7/30

1	Revision 3
2	The system Na_2CO_3 -FeCO ₃ at 6 GPa and its relation to the system
3	Na ₂ CO ₃ -FeCO ₃ -MgCO ₃
4	
5	Anton Shatskiy ^{1,2*} , Sergey V. Rashchenko ^{1,2} , Eiji Ohtani ^{1,3} , Konstantin D. Litasov ^{1,2} ,
6	Mikhail V. Khlestov ¹ , Yuri M. Borzdov ^{1,2} , Igor N. Kupriyanov ^{1,2} , Igor S. Sharygin ^{1,2} ,
7	Yuri N. Palyanov ^{1,2} .
8	
9	¹ V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Science,
10	Siberian Branch, Koptyuga pr. 3, Novosibirsk 630090, Russia
11	² Novosibirsk State University, Novosibirsk 630090, Russia
12	³ Department of Earth and Planetary Material Science, Tohoku University, Sendai 980-
13	8578, Japan
14	
15	Abstract
16	The phase relations in the Na_2CO_3 -(Fe _{0.87} Mn _{0.06} Mg _{0.07})CO ₃ system have been
17	studied in Kawai-type multianvil experiments using graphite capsules at 6.0 GPa and
18	900-1400 °C. Subsolidus assemblages comprise the stability fields of
19	$Na_2CO_3 + Na_2Fe(CO_3)_2$ and $Na_2Fe(CO_3)_2$ + siderite with the transition boundary at
20	$X(Na_2CO_3) = 50$ mol%. Intermediate $Na_2Fe(CO_3)_2$ compound has rhombohedral $R\overline{3}$
21	eitelite structure with cell parameters $a = 4.9712(16)$ Å, $c = 16.569(4)$ Å, $V = 354.61(22)$.
22	The Na ₂ CO ₃ -Na ₂ Fe(CO ₃) ₂ eutectic is established at 1000 °C and 66 mol% Na ₂ CO ₃ .
23	Na ₂ Fe(CO ₃) ₂ disappears between 1000 and 1100 °C via incongruent melting to siderite

and a liquid composed of about 55 mol% Na₂CO₃ and 45 mol% siderite. Siderite remains

a subliquidus phase at 1400 °C at $X(Na_2CO_3) \le 30 \text{ mol}\%$.

The ternary Na₂CO₃-FeCO₃-MgCO₃ system can be built up from the corresponding binary systems: two systems with intermediate Na₂(Mg,Fe)(CO₃)₂ phase, which melts congruently at the Mg-rich side and incongruently at the Fe-rich side, and the (Mg,Fe)CO₃ system with complete solid solution. The phase relations suggest that the maximum contribution of FeCO₃ component into the lowering solidus temperatures of Na-bearing carbonated mantle domains could not exceed several tens °C.

32

33 **1. Introduction**

34 Previous experimental studies demonstrate that siderite forms a complete solid 35 solution with magnesite, which would be stable under upper and lower mantle conditions 36 and may transport carbon in subducting lithospheric plates into the deep mantle 37 (Dasgupta et al., 2004; Santillán and Williams, 2004; Lavina et al., 2010; Boulard et al., 38 2011; Franzolin et al., 2011; Litasov et al., 2013a). The observations of FeCO₃ as 39 inclusions in diamond in association with the $(Mg,Fe)SiO_3 + (Mg,Fe)O$ assemblage 40 (Stachel et al., 2000) supports these experimental observations. Yet, in the presence of 41 alkalis, carbonates could melt at much lower temperatures to form alkali-rich carbonatite melts (Brey et al., 2011; Grassi and Schmidt, 2011; Litasov et al., 2013c). Such melts 42 43 were also found as recrystallized microinclusions in diamonds from kimberlites (Navon, 44 1991; Schrauder and Navon, 1994; Zedgenizov et al., 2007; Weiss et al., 2009). Owing to 45 their low density (Genge et al., 1995; Guillot and Sator, 2011), enhanced wetting 46 properties (Hunter and McKenzie, 1989; Minarik and Watson, 1995; Yoshino et al.,

47 2010), and ability to transport silicate components (Shatskiy et al., 2013b), such melts 48 could stem from subducted oceanic lithosphere and percolate upwards along grain 49 boundaries (Hammouda and Laporte, 2000) or by means of diapiric ascent (Litasov et al., 50 2013b; Litasov et al., 2013c). This could suppress the amount of carbon, which can be 51 potentially transported down to the transition zone and lower mantle (Dasgupta and 52 Hirschmann, 2010). It is, therefore, essential to know phase relations in simple alkali-53 alkaline earth and Fe-bearing carbonate systems under mantle conditions.

54 Although phase relations in the alkali-earth carbonate systems were studied 55 extensively from upper down to lower mantle conditions, e.g., (Katsura and Ito, 1990; 56 Ono et al., 2007; Nagai et al., 2010; Franzolin et al., 2011; Boulard et al., 2012), the 57 studies of the alkali-bearing carbonate systems were limited to Fe-free compositions 58 (Eitel and Skaliks, 1929; Cooper et al., 1975; Shatskiy et al., 2013a; Shatskiy et al., 59 2013c; Shatskiy et al., 2013d). At the same time, an investigation of Fe-bearing carbonate 60 systems, e.g. Na₂CO₃-FeCO₃-MgCO₃-CaCO₃, has particular importance, given the 61 abundance of Na and Fe in carbonatite melt inclusions in diamonds (up to 7-14 wt%) 62 Na₂O and 11-58 wt% FeO) from the upper (Tomlinson et al., 2006; Klein-BenDavid et al., 63 2009; Zedgenizov et al., 2009) and lower mantle (Kaminsky et al., 2009b; Kaminsky et 64 al., 2013) as well as the abundance of Fe-bearing species in hydrothermally altered 65 oceanic crust subducted into the Earth's mantle (Lecuyer and Ricard, 1999). As a part of 66 an investigation of the Na₂CO₃-FeCO₃-MgCO₃-CaCO₃ system, the corresponding binary 67 systems have to be examined. Since phase relations in the Na₂CO₃-MgCO₃, Na₂CO₃-68 CaCO₃, FeCO₃-MgCO₃, CaCO₃-MgCO₃ and CaCO₃-FeCO₃ systems at 6 GPa have been 69 already studied (Buob et al., 2006; Shatskiy et al., 2013a; Shatskiy et al., 2013d; Shatskiy

et al., 2014a), here we present new experimental data on phase relations in the Na₂CO₃siderite system at 6 GPa and 900-1700 °C. Using obtained data we discuss a possible
topology of the ternary Na₂CO₃-FeCO₃-MgCO₃ system and the influence of iron
component on melting in the petrologically important system Na₂CO₃-CaCO₃-MgCO₃.

- 74
- 75

2. Experimental methods

76 Experiments were conducted using Kawai-type multianvil apparatuses at Tohoku 77 University (Sendai, Japan) (Shatskiy et al., 2011). We employed ZrO_2 pressure media 78 with edge length of 20.5 mm and WC anvils with truncation edge length of 12 mm. 79 Sample heating was achieved using a graphite heater, 4.5/4.0 mm in outer/inner diameter 80 and 11 mm in length. Temperature was controlled using WRe(3%/25%) thermocouple 81 inserted into the heater center via walls and electrically insulated by Al₂O₃ tubes. The cell 82 configuration and calibration procedures were described in details by Shatskiy et al. 83 (2013c). In this study we used siderite from Bakal deposit, South Ural, Chelyabinsk 84 region, Russia. Siderite crystals were ground and sintered to homogeneous sample at 6 85 GPa and 900 °C. Based on EDS and WDS analysis the composition of recovered siderite 86 corresponds to $(Fe_{0.87}Mn_{0.06}Mg_{0.07})CO_3$. Then this siderite was milled and mixed with 87 synthetic Na_2CO_3 in agate mortar under acetone and loaded into graphite cassettes 88 (multicharged sample holders). The cell assembly contained four cassettes. In turn, each 89 cassette contained four holes, 0.9 mm in diameter. To study the present system we used 90 two lower cassettes (i.e., eight holes with different sample compositions shown in Table 91 1). The remaining holes were employed to study alternative carbonate systems. The 92 loaded cassettes were placed in a vacuum oven, heated to 240°C for 1 hour, then cooled

to 130 °C and stored for 8-12 hours prior to loading. Prepared assemblies were stored at
130°C in a vacuum oven for 1-2 hours prior to compression. During opening the vacuum
oven was filled with dry air.

96 All experiments were performed as follows. The assemblies were compressed at 97 room temperature to 6.0 MN in DIA press, or to 4.5 MN in wedge press, corresponding 98 to pressure of 6.0 ± 0.5 GPa (Shatskiy et al., 2013c). Then the samples were heated to 99 temperatures ranging from 900 to 1400 °C. The heating time ranged from 15 min to 32 h 100 depending on temperature conditions. The temperature was maintained within 0.5 °C of 101 the desired value using T. Katsura's software. The maximum temperature difference 102 between samples did not exceed 20 °C (see Fig. 3 in Shatskiy et al. (2013c)). 103 Experiments were terminated by cutting off the electrical power of heater, followed by 104 slow decompression.

