run number JL1, T = 720 

650 °C, P = 1.0 GPa, t = 100 h; c: Run number JL5 T = 700 °C, P = 1.0 GPa, t = 200 h; 721 

d: Run number JL3, T = 750 °C, P = 1.0 GPa, t = 200 h; e: Run number JL7, T = 722 

800 °C, P = 1.0 GPa, t = 100 h. The smooth curve is the best fit of the EMPA data 723 

with a diffusion model. 724 

Figure 4. Traverse of 37Cl/30Si in amphibole of experiment number JL3 (T = 725 

750 °C, P = 1.0 GPa, t = 200 h). The smooth curve is the best fit of the SIMS data 726 
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with a diffusion model. a: micro-image of sputtered crater within the sample by FIB; 727 

b: Traverse profile of 37Cl/30Si. 728 

Figure 5. Arrhenius plot of Chlorine (Cl) diffusion in amphibole of runs 729 

performed at 1.0 GPa, from 625 °C to 800 °C. 730 

Figure 6. Arrhenius plot summarizing diffusion studies in amphiboles. Hydrogen 731 

data from Ingrin et al. (2000) [H(1)], Graham et al. (1984) [H(2), H(3)], respectively. 732 

F-OH data from Brabander et al. (1995). Oxygen data from Farver and Giletti (1985). 733 

Ar data from Harrison (1981). Sr data from Brabander and Giletti (1995). Chlorine 734 

(Cl) data are from this study. 735 

 Figure 7. Plots of Cl, F and other elements in amphibole from water-bearing 736 

experimental runs performed at 1.0 GPa, from 625 °C to 800 °C, respectively. a: Cl vs 737 

F; b: Cl vs FeO; c: Cl vs MgO; d: F vs FeO; e: F vs MgO.  738 
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Table 1. Electron microprobe analyses of starting amphiboles and its paragenous minerals from the marble (sample No. JL) (wt %) 
Mineral/Spots SiO2 TiO2 Cr2O3 Al2O3 FeO MgO MnO CaO Na2O K2O Cl F Total 

Amphibole 44.30  0.54  0.09  14.18  0.14  20.52  0.00  13.38  2.38  0.20  0.031  0.34  96.11  
Line1  44.68  0.53  0.08  14.35  0.13  20.52  0.00  13.31  2.43  0.21  0.032  0.33  96.58  
Line2 44.30  0.53  0.07  14.54  0.14  20.48  0.00  13.23  2.41  0.22  0.033  0.35  96.29  
Line3 44.17  0.58  0.05  14.45  0.17  20.36  0.01  13.33  2.40  0.21  0.030  0.35  96.11  
Line4  44.40  0.56  0.08  14.39  0.15  20.50  0.00  13.44  2.43  0.21  0.033  0.36  96.55  
Line5  44.23  0.60  0.05  14.53  0.13  20.45  0.00  13.39  2.39  0.23  0.033  0.34  96.37  
Line6  44.14  0.55  0.11  14.46  0.11  20.67  0.01  13.27  2.38  0.22  0.031  0.33  96.27  
Line7  44.06  0.57  0.05  14.32  0.16  20.55  0.00  13.32  2.42  0.22  0.031  0.37  96.07  
Line8  44.25  0.57  0.08  14.33  0.10  20.62  0.00  13.37  2.41  0.23  0.033  0.37  96.36  
Line9  44.36  0.58  0.03  14.22  0.13  20.59  0.00  13.31  2.41  0.22  0.030  0.37  96.24  
Line10  44.21  0.56  0.05  14.37  0.12  20.68  0.01  13.32  2.41  0.21  0.030  0.36  96.33  
Line11  44.29  0.55  0.06  14.24  0.14  20.40  0.02  13.45  2.39  0.23  0.032  0.38  96.18  
Line12  44.24  0.55  0.05  14.26  0.18  20.43  0.01  13.38  2.41  0.21  0.031  0.33  96.06  
Line13  44.35  0.56  0.04  14.36  0.13  20.56  0.00  13.34  2.47  0.22  0.030  0.38  96.43  
Line14  43.96  0.56  0.07  14.75  0.14  20.35  0.00  13.43  2.43  0.22  0.030  0.37  96.28  
Line15  44.40  0.61  0.10  14.24  0.15  20.59  0.01  13.39  2.40  0.22  0.032  0.34  96.49  

Clinopyroxene 53.31 0.18 0.05 0.74 7.20  14.55 0.25 22.49 0.20  0.03 0.00  un 99.00  
Orthopyroxene 54.36 0.09 0.01 0.62 20.51 23.35 0.63 0.84 0.05 0.00  0.01 un 100.47 

Epidote 38.44 0.06 0.01 28.80  5.20  0.04 0.08 23.51 0.01 0.01 0.00  un 96.16 
Plagioclase 56.03 0.07 0.00  28.18 0.29 0.03 0.00  10.70  5.20  0.24 0.00  un 100.74 

Biotite 35.48 4.76 0.02 13.15 21.98 9.65 0.14 0.05 0.16 8.57 0.15 un 94.11 
Ilmenite 0.02 50.52 0.05 0.02 46.19 0.04 2.49 0.25 0.01 0.00  0.01 un 99.60  
Titanite 30.78 36.73 0.08 1.88 0.68 0.03 0.00  28.60  0.04 0.02 0.01 un 98.85 

Dolomite 0.00  0.00  0.00  0.00  0.06 19.52 0.05 30.50  0.01 0.00  0.00  un 50.14 
Calcite 0.00  0.00  0.03 0.03 0.04 1.45 0.00  52.78 0.01 0.01 0.00  un 54.35 

un—unanalysis. 



Table 2. Experimental conditions and diffusion coefficients for chlorine at 1.0 GPa in the amphibole 

Run No.  T (�)  P (GPa)  Time (h) H2O(ug) 
No. 

traverses/ 
error  

D(m2/s) Analysis 
method  

JL10 625 1.0 454 Add(0.23) 6/20% 2.6×10-16 EMPA 
JL1 650 1.0 100 Add(0.49) 8/18% 4.9×10-16 EMPA 
JL5 700 1.0 200 Add(1.36) 8/16% 7.6×10-16 EMPA 
JL3 750 1.0 200 Add(3.29) 8/16% 1.8×10-15 EMPA 
JL3 750 1.0 200 Add(3.29) 1 1.9×10-15 SIMS 
JL7 800 1.0 100 Add(3.81) 4/16% 2.8×10-15 EMPA

 
 
 



Table 3. Summarize best fit parameters to the Arrhenius equations for elements diffusion in the 
amphiboles 

Element T (℃) P (GPa) D0(m2/s) Ea(kJ/K mol) Reference 

hydrogen 350 - 800 0.2-0.8  

79-84(Hb) 

71.5(Tr) 

99(Act) 

Graham et al. (1984) 

hydrogen 600 - 900 0.01  104 ± 12(Kat) Ingrin and Blanchard (2000) 

oxygen 650 - 800 0.1  

172 ± 25(Hb) 

163 ± 21(Tr) 

238 ± 8(F-Rict) 

Farver and Giletti (1985) 

F-OH 500 - 800 0.2 3.4 × 10−17 41 ± 5 Brabander et al. (1995) 

Sr   4.9× 10−8 260 ± 12(Hb) Brabander and Giletti (1995) 

Ar     Harrison (1981) 

Ar     Baldwin et al. (1990) 

Cl 625-800 1.0 4.53(+7.3, -2.8) ×10-10 106.6 ± 7.8 This study 
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