1	REVISION 1
2	Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of
3	Fe-sulfate minerals
4	
5	Melissa D. Lane ¹ , Janice L. Bishop ² , M. Darby Dyar ³ , Takahiro Hiroi ⁴ , Stanley A. Mertzman ⁵ ,
6	David L. Bish ⁶ , Penelope L. King ⁷ , and A. Deanne Rogers ⁸
7	
8	¹ Planetary Science Institute, 1700 E. Fort Lowell Rd., Suite 106, Tucson, Arizona, U.S.A.
9	² SETI Institute/NASA-Ames Research Center, Mountain View, California, U.S.A.
10	³ Mount Holyoke College, South Hadley, Massachusetts, U.S.A.
11	⁴ Dept. of Geological Sciences, Brown University, Providence, Rhode Island, U.S.A.
12	⁵ Department of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania,
13	U.S.A.
14	⁶ Department of Geological Sciences, Indiana University, Bloomington, Indiana, U.S.A.
15	⁷ Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
16	and Department of Earth Sciences, University of Western Ontario, London ON, Canada
17	⁸ Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New
18	York, U.S.A.
19	
20	
21	
22	Email: lane@psi.edu
23	

24 Abstract

25 Sulfate minerals are important indicators for aqueous geochemical environments. The 26 geology and mineralogy of Mars have been studied through the use of various remote-sensing 27 techniques, including thermal (mid-infrared) emission and visible/near-infrared reflectance 28 spectroscopies. Spectral analyses of spacecraft data (from orbital and landed missions) using 29 these techniques have indicated the presence of sulfate minerals on Mars, including Fe-rich 30 sulfates on the iron-rich planet. Each individual Fe-sulfate mineral can be used to constrain bulk chemistry and lends more information about the specific formational environment (e.g., Fe^{2+} 31 sulfates are typically more water soluble than Fe³⁺ sulfates and their presence would imply a 32 water-limited (and lower Eh) environment; Fe³⁺ sulfates form over a range of hydration levels 33 34 and indicate further oxidation (biological or abiological) and increased acidification). To enable 35 better interpretation of past and future terrestrial or planetary data sets, with respect to the Fe-36 sulfates, we present a comprehensive collection of mid-infrared thermal emission (2000 to 220 37 cm⁻¹; 5-45 µm) and visible/near-infrared (0.35-5 µm) spectra of 21 different ferrous- and ferric-38 iron sulfate minerals. Mid-infrared vibrational modes (for SO₄, OH, H₂O) are assigned to each 39 thermal emissivity spectrum, and the electronic excitation and transfer bands and vibrational OH, 40 H₂O, and SO₄ overtone and combination bands are assigned to the visible/near-infrared 41 reflectance spectra. Presentation and characterization of these Fe-sulfate thermal emission and 42 visible/near-infrared reflectance spectra will enable the specific chemical environments to be 43 determined when individual Fe-sulfate minerals are identified. 44

45

7/9

- 47 Submitted to American Mineralogist on October 1, 2013.
- 48 Resubmitted on June 24, 2014.
- 49
- 50 Key words: mid-infrared, visible, near-infrared, spectroscopy, emissivity, reflectivity, sulfate,
- 51 spectra, reflectance, vibrational, iron, emission, reflectance
- 52

53 1. Introduction

54 The 370-390 sulfate-mineral species (Hawthorne et al., 2000; Athena Mineralogy URL, 55 http://athena.unige.ch/athena/mineral/minppcl6.html) are indicators of aqueous environments. 56 and can form over a broad range of geochemical conditions. Through evaluation of the chemical 57 formulae of these numerous sulfate species, we determined that approximately 25% of known sulfate minerals are Fe-bearing (Fe^{3+} , Fe^{2+}). Fe^{3+} sulfate minerals tend to form in acidic 58 59 environments at a range of temperatures, through precipitation due to evaporation of 60 concentrated sulfuric acid solutions (e.g., H₂SO₄) such as may occur in volcanic hydrothermal/fumarolic/aerosol or acid mine drainage environments: conversely. many Fe²⁺ 61 62 sulfates form at higher pH, in neutral to alkaline hydrothermal environments. Fe-bearing sulfates 63 occur not only on Earth, but there is strong evidence for Fe-bearing sulfates occurring on Mars as well (e.g., Burns 1987). Fe^{2+} sulfates that form in a less oxidizing environment have been 64 identified on Mars, and there is a great likelihood that szomolnokite (and/or other Fe^{2+} sulfates) 65 66 (Bishop et al. 2009; Weitz et al. 2012) would be widespread because the martian environment is enriched in iron and sulfur (specifically dominated by Fe^{2+} -bearing primary igneous minerals and 67 68 sulfate). There is visible/near-infrared (VNIR) spectral evidence for a broad distribution of the 69 similarly structured mono-hydrated sulfate species, kieserite, which is in solid solution with 70 szomolnokite (e.g., Arvidson et al. 2005; Gendrin et al. 2005; Bishop et al. 2009; Murchie et al. 2009; Roach et al. 2009). Fe^{3+} sulfates also have been identified on Mars as jarosite in the Ca-, 71 72 Mg-sulfate outcrops in Terra Meridiani using Mössbauer spectroscopy (Klingelhofer et al. 2004; 73 Morris et al. 2006), and as ferricopiapite, fibroferrite, hydronium jarosite, (para)butlerite; 74 (para)coquimbite, rhomboclase, or yavapaiite in yellowish/whitish light-toned soils in Gusev 75 Crater using VNIR and thermal infrared (TIR) spectroscopy (Johnson et al. 2007; Lane et al.

2008; Wang and Ling 2011). These light-toned soils were exposed serendipitously in the *Spirit*rover tracks by a broken, dragging wheel (Figure 1) and may be extensive across Mars, although
buried in subsurface materials. The fine-grained dust on Mars also may contain hydrous Febearing sulfate minerals (Lane et al. 2004; Bishop et al. 2005) that could act as agents for
cementing the particles in the martian duricrusts (Binder et al. 1977; Mutch et al. 1977; Jakosky
and Christensen 1986).

82 Within the Fe-bearing subgroup of the almost 400 terrestrial sulfates, we determined the 83 majority (~87%) are hydrated with OH (~10%), H_2O (~44%), or both (~33%). Hence, these Fe-84 bearing sulfates, along with other hydrated minerals, may host the H₂O that has been identified at 85 low and middle latitudes through measurement of hydrogen by the Gamma Ray Spectrometer 86 (GRS) and the Neutron Spectrometer (NS) that were flown on the Mars Odyssey spacecraft 87 (Boynton et al. 2002; Feldman et al. 2002, 2004; Bish et al, 2003; Wang et al. 2008; 88 Karunatillake et al., 2012). Hydrated Fe-sulfates can hold up to 50 wt.% H₂O in their structures. 89 On Mars, the close association of H_2O and S, and the H_2O :S molar ratio (between 2.4 and 4.0) 90 for 80% of the martian mid-latitudes (bulk regolith to decimeter depths) can be explained more 91 simply by the presence of Fe-sulfates rather than by Ca- or Mg-sulfates or other mineral phases 92 such as phyllosilicates or zeolites, thus affirming the importance and potential of Fe sulfates as a 93 hydrated mineral in the martian subsurface (Karunatillake et al., 2012, 2013). 94 Previously Lane (2007) published thermal infrared (TIR) (mid-infrared) emissivity 95 spectra of 37 various sulfates, only eight of which were Fe-bearing in their classical formulation. 96 Here we continue that work, with the objective of presenting thermal emissivity spectra (2000 to 220 cm⁻¹: 5 to 45 µm), as well as VNIR reflectance spectra (0.35-5 µm), of a larger suite of Fe-97 98 bearing sulfates. This collection of Fe-sulfate spectra will permit better analyses of previously

99	acquired and future thermal emission and visible/near-infrared reflectance data, enabling a more
100	thorough understanding of the geology of Mars (as well as Earth and other planetary bodies
101	when similar remote-sensing techniques are utilized). The TIR and VNIR spectra presented in
102	this work are available as supplementary material to this paper in the Mineralogical Society of
103	America's online depository.
104	
105	2. Sample Descriptions
106	For this study 21 iron-bearing sulfate mineral samples were studied (Table 1). These
107	include the mineral species amarantite, beaverite, botryogen-Zn, butlerite, copiapite/
108	ferricopiapite, coquimbite/paracoquimbite, goldichite, hydronium jarosite, jarosite, kornelite,
109	magnesiocopiapite, natrojarosite, parabutlerite, rhomboclase, römerite, rozenite, sideronatrite,
110	slavikite, szomolnokite, voltaite, and yavapaiite.
111	Many Fe sulfates occur together making spectral measurements on natural samples
112	difficult. To obtain the highest-quality, nominally one-phase laboratory spectra, the sulfate
113	mineral samples were coarsely crushed, hand-picked, and sieved in a best-attempt to purify the
114	sample, and then were analyzed by X-ray diffraction (XRD) to identify the mineral and any other
115	phases present. During the drawn-out collection and culling phase of the samples, various XRD
116	analyses were conducted at Franklin and Marshall College, Indiana University, and the
117	University of Western Ontario. These samples were also the subjects of a parallel Mössbauer
118	study (Dyar et al. 2014).
119	The hand-picked samples were sieved to particle sizes of <45 μ m, 45-125 μ m, and >125
120	μ m (or 125-250 μ m). Although all of the samples were measured by each technique, generally,
121	the TIR emissivity spectra of the coarsest samples are presented here in order to emphasize the