Since the Na₂CO₃-bearing samples are hygroscopic, a special care was taken to minimize the the duration of contact between sample and air. Recovered samples were mounted into an epoxy resin and polished under low-viscosity oil using 400-, 1000- and 1500-mesh sandpapers and $3-\mu m$ diamond paste. The sample surface was cleaned using an oil spray between each step of polishing. Finally we used petroleum benzene to remove oil after polishing immediately prior to coating and loading the sample into a scanning electron microscope.

Samples were studied using a Tescan MYRA 3 LMU scanning electron microscope (Tescan) coupled with an INCA Energy dispersive X-ray microanalysis system 450 equipped with the liquid nitrogen-free Large area EDS X-Max-80 Silicon Drift Detector (Oxford Instruments) at V.S. Sobolev IGM SB RAS (Novosibirsk, Russia). The EDS

116 spectra were collected by rastering the electron beam over a surface area available for the 117 analysis with linear dimensions from 10 to 300 μ m at 20 kV accelerating voltage and 1 118 nA beam current. Counting times for spectra and X-ray elemental map collection were 119 20-30 seconds. No beam damage or change in measured composition with time was 120 observed. We also confirmed that the size of the analyzed region has no measurable 121 effect on the resulting data, as long as the area is significantly larger than the grain size. 122 The EDS spectra were optimized for the quantification using standard XPP procedure 123 included into the INCA Energy 450 software.

Finally we have checked the EDS calibration using post-experimental samples with known compositions and a homogeneous texture synthesized below eutectic temperatures. We found that deviation of Na/Fe ratio measured by EDS from the actual sample composition did not exceed a confidence limit of our measurements (≤ 0.5 mol%).

The Raman measurements were performed using a Horiba J.Y. LabRAM HR800 Raman spectrometer equipped with an Olympus BX41 confocal microscope at IGM SB RAS (Novosibirsk, Russia). Spectra were recorded at room temperature with the 514 nm line of a CVI Melles Griot Ar-ion laser (~1 mW at the sample) and spectral resolution of approximately 2 cm⁻¹. An Olympus 100 × 0.9 objective (100× magnification and a NA of 0.9) was used to focus the laser beam onto the sample and to collect the Raman signal. The angle dispersive X-ray diffraction study of recovered samples was performed in

the Siberian Synchrotron and Terahertz Radiation Center. Measurements were curried out
at the 4th beamline of the VEPP-3 storage ring with 0.3685 Å wavelength and MAR345
image plate detector (Ancharov et al., 2001). The FIT2D program (Hammersley et al.,

6

138 1996) was used to integrate two-dimensional images to one-dimensional patterns; the139 WinXPOW program suite was employed for peak fitting and indexing.

140

141 **3. Experimental results**

142 Selected backscattered electron (BSE) images of sample cross-sections in the 143 system Na_2CO_3 -(Fe_{0.87}Mn_{0.06}Mg_{0.07})CO₃ are shown in Figure 1. The subsolidus samples 144 are represented by homogeneous aggregates of carbonate phases, with grain size varying 145 from several micrometers to several tens of micrometers (Fig. 1a-c). After annealing of 146 mixtures with $X(Na_2CO_3) \le 40$ mol% at 900 °C for 32 h., the limited reagent (Na₂CO₃) 147 was completely consumed to form Na₂Fe(CO₃)₂ (Fig. 1c, Table 1), while in the samples 148 with $X(Na_2CO_3) \ge 60$ mol% relicts of siderite remains within Na₂Fe(CO₃)₂ grains (Fig. 1a, 149 Table 1). In the same run and $X(Na_2CO_3) = 50 \text{ mol}\%$, the sample consists of $Na_2Fe(CO_3)_2$ 150 and relicts of siderite and Na₂CO₃ solid solution (Fig. 1b, Table 1). At 1000 °C after 20 151 hours, the limited reagents have been consumed almost completely (Fig. 1d), except the 152 50 mol% mixture, which contains appreciable amount of siderite (Fig. 1e, Table 1). 153 Besides, the samples contain an intermediate compound, $Na_4Fe(CO_3)_3$, which appears at 154 the Na₂Fe(CO₃)₂-Na₂CO₃ interfaces at $X(Na_2CO_3) = 70$ and 80 mol% (Fig. 1d,e) and 155 within Na₂Fe(CO₃)₂ aggregate at $X(Na_2CO_3) = 60-10$ mol%. Considering the textural 156 features and topology of the phase diagram, the $Na_4Fe(CO_3)_3$ compound is most probably 157 metastable phase, which appears as an intermediate compound in following reactions:

158
$$4Na_2CO_3 + 2FeCO_3 \rightarrow Na_2CO_3 + Na_4Fe(CO_3)_3 + Na_2Fe(CO_3)_2 \rightarrow Na_2CO_3 + Na_2Fe(CO_3)_2 \rightarrow Na_2CO_3 + Na_2Fe(CO_3)_2 \rightarrow Na_2CO_3 + Na_2Fe(CO_3)_2 \rightarrow Na_2CO_3 + Na_2Fe(CO_3)_2 \rightarrow Na_2Fe(CO_$$

159
$$2Na_2CO_3 + 2Na_2Fe(CO_3)_2;$$

160
$$3Na_2CO_3 + 3FeCO_3 \rightarrow Na_4Fe(CO_3)_3 + Na_2Fe(CO_3)_2 + FeCO_3 \rightarrow$$

7/30

161
$$3Na_2Fe(CO_3)_2;$$

162
$$3Na_2CO_3 + 4FeCO_3 \rightarrow Na_4Fe(CO_3)_3 + Na_2Fe(CO_3)_2 + 2FeCO_3 \rightarrow$$

163
$$3Na_2Fe(CO_3)_2 + FeCO_3$$

164 The incipient melting has been established at 1000 °C at $X(Na_2CO_3) = 80$ and 60 165 mol% (Fig. 1d,f, Table 1). At 80 mol% the resulting melt interfaces with the Na₂CO₃ 166 solid solution (Fig. 1d), whereas at 60 mol% the melt contacts with the $Na_2Fe(CO_3)_2$ 167 layer (Fig. 1f). In both cases the melt contains about 66 mol% Na₂CO₃ (Table 1). An 168 appearance of Na₂CO₃ solid solution layer at the HT side of the sample with $X(Na_2CO_3)$ 169 = 70 mol% may be considered as a sign of melting (Fig. 1e). The melt could be 170 segregated at the HT side of the capsule above or beneath the cross-section of the sample. 171 No melting has been observed at $X(Na_2CO_3) \leq 50 \text{ mol}\%$ (Fig. 1g). At 1100 °C, the 60 172 mol% mixture underwent complete melting, while minor amounts of Na₂CO₃ and siderite 173 crystals were remained at the LT sides at $X(Na_2CO_3) = 70$ and 50 mol%, respectively (Fig. 1h,i). The melt coexisting with Na₂CO₃ solid solution at $X(Na_2CO_3) = 70$ and 80 mol% 174 175 contains about 69 mol% Na₂CO₃ and consists of dendritic aggregate of natrite and Fe-176 eitelite. (Table 1). The siderite volume fraction increasing successively when $X(Na_2CO_3)$ 177 changes from 50 to 10 mol% (Fig. 1i,j), while the Na₂CO₃ content in the melt remains 178 constant near 53 mol% (Table 1). The Na₂CO₃ content in the melt coexisting with 179 Na_2CO_3 solid solution increases from 74 to 86 mol%, when temperature increases from 180 1200 to 1300 °C (Table 1). The Na₂CO₃ content in the melt coexisting with siderite 181 decreases from 53 to 35 mol% with increasing temperature from 1200 to 1400 °C. The 182 melt quenched products consist of dendritic aggregate of Fe-eitelite and siderite.

8

183 Natural siderite used in the experiments contained minor Mn and Mg admixtures (6 184 mol% MnCO₃ and 7 mol% MgCO₃, respectively), which indicates that the studied system 185 was pseudobinary. It can be suggested that these components do not affect the phase 186 diagram significantly; however, minor modifications can be possible. Although the 187 concentration of MnCO₃ in siderite remains nearly constant in all experiments, the 188 MgCO₃ content is proportional to the degree of melting. It increases with temperature 189 and/or $X(Na_2CO_3)$ (Table 1, 2). The consecutive increase of Mg number of siderite has to 190 extend its stability to higher temperatures compared to the pure end member. On the other 191 hand, the Mg admixture in the system could not affect the eutectic temperature, because 192 Mg does not enter to the eutectic melt (Table 1).

193 The Mn/(Fe+Mn+Mg) ratio in Na₂Fe(CO₃)₃ is similar to siderite, typically 5-6 194 mol%, while the Mg/(Fe+Mn+Mg) ratio increases from 7 to 14 mol% with decreasing 195 Na₂CO₃ content in the system at 900 °C. At 1000 °C this compositional trend is not clear, 196 probably due to presence of $Na_4Fe(CO_3)_3$. The latter phase is enriched in manganese, 197 Mn/(Fe+Mn+Mg) = 9-10 mol%, and depleted in magnesium, Mg/(Fe+Mn+Mg) = 0.5198 mol% (Table 1). In addition to carbonates the run products contain minor amounts of iron 199 oxide, FeO and/or Fe₃O₄ (Table 1). The appearance of iron oxides in the subsolidus run products is most likely due to partial oxidation of siderite during drying of starting 200 201 mixtures.

