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Abstract 15 

The phase relations in the Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 system have been 16 

studied in Kawai-type multianvil experiments using graphite capsules at 6.0 GPa and 17 

900-1400 °C. Subsolidus assemblages comprise the stability fields of 18 

Na2CO3 + Na2Fe(CO3)2 and Na2Fe(CO3)2 + siderite with the transition boundary at 19 

X(Na2CO3) = 50 mol%. Intermediate Na2Fe(CO3)2 compound has rhombohedral 3R  20 

eitelite structure with cell parameters a =  4.9712(16) Å, c = 16.569(4) Å, V = 354.61(22). 21 

The Na2CO3-Na2Fe(CO3)2 eutectic is established at 1000 ºC and 66 mol% Na2CO3. 22 

Na2Fe(CO3)2 disappears between 1000 and 1100 ºC via incongruent melting to siderite 23 
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and a liquid composed of about 55 mol% Na2CO3 and 45 mol% siderite. Siderite remains 24 

a subliquidus phase at 1400 ºC at X(Na2CO3) ≤ 30 mol%. 25 

The ternary Na2CO3-FeCO3-MgCO3 system can be built up from the corresponding 26 

binary systems: two systems with intermediate Na2(Mg,Fe)(CO3)2 phase, which melts 27 

congruently at the Mg-rich side and incongruently at the Fe-rich side, and the 28 

(Mg,Fe)CO3 system with complete solid solution. The phase relations suggest that the 29 

maximum contribution of FeCO3 component into the lowering solidus temperatures of 30 

Na-bearing carbonated mantle domains could not exceed several tens °C. 31 

 32 

1. Introduction 33 

Previous experimental studies demonstrate that siderite forms a complete solid 34 

solution with magnesite, which would be stable under upper and lower mantle conditions 35 

and may transport carbon in subducting lithospheric plates into the deep mantle 36 

(Dasgupta et al., 2004; Santillán and Williams, 2004; Lavina et al., 2010; Boulard et al., 37 

2011; Franzolin et al., 2011; Litasov et al., 2013a). The observations of FeCO3 as 38 

inclusions in diamond in association with the (Mg,Fe)SiO3 + (Mg,Fe)O assemblage 39 

(Stachel et al., 2000) supports these experimental observations. Yet, in the presence of 40 

alkalis, carbonates could melt at much lower temperatures to form alkali-rich carbonatite 41 

melts (Brey et al., 2011; Grassi and Schmidt, 2011; Litasov et al., 2013c). Such melts 42 

were also found as recrystallized microinclusions in diamonds from kimberlites (Navon, 43 

1991; Schrauder and Navon, 1994; Zedgenizov et al., 2007; Weiss et al., 2009). Owing to 44 

their low density (Genge et al., 1995; Guillot and Sator, 2011), enhanced wetting 45 

properties (Hunter and McKenzie, 1989; Minarik and Watson, 1995; Yoshino et al., 46 
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2010), and ability to transport silicate components (Shatskiy et al., 2013b), such melts 47 

could stem from subducted oceanic lithosphere and percolate upwards along grain 48 

boundaries (Hammouda and Laporte, 2000) or by means of diapiric ascent (Litasov et al., 49 

2013b; Litasov et al., 2013c). This could suppress the amount of carbon, which can be 50 

potentially transported down to the transition zone and lower mantle (Dasgupta and 51 

Hirschmann, 2010). It is, therefore, essential to know phase relations in simple alkali-52 

alkaline earth and Fe-bearing carbonate systems under mantle conditions. 53 

Although phase relations in the alkali-earth carbonate systems were studied 54 

extensively from upper down to lower mantle conditions, e.g., (Katsura and Ito, 1990; 55 

Ono et al., 2007; Nagai et al., 2010; Franzolin et al., 2011; Boulard et al., 2012), the 56 

studies of the alkali-bearing carbonate systems were limited to Fe-free compositions 57 

(Eitel and Skaliks, 1929; Cooper et al., 1975; Shatskiy et al., 2013a; Shatskiy et al., 58 

2013c; Shatskiy et al., 2013d). At the same time, an investigation of Fe-bearing carbonate 59 

systems, e.g. Na2CO3-FeCO3-MgCO3-CaCO3, has particular importance, given the 60 

abundance of Na and Fe in carbonatite melt inclusions in diamonds (up to 7-14 wt% 61 

Na2O and 11-58 wt% FeO) from the upper (Tomlinson et al., 2006; Klein-BenDavid et al., 62 

2009; Zedgenizov et al., 2009) and lower mantle (Kaminsky et al., 2009b; Kaminsky et 63 

al., 2013) as well as the abundance of Fe-bearing species in hydrothermally altered 64 

oceanic crust subducted into the Earth’s mantle (Lecuyer and Ricard, 1999). As a part of 65 

an investigation of the Na2CO3-FeCO3-MgCO3-CaCO3 system, the corresponding binary 66 

systems have to be examined. Since phase relations in the Na2CO3-MgCO3, Na2CO3-67 

CaCO3, FeCO3-MgCO3, CaCO3-MgCO3 and CaCO3-FeCO3 systems at 6 GPa have been 68 

already studied (Buob et al., 2006; Shatskiy et al., 2013a; Shatskiy et al., 2013d; Shatskiy 69 
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et al., 2014a), here we present new experimental data on phase relations in the Na2CO3-70 

siderite system at 6 GPa and 900-1700 ºC. Using obtained data we discuss a possible 71 

topology of the ternary Na2CO3-FeCO3-MgCO3 system and the influence of iron 72 

component on melting in the petrologically important system Na2CO3-CaCO3-MgCO3. 73 

 74 

2. Experimental methods 75 

Experiments were conducted using Kawai-type multianvil apparatuses at Tohoku 76 

University (Sendai, Japan) (Shatskiy et al., 2011). We employed ZrO2 pressure media 77 

with edge length of 20.5 mm and WC anvils with truncation edge length of 12 mm. 78 

Sample heating was achieved using a graphite heater, 4.5/4.0 mm in outer/inner diameter 79 

and 11 mm in length. Temperature was controlled using WRe(3%/25%) thermocouple 80 

inserted into the heater center via walls and electrically insulated by Al2O3 tubes. The cell 81 

configuration and calibration procedures were described in details by Shatskiy et al. 82 