122	fundamental bands (i.e., increased spectral contrast) and minimize volume scattering effects
123	(e.g., Lyon 1964; Aronson et al. 1966; Hunt and Vincent 1968; Hunt and Logan 1972; Aronson
124	and Emslie 1973; Salisbury and Eastes 1985; Salisbury and Wald 1992; Moersch 1992; Hapke
125	1993; Moersch and Christensen 1995; Mustard and Hays 1997; Lane 1999) . The coarsest
126	particle-size sample was used unless a high-quality, pure, single-mineral spectrum was obtained
127	from the solid hand sample (chips or chunks) prior to sieving and hand-picking, or a pressed
128	pellet was made from the finest particulate sample after the XRD and VNIR data were obtained.
129	Pellets were formed using a standard Carver hydraulic 13 mm press and die. Pressing the fine-
130	grained samples into optically thick pellets (discs) eliminated the volume scattering effects from
131	the spectra. Note that only sulfate powder was pressed into the pellets; no other substrate was
132	included (e.g., KBr that is used for a transmission technique using pellets). The VNIR reflectance
133	spectra of generally the finest-particle samples are presented because of their increased sample
134	reflectance and enhanced spectral features.
135	
136	3. Experimental Methods
137	Thermal Infrared Emission Spectroscopy: The samples in this study were analyzed for
138	thermal emission at ambient pressure using Arizona State University's Mars Space Flight
139	Facility. The spectrometer used is a modified Nicolet Nexus 670 E.S.P. FT-IR interferometer
140	attached to an external glove box containing a temperature-stabilized sample chamber

141 (maintained with circulating water behind the chamber wall). It is equipped with a

- 142 thermoelectrically stabilized deuterated triglycine sulfate (DTGS) detector and a CsI beam
- splitter that allow the measurement of emitted radiation over the mid-infrared range of 2000 to
- 144 220 cm⁻¹ (5 to 45 μ m). To reduce and maintain the amount of atmospheric H₂O and CO₂ vapor

inside the spectrometer, external sample chamber, and glove box (and to reduce the degradation
of the hydrophilic CsI beam splitter) the entire system is continuously purged with air scrubbed
of H₂O and CO₂.

148 Each sample in a sample cup was placed into the sample chamber of the spectrometer and 149 heated to a sustained temperature, on average, of 50 °C to minimize the loss of structural H₂O 150 and maintain the sulfate coordination. The samples were kept warm by actively heating the 151 sample cups during the data acquisition period of 160 or 270 scans at 2 cm⁻¹ sampling while their 152 passively emitted radiation was measured. Each sample was measured several times and spectra 153 were summed for better signal-to-noise and to produce a representative average spectrum. 154 Additional details of the data calibration are presented in Christensen and Harrison (1993), 155 Wenrich and Christensen (1996), and Ruff et al. (1997). 156 157 Visible, Near Infrared Reflectance Spectroscopy: Reflectance spectra were acquired at

158 Brown University's RELAB facility. Bidirectional spectra were collected for the samples relative 159 to halon using a VNIR spectrometer from 0.3 to 2.5 µm at 5 nm spectral sampling under ambient 160 conditions using a standard configuration (incidence = 30° ; emission = 0°), then corrected for the 161 absolute reflectance of the halon. Additional reflectance spectra were measured from 1-50 µm 162 using a biconical Nicolet FTIR spectrometer in a controlled, dry environment relative to a rough 163 gold surface as in previous studies (Bishop and Murad 2005). The infrared spectra were 164 measured with 2 cm⁻¹ spectral sampling in an environment purged of H₂O and CO₂ for 10-12 165 hours. Composite, absolute reflectance spectra were prepared by scaling the FTIR data to the 166 bidirectional data near 1.2 µm.

168 4. Obtained Spectra and Assignment of the Bands

169 **TIR Emissivity Data:** Sulfate minerals may be distinguished using thermal infrared 170 (mid-infrared) spectroscopy because each crystal structure and specific chemical composition 171 produce a distinct spectrum as a result of the fundamental vibrational modes of the crystal 172 structure and their associated overtones and combination bands. Mid-infrared sulfate mineral 173 spectra are dominated by the vibrational behavior of the S-O bonds in the sulfate anion, and in 174 some cases, influenced by the presence of OH or H₂O, or even CO₃, in the structure. Early midinfrared spectroscopic studies showed that the aqueous sulfate anion (SO_4^{2-}) produces four 175 infrared absorption features at ~1105, ~983, ~611, and ~450 cm⁻¹ corresponding to the 176 177 asymmetric stretch, v_3 ; symmetric stretch, v_1 ; asymmetric bend, v_4 ; symmetric bend, v_2 , respectively (Nakamoto 1986; also see Herzberg 1945; Hug 1997), of which only v₃ and v₄ are 178 179 infrared active. These vibrations are modified from simple T_d site symmetry when the sulfate 180 anion is present within a solid-state medium, such as a mineral with a repeating molecular structure. Cation complexation of SO_4^{2-} causes distortions of the sulfate polyhedra (e.g., Griffen 181 182 and Ribbe 1979), resulting in the potential appearance of all four sulfate vibrational modes (i.e., 183 band splitting / removal of degeneracy) in the spectrum due to lowered symmetry (e.g., Ross 184 1962; Steger and Schmidt 1964; Hezel and Ross 1966; Brown and Ross 1970; Chio et al 2004; 185 Makreski et al. 2005; Lane 2007; Majzlan and Michallik 2007; Hyde et al. 2011; Apopei et al. 186 2012). In a solid-state sulfate mineral, internal vibrational features generally appear at ~1050-1250 (v_3), ~1000 (v_1), ~500-700 (v_4), and ~400-500 (v_2) cm⁻¹ (e.g., Herzberg 1945; Nakamoto 187 188 1986; Vassallo and Finnie 1992; Bishop and Murad 2005; Lane 2007; Hyde et al. 2011), and at ~ 189 <550 cm⁻¹ due to lattice vibrations (e.g., Serna et al. 1986; Clark 1999; Lane 2007), including 190 metal-oxygen, librational and translational modes that occur at lower wavenumbers, respectively.

191	The v_2 band is known to be significantly weaker than the v_1 mode and commonly is not
192	observable in the infrared spectra of sulfates (Hezel and Ross 1966). Additional bands may
193	appear in the emissivity spectra due to the presence of H ₂ O or hydroxyl in the crystal structure.
194	These features include H_2O bending (δH_2O) modes (Omori and Kerr 1963; Ross 1974), and
195	metal-OH in-plane (δ) and out-of-plane (γ) bending modes (e.g., Libowitzky 1999; Majzlan et al.
196	2011). Note that the spectral band positions mentioned above and presented in this work are the
197	locations of the features on the emissivity spectra, not the frequencies of oscillators used in
198	dispersion theory.
199	Most sulfate minerals consist of SO ₄ tetrahedra polymerized to various degrees with MO ₆
200	polyhedra (where M is a cation), providing an organizational basis for the crystal structure
201	descriptions in Hawthorne et al. (2000). Their structural organization is borrowed for this paper
202	as well.

203

204 **VNIR Reflectance Data:** Early reflectance spectra of sulfates in the VNIR region 205 demonstrated that the dominant bands near 1.4-1.5 and 1.9-2.0 µm are due to H₂O (Hunt et al. 206 1971). More recent VNIR studies covered additional sulfate minerals and showed that both OH 207 and H₂O are responsible for most features in the 1-3 µm range (e.g., Clark et al. 1990; Crowley 208 1991; Bishop and Murad 1996; Bishop and Murad 2005; Cloutis et al. 2006; Hyde et al. 2011); 209 however, features near 4.3-5.3 µm are attributed to overtones and combinations of the v₃ SO₄ 210 vibration (Blaney and McCord 1995; Bishop and Murad 2005; Hyde et al. 2011). VNIR 211 reflectance spectra have been presented in recent studies for some Fe sulfates but spectra of 212 many of these cover only the spectral range of $0.4-2.5 \,\mu\text{m}$ and the hydration state of the sample 213 was not always certain: rozenite, rhomboclase, voltaite, halotrichite, coquimbite/paracoquimbite,

214 copiapite/ferricopiapite, amarantite, jarosite, fibroferrite, sideronatrite, botryogen, and

szomolnokite (Crowley et al. 2003; Lane et al. 2004; Bishop and Murad 2005; Bishop et al.

- 2005; Cloutis et al. 2006). The current study presents VNIR reflectance spectra, coordinated with
- the mid-IR data and mineral structure, for high-purity and well-characterized samples.
- 218 Schwertmannite is often classified as a sulfate mineral, but is actually an Fe oxyhydroxide
- 219 mineral similar to akaganeite (Bigham et al. 1994) and is not included in this study.
- 220 Schwertmannite has sulfate groups present as anions inside the structural tunnels and exhibits
- spectral properties similar to ferrihydrite (Bishop and Murad 1996).
- 222 Optical absorption bands are observed from 0.4 to \sim 1.2 µm for Fe-bearing sulfate

223 minerals (Burns 1993). Many Fe sulfates exhibit a sharp but weak band near 0.43 µm due to the

224 ${}^{6}A_{1g}$ to $({}^{4}A_{1g}, {}^{4}E_{g})$ electronic excitation transition (Crowley et al. 2003; Bishop and Murad 2005;

225 Cloutis et al. 2006). An additional electronic band occurs near 0.5-0.6 µm in many Fe sulfate

spectra due to the ${}^{6}A_{1g}$ to ${}^{4}T_{2g}$ transition that generally results in a shoulder in VNIR reflectance

spectra but is occasionally observed as a band (Crowley et al. 2003; Bishop and Murad 2005;

228 Cloutis et al. 2006). The ${}^{6}A_{1g}$ to ${}^{4}T_{1g}$ electronic transition can occur over a wider wavelength

range, from ~0.77 to 0.93 μ m (Crowley et al. 2003; Bishop et al. 2005; Bishop and Murad 2005;

230 Cloutis et al. 2006). The Fe^{2+} crystal field band occurs at longer wavelengths, near 0.9-1.2 μ m

231 (Burns 1993; Cloutis et al. 2006).