Selected Raman spectra of obtained carbonate phases are shown in Figure 2. The spectra from Na₂CO₃ solid solution (Fig. 2a) correspond to the γ -modification of Na₂CO₃, natrite (White, 1974). The spectrum of the new Na₄Fe_{0.9}Mn_{0.1}(CO₃)₃ compound shows three intense bands at 1092, 1084 and 1064 cm⁻¹ assigned to the CO₃²⁻ v_1 symmetric

206 stretching vibration. A single band at about 868 cm⁻¹ can be assigned as an out-of-plane 207 bending motion (v_2) (White, 1974; Sharma and Simons, 1980). Broad and diffuse bands near 1350 cm⁻¹ and 1560 cm⁻¹ may be ascribed to transverse optical (TO) and longitudinal 208 209 optical (LO) vibration modes, respectively, similarly to γ -Na₂CO₃ (Brooker and Bates, 1971). Two bands at 680 and 732 cm⁻¹ are assigned to the v_4 in-plane deformation mode 210 211 of carbonate ion (White, 1974). The spectra also revealed low wavenumber bands at 74, 212 119, 161, 235, and 368 cm⁻¹, which may be assigned to the external vibration modes 213 between the cation and anion group (Fig. 2b).

214 The Raman spectra of Na₂Fe_{0.85}Mn_{0.05}Mg_{0.10}(CO₃)₂ recovered from experiments at 215 6 GPa and 900-1000 °C show a set of bands similar to the spectrum of $Na_2Mg(CO_3)_2$ 216 eitelite, which has rhombohedral $R\bar{3}$ structure (Pabst, 1973; White, 1974; Shatskiv et al., 217 2013a), but shifted to lower wavenumbers (Fig. 2c). The spectra have a single, strong band at 1093 cm⁻¹, which can be attributed to the $CO_3^{2-} v_1$ symmetric stretching mode. 218 Weak bands at 180 and 247 cm⁻¹ are due to lattice vibration. A very intense lattice mode 219 at 93 cm⁻¹ may be due to the motion of the highly polarized Na ion (White, 1974). Two 220 bands at 702 and 730 cm⁻¹ are assigned to the v_4 in-plane deformation mode of carbonate 221 ion (White, 1974). No intensity was observed in the frequency range 2900–4000 cm^{-1} 222 223 suggesting absence of hydration of studied carbonates.

The representative X-ray diffraction (XRD) patterns of samples recovered from run ES354 conducted at 1000 °C and 6 GPa are shown in Fig. 3. The sample with $X(Na_2CO_3)$ = 50 mol% consists of Fe-eitelite (about 95 %) and minor amounts of siderite and unknown phase (Fig. 3a). The sample with $X(Na_2CO_3) = 70$ mol% contains Fe-eitelite, natrite and new phase (Fig. 3b). Fe-eitelite has rhombohedral $R\overline{3}$ structure with cell

229	parameters $a = 4.9712(16)$ Å, $c = 16.569(4)$ Å, $V = 354.61(22)$ Å ³ (Tabl. 2). For
230	comparison, the cell dimensions of Na ₂ Mg(CO ₃) ₂ eitelite are $a = 4.942(2)$ Å, $c = 16.406$
231	(7) Å (Pabst, 1973). The X-ray diffraction patterns of new $Na_4Fe(CO_3)_3$ compound were
232	indexed assuming orthorhombic system (Fig. 3, Tabl. 3). Dimensions of the cell are $a =$
233	10.217(17) Å, $b = 7.235(19)$ Å, $c = 5.265$ (4) Å, $V = 389.10(11)$ Å ³ .

234

235 **Discussion**

236 The Na₂CO₃-FeCO₃ phase diagram. Phase relations established in the system 237 Na_2CO_3 -(Fe_{0.87}Mn_{0.06}Mg_{0.07})CO₃ at 6 GPa are illustrated in Figure 4. The system has one 238 intermediate compound: $Na_2Fe(CO_3)_2$, whose stoichiometry is similar to the double 239 carbonates in the Na₂CO₃-MgCO₃ and K₂CO₃-MgCO₃ systems at 6 GPa (Shatskiy et al., 240 2013a; Shatskiy et al., 2013c). The Na₂Fe(CO_3)₂ compound has an upper stability limit of 241 about 1050 °C, where it melts incongruently to siderite and liquid containing about 55 242 mol% Na₂CO₃. The Na₂CO₃-Na₂Fe(CO₃)₂ eutectic is established at 1000 °C and 66 mol% 243 Na₂CO₃. This eutectic temperature is about 200 °C lower than that established in the (K 244 or Na)₂CO₃-(Ca or Mg)CO₃ binary systems at 6 GPa (Shatskiy et al., 2013a; Shatskiy et 245 al., 2013c; Shatskiy et al., 2013d). Siderite remains as a subliquidus phase at 1400 °C at 246 $X(Na_2CO_3) \le 30$ mol%. In contrast to the low-pressure data (Weidner, 1972), we did not 247 observe thermal decomposition of siderite to iron oxide and CO_2 . In contrast, we found 248 that siderite melts incongruently above 1580 °C and 6 GPa to a carbonate-oxide liquid 249 and CO₂ fluid phase (Shatskiy et al., 2014a). Similar melting reaction was reported for 250 CaCO₃ at 0.1 GPa and 1300 °C (Wyllie, 1967).

11

- -

251	The Na ₂ CO ₃ -FeCO ₃ -MgCO ₃ phase diagram. The ternary Na ₂ CO ₃ -FeCO ₃ -MgCO ₃
252	phase diagram can be constrained combining data from the present experiments with
253	similar data along the Na ₂ CO ₃ -MgCO ₃ and FeCO ₃ -MgCO ₃ binary joins (Shatskiy et al.,
254	2013a; Shatskiy et al., 2014a). The temperature of magnesite congruent melting (Tm) is
255	inferred from the experimental data at 3 GPa, $1575 < Tm < 1595$ °C, at 3.6 GPa, $1600 <$
256	<i>Tm</i> < 1620 °C, (Irving and Wyllie, 1975), at 8 GPa, 1900 < <i>Tm</i> < 2000 °C, and at 15 GPa,
257	1900 < Tm < 2000 °C (Katsura and Ito, 1990). The Na ₂ CO ₃ -MgCO ₃ (Shatskiy et al.,
258	2013a) and Na ₂ CO ₃ -FeCO ₃ systems (Fig. 4) have similar topology with intermediate
259	Na ₂ (Fe,Mg)(CO ₃) ₂ compound, which melts congruently at the Mg-rich side and
260	incongruently at the Fe-rich side. The MgCO ₃ -FeCO ₃ system appears to be a solid
261	solution series (our unpublished data). We assumed continuous solid solution between
262	$Na_2Fe(CO_3)_2$ and $Na_2Mg(CO_3)_2$ based on the following observations. (1) The Mg
263	partitioning between coexisting phases causes formation of Mg-rich eitelite,
264	$Na_2Fe_{0.81}Mn_{0.05}Mg_{0.14}(CO_3)_2$ (Table 1). (2) The $Na_2Fe_{0.3}Mn_{0.1}Mg_{0.6}(CO_3)_2$ solid solution
265	has been reported in hydrothermalites of the Khibiny alkaline igneous complex, Kola
266	Peninsula, Russia (Khomyakov et al., 1980). A general topology of the ternary diagram is
267	shown in Figure 5. At $X(Na_2CO_3) > 50$ mol%, melting in the ternary system is controlled
268	by an cotectic, which temperature and composition gradually shift from 1200 $^{\circ}\mathrm{C}$ and Na#
269	= 71 mol% to 1000 °C and Na# = 66 mol% as $X(MgCO_3) = Mg/(Mg+Mn+Fe)$ decreases
270	from 100 to 0 mol%. At $X(Na_2CO_3) < 50$ mol%, melting in the ternary system is
271	controlled by eutectic, at the Mg-rich side and by peritectic at the Fe-rich side. As
272	$X(MgCO_3)$ decreases, the eutectic shifts from 1225 °C and Na# = 48 mol% toward lower
273	temperatures and Na# = 50 mol%, where it changes to peritectic, which shifts to 1050 °C

and Na# = 55 mol%. The measurable amounts of MgCO₃ (up to 9 mol%) and FeCO₃ (up to 3 mol%) in Na₂CO₃ suggest an existence of the limited range of sodium carbonate solid solutions (Fig. 5).