(2013c). In this study we used siderite from Bakal deposit, South Ural, Chelyabinsk 83 

region, Russia. Siderite crystals were ground and sintered to homogeneous sample at 6 84 

GPa and 900 °C. Based on EDS and WDS analysis the composition of recovered siderite 85 

corresponds to (Fe0.87Mn0.06Mg0.07)CO3. Then this siderite was milled and mixed with 86 

synthetic Na2CO3 in agate mortar under acetone and loaded into graphite cassettes 87 

(multicharged sample holders). The cell assembly contained four cassettes. In turn, each 88 

cassette contained four holes, 0.9 mm in diameter. To study the present system we used 89 

two lower cassettes (i.e., eight holes with different sample compositions shown in Table 90 

1). The remaining holes were employed to study alternative carbonate systems. The 91 

loaded cassettes were placed in a vacuum oven, heated to 240ºC for 1 hour, then cooled 92 
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to 130 °C and stored for 8-12 hours prior to loading. Prepared assemblies were stored at 93 

130ºC in a vacuum oven for 1-2 hours prior to compression. During opening the vacuum 94 

oven was filled with dry air. 95 

All experiments were performed as follows. The assemblies were compressed at 96 

room temperature to 6.0 MN in DIA press, or to 4.5 MN in wedge press, corresponding 97 

to pressure of 6.0 ± 0.5 GPa (Shatskiy et al., 2013c). Then the samples were heated to 98 

temperatures ranging from 900 to 1400 °C. The heating time ranged from 15 min to 32 h 99 

depending on temperature conditions. The temperature was maintained within 0.5 °C of 100 

the desired value using T. Katsura’s software. The maximum temperature difference 101 

between samples did not exceed 20 °C (see Fig. 3 in Shatskiy et al. (2013c)). 102 

Experiments were terminated by cutting off the electrical power of heater, followed by 103 

slow decompression. 104 

Since the Na2CO3-bearing samples are hygroscopic, a special care was taken to 105 

minimize the the duration of contact between sample and air. Recovered samples were 106 

mounted into an epoxy resin and polished under low-viscosity oil using 400-, 1000- and 107 

1500-mesh sandpapers and 3-µm diamond paste. The sample surface was cleaned using 108 

an oil spray between each step of polishing. Finally we used petroleum benzene to 109 

remove oil after polishing immediately prior to coating and loading the sample into a 110 

scanning electron microscope. 111 

Samples were studied using a Tescan MYRA 3 LMU scanning electron microscope 112 

(Tescan) coupled with an INCA Energy dispersive X-ray microanalysis system 450 113 

equipped with the liquid nitrogen-free Large area EDS X-Max-80 Silicon Drift Detector 114 

(Oxford Instruments) at V.S. Sobolev IGM SB RAS (Novosibirsk, Russia). The EDS 115 
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spectra were collected by rastering the electron beam over a surface area available for the 116 

analysis with linear dimensions from 10 to 300 µm at 20 kV accelerating voltage and 1 117 

nA beam current. Counting times for spectra and X-ray elemental map collection were 118 

20-30 seconds. No beam damage or change in measured composition with time was 119 

observed. We also confirmed that the size of the analyzed region has no measurable 120 

effect on the resulting data, as long as the area is significantly larger than the grain size. 121 

The EDS spectra were optimized for the quantification using standard XPP procedure 122 

included into the INCA Energy 450 software. 123 

Finally we have checked the EDS calibration using post-experimental samples with 124 

known compositions and a homogeneous texture synthesized below eutectic temperatures. 125 

We found that deviation of Na/Fe ratio measured by EDS from the actual sample 126 

composition did not exceed a confidence limit of our measurements (≤ 0.5 mol%).  127 

The Raman measurements were performed using a Horiba J.Y. LabRAM HR800 128 

Raman spectrometer equipped with an Olympus BX41 confocal microscope at IGM SB 129 

RAS (Novosibirsk, Russia). Spectra were recorded at room temperature with the 514 nm 130 

line of a CVI Melles Griot Ar-ion laser (∼1 mW at the sample) and spectral resolution of 131 

approximately 2 cm–1. An Olympus 100 × 0.9 objective (100× magnification and a NA of 132 

0.9) was used to focus the laser beam onto the sample and to collect the Raman signal. 133 

The angle dispersive X-ray diffraction study of recovered samples was performed in 134 

the Siberian Synchrotron and Terahertz Radiation Center. Measurements were curried out 135 

at the 4th beamline of the VEPP-3 storage ring with 0.3685 Å wavelength and MAR345 136 

image plate detector (Ancharov et al., 2001).  The FIT2D program (Hammersley et al., 137 
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1996) was used to integrate two-dimensional images to one-dimensional patterns; the 138 

WinXPOW program suite was employed for peak fitting and indexing. 139 

 140 

3. Experimental results 141 

Selected backscattered electron (BSE) images of sample cross-sections in the 142 

system Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 are shown in Figure 1. The subsolidus samples 143 

are represented by homogeneous aggregates of carbonate phases, with grain size varying 144 

from several micrometers to several tens of micrometers (Fig. 1a-c). After annealing of 145 

mixtures with X(Na2CO3) ≤ 40 mol% at 900 ºC for 32 h., the limited reagent (Na2CO3) 146 

was completely consumed to form Na2Fe(CO3)2 (Fig. 1c, Table 1), while in the samples 147 

with X(Na2CO3) ≥ 60 mol% relicts of siderite remains within Na2Fe(CO3)2 grains (Fig. 1a, 148 

Table 1). In the same run and X(Na2CO3) = 50 mol%, the sample consists of Na2Fe(CO3)2 149 

and relicts of siderite and Na2CO3 solid solution (Fig. 1b, Table 1). At 1000 ºC after 20 150 

hours, the limited reagents have been consumed almost completely (Fig. 1d), except the 151 

50 mol% mixture, which contains appreciable amount of siderite (Fig. 1e, Table 1). 152 

Besides, the samples contain an intermediate compound, Na4Fe(CO3)3, which appears at 153 

the Na2Fe(CO3)2-Na2CO3 interfaces at X(Na2CO3) = 70 and 80 mol% (Fig. 1d,e) and 154 

within Na2Fe(CO3)2 aggregate at X(Na2CO3) = 60-10 mol%. Considering the textural 155 

features and topology of the phase diagram, the Na4Fe(CO3)3 compound is most probably 156 

metastable phase, which appears as an intermediate compound in following reactions: 157 