232

4.1. Finite Clusters of SO₄ Tetrahedra and *MX***₆ Octahedra**

The minerals in this structure group (Figures 2a, b) are comprised of finite clusters of SO_4 tetrahedra and *MX*₆ octahedra, where *X* is an unspecified ligand (such as H₂O or OH), and the structural groups are linked through hydrogen bonding (see Hawthorne 1985).

237 **Coquimbite/paracoquimbite:** The structures of coquimbite and its polytype 238 paracoquimbite are based on layers of $[Fe_3(SO_4)_6]$ clusters (whose long axis is parallel to [001]). 239 isolated {Fe(H₂O)₆} octahedra, and H₂O groups. The Fe(H₂O)₆ octahedra are connected into 240 sheets by hydrogen bonding. The coquimbite/paracoquimbite sample studied here is well 241 crystalline and contains approximately subequal amounts of the two minerals as determined by XRD. The sample spectrum (Figure 2a) shows two clear v_3 features at 1180 and 1100 cm⁻¹; the 242 shape of the 1100-cm⁻¹ band suggests that there may be another weaker v_3 band at slightly lower 243 244 frequency, in contrast to the three bands seen in the transmission data of Moenke (1962 as reported by Ross 1974). A strong v_1 feature is present at 1013 cm⁻¹. Three v_4 bands occur at 685, 245 650, and 597 cm⁻¹; however, the 685-cm⁻¹ band is very small but distinct in this very clean 246 spectrum. The v_2 features occur at 480 and 443 cm⁻¹ with strong lattice modes occurring at <350 247 248 cm^{-1} . The bands that result from the H₂O in the coquimbite structure can be seen at ~890 and 816 249 cm⁻¹ (bending modes) and the δH_2O is seen subtly at 1690 cm⁻¹. **Römerite:** Römerite contains Fe^{2+} that coordinates with six H₂O molecules and Fe^{3+} that 250

251 binds four H₂O molecules and two oxygen anions in different SO₄ groups. As such, the structure 252 of römerite is based also on isolated $\{Fe(H_2O)_6\}$ octahedra and $[Fe(SO_4)_2(H_2O)_4]_2$ groups that 253 are weakly connected by hydrogen bonding between the unconnected octahedral and within the 254 latter group (Fanfani et al. 1970; Hawthorne et al. 2000). In römerite (Figure 2a), the H₂O in the 255 structure appears as an emissivity maximum at ~1673 cm⁻¹. There are three clear v_3 features occurring at 1139, 1078, and 1035 cm^{-1} with another subtle shoulder bump that may be a 256 possible v_3 at ~1168 cm⁻¹. A strong v_1 feature occurs at 996 cm⁻¹ and 2 possible v_4 features can 257 be seen at ~658 and ~593 cm⁻¹. It is possible that a H_2O libration feature occurs as a small band 258

259	at 815 cm ⁻¹ . A v_2 feature occurs at ~477 cm ⁻¹ . A strong lattice mode is present, but the band is
260	truncated on the long-wavelength side, so the position of its deepest point is unknown.
261	Rozenite: The structure of rozenite (ferrous iron only) is comprised of [Fe ₂ (SO ₄)(H ₂ O) ₈]
262	clusters that are solely hydrogen bonded together, both within and between the clusters
263	(Hawthorne et al, 2000). The H_2O in rozenite causes an emissivity maximum at ~1680 cm ⁻¹ (due
264	to the δH_2O mode), and a band at 818 cm ⁻¹ and weaker bands at ~760, 735, and ~692 cm ⁻¹ that
265	are attributed to δOH (Figure 2a). Rozenite exhibits a deep v_3 feature at 1100 cm ⁻¹ and two small
266	shoulder features at ~1013 and ~1220 cm ⁻¹ that also are representative of the v_3 bands. The v_1
267	band appears at 992 cm ⁻¹ . The rozenite spectrum shows a fairly broad v_4 band centered at ~602
268	cm ⁻¹ with two other v_4 bands that appear as subtle shoulders on the higher frequency side at ~660
269	and ~645 cm ⁻¹ , and a possible v_2 band at ~468 cm ⁻¹ .
270	
271	VNIR Reflectance Data: The coquimbite spectrum exhibits three Fe^{3+} excitational
272	absorptions at 0.43, 0.56, and 0.78 μ m (similar to bands observed for coquimbite by Bishop et al.
273	2005 and Cloutis et al. 2006), while the rozenite spectrum has a sharp band at 0.43 μm and a
274	broad Fe^{2+} excitational absorption centered near 1.0 μ m with a shoulder near 1.2 μ m (similar to
275	features seen by Crowley et al. 2003 and Bishop et al. 2005). The römerite spectrum contains a
276	shoulder near 0.5 $\mu m,$ Fe $^{3+}$ bands near 0.85 and 0.91 μm with a broad shoulder out to ${\sim}1.17~\mu m$
277	due to Fe^{2+} (Figure 2b).
278	The coquimbite and römerite spectra have similar NIR vibrational bands; both include a
279	weak band/shoulder at 1.45 μ m and a weak band at ~1.78 μ m. A strong H ₂ O doublet, due to

281 1.94 and 1.98 μ m for coquimbite. A shoulder feature due to H₂O is found near 2.55 μ m for

combination bands centered at 1.4 and 1.9 µm, respectively. A doublet is observed at 2.42 and

286 2.53 μ m, a strong broad H₂O stretching vibration is seen from 2.9-3.2 μ m, and a set of SO₄

- **287** overtones and combinations occurs from $4.2-4.9 \ \mu m$.
- 288

4.3. Infinite chains of SO₄ tetrahedra and *MX*₆ octahedra

The minerals in this structure group (Figures 3a-e) are comprised of infinite chains of SO₄ tetrahedra and MX_6 octahedra, and the chains often are parallel to the *c* axis of the mineral (see Hawthorne, 1985).

293Amarantite: The amarantite structure is based on two octahedra that edge-share (a**294**dimer) with an additional two octahedra that attach to the dimer, making a tetramer (Figure 3a).**295**Further, two sulfate tetrahedra attach to this tetramer to form a $[Fe_2O(H_2O)_4(SO_4)_2]$ chain and**296**provide additional linkages to other tetramers comprising more complex chains (Süsse 1968;**297**Hawthorne et al. 2000). With the additional H₂O, the amarantite formula may be written as**298** $[Fe_2O(H_2O)_4(SO_4)_2](H_2O)_3.$

The emissivity spectrum of amarantite is shown in (Figure 3a). The bending mode of the H₂O in the structure is seen at ~1642 cm⁻¹, whereas asymmetric SO₄ stretching modes occur at ~1215 (as a shoulder), 1154, 1090, and 1059 cm⁻¹. There is a small doublet in the spectrum that may represent both the δ OH mode at 1018 cm⁻¹ and the v₁ band at 1004 cm⁻¹. However, if the doublet is really just jagged due to noise, then the middle of that band would be at ~1009 cm⁻¹ and would likely represent just the v₁ band. Other features include two small bands at 804 and

305	~748 cm ⁻¹ for the δ OH modes; v ₄ modes occur at ~645, 595, and ~528 cm ⁻¹ ; the v ₂ mode band is
306	at 463 cm ⁻¹ . A long-wavelength band is present at \sim 289 cm ⁻¹ as well as a truncated band.
307	Botryogen-Zn: In botryogen, the infinite chains of Fe-centered octahedra are linked to
308	SO ₄ tetrahedra, to which Zn-centered octahedra attach through one of the tetrahedral vertices
309	(Figure 3a). This structure is represented as [ZnFe(OH)(H ₂ O) ₆ (SO ₄) ₂](H ₂ O). Interchain linkages
310	are present exclusively through hydrogen bonding (Hawthorne 1985; Hawthorne et al. 2000).
311	The botryogen-Zn emissivity spectrum (Figure 3a) has many bands for this complex, monoclinic
312	salt, due to the presence of OH and H_2O in the structure and its low symmetry. The ν_3 bands
313	occur at 1220, 1132, and 1031 cm ⁻¹ with additional v_3 bands at 1164 (shoulder) and 1068 cm ⁻¹ .
314	These five v_3 bands exhibited in zincobotryogen are comparable to the five v_3 bands shown for
315	botryogen in the transmission data of Moenke (1962) as assigned by Ross (1974). The v_1 band is
316	small but clear at 999 cm ⁻¹ . It is possible that the small band at 1010 cm ⁻¹ is due to H_2O in the
317	mineral (δOH) because it occurs just to the high-frequency side of the v_1 band, similar to the
318	same band relationship in jarosite to be discussed below. A small feature at 805 cm ⁻¹ also could
319	result from an OH bending vibration. Constituent H ₂ O additionally causes a bending mode
320	$(\delta H_2 O)$ to be seen at 1660 cm ⁻¹ (Ross 1974). Three strong v ₄ bands are present at 602, 545, and
321	485 cm ⁻¹ , with a broad, less-defined band at ~655 cm ⁻¹ . The v_2 band may occur at ~393 cm ⁻¹ and
322	there is a strong lattice band at $\sim 280 \text{ cm}^{-1}$.
323	Butlerite/parabutlerite: In butlerite/parabutlerite, infinite chains of
324	[Fe(OH)(H ₂ O) ₂ (SO ₄)] are linked solely by hydrogen bonding, and there are no interstitial cations
325	(Hawthorne et al. 2000) (Figure 4a). In the butlerite spectrum (Figure 3a), the H ₂ O in the

- 326 structure appears as an emissivity maximum at ~1688 cm⁻¹. There is a clear v_3 feature at 1123
- 327 cm⁻¹ with other subtle v₃ shoulder bumps at ~1200 and ~1045 cm⁻¹; the v₁ feature occurs at 992

334

328	cm ⁻¹ . The bands at 1013 and 806 cm ⁻¹ are due likely to δOH modes. Four v ₄ features can be seen
329	at 694, 657, 592, and 506 cm ⁻¹ . The bands at 441 and ~413 may be v_2 bands, and there is a strong
330	lattice band at \sim 252 cm ⁻¹ but the noise in the data confuses the position and it may be a truncated
331	band whose true position is masked by the jaggedness of the spectrum at the lower
332	wavenumbers. The spectrum of the parabutlerite sample (Figure 3a) is very similar to that of
333	butlerite and offers an example of sample-to-sample variations that may arise in the spectra. As

in butlerite, for parabutlerite the H₂O deformation mode occurs at \sim 1688 cm⁻¹ and the δ OH mode

at 1013 cm⁻¹. The v_3 features occur at 1233, 1176, 1098, 1054, and 1024 cm⁻¹ and the v_1 mode is 335

found at 997 cm⁻¹. Other bands seen at 650, 602, 503, and ~476 cm⁻¹ represent the v_4 modes. 336

Bands at 446 and \sim 330 cm⁻¹ may be v₂ modes and lattice modes may occur at \sim 256 cm⁻¹ and as a 337 338 deep, but truncated, band.