277 *Implication for incipient melting in the upper mantle.* The presence of variable 278 carbonates in mantle lithologies is apparent through the occurrence of calcite, dolomite, 279 magnesite, siderite, eitelite [Na₂Mg(CO₃)₂], northupite [Na₃Mg(CO₃)₂Cl], nyerereite 280 $[Na_2Ca(CO_3)_2]$, and burkeite $[Na_6(CO_3)(SO_4)_2]$ in mantle xenoliths and as inclusions in 281 diamonds (Bulanova and Pavlova, 1987; Wang et al., 1996; Sobolev et al., 1997; Stachel 282 et al., 1998; Stachel et al., 2000; Phillips et al., 2004; Zedgenizov et al., 2004; Kaminsky 283 et al., 2009a; Korsakov et al., 2009; Bulanova et al., 2010; Golovin et al., 2012; 284 Kaminsky et al., 2013; Sharygin et al., 2013). The carbonate composition is determined 285 by the mantle lithology (peridotitic or eclogitic) and by PT conditions (Yaxley and Brey, 286 2004; Brey et al., 2008). Although CO₂ enters to the subduction zones mainly in the form 287 of calcite in hydrothermally altered basalts (Alt and Teagle, 1999; Jarrard, 2003), 288 carbonates exhumed from the mantle depths are often dolomitic in composition (Sobolev and Shatsky, 1990; Murakami et al., 2008). This is because calcite subjected to the PT 289 290 conditions of eclogite facies as a part of basaltic oceanic crust reacts with garnet to form 291 (Ca,Mg,Fe)CO₃ solid solutions accordingly to the reaction (Yaxley and Brey, 2004):

$$6CaCO_3(calcite) + (Mg,Fe)_3Al_2Si_3O_{12}(garnet) =$$

$$3(Ca,Mg,Fe)(CO_3)_2(\text{solid solutions}) + Ca_3Al_2Si_3O_{12}(\text{grossular}).$$
(3)

Extrapolation of the solidus of the carbonated eclogite EC1 determined by Yaxley and Brey (2004) to 6 GPa suggests the temperature of about 1340 °C. This value closely 296 matches the 1350 °C minimum melting temperature at 6 GPa for the CaCO₃-MgCO₃
297 binary reported by Buob et al. (2006).

Experiments in the model peridotite (CaO-MgO-Al₂O₃-SiO₂-CO₂, CMAS-CO₂) systems showed that magnesite is stable subsolidus phase in ultramafic mantle. The presence of magnesite depresses the solidus temperatures of mantle peridotites by more than 300 °C (from 1750 to 1380 °C) at 6 GPa and yields magnesium dolomitic carbonatite melt (Dalton and Presnall, 1998; Brey et al., 2008). The dominant melting reaction at the solidus of magnesite-bearing lherzolite (Dasgupta and Hirschmann, 2007) is:

$$305 \qquad CaMgSi_2O_6(CPx) + 2MgCO_3(Mt) = CaMg(CO_3)_2(L) + Mg_2Si_2O_6(OPx)$$

However, experimental solidi of natural magnesite peridotite (1230 °C at 6 GPa (Dasgupta and Hirschmann, 2006)) and natural eclogite + 5% CO₂ (1070 °C at 6 GPa (Dasgupta et al., 2004)) are 120-280 °C lower than the melting minimum on the join CaCO₃–MgCO₃. The difference most likely reflecting the fluxing effects of Na₂O and FeO (Dasgupta and Hirschmann, 2007).

According to our data at 6 GPa the presence of Na₂CO₃ substantially decreases temperature of incipient melting in the carbonated systems to 1225 °C for MgCO₃ (Shatskiy et al., 2013a), to 1200 °C for CaCO₃ (Shatskiy et al., 2013d), to 1100 °C for CaMg(CO₃)₂ (our unpublished data), and to 1050 °C for FeCO₃ (this study). Although the Na₂CO₃-FeCO₃ join shows coolest solidus, it is unlikely that FeCO₃ makes a significant contribution to the lowering of solidus temperature of the Na₂CO₃-FeCO₃-MgCO₃-CaCO₃ system and, therefore, solidus temperatures of carbonated peridotite and eclogite.

14

Summarizing above data we can conclude that: (i) adding of FeCO₃ would not change the Na₂CO₃-MgCO₃-CaCO₃ topology, because the topologies of Na₂CO₃-MgCO₃ and Na₂CO₃-FeCO₃ binaries and MgCO₃-CaCO₃ and FeCO₃-CaCO₃ binaries are essentially the same (Buob et al., 2006; Shatskiy et al., 2013a; Shatskiy et al., 2014a); (ii) since the Fe component forms continuous solid solutions with subliquidus phases:

323 magnesite, dolomite, Mg-calcite and eitelite; the natural abundance of Fe cannot 324 dramatically change solidus temperature in the Na₂CO₃-MgCO₃-CaCO₃ system.

325 Therefore, the maximum contribution of FeCO₃ component into the lowering solidus

326 temperatures of carbonated mantle could not exceed several tens °C.

327

328 Acknowledgements

We thank Oliver Tschauner for editorial handling and useful suggestions. We gratefully acknowledge anonymous reviewers for comments which help to improve the manuscript. This work was supported by the Russian Scientific Fund (proposal No. 14-17-00609) and performed under the project of the Ministry of education and science of Russian Federation (No. 14.B25.31.0032). The work was carried out involving the equipment belonging to the Siberian Synchrotron and Terahertz Radiation Center (Novosibirsk, Russia).

336

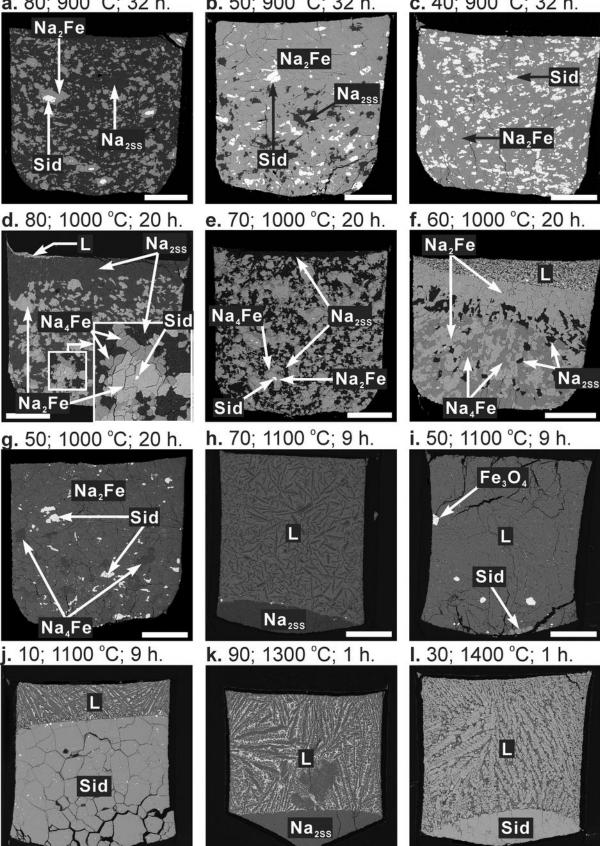
Figure captions

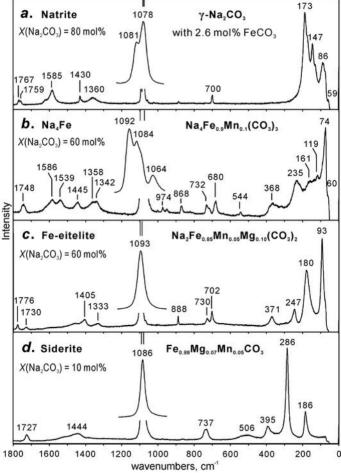
Fig. 1. Representative BSE images of sample cross-sections illustrating phase relations in the system Na₂CO₃-(Fe_{0.87}Mn_{0.06}Mg_{0.07})CO₃ at 6 GPa. Na₂ss = Na₂CO₃siderite solid solution; Na₄Fe = Na₄Fe(CO₃)₃; Na₂Fe = Na₂Fe(CO₃)₂; Sd = siderite; L =

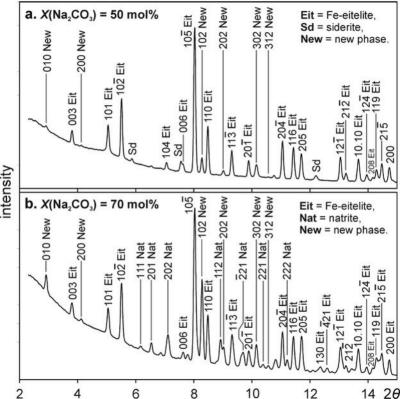
341	liquid. The high-temperature edge of the capsule is located at the upper side of each
342	image. The white bar in each image is a scale 200 μ m in length.
343	Fig. 2. Representative Raman spectra of natrite (a), Na ₄ Fe _{0.9} Mn _{0.1} (CO ₃) ₃ (b),
344	$Na_2Fe_{0.85}Mn_{0.05}Mg_{0.01}(CO_3)_2$ (c) and siderite (d) from the samples synthesized in the
345	system Na_2CO_3 -(Fe _{0.87} Mn _{0.06} Mg _{0.07})CO ₃ at 6 GPa and 1000 °C. The spectra were
346	collected at ambient conditions.
347	Fig. 3. Angle-dispersive X-ray diffraction patterns of the samples recovered from
348	the run ES354 at 1000 °C, 6 GPa and duration 20 h. (a) $X(Na_2CO_3) = 50$ mol%. (b)
349	$X(Na_2CO_3) = 70 \text{ mol}\%.$
350	Fig. 4. The phase relations in the system Na ₂ CO ₃ -(Fe _{0.87} Mn _{0.06} Mg _{0.07})CO ₃ at 6 GPa.
351	Grey and open circles mark melt and Na ₂ ss compositions measured by EDS. Grey areas
352	in the circles denote phases remaining in trace amount either due to kinetic problems or
353	phases observed in the lower temperature side of partially molten samples. Na ₂ ss =
354	Na_2CO_3 -siderite solid solution; $Na_2Fe = Na_2Fe(CO_3)_2$; $Sd = siderite$; $L = liquid$.
355	Fig. 5. Isobaric T-X diagram for the ternary system Na ₂ CO ₃ -MgCO ₃ -
356	$Fe_{0.96}Mn_{0.06}CO_3$ at 6 GPa. The temperature of siderite incongruent melting is from
357	(Shatskiy et al., 2014b). The temperature of magnesite congruent melting (Tm) is inferred
358	from the experimental data (Irving and Wyllie, 1975; Katsura and Ito, 1990).
359	
360	References cited

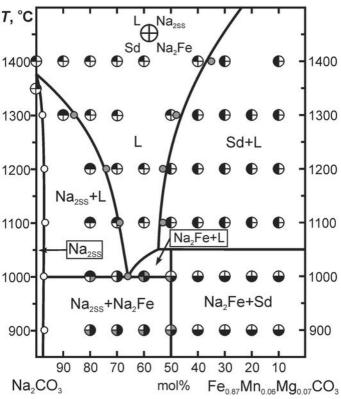
- Alt, J.C., and Teagle, A.H. (1999) The uptake of carbon duringalteration of ocean crust.
 Geochimica et Cosmochimica Acta, 63(10), 1527-1535.
 Ancharov, A.I., Manakov, A.Y., Mezentsev, N.A., Tolochko, B.P., Sheromov, M.A., and
 Tsukanov, V.M. (2001) New station at the 4th beamline of the VEPP-3 storage
- ring. Nuclear Instruments and Methods in Physics Research Section A:
 Accelerators, Spectrometers, Detectors and Associated Equipment, 470(1), 80-83.