4Na2CO3 + 2FeCO3 → Na2CO3 + Na4Fe(CO3)3 + Na2Fe(CO3)2 → 158 

2Na2CO3 + 2Na2Fe(CO3)2; 159 

3Na2CO3 + 3FeCO3 → Na4Fe(CO3)3 + Na2Fe(CO3)2 + FeCO3 → 160 
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3Na2Fe(CO3)2; 161 

3Na2CO3 + 4FeCO3 → Na4Fe(CO3)3 + Na2Fe(CO3)2 + 2FeCO3 → 162 

3Na2Fe(CO3)2 + FeCO3. 163 

The incipient melting has been established at 1000 °C at X(Na2CO3) = 80 and 60 164 

mol% (Fig. 1d,f, Table 1). At 80 mol% the resulting melt interfaces with the Na2CO3 165 

solid solution (Fig. 1d), whereas at 60 mol% the melt contacts with the Na2Fe(CO3)2 166 

layer (Fig. 1f). In both cases the melt contains about 66 mol% Na2CO3 (Table 1). An 167 

appearance of Na2CO3 solid solution layer at the HT side of the sample with X(Na2CO3) 168 

= 70 mol% may be considered as a sign of melting (Fig. 1e). The melt could be 169 

segregated at the HT side of the capsule above or beneath the cross-section of the sample. 170 

No melting has been observed at X(Na2CO3) ≤ 50 mol% (Fig. 1g). At 1100 ºC, the 60 171 

mol% mixture underwent complete melting, while minor amounts of Na2CO3 and siderite 172 

crystals were remained at the LT sides at X(Na2CO3) = 70 and 50 mol%, respectively (Fig. 173 

1h,i). The melt coexisting with Na2CO3 solid solution at X(Na2CO3) = 70 and 80 mol% 174 

contains about 69 mol% Na2CO3 and consists of dendritic aggregate of natrite and Fe-175 

eitelite. (Table 1). The siderite volume fraction increasing successively when X(Na2CO3) 176 

changes from 50 to 10 mol% (Fig. 1i,j), while the Na2CO3 content in the melt remains 177 

constant near 53 mol% (Table 1). The Na2CO3 content in the melt coexisting with 178 

Na2CO3 solid solution increases from 74 to 86 mol%, when temperature increases from 179 

1200 to 1300 °C (Table 1). The Na2CO3 content in the melt coexisting with siderite 180 

decreases from 53 to 35 mol% with increasing temperature from 1200 to 1400 °C. The 181 

melt quenched products consist of dendritic aggregate of Fe-eitelite and siderite. 182 
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Natural siderite used in the experiments contained minor Mn and Mg admixtures (6 183 

mol% MnCO3 and 7 mol% MgCO3, respectively), which indicates that the studied system 184 

was pseudobinary. It can be suggested that these components do not affect the phase 185 

diagram significantly; however, minor modifications can be possible. Although the 186 

concentration of MnCO3 in siderite remains nearly constant in all experiments, the 187 

MgCO3 content is proportional to the degree of melting. It increases with temperature 188 

and/or X(Na2CO3) (Table 1, 2). The consecutive increase of Mg number of siderite has to 189 

extend its stability to higher temperatures compared to the pure end member. On the other 190 

hand, the Mg admixture in the system could not affect the eutectic temperature, because 191 

Mg does not enter to the eutectic melt (Table 1). 192 

The Mn/(Fe+Mn+Mg) ratio in Na2Fe(CO3)3 is similar to siderite, typically 5-6 193 

mol%, while the Mg/(Fe+Mn+Mg) ratio increases from 7 to 14 mol% with decreasing 194 

Na2CO3 content in the system at 900 °C. At 1000 ºC this compositional trend is not clear, 195 

probably due to presence of Na4Fe(CO3)3. The latter phase is enriched in manganese, 196 

Mn/(Fe+Mn+Mg) = 9-10 mol%, and depleted in magnesium, Mg/(Fe+Mn+Mg) = 0-5 197 

mol% (Table 1). In addition to carbonates the run products contain minor amounts of iron 198 

oxide, FeO and/or Fe3O4 (Table 1). The appearance of iron oxides in the subsolidus run 199 

products is most likely due to partial oxidation of siderite during drying of starting 200 

mixtures.  201 

Selected Raman spectra of obtained carbonate phases are shown in Figure 2.  The 202 

spectra from Na2CO3 solid solution (Fig. 2a) correspond to the γ-modification of Na2CO3, 203 

natrite (White, 1974). The spectrum of the new Na4Fe0.9Mn0.1(CO3)3 compound shows 204 

three intense bands at 1092, 1084 and 1064 cm–1 assigned to the CO3
2- ν1 symmetric 205 
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stretching vibration. A single band at about 868 cm-1 can be assigned as an out-of-plane 206 

bending motion (ν2) (White, 1974; Sharma and Simons, 1980). Broad and diffuse bands 207 

near 1350 cm-1 and 1560 cm-1 may be ascribed to transverse optical (TO) and longitudinal 208 

optical (LO) vibration modes, respectively, similarly to γ-Na2CO3 (Brooker and Bates, 209 

1971). Two bands at 680 and 732 cm-1 are assigned to the ν4 in-plane deformation mode 210 

of carbonate ion (White, 1974). The spectra also revealed low wavenumber bands at 74, 211 

119, 161, 235, and 368 cm-1, which may be assigned to the external vibration modes 212 

between the cation and anion group (Fig. 2b). 213 

The Raman spectra of Na2Fe0.85Mn0.05Mg0.10(CO3)2 recovered from experiments at 214 

6 GPa and 900-1000 °C show a set of bands similar to the spectrum of Na2Mg(CO3)2 215 

eitelite, which has rhombohedral 3R  structure (Pabst, 1973; White, 1974; Shatskiy et al., 216 

2013a), but shifted to lower wavenumbers (Fig. 2c). The spectra have a single, strong 217 

band at 1093 cm-1, which can be attributed to the CO3
2- ν1 symmetric stretching mode. 218 