339 **Copiapite/ferricopiapite and Magnesiocopiapite:** Majzlan and Michallik (2007) 340 describe the structure of the copiapite group minerals as a combination of infinite chains of $[Fe_4(SO_4)_6(H_2O)_8(OH)_2](H_2O)_2$ and slabs of $\{[M(H_2O)_6](H_2O)_4\}$, where M is Fe^{3+} in copiapite 341 and Mg^{2+} in magnesiocopiapite. The charge difference requires subtle structural variations. 342 343 Emissivity spectra of copiapite and magnesiocopiapite are shown in Figure 3a, and it can be seen 344 that their spectra are quite similar. The largest difference occurs because the magnesiocopiapite 345 sample was measured as a pressed pellet, whose resulting spectrum was less noisy, with deeper 346 spectral features than the copiapite spectrum. Also, the magnesiocopiapite spectrum shows a 347 distinct δOH band that is not evident in the copiapite spectrum (except perhaps as a subtle 348 shoulder on the v_1 band).

349 Specifically, the copiapite spectrum exhibits v_3 bands at ~1212, ~1109, and 1047 cm⁻¹. The v₁ clearly occurs at 998 cm⁻¹. The v₄ bands are found at ~603 and ~542 cm⁻¹. The v₂ band is 350

351	exhibited at \sim 410 cm ⁻¹ and a strong lattice mode is truncated so its actual position is unclear. The
352	δH_2O and δOH features are seen at ~1662 and ~790 cm ⁻¹ , respectively. In magnesiocopiapite,
353	the bands are as follows: the H ₂ O deformation mode (δ H ₂ O) occurs at ~1656 cm ⁻¹ , the v ₃ bands
354	are at 1213, 1146 (a shoulder), 1107, 1049, and possibly a shoulder at 1031 cm ⁻¹ . The v_1 band is
355	found at 997 cm ⁻¹ with a distinct δ OH feature at 1013 cm ⁻¹ . Three v ₄ bands are seen at 639, 595,
356	and 556 cm ⁻¹ , and a v_2 band is present at 414 cm ⁻¹ . A final band may occur at ~262 cm ⁻¹ ;
357	however, this band may be affected by noise and is also truncated so its position is uncertain.
358	Sideronatrite: This mineral species is based on infinite octahedral-tetrahedral chains that
359	show considerable disorder in relation to the adjacent chains in their structure (Figure 3a). The
360	backbone structure consists of infinite chains of $[Fe(SO_4)_2(OH)]^2$ that align parallel to the <i>c</i> axis
361	(Scordari and Ventruti 2009; Scordari et al. 2010; Della Ventura et al. 2013) that are crosslinked
362	by Na-distorted octahedra in which each Na atom is linked to four oxygen atoms and two H ₂ O.
363	Hydrogen bonding to the infinite chains is provided through these water molecules. The
364	sideronatrite crystal structure and thermal emissivity spectrum of this pelletized sample are
365	shown in Figure 3a. The pelletized sample produced a clean spectrum that shows the H_2O
366	deformation mode as an emissivity minimum at ~1637 cm ⁻¹ . Many v_3 features are apparent,
367	including those at 1270 (small), 1217, 1208, 1139, 1112 (shoulder), 1068, and 1034 cm ⁻¹ . A
368	sharp v_1 feature occurs at 997 cm ⁻¹ ; however, this deep feature's shape indicates that a δOH
369	feature may be overlapping, or that this is the primary δOH feature and a v_1 may be overlapping;
370	Della Ventura et al. (2013) identify two bands here at 997 and 981 cm ⁻¹ but assign them both to a
371	v_1 splitting. Other distinct features (representing v_4) are found at 666, 650, 634, 620, 609, and a
372	very deep band at 519 cm ⁻¹ ; Della Ventura et al. (2013) attribute this band to v_2 . This deep band
373	alternatively may be assigned to γOH . Bands at 409 and 400 cm ⁻¹ represent v_2 modes, and the

7/9

374 lowest wavenumber bands (typically metal-oxygen or lattice modes) are seen at 308 and ~265
375 cm⁻¹ and a deep, truncated band.

376

VNIR Reflectance Data: The amarantite spectrum contains an Fe³⁺ excitation at 0.87 µm that is also seen in botryogen at 0.93 µm, and in butlerite/parabutlerite at 0.92 µm (Figure 379 3b). Copiapite and Mg-copiapite spectra both have an Fe³⁺ band at 0.88 µm that also occurs in 380 the sideronatrite spectrum at 0.94 µm (Figure 3c).

381 There are numerous narrow NIR bands in sideronatrite that are attributed to H₂O and OH

382 near 1.45, 1.91, 1.99, 2.27, 2.5, 2.8, and 2.95 μm. Additional bands in the 4-5 μm region are

383 consistent with overtones and combinations of the SO₄ vibrations (Figure 3c). The many doublet

and triplet features observed in the sideronatrite spectrum indicate that these bands have been

385 split, probably due to multiple H₂O and OH sites in the mineral structure. Similar features were

386 observed in sideronatrite spectra by Cloutis et al. (2006). The NIR spectra of amarantite,

botryogen, and copiapite all exhibit H_2O bands near 1.45, 1.95, and 2.8-3.2 μ m. The H_2O

388 stretching overtone near 1.4 µm and combination band near 1.9 µm both occur as a doublet for

amarantite, botryogen, butlerite, and parabutlerite: at 1.447 and 1.478, and at 1.944 and ~1.98

μm in spectra of amarantite (related to those observed by Cloutis et al. 2006), at 1.447 and 1.480,

and at 1.929 and 1.960 µm in spectra of botryogen (similar to those observed by Cloutis et al.

2006), at 1.476 and 1.503, and at 1.960 and 2.026 μ m in spectra of butlerite, and at ~1.48 and

 ~ 1.50 , and at 1.961 and $\sim 2.03 \ \mu m$ in spectra of parabutlerite. The butlerite and parabutlerite also

have OH combination stretching plus bending vibrations at 2.24 and 2.28 μm (Figure 3b). Each

395 of these spectra includes SO₄ overtones and combinations over the range \sim 4.2-4.8 μ m.

396	Shown in Figures 3d,e are examples of spectra of three particle sizes of the amarantite
397	and botryogen samples, respectively. The spectral brightness in the VNIR region is brighter for
398	the finer particle-size samples and there are some differences in band depth, but no changes are
399	evident in the band center. For this paper we are focusing on the band centers and, hence, are
400	presenting only the VNIR reflectance spectra of the fine particle-size fractions.

401

402 4.4. Infinite sheets of $M_3(OH)_6(SO_4)_2$

403 The minerals in this structure group (Figures 4a, b) are comprised of infinite

404 $[M_3(OH)_6(SO_4)_2]$ sheets.

405 Beaverite: The rhombohedral structure of beaverite (Figure 4a) consists of tetrahedral-406 octahedral-tetrahedral sheets that lie perpendicular to the c axis. The Fe-centered octahedra are 407 linked along the sheet with OH groups. The two remaining OH-attached vertices along the c axis 408 connect the octahedral layer to sheets of SO_4 tetrahedra that also lie perpendicular to the *c* axis. 409 Beaverite is a member of the alunite-jarosite group (Breidenstein et al. 1992); however, its 410 spectrum (Figure 4a) is somewhat dissimilar to those of alunite or jarosite. This sample was 411 pelletized and produced a low-noise spectrum that shows the H₂O deformation mode as an emissivity minimum at ~1602 cm⁻¹. The v_3 bands are seen at 1163, 1110, and possibly 984 cm⁻¹. 412 The v_1 occurs at 1001 cm⁻¹ and there appears to be a δOH at 1019 cm⁻¹. An additional δOH is at 413 ~735 cm⁻¹. A strong v₄ band is seen at 625 cm⁻¹ with two smaller v₄ bands at 604 and 575 cm⁻¹. 414 415 Following the spectral character of jarosite described in detail below, the beaverite spectrum shows a v_2 band at 423 cm⁻¹. Strong metal-oxygen lattice modes occur at 512 and 469 cm⁻¹ and 416 417 another is seen as a large truncated band.