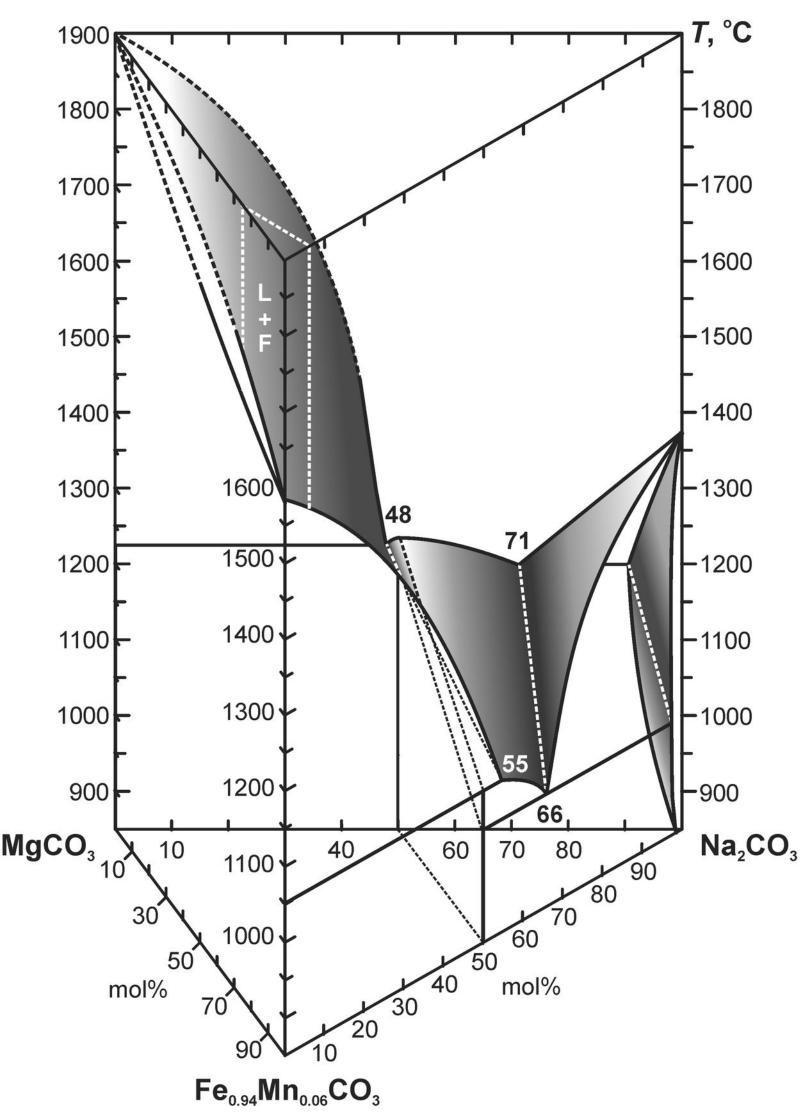
367 Boulard, E., Gloter, A., Corgne, A., Antonangeli, D., Auzende, A.L., Perrillat, J.P., Guyot, 368 F., and Figuet, G. (2011) New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 108(13), 369 370 5184-5187. Boulard, E., Menguy, N., Auzende, A.L., Benzerara, K., Bureau, H., Antonangeli, D., 371 372 Corgne, A., Morard, G., Siebert, J., Perrillat, J.P., Guyot, F., and Figuet, G. (2012) 373 Experimental investigation of the stability of Fe-rich carbonates in the lower 374 mantle. Journal of Geophysical Research-Solid Earth, 117, B02208. 375 Brey, G.P., Bulatov, V.K., and Girnis, A.V. (2011) Melting of K-rich carbonated peridotite at 6-10 GPa and the stability of K-phases in the upper mantle. Chemical 376 377 Geology, 281(3-4), 333-342. 378 Brey, G.P., Bulatov, V.K., Girnis, A.V., and Lahaye, Y. (2008) Experimental melting of 379 carbonated peridotite at 6-10 GPa. Journal of Petrology, 49(4), 797-821. 380 Brooker, M.H., and Bates, J.B. (1971) Raman and Infrared Spectral Studies of Anhydrous 381 Li₂CO₃ and Na₂CO₃. Journal of Chemical Physics, 54(11), 4788-&. 382 Bulanova, G.P., and Pavlova, L.P. (1987) Magnesite peridotite assemblage in diamond 383 from the Mir pipe. Doklady Akademii Nauk SSSR, 295(6), 1452-1456. Bulanova, G.P., Walter, M.J., Smith, C.B., Kohn, S.C., Armstrong, L.S., Blundy, J., and 384 385 Gobbo, L. (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary 386 387 kimberlite magmatism. Contributions to Mineralogy and Petrology, 160(4), 489-388 510. 389 Buob, A., Luth, R.W., Schmidt, M.W., and Ulmer, P. (2006) Experiments on CaCO₃-390 $MgCO_3$ solid solutions at high pressure and temperature. American Mineralogist, 391 91(2-3), 435-440. 392 Cooper, A.F., Gittins, J., and Tuttle, O.F. (1975) The system Na₂CO₃-K₂CO₃-CaCO₃ at 1 393 kilobar and its significance in carbonatite petrogenesis. American Journal of 394 Science, 275(5), 534-560. 395 Dalton, J.A., and Presnall, D.C. (1998) The continuum of primary carbonatitic-396 kimberlitic melt compositions in equilibrium with lherzolite: Data from the 397 system CaO-MgO-Al₂O₃-SiO₂-CO₂ at 6 GPa. Journal of Petrology, 39(11-12), 398 1953-1964. 399 Dasgupta, R., and Hirschmann, M.M. (2006) Melting in the Earth's deep upper mantle 400 caused by carbon dioxide. Nature, 440(7084), 659-662. Dasgupta, R., and Hirschmann, M.M. (2007) Effect of variable carbonate concentration 401 402 on the solidus of mantle peridotite. American Mineralogist, 92(2-3), 370-379. 403 Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in 404 Earth's interior. Earth and Planetary Science Letters, 298(1-2), 1-13. 405 Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004) Deep global cycling of 406 carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary Science Letters, 227(1-2), 73-85. 407 408 Eitel, W., and Skaliks, W. (1929) Some double carbonates of alkali and earth alkali. 409 Zeitschrift Fur Anorganische Und Allgemeine Chemie, 183(3), 263-286. Franzolin, E., Schmidt, M.W., and Poli, S. (2011) Ternary Ca-Fe-Mg carbonates: 410 subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model 411