Weak bands at 180 and 247 cm–1 are due to lattice vibration. A very intense lattice mode 219 

at 93 cm–1 may be due to the motion of the highly polarized Na ion (White, 1974). Two 220 

bands at 702 and 730 cm-1 are assigned to the ν4 in-plane deformation mode of carbonate 221 

ion (White, 1974). No intensity was observed in the frequency range 2900–4000 cm–1 222 

suggesting absence of hydration of studied carbonates. 223 

The representative X-ray diffraction (XRD) patterns of samples recovered from run 224 

ES354 conducted at 1000 °C and 6 GPa are shown in Fig. 3. The sample with X(Na2CO3) 225 

= 50 mol% consists of Fe-eitelite (about 95 %) and minor amounts of siderite and 226 

unknown phase (Fig. 3a). The sample with X(Na2CO3) = 70 mol% contains Fe-eitelite, 227 

natrite and new phase (Fig. 3b). Fe-eitelite has rhombohedral 3R  structure with cell 228 
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parameters a =  4.9712(16) Å, c = 16.569(4) Å, V = 354.61(22) Å3 (Tabl. 2). For 229 

comparison, the cell dimensions of Na2Mg(CO3)2 eitelite are a =  4.942(2) Å, c = 16.406 230 

(7) Å (Pabst, 1973). The X-ray diffraction patterns of new Na4Fe(CO3)3 compound were 231 

indexed assuming orthorhombic system (Fig. 3, Tabl. 3). Dimensions of the cell are a =  232 

10.217(17) Å, b =  7.235(19) Å, c = 5.265 (4) Å, V = 389.10(11) Å3. 233 

 234 

Discussion 235 

The Na2CO3-FeCO3 phase diagram. Phase relations established in the system 236 

Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 at 6 GPa are illustrated in Figure 4. The system has one 237 

intermediate compound: Na2Fe(CO3)2, whose stoichiometry is similar to the double 238 

carbonates in the Na2CO3-MgCO3 and K2CO3-MgCO3 systems at 6 GPa (Shatskiy et al., 239 

2013a; Shatskiy et al., 2013c). The Na2Fe(CO3)2 compound has an upper stability limit of 240 

about 1050 °C, where it melts incongruently to siderite and liquid containing about 55 241 

mol% Na2CO3. The Na2CO3-Na2Fe(CO3)2 eutectic is established at 1000 ºC and 66 mol% 242 

Na2CO3. This eutectic temperature is about 200 °C lower than that established in the (K 243 

or Na)2CO3-(Ca or Mg)CO3 binary systems at 6 GPa (Shatskiy et al., 2013a; Shatskiy et 244 

al., 2013c; Shatskiy et al., 2013d). Siderite remains as a subliquidus phase at 1400 ºC at 245 

X(Na2CO3) ≤ 30 mol%. In contrast to the low-pressure data (Weidner, 1972), we did not 246 

observe thermal decomposition of siderite to iron oxide and CO2. In contrast, we found 247 

that siderite melts incongruently above 1580 °C and 6 GPa to a carbonate-oxide liquid 248 

and CO2 fluid phase (Shatskiy et al., 2014a). Similar melting reaction was reported for 249 

CaCO3 at 0.1 GPa and 1300 °C (Wyllie, 1967). 250 
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The Na2CO3-FeCO3-MgCO3 phase diagram. The ternary Na2CO3-FeCO3-MgCO3 251 

phase diagram can be constrained combining data from the present experiments with 252 

similar data along the Na2CO3-MgCO3 and FeCO3-MgCO3 binary joins (Shatskiy et al., 253 

2013a; Shatskiy et al., 2014a). The temperature of magnesite congruent melting (Tm) is 254 

inferred from the experimental data at 3 GPa, 1575 < Tm < 1595 °C, at 3.6 GPa, 1600 < 255 

Tm < 1620 °C, (Irving and Wyllie, 1975), at 8 GPa, 1900 < Tm < 2000 °C, and at 15 GPa, 256 

1900 < Tm < 2000 °C (Katsura and Ito, 1990). The Na2CO3-MgCO3 (Shatskiy et al., 257 

2013a) and Na2CO3-FeCO3 systems (Fig. 4) have similar topology with intermediate 258 

Na2(Fe,Mg)(CO3)2 compound, which melts congruently at the Mg-rich side and 259 

incongruently at the Fe-rich side. The MgCO3-FeCO3 system appears to be a solid 260 

solution series (our unpublished data). We assumed continuous solid solution between 261 

Na2Fe(CO3)2 and Na2Mg(CO3)2 based on the following observations. (1) The Mg 262 

partitioning between coexisting phases causes formation of Mg-rich eitelite, 263 

Na2Fe0.81Mn0.05Mg0.14(CO3)2 (Table 1). (2) The Na2Fe0.3Mn0.1Mg0.6(CO3)2 solid solution 264 

has been reported in hydrothermalites of the Khibiny alkaline igneous complex, Kola 265 

Peninsula, Russia (Khomyakov et al., 1980). A general topology of the ternary diagram is 266 

shown in Figure 5. At X(Na2CO3) > 50 mol%, melting in the ternary system is controlled 267 

by an cotectic, which temperature and composition gradually shift from 1200 ºC and Na# 268 

= 71 mol% to 1000 ºC and Na# = 66 mol% as X(MgCO3) = Mg/(Mg+Mn+Fe) decreases 269 

from 100 to 0 mol%. At X(Na2CO3) < 50 mol%, melting in the ternary system is 270 

controlled by eutectic, at the Mg-rich side and by peritectic at the Fe-rich side. As 271 

X(MgCO3) decreases, the eutectic shifts from 1225 ºC and Na# = 48 mol% toward lower 272 

temperatures and Na# = 50 mol%, where it changes to peritectic, which shifts to 1050 ºC 273 



 13

and Na# = 55 mol%. The measurable amounts of MgCO3 (up to 9 mol%) and FeCO3 (up 274 

to 3 mol%) in Na2CO3 suggest an existence of the limited range of sodium carbonate 275 

solid solutions (Fig. 5). 276 

Implication for incipient melting in the upper mantle. The presence of variable 277 

carbonates in mantle lithologies is apparent through the occurrence of calcite, dolomite, 278 

magnesite, siderite, eitelite [Na2Mg(CO3)2], northupite [Na3Mg(CO3)2Cl], nyerereite 279 