418	Jarosite, Hydronium Jarosite, Natrojarosite: The structure of the jarosite-group
419	minerals (Figure 4a) may be described as a series of layers formed by tetrahedral-octahedral-
420	tetrahedral sheets that lie perpendicular to the c axis. In the sheets made of Fe-centered
421	octahedra, the Fe atoms are linked through hydroxyl groups (Serna et al. 1986). The tetrahedral
422	(SO ₄) sheets are joined by the cations (e.g., K in jarosite, H ₃ O in hydronium jarosite, and Na in
423	natrojarosite) that are found at the center of polyhedra surrounded by six oxygen atoms and six
424	OH groups) (Basciano and Peterson 2008). The mid-infrared spectra of jarosite, hydronium
425	jarosite, and natrojarosite are presented in Figure 4a. Their similar structures cause their
426	emissivity spectra to be remarkably similar as well.
427	The jarosite spectrum was taken of a solid jarosite coating on a host rock. The jarosite
428	emissivity spectrum exhibits two v_3 bands at 1220 and 1112 cm ⁻¹ , a v_1 band at 1006 cm ⁻¹ , and a
429	single v_2 at 445 cm ⁻¹ . This spectrum shows a subtle shoulder at ~662 cm ⁻¹ on a stronger feature at
430	635 cm ⁻¹ suggesting two v_4 bands. Additional modes of jarosite are shown to occur at ~1020
431	(due to δOH) and 524, 476, ~336, and ~242 cm ⁻¹ due to Fe-O lattice modes. The broader lattice-
432	mode band at 524 cm ⁻¹ suggests a possible superposed γ OH mode on the higher frequency side
433	of the feature as observed by both Serna et al. (1986) and Sasaki et al. (1998). An emissivity
434	maximum at 1633 cm ⁻¹ results from δH_2O (e.g., Omori and Kerr 1963).
435	Hydronium jarosite differs from jarosite by the replacement of K^+ with H_3O^+ in its
436	structure. The hydronium jarosite analyzed in this study was not a pure endmember because
437	XRD peaks were shifted slightly, suggesting minor substitution of H_3O^+ by another cation (e.g.,
438	K^+ or Na ⁺). The hydronium jarosite spectrum is of much lower quality than the jarosite spectrum
439	(that was a well-formed coating on a host rock) or the natrojarosite spectrum (that was taken of a
440	pressed pellet). This noise makes the identification of the band position much less accurate;

441	however, the best determinations are as follows. The H_2O bending mode (δH_2O) is found at
442	~1651 cm ⁻¹ , the asymmetric SO ₄ stretching modes occur at ~1220 and 1121 cm ⁻¹ , the v_1 band lies
443	at ~997 cm ⁻¹ , and the δ OH band is shown at 1033 cm ⁻¹ . Three uncertain bands at 898, 845, and
444	${\sim}760~\text{cm}^{-1}$ may represent additional δOH modes. The ν_4 modes occur at 675 and 635 cm $^{-1},$ and
445	the v_2 mode bands are at 428 and 393 cm ⁻¹ . Other <i>M</i> -O or lattice modes occur at ~526, 475, and
446	\sim 336 cm ⁻¹ , and an additional long-wave band is present at \sim 265 cm ⁻¹ but that may just be the
447	local bottom of the feature due to noise and its true position is truncated.
448	Natrojarosite differs from jarosite by the replacement of K^+ with Na ⁺ in its structure. For
449	the natrojarosite sample, we measured a pressed pellet. The emissivity spectrum (Figure 4a) of
450	natrojarosite shows the H ₂ O deformation mode (δ H ₂ O) to occur at ~1635 cm ⁻¹ (e.g., Omori and
451	Kerr 1963); the v_3 bands are seen at 1200 and 1107 cm ⁻¹ . The small v_1 band occurs at ~1010 cm ⁻¹
452	and a δOH feature is found at 1026 cm ⁻¹ . Two v ₄ bands are seen at ~666 and 632 cm ⁻¹ , and a v ₂
453	band is present at 441 cm ⁻¹ . Other distinct bands occur at 524, 478, and 327 cm ⁻¹ with a possible
454	additional band at 347 cm ⁻¹ . A large truncated band also is apparent in the spectrum.
455	Spectral comparison shows the positions of the bands in all of the jarosite-group minerals
456	to be generally similar (Figure 4a; Table 2), with a few notable exceptions. In natrojarosite, the
457	v_4 bands are split more broadly than for jarosite, which exhibits only a single feature with a
458	shoulder (Lane 2007). The same bands in hydronium jarosite are spaced even farther apart. Also,
459	the v_2 feature in natrojarosite is at just slightly lower frequency than in jarosite, but the v_2 feature
460	in hydronium jarosite occurs at $\sim 15 \text{ cm}^{-1}$ lower wavenumber than in the other two jarosite-group
461	minerals.

463	VNIR Reflectance Data: Crystal field bands are observed for the jarosite type minerals
464	near 0.43, 0.65 and 0.91 μ m (Figure 4b; Bishop and Murad, 2005). The $^{6}A_{1g}$ to ($^{4}A_{1g}$, $^{4}E_{g}$)
465	transition was observed at 0.435 μ m in the spectra of all three jarosite samples in this study. This
466	feature was observed at 0.436 μ m in a jarosite spectrum presented in Crowley et al. (2003), at
467	0.435-0.437 μm in the jarosite spectra of Bishop and Murad (2005), and at 0.43-0.436 μm in
468	jarosite spectra obtained by Cloutis et al. (2006). The ${}^{6}A_{1g}$ to ${}^{4}T_{2g}$ transition is observed as a
469	shoulder in jarosite spectra and it is thus difficult to assign a wavelength for this absorption. It
470	was estimated here to be near 0.65 μ m, which is in agreement with the 0.64-0.66 μ m found
471	previously for jarosite (Bishop and Murad, 2005). The ${}^{6}A_{1g}$ to ${}^{4}T_{1g}$ transition was observed at
472	$0.907 \ \mu m$ in the spectrum of our jarosite, at $0.915 \ \mu m$ in the spectrum of our hydronium jarosite,
473	and at 0.922 μ m in the spectrum of our natrojarosite. This transition was identified at 0.924 μ m
474	by Crowley et al. (2003), at 0.90-0.925 μm by Bishop and Murad (2005), and at 0.915-0.922 μm
475	by Cloutis et al. (2006). Slight variations in the shoulder near 0.65 and width of the 0.91-0.92 μm
476	band for the natrojarosite spectrum compared with the other jarosite type spectra could be due to
477	particle size, as the 45-125 μ m size fraction was analyzed for the natrojarosite sample because
478	insufficient <45 -µm material was available. This transition is observed as a doublet at 0.755 and
479	$0.890 \ \mu m$ in the beaverite spectrum.
480	Additional NIR bands are observed near 1.47, 1.85, 2.22 (shoulder), 2.26, 2.41 (weak),
481	2.47 (weak), 2.51, and 2.62 μm due to overtones and combinations of the OH vibrations (Figure
482	4b; Bishop and Murad 2005). For the jarosite spectrum in our study these features are observed
483	at 1.469, 1.849, 2.264, 2.507, and 2.620 μ m. For the hydronium jarosite spectrum they are found
484	at 1.470, 1.846, 2.268, 2.516, and 2.620 µm, for the natrojarosite spectrum they occur at 1.476,

485 1.847, 2.267, 2.516, and 2.620 μm and for the beaverite spectrum they are much weaker and

486	occur near 1.472, 1.865, 2.289, 2.516, and ~2.64 μ m. The hydronium jarosite also exhibits an
487	H_2O stretching plus bending combination band at 1.94 μ m. Weaker features are observed for the
488	jarosite and natrojarosite samples due to small amounts of adsorbed H ₂ O. The beaverite spectrum
489	includes a weak, broad H_2O combination band near 2.05 μm and a rounded H_2O/OH feature near
490	$3 \ \mu m$. The fundamental OH stretching band includes multiple overlapping vibrations and occurs
491	near 2.937 μ m for jarosite, 2.953 μ m for hydronium jarosite, and 2.946 μ m for natrojarosite. A
492	number of small bands are also observed between 4.5-4.9 μ m that are assigned to either an
493	overtone of the $SO_4 \nu_3$ vibration or an overtone of the OH bending vibration (Bishop and Murad
494	2005).
495	
496	4.5. Infinite sheets of SO ₄ tetrahedra and MX_6 octahedra
497	Goldichite: The structure of goldichite (Rosenzweig and Gross 1954) is based on
498	corrugated sheets of $[Fe(SO_4)_2 \cdot 2 H_2O]$ clusters that link corner-shared octahedra and tetrahedra.

499 These sheets are connected by 9-coordinated K atoms and additional water molecules (i.e.,

500 hydrogen bond linkages) (Graeber and Rosenzweig 1971; Hawthorne 1985; Hawthorne et al.

501 2000) (Figure 5a). The spectrum of goldichite (Figure 5a) shows that constituent H_2O causes a

502 bending vibration (δH_2O) at ~1640 cm⁻¹; three v₃ bands occur at 1258, 1169, and 1119 cm⁻¹, and

503 the v_1 band is seen at 997 cm⁻¹. The v_4 bands are at 689, 627, and 597 cm⁻¹; the v_4 bands are at

476 and 428 cm⁻¹. Lattice modes occur at 359 cm⁻¹ and in a band that is truncated at the edge of
the spectrum.

505 the speen

506 **Kornelite:** The structure of kornelite (Figure 5a) is based on corrugated sheets of

- 507 octahedral-tetrahedral layers of $[Fe_2(H_2O)_6(SO_4)_3]$ attached to H_2O groups in the interlayer that
- provide hydrogen bonding for linking the sheets (Robinson and Fang 1973; Hawthorne et al.