- 412 including order/disorder. Contributions to Mineralogy and Petrology, 161(2), 213-413 227. 414 Genge, M.J., Price, G.D., and Jones, A.P. (1995) Molecular-dynamics simulations of 415 CaCO3 melts to mantle pressures and temperatures - implications for carbonatite magmas. Earth and Planetary Science Letters, 131(3-4), 225-238. 416 417 Golovin, A.V., Sharygin, I.S., Korsakov, A.V., and Pokhilenko, N.P. (2012) Can parental be alkali-carbonate liquids: Results of investigation of 418 kimberlite melts 419 composition melt inclusions in the mantle xenoliths from kimberlites. 10th International Kimberlite Conference, p. 10IKC-91, Bangalore, India. 420 Grassi, D., and Schmidt, M.W. (2011) The melting of carbonated pelites from 70 to 700 421 422 km depth. Journal of Petrology, 52(4), 765-789. 423 Guillot, B., and Sator, N. (2011) Carbon dioxide in silicate melts: A molecular dynamics simulation study. Geochimica Et Cosmochimica Acta, 75(7), 1829-1857. 424 425 Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D. 426 (1996) Two-dimensional detector software: from real detector to idealised image 427 or two-theta scan. International Journal of High Pressure Research, 14(4-6), 235-428 248. 429 Hammouda, T., and Laporte, D. (2000) Ultrafast mantle impregnation by carbonatite 430 melts. Geology, 28(3), 283-285. 431 Hunter, R.H., and McKenzie, D. (1989) The equilibrium geometry of carbonate melts in 432 rocks of mantle composition. Earth and Planetary Science Letters, 92(3-4), 347-433 356. 434 Irving, A.J., and Wyllie, P.J. (1975) Subsolidus and melting relationships for calcite, 435 magnesite and the join CaCO₃-MgCO₃ to 36 kb. Geochimica et Cosmochimica 436 Acta, 39(1), 35-53. 437 Jarrard, R.D. (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. 438 Geochemistry Geophysics Geosystems, 4(5), 8905. Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., and Thomas, R. (2009a) Nyerereite 439 440 and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic 441 magmas. Mineralogical Magazine, 73(5), 797-816. Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D., and Griffin, W.L. 442 443 (2009b) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso 444 State, Brazil. Lithos, 112, 833-842. Kaminsky, F.V., Wirth, R., and Schreiber, A. (2013) Carbonatitic inclusions in deep 445 446 mantle diamond from Juina, Brazil: new minerals in the carbonate-halide 447 association. The Canadian Mineralogist, 51(5), 669-688. 448 Katsura, T., and Ito, E. (1990) Melting and subsolidus relations in the MgSiO₃–MgCO₃ 449 system at high pressures: implications to evolution of the Earth's atmosphere. 450 Earth and Planetary Science Letters, 99(1-2), 110–117.
- Khomyakov, A.P., Sandomirskaya, S.M., and Malinovskii, Y.A. (1980) Iron Eitelite,
 Na₂(Mg,Fe)(CO₃)₂: A New Mineral Variety. Doklady Akademii Nauk SSSR,
 255(5), 1256-1259.
- Klein-BenDavid, O., Logvinova, A.M., Schrauder, M., Spetius, Z.V., Weiss, Y., Hauri,
 E.H., Kaminsky, F.V., Sobolev, N.V., and Navon, O. (2009) High-Mg
 carbonatitic microinclusions in some Yakutian diamonds a new type of
 diamond-forming fluid. Lithos, 112(S2), 648-659.


- 7/30
- Korsakov, A.V., Golovin, A.V., De Gussem, K., Sharygin, I.S., and Vandenabeele, P.
 (2009) First finding of burkeite in melt inclusions in olivine from sheared
 lherzolite xenoliths. Spectrochimica Acta Part A: Molecular and Biomolecular
 Spectroscopy, 73(3), 424-427.
- 462 Lavina, B., Dera, P., Downs, R.T., Yang, W.G., Sinogeikin, S., Meng, Y., Shen, G.Y.,
 463 and Schiferl, D. (2010) Structure of siderite FeCO₃ to 56 GPa and hysteresis of its
 464 spin-pairing transition. Physical Review B, 82(6), 064110.
- Lecuyer, C., and Ricard, Y. (1999) Long-term fluxes and budget of ferric iron:
 implication for the redox states of the Earth's mantle and atmosphere. Earth and
 Planetary Science Letters, 165(2), 197-211.
- Litasov, K.D., Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Dorogokupets, P.I.,
 Dymshits, A.M., Ohtani, E., Higo, Y., and Funakoshi, K. (2013a) *P-V-T* equation
 of state of siderite to 33 GPa and 1673 K. Physics of the Earth and Planetary
 Interiors, 224, 83-87.
- Litasov, K.D., Shatskiy, A., and Ohtani, E. (2013b) Earth's Mantle Melting in the
 Presence of C–O–H–Bearing Fluid. In S. Karato, Ed. Physics and chemistry of the
 deep Earth, DOI: 10.1002/9781118529492.ch2, p. 38-65. John Wiley & Sons,
 Ltd. .
- Litasov, K.D., Shatskiy, A., Ohtani, E., and Yaxley, G.M. (2013c) The solidus of alkaline
 carbonatite in the deep mantle. Geology, 41(1), 79-82.
- 478 Minarik, W.G., and Watson, E.B. (1995) Interconnectivity of carbonate melt at low melt
 479 fraction. Earth and Planetary Science Letters, 133(3-4), 423-437.
- 480 Murakami, T., Wallis, S., Enami, M., and Kagi, H. (2008) Forearc diamond from Japan.
 481 Geology, 36(3), 219-222.
- 482 Nagai, T., Ishido, T., Seto, Y., Nishio-Hamane, D., Sata, N., and Fujino, K. (2010)
 483 Pressure-induced spin transition in FeCO₃-siderite studied by X-ray diffraction
 484 measurements. Journal of Physics: Conference Series, 215, 012002.
- 485 Navon, O. (1991) High internal pressure in diamond fluid inclusions determined by
 486 infrared absorption. Nature, 353(6346), 746-748.
- 487 Ono, S., Kikegawa, T., and Ohishi, Y. (2007) High-pressure transition of CaCO₃.
 488 American Mineralogist, 92(7), 1246-1249.
- Pabst, A. (1973) The crystallography and structure of eitelite, Na₂Mg(CO₃)₂. American
 Mineralogist, 58(3-4), 211-217.
- Phillips, D., Harris, J.W., and Viljoen, K.S. (2004) Mineral chemistry and thermobarometry of inclusions from De Beers Pool diamonds, Kimberley, South Africa. Lithos, 77(1), 155-179.
- 494 Santillán, J., and Williams, Q. (2004) A high-pressure infrared and X-ray study of FeCO₃
 495 and MnCO₃: comparison with CaMg(CO₃)₂-dolomite. Physics of the Earth and
 496 Planetary Interiors, 143-144, 291-304.
- 497 Schrauder, M., and Navon, O. (1994) Hydrous and carbonatitic mantle fluids in fibrous
 498 diamonds from Jwaneng, Botswana. Geochimica Et Cosmochimica Acta, 58(2),
 499 761-771.
- Sharma, S.K., and Simons, B. (1980) Raman study of K₂CO₃-MgCO₃ glasses. Carnegie
 Inst Washington Yearb, 79, 322-326.


502 503	Sharygin, I.S., Golovin, A.V., Korsakov, A.V., and Pokhilenko, N.P. (2013) Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia) – a
504	new locality and host rock type. European Journal of Mineralogy, 25, 825-834.
505	Shatskiy, A., Borzdov, Y.M., Litasov, K.D., Kupriyanov, I.N., Ohtani, E., and Palyanov,
506	Y.N. (2014a) Phase relations in the system FeCO ₃ -CaCO ₃ at 6 GPa and 900-
507	1700 °C and its relation to the system CaCO ₃ -FeCO ₃ -MgCO ₃ . American
508	Mineralogist, 99(4), 773-785.
509	Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Litasov, K.D., Kupriyanov, I.N., Higo,
510 511	Y., Borzdov, Y.M., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. (2013a) Melting and subsolidus phase relations in the system Na ₂ CO ₃ -MgCO ₃ +-H ₂ O at 6
512	GPa and the stability of $Na_2Mg(CO_3)_2$ in the upper mantle. American
512	Mineralogist, $98(11-12)$, $2172-2182$.
515	Shatskiy, A., Katsura, T., Litasov, K.D., Shcherbakova, A.V., Borzdov, Y.M., Yamazaki,
514	D., Yoneda, A., Ohtani, E., and Ito, E. (2011) High pressure generation using
516	scaled-up Kawai-cell. Physics of the Earth and Planetary Interiors, 189(1-2), 92-
517	108.
518	Shatskiy, A., Litasov, K.D., Borzdov, Y.M., Katsura, T., Yamazaki, D., and Ohtani, E.
519	(2013b) Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24
520	GPa: Implication for the melt transport by dissolution-precipitation in the
521	transition zone and uppermost lower mantle. Physics of the Earth and Planetary
522	Interiors, 225, 1-11.
523	Shatskiy, A., Litasov, K.D., Ohtani, E., Borzdov, Y.M., and Palyanov, Y.N. (2014b) The
524	systems K ₂ CO ₃ -FeCO ₃ and MgCO ₃ -FeCO ₃ at 6 GPa and 900-1700 °C. European
525	Journal of Mineralogy, Under review.
526	Shatskiy, A., Sharygin, I.S., Gavryushkin, P.N., Litasov, K.D., Borzdov, Y.M.,
527	Shcherbakova, A.V., Higo, Y., Funakoshi, K., Palyanov, Y.N., and Ohtani, E.
528	(2013c) The system K ₂ CO ₃ -MgCO ₃ at 6 GPa and 900-1450 °C. American
529	Mineralogist, 98(8-9), 1593-1603.
530	Shatskiy, A., Sharygin, I.S., Litasov, K.D., Borzdov, Y.M., Palyanov, Y.N., and Ohtani,
531	E. (2013d) New experimental data on phase relations for the system Na ₂ CO ₃ -
532	CaCO ₃ at 6 GPa and 900-1400 °C. American Mineralogist, 98(11-12), 2164-2171.
533	Sobolev, N.V., Kaminsky, F.V., Griffin, W.L., Yefimova, E.S., Win, T.T., Ryan, C.G.,
534	and Botkunov, A.I. (1997) Mineral inclusions in diamonds from the Sputnik
535	kimberlite pipe, Yakutia. Lithos, 39(3-4), 135-157.
536	Sobolev, N.V., and Shatsky, V.S. (1990) Diamond inclusions in garnets from
537	metamorphic rocks: a new environment for diamond formation. Nature,
538	343(6260), 742-746.
539	Stachel, T., Harris, J.W., and Brey, G.P. (1998) Rare and unusual mineral inclusions in
540	diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology,
541	132(1), 34-47.
542	Stachel, T., Harris, J.W., Brey, G.P., and Joswig, W. (2000) Kankan diamonds (Guinea)
543	II: lower mantle inclusion parageneses. Contributions to Mineralogy and
544	Petrology, 140(1), 16-27.
545	Tomlinson, E.L., Jones, A.P., and Harris, J.W. (2006) Co-existing fluid and silicate
546 547	inclusions in mantle diamond. Earth and Planetary Science Letters, 250(3-4), 581-
547	595.