[Na2Ca(CO3)2], and burkeite [Na6(CO3)(SO4)2] in mantle xenoliths and as inclusions in 280 

diamonds (Bulanova and Pavlova, 1987; Wang et al., 1996; Sobolev et al., 1997; Stachel 281 

et al., 1998; Stachel et al., 2000; Phillips et al., 2004; Zedgenizov et al., 2004; Kaminsky 282 

et al., 2009a; Korsakov et al., 2009; Bulanova et al., 2010; Golovin et al., 2012; 283 

Kaminsky et al., 2013; Sharygin et al., 2013). The carbonate composition is determined 284 

by the mantle lithology (peridotitic or eclogitic) and by PT conditions (Yaxley and Brey, 285 

2004; Brey et al., 2008). Although CO2 enters to the subduction zones mainly in the form 286 

of calcite in hydrothermally altered basalts (Alt and Teagle, 1999; Jarrard, 2003), 287 

carbonates exhumed from the mantle depths are often dolomitic in composition (Sobolev 288 

and Shatsky, 1990; Murakami et al., 2008). This is because calcite subjected to the PT 289 

conditions of eclogite facies as a part of basaltic oceanic crust reacts with garnet to form 290 

(Ca,Mg,Fe)CO3 solid solutions accordingly to the reaction (Yaxley and Brey, 2004): 291 

6CaCO3(calcite) + (Mg,Fe)3Al2Si3O12(garnet) = 292 

3(Ca,Mg,Fe)(CO3)2(solid solutions) + Ca3Al2Si3O12(grossular).  (3) 293 

Extrapolation of the solidus of the carbonated eclogite EC1 determined by Yaxley and 294 

Brey (2004) to 6 GPa suggests the temperature of about 1340 °C. This value closely 295 
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matches the 1350 °C minimum melting temperature at 6 GPa for the CaCO3-MgCO3 296 

binary reported by Buob et al. (2006). 297 

Experiments in the model peridotite (CaO-MgO-Al2O3-SiO2-CO2, CMAS-CO2) 298 

systems showed that magnesite is stable subsolidus phase in ultramafic mantle. The 299 

presence of magnesite depresses the solidus temperatures of mantle peridotites by more 300 

than 300 °C (from 1750 to 1380 °C) at 6 GPa and yields magnesium dolomitic 301 

carbonatite melt (Dalton and Presnall, 1998; Brey et al., 2008). The dominant melting 302 

reaction at the solidus of magnesite-bearing lherzolite (Dasgupta and Hirschmann, 2007) 303 

is: 304 

CaMgSi2O6(CPx) + 2MgCO3(Mt) = CaMg(CO3)2(L) + Mg2Si2O6(OPx). 305 

However, experimental solidi of natural magnesite peridotite (1230 °C at 6 GPa 306 

(Dasgupta and Hirschmann, 2006)) and natural eclogite + 5% CO2 (1070 °C at 6 GPa 307 

(Dasgupta et al., 2004)) are 120-280 °C lower than the melting minimum on the join 308 

CaCO3–MgCO3. The difference most likely reflecting the fluxing effects of Na2O and 309 

FeO (Dasgupta and Hirschmann, 2007). 310 

According to our data at 6 GPa the presence of Na2CO3 substantially decreases 311 

temperature of incipient melting in the carbonated systems to 1225 °C for MgCO3 312 

(Shatskiy et al., 2013a), to 1200 °C for CaCO3 (Shatskiy et al., 2013d), to 1100 °C for 313 

CaMg(CO3)2 (our unpublished data), and to 1050 °C for FeCO3 (this study). Although the 314 

Na2CO3-FeCO3 join shows coolest solidus, it is unlikely that FeCO3 makes a significant 315 

contribution to the lowering of solidus temperature of the Na2CO3-FeCO3-MgCO3-316 

CaCO3 system and, therefore, solidus temperatures of carbonated peridotite and eclogite.  317 
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Summarizing above data we can conclude that: (i) adding of FeCO3 would not 318 

change the Na2CO3-MgCO3-CaCO3 topology, because the topologies of Na2CO3-MgCO3 319 

and Na2CO3-FeCO3 binaries and MgCO3-CaCO3 and FeCO3-CaCO3 binaries are 320 

essentially the same (Buob et al., 2006; Shatskiy et al., 2013a; Shatskiy et al., 2014a); (ii) 321 

since the Fe component forms continuous solid solutions with subliquidus phases: 322 

magnesite, dolomite, Mg-calcite and eitelite; the natural abundance of Fe cannot 323 

dramatically change solidus temperature in the Na2CO3-MgCO3-CaCO3 system. 324 

Therefore, the maximum contribution of FeCO3 component into the lowering solidus 325 

temperatures of carbonated mantle could not exceed several tens °C. 326 
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 336 

Figure captions 337 

Fig. 1. Representative BSE images of sample cross-sections illustrating phase 338 

relations in the system Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 at 6 GPa. Na2ss = Na2CO3-339 

siderite solid solution; Na4Fe = Na4Fe(CO3)3; Na2Fe = Na2Fe(CO3)2; Sd = siderite; L = 340 
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liquid. The high-temperature edge of the capsule is located at the upper side of each 341 

image. The white bar in each image is a scale 200 μm in length. 342 

Fig. 2. Representative Raman spectra of natrite (a), Na4Fe0.9Mn0.1(CO3)3 (b), 343 

Na2Fe0.85Mn0.05Mg0.01(CO3)2 (c) and siderite (d) from the samples synthesized in the 344 

system Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 at 6 GPa and 1000 oC. The spectra were 345 

collected at ambient conditions. 346 

Fig. 3. Angle-dispersive X-ray diffraction patterns of the samples recovered from 347 

the run ES354 at 1000 °C, 6 GPa and duration 20 h. (a) X(Na2CO3) = 50 mol%. (b) 348 

X(Na2CO3) = 70 mol%. 349 

Fig. 4. The phase relations in the system Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 at 6 GPa. 350 

Grey and open circles mark melt and Na2ss compositions measured by EDS. Grey areas 351 

in the circles denote phases remaining in trace amount either due to kinetic problems or 352 

phases observed in the lower temperature side of partially molten samples. Na2ss = 353 

Na2CO3-siderite solid solution; Na2Fe = Na2Fe(CO3)2; Sd = siderite; L = liquid. 354 

Fig. 5. Isobaric T-X diagram for the ternary system Na2CO3-MgCO3-355 

Fe0.96Mn0.06CO3 at 6 GPa. The temperature of siderite incongruent melting is from 356 