509	2000; Majzlan et al. 2005; Ackermann et al. 2009). The H_2O deformation band appears in the
510	emissivity spectrum (Figure 5a) at ~1665 cm^{-1} (albeit weakly) and a H ₂ O libration mode is seen
511	at 751 cm ⁻¹ according to a comparable assignment by Ling and Wang (2010). Four v_3 features
512	are seen at 1206 (as a shoulder), 1160, 1121, and 1054 cm ⁻¹ . A v_1 feature is apparent at 1020 cm
513	¹ . The v_4 features occur at 627 and 593 cm ⁻¹ with a possible additional band at 650 cm ⁻¹ and the
514	v_2 features occur at 492 and 448 cm ⁻¹ . Unfortunately, the spectrum does not extend to lower
515	wavenumbers below 400 cm ⁻¹ due to an operational error with the spectrometer.

516 **Rhomboclase:** The structure of rhomboclase is based on $[Fe(H_2O)_6(SO_4)_3]$ groups with 517 additional interstitial (H₅O₂) groups that provide extensive hydrogen bonding (Hawthorne et al 518 2000). For rhomboclase, the bands in the emissivity spectrum (Figure 5a) are as follows: the H_2O deformation mode (δ H₂O) at ~1585 cm⁻¹ (weak), and v₃ bands at ~1210 (a shoulder), 1180, 1068 519 (a shoulder), and at 1043 cm⁻¹. The v₁ band occurs at 1022 cm⁻¹ with a δ OH at 745 cm⁻¹. Two v₄ 520 bands are seen at 664 cm⁻¹ and as a small band at ~627 cm⁻¹. A possible γ OH feature is found at 521 593 cm⁻¹; a v_2 band occurs at ~485 cm⁻¹; and a lattice mode occurs at 308 cm⁻¹ along with a 522 523 lattice mode that is a truncated band so the actual position is not determined.

524 Slavikite: Slavikite is based on a sheet of corner-sharing octahedra and tetrahedra 525 (Hawthorne et al. 2000) of $[Fe_5(H_2O)_6(OH)_6(SO_4)_6]$ that form into honeycomb-like structures 526 (Parafiniuketal et al. 2010) (Figure 5a). Holes in the open sheet are occupied by Na and H₂O 527 groups. The interlayer consists of $\{Mg(H_2O)_6\}$ octahedra and disordered SO₄ tetrahedra that are 528 bound by hydrogen bonds. Although there are broad regions of reduced emission, this sample did 529 not produce a spectrum with clear, distinct features, even after pelletizing and deepening the 530 spectral features. Unfortunately, the overall sample size was so small that the pellet was really just a thin (<<1 mm) chip about 5x7 mm² in area, so it could not produce a quality spectrum. 531

Nonetheless, the features that are discernible include: the broad H₂O deformation feature at $\sim 1612 \text{ cm}^{-1}$, v₃ bands at 1199 and $\sim 1084 \text{ cm}^{-1}$, a v₁ band at $\sim 1000 \text{ cm}^{-1}$, and v₄ and v₂ bands at 534 597 and 462 cm⁻¹, respectively. There is a clear lattice-mode band, but it is truncated so its 535 position is unknown.

536 **Yavapaiite:** The structure of vavapaiite consists of sheets of $[Fe(SO_4)_2]$ stacked in the c 537 axis direction and linked together by coplanar layers of 10-coordinated K atoms (Hawthorne 538 1985; Hawthorne et al. 2000). This configuration leads to perfect {001} cleavage (Graeber and 539 Rosenzweig 1971). For our work, we pressed a synthetic vavapaiite powder into a pellet to get a 540 spectrum devoid of volume scattering effects. As expected for a nominally anhydrous mineral, 541 our emissivity spectrum (Figure 5a) does not show any strong δH_2O , δOH , or γOH modes. The v_3 modes occur at 1254, ~1142 (as a shoulder), and 1024 cm⁻¹. No obvious v_1 mode is seen at 542 543 lower wavenumbers than the v_3 features, so it may be that the v_1 mode lies within the v_3 features 544 and is therefore unseen. This possibility is supported by the transmission spectrum of yavapaiite shown in Forray et al. (2005) with four distinct features in the $\sim 1000-1300$ cm⁻¹ range (likely 545 546 three v_3 bands and a v_1 feature). In our emissivity spectrum there also are distinct features at 676, 620, and 588 cm⁻¹ that represent the v_4 bands. The v_2 bands are seen at 469, 444, and possibly 547 416 and 370 cm⁻¹. The 370 cm⁻¹ band may be a metal-oxygen or lattice mode, plus there is 548 549 another longwave band that is truncated, but whose position may be at 255 cm⁻¹. Yavapaiite is 550 the anhydrous form of goldichite, and generally the vavapaiite bands (v_3, v_4, v_2) appear at 551 smaller wavenumbers (i.e., lower frequencies) than the bands exhibited in the more-hydrous 552 goldichite. This trend is opposite that presented by Lane (2007) for the Ca-sulfate and Mg-sulfate 553 suites.

555 **VNIR Reflectance Data:** The crystal field bands vary widely for the sulfate minerals 556 with infinite sheets of SO₄ tetrahedra and MX_6 octahedra (Figure 5b) indicating a variety of Fe sites for this mineral group. The goldichite spectrum exhibits only a very weak, broad Fe^{3+ 6}A₁₀ 557 558 to ${}^{4}T_{1g}$ transition band centered near 0.89 µm that is consistent with a very low Fe content. The kornelite spectrum has Fe^{3+} bands at 0.55 and 0.76 µm due to the ${}^{6}A_{19}$ to ${}^{4}T_{29}$ transition and ${}^{6}A_{19}$ 559 to ${}^{4}T_{1g}$ transition, respectively, which are similar to those of coquimbite, but otherwise unusual 560 561 for Fe sulfates or oxides. Thus, these bands are good spectral indicators for the presence of kornelite or coquimbite. The rhomboclase spectrum includes a sharp $Fe^{3+6}A_{1g}$ to $({}^{4}A_{1g}, {}^{4}E_{g})$ 562 transition at 0.430, a ${}^{6}A_{1g}$ to ${}^{4}T_{2g}$ transition at ~0.5 (shoulder), and ${}^{6}A_{1g}$ to ${}^{4}T_{1g}$ transition at 0.800 563 564 µm, similar to features observed by Crowley et al. (2003). The slavikite spectrum includes a 565 small sharp band at 0.43 µm and a broad band centered near 0.87 µm indicating a distribution of the Fe³⁺ sites. The yavapaiite spectrum has Fe³⁺ bands at 0.425, ~0.52 (shoulder), and 0.735 μ m. 566 567 The NIR spectrum of goldichite exhibits multiple doublet and triplet features akin to that 568 of sideronatrite, indicating splitting of the H₂O bands. The most prominent H₂O bands in the 569 goldichite spectrum occur at 1.426, 1.478, 1.768, 1.906, 2.169, 2.210, 2.320, 2.514 and 2.84 µm. 570 The kornelite spectrum contains weak H₂O bands at 1.16, 1.42, 1.92, 1.98 (broad), and 2.75 µm 571 and a completely saturated H₂O stretching band near 2.8-3.5 µm, whereas the rhomboclase 572 spectrum has a weak broad H_2O band near 1.25 µm followed by a drop in reflectance near 1.53 573 μm, a H₂O combination band near 2.0 μm, shoulders near 2.43 and 2.58 μm, and a weak, broad 574 H₂O stretching band near 2.8-2.95 µm. The NIR spectrum of slavikite somewhat resembles that 575 of gypsum with a triplet at 1.446, \sim 1.49, and 1.553 µm, a broad shoulder at 1.75 to 1.78 µm, a 576 strong combination band at 1.943 with a shoulder near 1.97 µm, a weak band at 2.12 µm, a 577 doublet at 2.224 and 2.266 μ m, shoulders near 2.43 and 2.55 μ m, and a strong, broad H₂O band

580	The yavapaiite spectrum exhibits multiple, strong SO ₄ overtones and combinations from
581	4-5 μ m. The dominant bands occur at 4.05, 4.12, 4.42, 4.52, 4.73, and a doublet at 4.88 and 4.92
582	μ m. The goldichite spectrum includes multiple weak bands from ~4.2-4.9 due to SO ₄ overtones
583	and combinations. The slavikite spectrum has a broad strong band centered near 4.5 μm and
584	another at 4.73 μm . The reflectance is very low for rhomboclase and kornelite spectra in the 3-5
585	µm region and sulfate bands are not observed for these minerals.
586	

587 4.6. Infinite frameworks of SO₄ tetrahedra and *MX*₆ octahedra

588 Szomolnokite: The mineral szomolnokite is a monohydrated sulfate and it is the Fe-589 endmember in a solid solution series with the Mg-endmember kieserite (Jambor et al. 2000). Pure szomolnokite contains only Fe^{2+} cations and has a networked structure with $[Fe(SO_4)(H_2O)]$ 590 591 chains that are cross-linked with other similar chains by corner sharing between octahedra and 592 tetrahedra of neighboring chains (Figure 6a). The szomolnokite hand sample is well crystalline 593 and provided strong features in the emissivity spectrum (Figure 6a). The szomolnokite spectrum 594 closely resembles a kieserite emissivity spectrum (Lane 2007); however, the szomolnokite 595 spectral features are shifted to longer wavelengths by 20-100 wavenumbers. The internal 596 vibrational bands due to the sulfate anion are distinct in the spectrum and consist of three v_3 bands at 1226, 1195, and 1149 cm⁻¹. The v_1 band appears as a small feature at 1018 cm⁻¹. 597 Features at 626, 606, and 554 cm⁻¹ result from the v_4 vibrations. The feature at 361 cm⁻¹ is a v_2 598 599 mode, but its assignment is uncertain. The truncated band at ~ 275 likely is due to a Fe-O 600 vibration.