548	Wang, A., Pasteris, J.D., Meyer, H.O.A., and DeleDuboi, M.L. (1996) Magnesite-bearing
549 550	inclusion assemblage in natural diamond. Earth and Planetary Science Letters, 141(1-4), 293-306.
551	Weidner, J.R. (1972) Equilibria in the system Fe-C-O; Part I, Siderite-magnetite-carbon-
552	vapor equilibrium from 500 to 10,000 bars American Journal of Science, 272(8),
553	735-751.
554	Weiss, Y., Kessel, R., Griffin, W.L., Kiflawi, I., Klein-BenDavid, O., Bell, D.R., Harris,
555	J.W., and Navon, O. (2009) A new model for the evolution of diamond-forming
556	fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea.
557	Lithos, 112(S2), 660-674.
558	White, W.B. (1974) The carbonate minerals. In V.C. Farmer, Ed. The Infrared Spectra of
559	the Minerals, Mineralogical Society Monograph, p. 227-284. Mineralogical
560	Society, London.
561	Wyllie, P.J. (1967) Phase equilibria in system CaO-CO ₂ -H ₂ O and related systems, with
562	Implications for crystal growth of calcite and apatite. Journal of the American
563	Ceramic Society, 50(1), 43-46.
564	Yaxley, G.M., and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite
565	assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites.
566	Contributions to Mineralogy and Petrology, 146(5), 606-619.
567	Yoshino, T., Laumonier, M., McIsaac, E., and Katsura, T. (2010) Electrical conductivity
568	of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications
569	for melt distribution and melt fraction in the upper mantle. Earth and Planetary
570	Science Letters, 295(3-4), 593-602.
571	Zedgenizov, D.A., Kagi, H., Shatsky, V.S., and Sobolev, N.V. (2004) Carbonatitic melts
572	in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from
573	vibrational spectroscopy. Mineralogical Magazine, 68(1), 61-73.
574	Zedgenizov, D.A., Ragozin, A.L., Shatsky, V.S., Araujo, D., Griffin, W.L., and Kagi, H.
575	(2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds
576	from the Internationalnaya kimberlite pipe (Yakutia). Lithos, 112(S2), 638-647.
577	Zedgenizov, D.A., Rege, S., Griffin, W.L., Kagi, H., and Shatsky, V.S. (2007)
578	Composition of trapped fluids in cuboid fibrous diamonds from the Udachnaya
579	kimberlite: LAM-ICPMS analysis. Chemical Geology, 240(1-2), 151-162.
580	$\mathbf{K} = \mathbf{K} = $
500	


X(Na₂CO₃) in mol%; temperature; duration **a.** 80; 900 °C; 32 h. **b.** 50; 900 °C; 32 h. **c.** 40; 900 °C; 32 h.

#,					positions i		Na_2CO_3 -(Fe ₀)		npositions		
Τ,	X _{Na}	Phase	Na ₂ O	FeO	MnO	MgO	Total	Na ₂ #	Fe#	Mn#	Mg#
τ						_					
c	90	L	46.3(2)	7.3(3)	0.5(0)	0.3(0)	54.4(5)	86.7(4)	88.0(2)	5.5(2)	6.5(0)
mi.	80	L	47.1(2)	10.0(0)	0.5(0)	0.4(0)	57.9(2)	83.0(0)	89.4(1)	4.7(3)	5.9(2)
T2078, 1400°C, 15 min	70	L	40.6(3)	17.2(6)	1.1(0)	0.8(1)	59.7(1.0)	70.6(6)	87.7(2)	5.6(0)	6.7(2)
ດົ	60	FeO	n.d.	93.9(5)	0.7(1)	n.d.	94.8(5)	n.d.	99.3(1)	0.7(1)	n.d.
0°0		L	35.0(2)	22.1(2)	1.3(1)	1.0(1)	59.5(1)	61.6(4)	87.6(1)	5.3(2)	7.0(4)
40	40	L	25.1(1)	37.9(1)	2.4(1)	1.8(0)	67.2(1)	40.0(1)	87.0(2)	5.6(1)	7.4(1)
3, 1	30	Sd	n.d.	52.9(4)	3.1(1)	4.4(1)	60.3(5)	n.d.	82.9(2)	4.8(1)	12.3(3)
078		L	21.8(1.0)	41.5(1)	2.6(1)	1.6(2)	67.5(1.4)	34.9(8)	88.4(9)	5.5(2)	6.1(7)
T 2	10	Sd	n.d.	52.6(4)	3.3(1)	3.4(1)	59.3(4)	n.d.	84.8(3)	5.5(2)	9.7(1)
_		L	22.5	41.6	2.7	1.7	68.5	35.5	87.8	5.7	6.6
	90	Na ₂	51.7(7)	1.5(2)	n.d.	n.d.	53.2(5)	97.7(3)	100.0(0)	n.d.	n.d.
		L	46.4(3)	7.7(4)	0.5(0)	n.d.	54.6(1)	86.8(7)	94.0(2)	6.0(2)	n.d.
	80	L	45.7	10.8	0.5	0.4	57.4	81.5	89.5	4.3	6.2
Ч	70	L	41.7(2)	16.3(1)	1.0(0)	0.8(1)	59.8(2)	72.1(1)	87.2(8)	5.2(2)	7.6(6)
. 1	60	FeO	n.d.	95.8(4)	0.7(1)	n.d.	96.5(5)	n.d.	99.3(1)	0.7(1)	n.d.
ES357, 1300°C, 1 h		L	36.3	21.7	1.4	1.1	60.5	62.7	86.8	5.6	7.6
00	50	FeO	n.d.	96.2(5)	0.6(0)	n.d.	96.8(5)	n.d.	99.4(0)	0.6(0)	n.d.
<u>e</u> 1		L	29.1	32.1	2.1	1.4	64.5	47.9	87.6	5.7	6.7
57,	30	Sd	n.d.	52.6(3)	3.0(1)	4.0(2)	59.3(3)	n.d.	83.8(5)	4.8(1)	11.4(4)
S 3		L	29.4(5)	33.6(3)	2.1(1)	1.3(1)	66.3(7)	47.4(3)	88.6(1)	5.5(3)	5.9(3)
Щ	20	Sd	n.d.	53.9(2)	3.1(2)	3.3(1)	60.2(2)	n.d.	85.7(2)	5.2(3)	9.1(1)
		L	30.8(3)	33.1(3)	2.3(0)	0.9(1)	67.1(5)	49.1(1)	89.3(4)	6.3(0)	4.3(4)
	10	Sd	n.d.	53.5(3)	3.4(1)	2.8(2)	59.6(2)	n.d.	86.5(4)	5.5(1)	8.0(4)
		L	28.7(4)	33.1(1)	2.4(2)	0.8(1)	64.9(0)	47.4(6)	89.6(6)	6.4(4)	3.9(2)
	80	Na ₂	51.5(3)	1.9(0)	n.d.	n.d.	53.4(3)	96.9(0)	100.0(0)	n.d.	n.d.
		L	42.6	14.9	0.9	0.6	59.1	74.4	87.9	5.6	6.5
	70	L	41.1	17.0	1.0	0.7	59.9	71.1	87.9	5.4	6.8
	60	FeO	n.d.	96.9	0.6	n.d.	97.5	n.d.	99.4	0.6	n.d.
5 h		L	34.4(1.4)	22.5(1.1)	1.5(2)	1.3(1)	59.6(0)	60.3(2.2)	85.8(5)	5.7(5)	8.5(0)
ເນີ	40	Sd	n.d.	53.2(1)	2.9(0)	4.2(2)	60.3(2)	n.d.	83.7(5)	4.6(1)	11.6(4)
ES356, 1200°C, 5 h		FeO	n.d.	96.4	0.6	n.d.	97.0	n.d.	99.4	0.6	n.d.
20		L	30.7(3)	28.6(0)	1.9(0)	1.2(1)	62.4(2)	52.1(3)	87.5(2)	6.0(0)	6.5(2)
5, 1	30	Sd	n.d.	53.7(5)	3.2(1)	3.2(1)	60.1(3)	n.d.	85.7(6)	5.1(3)	9.2(4)
356		FeO	n.d.	95.0	0.6	n.d.	95.6	n.d.	99.4	0.6	n.d.
\mathbf{ES}		L	29.1(2)	27.3(0)	2.2(0)	1.0(1)	59.6(1)	51.8(3)	87.1(5)	7.2(1)	5.8(6)
	20	Sd	n.d.	54.0(2)	3.2(1)	3.1(1)	60.3(2)	n.d.	86.0(3)	5.2(1)	8.7(3)
		L	31.7(9)	28.7(2)	2.0(1)	0.8(1)	63.1(8)	53.4(9)	89.3(5)	6.3(2)	4.4(3)
	10	Sd	n.d.	53.8(5)	3.3(1)	2.8(2)	59.8(4)	n.d.	86.7(5)	5.3(1)	8.0(5)
		L	31.8(4)	26.0(4)	1.9(0)	0.6(0)	60.3(0)	56.0(5)	89.7(5)	6.7(2)	3.5(2)
	80	Na ₂	51.5(4)	2.5(1)	n.d.	n.d.	54.1(4)	95.8(2)	100.0(0)	n.d.	n.d.
		Ĺ	40.8(1)	16.4(3)	1.0(0)	1.0(1)	58.9(3)	71.5(5)	87.1(4)	5.2(1)	7.7(3)
h	70	Na ₂	51.5(7)	2.6(3)	n.d.	n.d.	54.3(6)	95.6(3)	100.0(0)	n.d.	n.d.
5 5		L	40.8	18.2	1.1	n.d.	54.3(6)	69.6	87.9	5.4	6.7
T2077, 1100°C, 9 h	60	FeO	n.d.	96.6	0.6	n.d.	97.2	n.d.	99.4	0.6	n.d.
10(L	35.0	22.0	1.4	1.1	59.5	61.5	86.9	5.5	7.6
.1	50	Sd	n.d.	52.7(3)	2.8(1)	5.0(1)	60.5(1)	n.d.	81.7(4)	4.3(2)	13.9(2)
LT(Ĩ	Fe ₃ O ₄	n.d.	91.5	n.d.	n.d.	91.5	n.d.	100.0(0)	n.d.	n.d.
Γ2(L	30.4(2)	25.8(3)	1.7(0)	1.3(2)	59.1(3)	54.2(1)	86.8(8)		7.5(1.0)
[40	Sd	n.d.	53.9(6)	3.1(1)	3.7(3)	60.7(5)	n.d.	84.7(7)		10.4(7)
		Fe ₃ O ₄	n.d.	91.6	n.d.	n.d.	91.6	n.d.	100.0(0)	n.d.	n.d.
	I	304		21.0		11.4.	/1.0	11.4.	100.0(0)		