(Shatskiy et al., 2014b). The temperature of magnesite congruent melting (Tm) is inferred 357 

from the experimental data (Irving and Wyllie, 1975; Katsura and Ito, 1990).  358 
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Table. 1. Compositions of the run products in the system Na2CO3-(Fe0.87Mn0.06Mg0.07)CO3 at 6 GPa. 
#, 
T, 
τ 

XNa Phase 
Compositions in wt% Compositions in mol% 

Na2O FeO MnO MgO Total Na2# Fe# Mn# Mg# 
            

T2
07

8,
 1

40
0°

C
, 1

5 
m

in
 90 L 46.3(2) 7.3(3) 0.5(0) 0.3(0) 54.4(5) 86.7(4) 88.0(2) 5.5(2) 6.5(0)

80 L 47.1(2) 10.0(0) 0.5(0) 0.4(0) 57.9(2) 83.0(0) 89.4(1) 4.7(3) 5.9(2)
70 L 40.6(3) 17.2(6) 1.1(0) 0.8(1) 59.7(1.0) 70.6(6) 87.7(2) 5.6(0) 6.7(2)
60 FeO n.d. 93.9(5) 0.7(1) n.d. 94.8(5) n.d. 99.3(1) 0.7(1) n.d. 

 L 35.0(2) 22.1(2) 1.3(1) 1.0(1) 59.5(1) 61.6(4) 87.6(1) 5.3(2) 7.0(4)
40 L 25.1(1) 37.9(1) 2.4(1) 1.8(0) 67.2(1) 40.0(1) 87.0(2) 5.6(1) 7.4(1)
30 Sd n.d. 52.9(4) 3.1(1) 4.4(1) 60.3(5) n.d. 82.9(2) 4.8(1) 12.3(3)

 L 21.8(1.0) 41.5(1) 2.6(1) 1.6(2) 67.5(1.4) 34.9(8) 88.4(9) 5.5(2) 6.1(7)
10 Sd n.d. 52.6(4) 3.3(1) 3.4(1) 59.3(4) n.d. 84.8(3) 5.5(2) 9.7(1)

 L 22.5 41.6 2.7 1.7 68.5 35.5 87.8 5.7 6.6 
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35
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90 Na2 51.7(7) 1.5(2) n.d. n.d. 53.2(5) 97.7(3) 100.0(0) n.d. n.d. 
 L 46.4(3) 7.7(4) 0.5(0) n.d. 54.6(1) 86.8(7) 94.0(2) 6.0(2) n.d. 

80 L 45.7 10.8 0.5 0.4 57.4 81.5 89.5 4.3 6.2 
70 L 41.7(2) 16.3(1) 1.0(0) 0.8(1) 59.8(2) 72.1(1) 87.2(8) 5.2(2) 7.6(6)
60 FeO n.d. 95.8(4) 0.7(1) n.d. 96.5(5) n.d. 99.3(1) 0.7(1) n.d. 

 L 36.3 21.7 1.4 1.1 60.5 62.7 86.8 5.6 7.6 
50 FeO n.d. 96.2(5) 0.6(0) n.d. 96.8(5) n.d. 99.4(0) 0.6(0) n.d. 

 L 29.1 32.1 2.1 1.4 64.5 47.9 87.6 5.7 6.7 
30 Sd n.d. 52.6(3) 3.0(1) 4.0(2) 59.3(3) n.d. 83.8(5) 4.8(1) 11.4(4)

 L 29.4(5) 33.6(3) 2.1(1) 1.3(1) 66.3(7) 47.4(3) 88.6(1) 5.5(3) 5.9(3)
20 Sd n.d. 53.9(2) 3.1(2) 3.3(1) 60.2(2) n.d. 85.7(2) 5.2(3) 9.1(1)

 L 30.8(3) 33.1(3) 2.3(0) 0.9(1) 67.1(5) 49.1(1) 89.3(4) 6.3(0) 4.3(4)
10 Sd n.d. 53.5(3) 3.4(1) 2.8(2) 59.6(2) n.d. 86.5(4) 5.5(1) 8.0(4)

 L 28.7(4) 33.1(1) 2.4(2) 0.8(1) 64.9(0) 47.4(6) 89.6(6) 6.4(4) 3.9(2)
            

ES
35

6,
 1

20
0°

C
, 5

 h
 

80 Na2 51.5(3) 1.9(0) n.d. n.d. 53.4(3) 96.9(0) 100.0(0) n.d. n.d. 
 L 42.6 14.9 0.9 0.6 59.1 74.4 87.9 5.6 6.5 

70 L 41.1 17.0 1.0 0.7 59.9 71.1 87.9 5.4 6.8 
60 FeO n.d. 96.9 0.6 n.d. 97.5 n.d. 99.4 0.6 n.d. 

 L 34.4(1.4) 22.5(1.1) 1.5(2) 1.3(1) 59.6(0) 60.3(2.2) 85.8(5) 5.7(5) 8.5(0)
40 Sd n.d. 53.2(1) 2.9(0) 4.2(2) 60.3(2) n.d. 83.7(5) 4.6(1) 11.6(4)

 FeO n.d. 96.4 0.6 n.d. 97.0 n.d. 99.4 0.6 n.d. 
 L 30.7(3) 28.6(0) 1.9(0) 1.2(1) 62.4(2) 52.1(3) 87.5(2) 6.0(0) 6.5(2)

30 Sd n.d. 53.7(5) 3.2(1) 3.2(1) 60.1(3) n.d. 85.7(6) 5.1(3) 9.2(4)
 FeO n.d. 95.0 0.6 n.d. 95.6 n.d. 99.4 0.6 n.d. 
 L 29.1(2) 27.3(0) 2.2(0) 1.0(1) 59.6(1) 51.8(3) 87.1(5) 7.2(1) 5.8(6)

20 Sd n.d. 54.0(2) 3.2(1) 3.1(1) 60.3(2) n.d. 86.0(3) 5.2(1) 8.7(3)
 L 31.7(9) 28.7(2) 2.0(1) 0.8(1) 63.1(8) 53.4(9) 89.3(5) 6.3(2) 4.4(3)