601	In addition, there is a pronounced feature at 846 cm ⁻¹ that is uncommon in most sulfates
602	but is seen otherwise only in kieserite (at 919 cm ⁻¹) (Lane 2007), among all the other sulfates
603	studied to date by the authors. This unusual feature is likely to appear also in a spectrum of
604	szmikite (a monohydrated Mn-sulfate of similar crystal structure), but to date a good sample has
605	not been obtained for analysis. This uncommon band likely is due to the unusual librational
606	mode (rocking) of the H ₂ O molecule seen in kieserite-group minerals but not in other hydrates in
607	which H ₂ O molecules form a similar coordination (Soptrajanov and Trpkovska 1993; Grodzicki
608	and Piszczek 1998). The presence of this band is a reliable indicator of monohydrated kieserite-
609	group sulfates (Lane 2007).
610	Voltaite: The structure of voltaite is more complex than that of many other Fe sulfates
611	and was determined by Mereiter (1972). The Fe^{2+} and Fe^{3+} -containing structure consists of a
612	continuous framework of $[Fe^{3+}O_6]$ octahedra, $[Fe^{2+}_{5/6}Fe^{3+}_{1/6}O_4 (H_2O)_2]$ octahedra, and $[KO_{12}]$
613	polyhedra linked by (SO ₄) tetrahedra. This structural arrangement allows disordered [Al(H ₂ O) ₆]
614	octahedra to occupy the structure as well (Ertl et al. 2008) (Figure 6a). The voltaite emissivity

615 spectrum (Figure 6a) exhibits a H_2O deformation feature at ~1670 cm⁻¹ but the broadness of the

616 feature makes the position uncertain. The v_3 bands occur at 1171, ~1123 (shoulder), 1050, and

617 979 cm⁻¹ (shoulder); the v_1 feature occurs at 1004 cm⁻¹. The δ OH bands are not sharp or strong

618 but possibly are at ~832 and ~735 cm⁻¹. The v_4 bands are seen at 671 (subtle), 625, 584, and 520

619 cm^{-1} ; v₂ bands are seen at 469, 444, and possibly 416 cm⁻¹. Long-wave metal-oxygen/lattice

620 modes are seen at 370 cm^{-1} (possibly) and as a deep feature at 255 cm^{-1} , but the latter feature is

621 truncated and the spectral noise may mask the true position of this feature.

623	VNIR Reflectance Data: The crystal field bands are quite different for szomolnokite and
624	voltaite (Figure 6b). The szomolnokite spectrum includes a pair of Fe ²⁺ bands something like that
625	observed for pyroxene (e.g., Cloutis and Gaffey 1991). The Fe ²⁺ electronic excitation bands are
626	centered near 0.94 and 1.33 μm in the spectrum of our szomolnokite sample, and at 0.93 and
627	1.31 μ m in a szomolnokite spectrum analyzed by Crowley et al. (2003). The spectrum of voltaite
628	has an Fe^{3+} electronic transition near 0.62 μ m.
629	The voltaite spectrum exhibits H_2O features at 1.439, 1.719, 1.940, ~2.4, ~2.50, and 2.8-
630	$3.5 \mu m$, similar to other polyhydrated sulfates such as copiapite, römerite, and amarantite.
631	Szomolnokite is a monohydrated sulfate and its spectrum has very different H_2O bands, more
632	similar to those of kieserite (Bishop et al. 2009). The H ₂ O bands in the szomolnokite spectrum
633	occur at 1.520 μ m for the H ₂ O stretching overtone, at 2.098 μ m for the stretching plus bending
634	combination band, at 2.403 and 2.624 μm for additional H_2O bands, and a strong H_2O stretching
635	band occurs at ~2.9-3.3 μ m.
636	The voltaite spectrum has an additional band at 4.0 μ m and several weak bands from 4.5-
637	5 μ m in the SO ₄ overtone and combination band region, including absorptions at 4.82 and 4.96
638	μ m. The szomolnokite spectrum includes multiple weak bands from 4.2-4.9 μ m; the most
639	prominent bands are present at 4.34, 4.58, 4.70, 4.81, and 4.94 μ m.
640	
641	5. Implications
642	5.1 Crystal structure

643 Sulfate minerals are based on a repeated ordering of SO_4 tetrahedra polymerized with 644 MO_6 polyhedra (where *M* is a cation), and a majority of all sulfates (including Fe sulfates) are 645 hydrous (OH, H₂O). Of the 21 iron sulfates presented here, only one (yavapaiite) is nominally

646 anhydrous. Thermal emission spectra exhibit features related to the vibrational behavior and 647 interaction of the molecules within the sulfate mineral, and as such, their crystal structures 648 influence the character of their spectra. The figures in this paper are arranged by grouping 649 mineral spectra according to their molecular structure following the organization of Hawthorne 650 et al. (2000). This grouping should allow spectral similarities related to structure to stand out. 651 Cation complexation of the sulfate tetrahedron (that would not be deformed in it aqueous 652 state and would exhibit T_d site symmetry) causes distortions of the sulfate and changes the 653 symmetry to C_{3v}/C_3 (monodentate, corner-sharing), C_{2v}/C_2 (bidentate binuclear, edge-sharing), 654 or C_1/C_s (bidentate binuclear, multidentate, corner-sharing, edge-sharing) (Myneni 2000). This 655 reduced symmetry causes band splitting, hence, the lower the symmetry of the sulfate, the more 656 additional features will be seen in the spectra (e.g., Adler and Kerr 1965; Myneni 2000).

657 Comparison among the sulfate emissivity figures shows that *all* the spectra are dominated by deep bands related to the v_3 vibrational modes that occur in the ~980 to 1270 cm⁻¹ spectral 658 region and by a deep band(s) (beginning at ≤ 380 cm⁻¹), often truncated at the low-wavenumber 659 660 limit of our data related to M-O bonds or lattice vibrations (or H₂O libration). In addition to these 661 two deep band regions, the spectra of sulfates with sheets of $M_3(OH)_6(SO_4)_2$ (the beaverite/jarosite group, Figure 4a) exhibit a third region of deep bands (~460-580 cm⁻¹) that are 662 663 approximately equivalent in depth to their v_3 bands. The other structural groups do not exhibit 664 that behavior, but rather show weaker bands (v_4, v_2) in the spectral region between the v_3 and the 665 long-wave (oft-truncated) bands.

Inspection of each iron sulfate structural group individually (i.e., each figure separately)
shows general spectral similarity within each iron sulfate mineral group. For example, in Figure
2a, the spectra exhibit a rather dominant, strong single v₃ band (with other neighboring weaker

669	v_3 bands). In Figure 3a, the spectra show a grouping of many v_3 bands that are similarly deep. In
670	Figure 4a, the spectra show the $v_3 - v_1$ region in each spectrum as two divided groupings of
671	approximately similar-strength bands separated by an emissivity maximum (a flection position)
672	at ~ 1050-1075 cm ⁻¹ and, as mentioned above, this mineral group has the distinctive
673	characteristic of exhibiting a third deep grouping of bands (~460-580 cm ⁻¹) that are similar in
674	depth to the v_3 bands. And in Figure 5a, the v_3 band grouping appears generally somewhat
675	asymmetrical with the deepest feature being on the low-wavenumber side. It is difficult to
676	generalize the spectra in Figure 6a beyond that they have a deep v_3 band region and a deep long-
677	wave truncated band region; however, that general description would fit all of the sulfate group
678	spectra as mentioned above and is not unique to this structural group.
679	It is clear from this work that although Fe-sulfate minerals are dominated by the same
680	cation (Fe) and share similar structural units of SO_4 tetrahedra and MX_6 octahedra, their various
681	degrees of polymerization and unique crystal structure within their structure classes cause their
682	spectra to differ considerably. On a finer scale, however, the jarosite-series minerals (jarosite,
683	hydronium jarosite, natrojarosite) shown in Figure 4a show that in some cases, if the crystal
684	structure is the same but the cation is varied, the spectra are almost identical with only small
685	variation. Another good example of spectral similarity in sulfates when the crystal structure is
686	the same but the cation differs, lies with the mono-hydrated iron sulfate szomolnokite (Figure 6a)
687	and its Mg-bearing equivalent, kieserite (MgSO ₄ \cdot H ₂ O). Lane (2007) showed that the spectra of
688	kieserite and szomolnokite are nearly identical, but the features of szomolnokite are shifted to
689	lower wavenumbers (see Figure 3 in Lane 2007). A final example, but in a different mineral
690	class, is the emissivity spectra of a suite of six-coordinated anhydrous carbonates (see Figure 2 in

691	Lane and Christensen 1997) for which the carbonate spectra all look almost identical, but the
692	fundamental bands are shifted due to the different cation in the crystal structure.
693	Historically, minerals have been grouped in various ways to relate and classify them,
694	such as by Nickel-Strunz groups (into ten primary groups; Strunz and Nickel 2001), Hey's
695	groups (into 32 more-focused groups, Clark 1993), and Dana groups (into 78 very specific
696	groups, Gaines et al. 1997). Investigation of the emissivity spectra shows that the shapes of the
697	Fe-sulfate mineral spectra are best predicted by the Dana class categorization, which is based on
698	structure type. For each mineral species, the Dana number consists of four different numbers
699	separated by periods. The first represents the Dana class, which is based on composition or
700	dominant structural elements. There are five classes that include sulfates:
701	Class 28 - Anhydrous Acid and Sulfates (e.g., yavapaiite, 28.03.04.01)
702	Class 29 - Hydrated Acid and Sulfates (e.g., rhomboclase, 29.01.01.01)
703	Class 30 - Anhydrous Sulfates Containing Hydroxyl or Halogen (e.g., jarosite,
704	30.02.05.01)
705	Class 31 - Hydrated Sulfates Containing Hydroxyl or Halogen (e.g., butlerite,
706	31.09.01.01)
707	Class 32 - Compound Sulfates (e.g., burkeite, 2.01.01.01).
708	The second number of the four represents the Dana type, which is based on the formula
709	and the number and ratios of cations. The third number represents the mineral group (e.g., the
710	alunite group) in which all species have the same structure, and the last number is assigned to the
711	individual species. This work has demonstrated that samples in the same group generally have
712	very similar spectra, and samples in the same Dana type are often quite similar as well. For
713	example, kieserite (29.6.2.1) and szomolnokite (29.6.2.2.) are both members of the kieserite