Table. 1. Compositions of the run products in the system Na_2CO_3 -($Fe_{0.87}Mn_{0.06}Mg_{0.07}$)CO₃ at 6 GPa.

$ \begin{array}{c} L \\ \hline $ 28,9(7) & 27.1(4) & 1.9(0) & 1.0(0) & 58.8(1.2) & 52.1(3) & 88.1(1) & 62.0(5) & 57.(2) \\ \hline $ R_2,O_1 & n.d. & 92.7 & n.d. & n.d. & 92.7 \\ \hline $ L & 29.1(2) & 26.8(2) & 1.8(0) & 0.7(1) & 58.3(1) & 53.1(5) & 90.0(4) & 6.0(0) & 4.0(5) \\ \hline $ 20 & 5d & n.d. & 54.1(3) & 3.3(1) & 2.9(1) & 60.3(1) \\ \hline $ L & 29.1 & 27.3 & 1.9 & 0.7 & 59.1 \\ \hline $ L & 29.1 & 27.3 & 1.9 & 0.7 & 59.1 \\ \hline $ L & 27.8(1) & 26.1(1) & 1.9(2) & 0.7(1) & 56.4(1) & 52.5(1) & 89.4 & 6.5(1) & 7.2(4) \\ \hline $ L & 27.8(1) & 26.1(1) & 1.9(2) & 0.7(1) & 56.4(1) & 52.5(1) & 89.6(1) & 64.5(5) & 4.0(4) \\ \hline $ R_1 & R_1 & R_2 & R_2$		1	T	20.0(7)	27.1(4)	1.0(0)	1.0(0)	50.0(1.0)	52 1 (2)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		•	L	28.9(7)	27.1(4)	1.9(0)	1.0(0)	58.8(1.2)	52.1(3)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		30			. ,	. ,	. ,	. ,		., ., .,	·
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,				. ,	. ,		·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20			. ,			· · ·		., ., .,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10							. ,		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10				• • •					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			L	27.8(1)	26.1(1)	1.9(2)	0.7(1)	56.4(1)	52.5(1)	89.6(1) 6.4(5) 4.0(4	.)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		80		. ,							
$ \begin{array}{c} \label{eq:hardbox} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $											
$ \begin{array}{c} \mbox{T} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$. ,	. ,	. ,			., ., .,	·
$ \begin{array}{c} \mbox{H} \label{eq:heat} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				· · ·					. ,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		70	-	. ,	• •						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-			. ,		. ,		. ,	
$ \begin{array}{c} \mbox{H}{f} \\ \mbox{H}$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c} \underbrace{ \begin{array}{c} \bigcup \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Ч(60	-	· · ·				. ,			
$ \begin{array}{c} \mbox{H} 1 \mb$, Х										
$ \begin{array}{c} \mbox{H} 1 \mb$	S								. ,		
$ \begin{array}{c} \mbox{H} 1 \mb$	00			. ,	. ,	· · ·		. ,			
$ \begin{array}{c} \mbox{H} 1 \mb$	10	50							. ,		
$ \begin{array}{c} \mbox{H} 1 \mb$	54.		-	· · ·		. ,			. ,		· ·
$ \begin{array}{c} \mbox{H} 1 \mb$	S3					. ,	• • •	. ,		. ,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Щ	40							. ,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		30							. ,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		•									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20		. ,	. ,					., ., .,	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		80			. ,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	. ,							
$ \begin{array}{c} {\tt H} {\tt H}_{2}{\tt F}_{2} \\ {\tt H}_{2}{\tt K}_{2}{\tt F}_{2} \\ {\tt R}_{2}{\tt K}_{2}{\tt K}_{2}{\tt K}_{3}{\tt K}_{3}{\tt K}_{2}{\tt K}_{3}{\tt K}_{2}{\tt K}_{3}{\tt K}_{2}{\tt K}_{3}{\tt K}_{2}{\tt K}_{3}{\tt K}_{2}{\tt K}_{3}{\tt K}_{1}{\tt K}_{1}{\tt K}_{1}{\tt K}_{1}{\tt K}_{1}{\tt K}_{1}{\tt K}_{2}{\tt K}_{2}{\tt K}_{2}{\tt K}_{1}{\tt K}_{1}{$. ,				·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		70									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10			. ,						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ч	60						. ,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ľ,										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ő	50							. ,		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6, 9										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	716	4.0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ2(40						. ,			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ľ	20									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30		. ,							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20									
10 Na ₂ Fe 29.0(5) 26.9(5) 1.8(0) 2.6(1) 60.3(1.0) 50.2(3) 80.6(0) 5.4(1) 14.0(0)		20									
		10									
Sa n.a. $53.5(5) = 3.4(2) = 2.5(1) = 59.3(5)$ n.d. $87.3(5) = 5.5(3) = 7.2(3)$		10								., ., .,	
Notice $\#$ - we have been zero direction \mathbf{Y}_{-} - No CO content in the system. No $\#$ - No CO content in the			Sd	n.d.							

Notes: # = run number; τ = run duration; X_{Na} = Na₂CO₃ content in the system; Na₂# = Na₂CO₃ content in the run products; Fe# = Fe/(Fe+Mn+Mg); Mn# = Mn/(Fe+Mn+Mg); Mg# = Mg/(Fe+Mn+Mg); Na₂ = Na₂CO₃;

L = liquid; Sd = siderite; $Na_2Fe = Na_2Fe(CO_3)_2$; $Na_4Fe = Na_4Fe(CO_3)_3$. Standard deviations are given in parentheses, where the number of measurement is more than one.

Table 2. Interplanar spacings (*d* values) for Na₂Fe_{0.87}Mn_{0.05}Mg_{0.8}(CO₃)₂ eitelite synthesized at 6 GPa and 1000 °C (run ES354, $X(Na_2CO_3) = 50 \text{ mol}\%$).

(1011120551, 11(102)003) = 501101/0).							
d	2θ	Int	hkl				
5.544265	3.8089	8.68	003				
4.181242	5.0512	18.52	101				
3.831111	5.5132	40.7	012				
2.991021	7.0634	5.41	104				
2.767682	7.6342	4.63	006				
2.630894	8.0318	100	015				
2.490466	8.4855	32.4	110				
2.270456	9.3095	17.2	113				
2.137369	9.8905	10.77	021				
2.075914	10.1841	2.16	107				
1.912842	11.0549	25.34	024				
1.849718	11.4334	21.4	116				
1.80688	11.7054	17.48	205				
1.621283	13.0509	16.24	211				
1.59806	13.2414	5.51	122				
1.54816	13.6702	15.18	1010				
1.51624	13.9594	4.39	214				
1.494857	14.1601	2.47	208				
1.480616	14.297	7.69	119				
1.462323	14.4768	11.86	125				
1.436614	14.7373	9.83	300				

Table 3. Interplanar spacings (*d* values) for Na₄Fe_{0.9}Mn_{0.1}(CO₃)₃ synthesized at 6 GPa and 1000 °C (run ES354, $X(Na_2CO_3) = 70 \text{ mol}\%)$.

d	2θ	Int	hkl
7.23847	2.9172	20	010
5.113432	4.1299	4	200
2.550317	8.2860	100	102
2.340075	9.0319	18	202
2.081418	10.1571	27	302
2.000422	10.5695	4	312