10 Sd n.d. 53.8(5) 3.3(1) 2.8(2) 59.8(4) n.d. 86.7(5) 5.3(1) 8.0(5)
 L 31.8(4) 26.0(4) 1.9(0) 0.6(0) 60.3(0) 56.0(5) 89.7(5) 6.7(2) 3.5(2)

            

T2
07

7,
 1

10
0°

C
, 9

 h
 

80 Na2 51.5(4) 2.5(1) n.d. n.d. 54.1(4) 95.8(2) 100.0(0) n.d. n.d. 
 L 40.8(1) 16.4(3) 1.0(0) 1.0(1) 58.9(3) 71.5(5) 87.1(4) 5.2(1) 7.7(3)

70 Na2 51.5(7) 2.6(3) n.d. n.d. 54.3(6) 95.6(3) 100.0(0) n.d. n.d. 
 L 40.8 18.2 1.1 n.d. 54.3(6) 69.6 87.9 5.4 6.7 

60 FeO n.d. 96.6 0.6 n.d. 97.2 n.d. 99.4 0.6 n.d. 
 L 35.0 22.0 1.4 1.1 59.5 61.5 86.9 5.5 7.6 

50 Sd n.d. 52.7(3) 2.8(1) 5.0(1) 60.5(1) n.d. 81.7(4) 4.3(2) 13.9(2)
 Fe3O4 n.d. 91.5 n.d. n.d. 91.5 n.d. 100.0(0) n.d. n.d. 
 L 30.4(2) 25.8(3) 1.7(0) 1.3(2) 59.1(3) 54.2(1) 86.8(8) 5.8(1) 7.5(1.0)

40 Sd n.d. 53.9(6) 3.1(1) 3.7(3) 60.7(5) n.d. 84.7(7) 4.9(2) 10.4(7)
 Fe3O4 n.d. 91.6 n.d. n.d. 91.6 n.d. 100.0(0) n.d. n.d. 



 

 L 28.9(7) 27.1(4) 1.9(0) 1.0(0) 58.8(1.2) 52.1(3) 88.1(1) 6.2(0) 5.7(2)
30 Sd n.d. 54.3(8) 3.1(1) 3.2(1) 60.6(8) n.d. 86.0(3) 5.0(1) 8.9(2)

 Fe3O4 n.d. 92.7 n.d. n.d. 92.7 n.d. 100.0(0) n.d. n.d. 
 L 29.1(2) 26.8(2) 1.8(0) 0.7(1) 58.3(1) 53.1(5) 90.0(4) 6.0(0) 4.0(5)

20 Sd n.d. 54.1(3) 3.3(1) 2.9(1) 60.3(1) n.d. 87.3(4) 5.5(1) 7.2(4)
 L 29.1 27.3 1.9 0.7 59.1 52.5(1) 89.4 6.3 4.3 

10 Sd n.d. 54.3(9) 3.4(1) 2.5(1) 60.2(9) n.d. 87.3(4) 5.5(1) 7.2(4)
 L 27.8(1) 26.1(1) 1.9(2) 0.7(1) 56.4(1) 52.5(1) 89.6(1) 6.4(5) 4.0(4)

            

ES
35

4,
 1

00
0°

C
, 2

0 
h 

80 Na2 51.4(6) 1.6(1) n.d. n.d. 52.9(7) 97.4(2) 100.0(0) n.d. n.d. 
 Na4Fe 36.3 18.2 1.7 0.4 56.6 67.1 88.2 8.5 3.3 
 Na2Fe 29.0(2) 27.9(2) 1.4(1) 1.6(1) 59.8(4) 51.1(2) 86.9(6) 4.3(2) 8.8(6)
 L 34.2(5) 20.3(3) 1.4(1) n.d. 55.9(7) 64.7(1) 93.5(5) 6.5(5) n.d. 

70 Na2 51.9(6) 1.6(1) n.d. n.d. 53.5(5) 97.5(1) 100.0(0) n.d. n.d. 
 Na4Fe 36.4(8) 17.6(8) 1.7(1) 0.1(3) 55.8(5) 68.3(1.8) 90.0(2.3) 8.7(3) 1.2(2.1)
 Na2Fe 28.4(2) 27.8(4) 1.4(1) 1.5(1) 59.0(5) 50.9(1) 87.2(6) 4.5(3) 8.3(5)
 Sd n.d. 52.9(7) 3.4(3) 2.6(9) 59.0(6) n.d. 86.8(2.7) 5.6(3) 7.6(2.4)

60 Na2 51.4(6) 1.6(1) n.d. n.d. 52.9(7) 96.8(3) 100.0(0) n.d. n.d. 
 Na4Fe 37.7(4) 18.2(2) 1.8(1) n.d. 57.7(4) 68.6(3) 90.9(5) 9.1(5) n.d. 
 Na2Fe 28.7(2) 27.4(2) 1.5(1) 1.9(1) 59.4(4) 50.8(2) 85.2(4) 4.6(3) 10.3(6)
 L 36.0(1) 19.8(1) 1.2(0) n.d. 57.0(2) 66.5(1) 94.2(0) 5.8(0) n.d. 

50 Na4Fe 36.8(6) 17.1(1) 1.9(1) n.d. 55.8(7) 69.1(2) 89.9(4) 10.1(4) n.d. 
 Na2Fe 27.9(2) 27.6(5) 1.6(1) 1.4(1) 58.5(7) 50.5(4) 87.1(6) 5.1(3) 7.8(7)
 Sd n.d. 53.6(8) 3.3(2) 1.9(4) 58.7(2) n.d. 89.0(1.6) 5.5(3) 5.5(1.3)

40 Na2Fe 28.4(3) 27.4(3) 1.7(1) 1.5(1) 59.0(6) 50.9(1) 86.1(2) 5.3(2) 8.6(4)
 Sd n.d. 53.0(5) 3.5(3) 2.3(5) 58.7(4) n.d. 87.4(1.7) 5.8(4) 6.8(1.3)

30 Na2Fe 28.8(4) 27.1(6) 1.8(1) 1.8(2) 59.5(9) 51.0(6) 84.2(7) 5.6(3) 10.2(9)
 Sd n.d. 54.5(2) 3.3(1) 2.0(2) 59.9(5) n.d. 88.9(7) 5.4(3) 5.7(6)
 Fe3O4 n.d. 92.0 n.d. n.d. 92.0 n.d. 100.0(0) n.d. n.d. 

20 Na2Fe 29.0(2) 26.7(2) 1.7(1) 2.2(1) 59.6(2) 51.0(3) 82.6(4) 5.3(2) 12.1(5)
 Sd n.d. 53.5(3) 3.4(1) 2.4(3) 59.3(1) n.d. 87.4(8) 5.6(2) 7.0(8)

10 Na4Fe 36.9(6) 15.6(2) 1.7(1) 0.5(0) 54.6(7) 70.2(3) 85.6(2) 9.4(5) 5.0(3)
 Na2Fe 28.8 28.3 1.9 1.3 60.3 50.6 87.1 5.8 7.0 

  Sd n.d. 53.7(7) 3.3(1) 2.5(1) 59.5(9) n.d. 87.4(1) 5.4(1) 7.2(1)
            

T2
07

6,
 9

00
°C

, 3
2 

h 

80 Na2 51.3(6) 1.3(1) n.d. n.d. 52.6(7) 97.8(2) 100.0(0) n.d. n.d. 
 Na2Fe 29.2(3) 28.3(3) 1.7(1) 1.4(2) 60.6(6) 51.0(1) 87.0(8) 5.3(1) 7.7(9)
 Sd n.d. 54.2(3) 3.5(1) 2.3(2) 60.0(4) n.d. 87.6(7) 5.7(2) 6.6(6)

70 Na2 52.0(1.5) 1.3(1) n.d. n.d. 53.3(1.5) 97.8(2) 100.0(0) n.d. n.d. 
 Na2Fe 28.4(5) 28.0(2) 1.7(1) 1.3(1) 59.4(7) 50.7(4) 87.2(4) 5.4(2) 7.4(5)
 Sd n.d. 54.4(5) 3.4(2) 1.7(4) 59.5(1) n.d. 89.3(1.4) 5.7(2) 4.9(1.2)

60 Na2 52.3(2) 2.0(1) n.d. n.d. 54.2(2) 96.8(2) 100.0(0) n.d. n.d. 
 Na2Fe 28.8(1) 28.5(0) 1.7(1) 1.3(0) 60.2(1) 50.7(1) 87.7(1) 5.4(2) 6.9(3)
 Sd n.d. 55.1(3) 3.5(2) 1.9(1) 60.6(2) n.d. 88.8(1) 5.8(3) 5.5(1)

50 Na2 51.4(1) 1.5(1) n.d. n.d. 52.9(1) 97.5(2) 100.0(0) n.d. n.d. 
 Na2Fe 28.4(5) 28.1(2) 1.8(1) 1.4(1) 59.7(6) 50.4(4) 86.8(5) 5.6(2) 7.6(6)
 Sd n.d. 52.2(2.0) 3.5(1) 1.9(1) 57.6(2.1) n.d. 88.3(2) 6.1(3) 5.6(1)

40 Na2Fe 28.5(2) 27.8(2) 1.8(0) 1.4(1) 59.5(4) 50.8(2) 86.7(3) 5.6(1) 7.7(3)
 Sd n.d. 55.0(9) 3.2(2) 1.8(1) 60.0(8) n.d. 89.5(4) 5.3(2) 5.2(4)

30 Na2Fe 28.7(1) 27.7(1) 1.8(0) 1.6(3) 59.7(1) 50.4(1) 84.7(1) 5.5(1) 9.7(0)
 Sd n.d. 54.3(8) 3.2(4) 2.0(1) 59.6(4) n.d. 88.8(9) 5.4(8) 5.9(2)

20 Na2Fe 29.0(5) 26.8(7) 1.7(1) 2.2(1) 59.6(1.0) 50.9(7) 82.5(3) 5.2(1) 12.3(2)
 Sd n.d. 54.6(1.0) 3.5(2) 2.0(3) 60.0(9) n.d. 88.5(8) 5.8(3) 5.8(1)

10 Na2Fe 29.0(5) 26.9(5) 1.8(0) 2.6 (1) 60.3(1.0) 50.2(3) 80.6(0) 5.4(1) 14.0(0)
 Sd n.d. 53.5(5) 3.4(2) 2.5(1) 59.3(5) n.d. 87.3(5) 5.5(3) 7.2(3)

            

Notes: # = run number; τ = run duration; XNa= Na2CO3 content in the system; Na2# = Na2CO3 content in the 
run products; Fe# = Fe/(Fe+Mn+Mg); Mn# = Mn/(Fe+Mn+Mg); Mg# = Mg/(Fe+Mn+Mg); Na2 = Na2CO3; 



L = liquid; Sd = siderite; Na2Fe = Na2Fe(CO3)2; Na4Fe = Na4Fe(CO3)3. Standard deviations are given in 
parentheses, where the number of measurement is more than one. 



Table 2. Interplanar spacings (d values) for Na2Fe0.87Mn0.05Mg0.8(CO3)2 eitelite synthesized at 6 GPa and 1000 °C 
(run ES354, X(Na2CO3) = 50 mol%). 

d 2θ Int hkl 
5.544265 3.8089 8.68 003 
4.181242 5.0512 18.52 101 
3.831111 5.5132 40.7 012 
2.991021 7.0634 5.41 104 
2.767682 7.6342 4.63 006 
2.630894 8.0318 100 015 
2.490466 8.4855 32.4 110 
2.270456 9.3095 17.2 113 
2.137369 9.8905 10.77 021 
2.075914 10.1841 2.16 107 
1.912842 11.0549 25.34 024 
1.849718 11.4334 21.4 116 
1.80688 11.7054 17.48 205 
1.621283 13.0509 16.24 211 
1.59806 13.2414 5.51 122 
1.54816 13.6702 15.18 1010 
1.51624 13.9594 4.39 214 
1.494857 14.1601 2.47 208 
1.480616 14.297 7.69 119 
1.462323 14.4768 11.86 125 
1.436614 14.7373 9.83 300 

 
 



 
Table 3. Interplanar spacings (d values) for Na4Fe0.9Mn0.1(CO3)3 synthesized at 6 GPa and 1000 °C (run ES354, 
X(Na2CO3) = 70 mol%). 

d 2θ Int hkl 
7.23847 2.9172 20 010 
5.113432 4.1299 4 200 
2.550317 8.2860 100 102 
2.340075 9.0319 18 202 
2.081418 10.1571 27 302 
2.000422 10.5695 4 312 
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