714 group (29.6.2) along with gunningite, dwornikite, poltevinite, szmikite, and cobaltkieserite. It is 715 not necessary to acquire data from all the species in this group to know that their spectra will be 716 similar – although it should be noted that even at the species level, the spectra within a group are 717 not exactly the same and shifted. Rather, they are very similar in spectral shape and shifted, but 718 the fundamental features do not translate exactly. For some spectra, the bands move in opposite 719 directions or at different rates, or some bands merge or vary in other subtle ways, but the overall 720 spectral shape remains distinct. Nonetheless, at this level of classification, the spectra are similar 721 enough that the expert spectroscopist should be able to identify the mineral group and series, and 722 likely the exact mineral species, if that species exists in the spectral database. 723 The VNIR reflectance spectra of the Fe sulfates are highly dependent on the environment 724 of the Fe in the crystal structure and the degree of hydration. The most common crystal field band occurs near 0.78-0.93 μ m for Fe³⁺ in sulfates. Additional electronic transitions occur in 725 726 some minerals as a sharp and usually weak band at 0.43 μ m and a shoulder near 0.5-0.65 μ m. 727 The spectra of kornelite and coquimbite are unique in that they have two strong crystal field bands near 0.55-0.56 and 0.76-0.78 μ m. Fe²⁺ in sulfate spectra exhibit crystal field bands near 728 729 0.94-1.2 um and occasionally a second crystal field band at longer wavelengths as in the case of 730 szomolnokite. The H₂O bands are present as smooth, broad bands near 1.45, 1.95, 2.5 and 3 µm 731 in several Fe sulfates such as amarantite, copiapite, and rozenite. Other Fe-sulfate spectra exhibit

H₂O bands that are split into doublets or triplets such as goldichite, slavikite and sideronatrite. Fe

- sulfates containing OH in their structure such as jarosite and butlerite have spectral features due
- to OH near 1.42-1.47, 2.2-2.3, and 2.7-2.8 μm. Anhydrous Fe sulfates like yavapaiite do not
- exhibit spectral features in the range 1-3 μ m.
- 736

737 5.2 Mars Geochemistry

738 Many iron sulfate minerals exist both on Earth, often in acid mine drainage (AMD) sites, 739 and on Mars. They form via oxidation of sulfides that can precipitate secondary hydrous oxides, hydroxysulfates, and divalent-metal (M^{2+}) sulfates (e.g., commonly melanterite), and generally 740 741 lead to the generation of acidic solutions (e.g., Jambor et al. 2000; Jerz and Rimstidt 2005; King and McSween 2005). Although the M^{2+} in sulfates can be Fe, Mn, Co, Ni, Mg, Cu, or Zn, 742 743 precipitation of Fe-sulfates (followed by Mg-) are dominant in AMD environments (Jambor et al. 2000). Further oxidation, dehydration, and/or neutralization will alter the Fe^{2+} sulfates to a wide 744 suite of other Fe^{3+}/Fe^{2+} or exclusively Fe^{3+} sulfates. The presence of Fe sulfates generally implies 745 746 acidic conditions, so their continued and mineral-specific identification on Mars (e.g., 747 Klingelhöfer et al. 2004; Wang et al. 2006; Morris et al. 2006; Johnson et al. 2007; Lane et al. 748 2008; Milliken et al. 2008; Bishop et al. 2009) can help aid in the interpretation of the chemical environments and geologic settings in the past and on present-day Mars (e.g., Fe²⁺ sulfates are 749 generally more water soluble than Fe^{3+} sulfates and would imply a water-limited environment; 750 Fe³⁺ sulfates form over a range of hydration levels but are an indication of more oxidation along 751 752 with low pH, etc.). Each specific Fe-sulfate mineral identification constrains the bulk chemistry 753 and lends more information about the specific formational environment. For example, 754 rhomboclase prefers lower pH (<0) and jarosite prefers a higher pH (2-4) than other Fe-sulfates 755 (e.g., ferricopiapite (pH <2); Majzlan et al. 2006), and vavapaiite is obtainable through thermal 756 decomposition (dehydration) of jarosite (Forray et al. 2005). Dehydration of coquimbite can produce kornelite (Robinson and Fang 1973) that can further dehydrate to pentahydrated Fe³⁺ 757 758 sulfate (Kong et al. 2011) or rhomboclase (Lane et al. 2008). Rhomboclase also has been seen to 759 hydrate to form kornelite (King, unpublished data) suggesting that the reaction is reversible.

760	Dehydration of melanterite will produce rozenite, which is common on Earth (Kubisz 1960;
761	Kossenberg and Cook 1961; Jambor et al. 2000) and over time in a dry (or higher temperature)
762	environment rozenite (or melanterite) can further dehydrate to szomolnokite (Bolshakov and
763	Ptushko 1971); sometimes the intermediate rozenite is not observed (e.g., Hyde et al. 2011).
764	Long-term paragenesis of Fe ³⁺ sulfates in oxidative environments will produce schwertmannite
765	(or jarosite-family minerals if other cations are available) prior to forming Fe oxyhydroxides
766	(Jambor et al. 2000; King and McSween 2005); and there are numerous other examples of how
767	specific formational environments relate to the bulk chemistry and visa versa.
768	Oxidation of Fe ²⁺ in acid solutions occurs abiologically but also can occur biologically
769	through the presence of oxidizing bacteria such as Thiobacillus ferrooxidans (e.g., Lazaroff et al.
770	1982), and Fe ³⁺ sulfates depress the freezing point of brines (Chevrier and Altheide, 2008),
771	hence identification of Fe ³⁺ sulfates on Mars may be important for selecting future regions of
772	study intended for the study of life on Mars. Finally, Fe sulfates are capable of hosting a
773	significant amount of H ₂ O in their crystal structures (Table 1) and may be part of the phases in
774	the martian bulk soil that link mineralogy to the amount of water-equivalent hydrogen (WEH)
775	identified by the orbiting Mars Odyssey Gamma Ray Spectrometer (Boynton et al. 2002;
776	Feldman et al. 2002, 2004; Karunatillake et al. 2012, 2013).
777	Not only do specific Fe-sulfate minerals form in specific and predictable chemical
778	environments, but each Fe-sulfate mineral exhibits a unique thermal emissivity and visible/near-
779	infrared spectrum that acts as a spectral fingerprint for that mineral. The Fe-sulfate spectra
780	presented in this work will enable scientists to identify these sulfates on Mars and determine
781	what the chemical environment was on Mars during their formation.
782	

783 Acknowledgments

784	Thanks are extended to Ferenc Forray for synthesizing the yavapaiite sample, to Brendt
785	Hyde for synthesizing the kornelite sample and doing some XRD measurements, and to Ed
786	Cloutis for the copiapite sample. We thank Phil Christensen for the use of his thermal emission
787	spectrometer laboratory. Additional thanks are extended to reviewers Ed Cloutis and Jeffrey
788	Kargel for their time and effort related to improving this paper. This work (PSI contribution
789	#606) was funded through the NASA Mars Odyssey Participating Scientist Program and the
790	NASA Mars Fundamental Research Program (grant NNX11AF11G). Mertzman thanks NSF for
791	MRI award number 0923224, which funded the purchase of a PANalytical X'Pert Pro X-ray
792	diffractometer equipped with a 15-position sample changer. PLK acknowledges funding from the
793	Canadian NSERC, Canadian Foundation for Innovation, Ontario Innovation Trust and Premier's
794	Research Excellence Award.
795	
796	References
797	Ackermann, S., Lazic, B., Armbruster, T., Doyle, S., Grevel, KD., and Majzlan, J. (2009)
798	Thermodynamic and crystallographic properties kornelite [Fe ₂ (SO ₄) ₃ \cdot ~7.75 H ₂ O] and
799	paracoquimbite [Fe ₂ (SO ₄) ₃ • 9 H ₂ O]. American Mineralogist, 94, 1620-1628.
800	Adler, H. H. and P. F. Kerr, Variations in infrared spectra, molecular symmetry and site
801	symmetry of sulfate minerals, American Mineralogist, 50, 132-147, 1965.
802	Anderson, J. L., R. C. Peterson, and I. P. Swainson (2007) The atomic structure and hydrogen
803	bonding of deuterated melanterite, $FeSO_4 \cdot 7D_2O$. The Canadian Mineralogist, 45, 457-
804	469.
- Apopei, A. I., Damian, G, and Buzgar, N. (2012) A preliminary Raman and FT-IR spectroscopic
- study of secondary hydrated sulfate minerals from the Hondol open pit. Romanian
 Journal of Mineral Deposits, 85 (2), 1-6.
- Aronson, J. R. and Emslie, A. G. (1973) Spectral reflectance and emittance of particulate
 materials, 2, Application and results. Applied Optics, 12, 2573-2584.
- 810 _____, ____, and McLinden, H. G. (1966) Infrared spectra from particulate surfaces. Science, 152,
 811 345-346.
- 812 Arvidson, R., Poulet, F., Bibring, J.-P., Wolff, M. Gendrin, A., Morris, R. V., Freeman, J. J.,
- 813 Langevin, Y., Mangold, N., and Bellucci, G. (2005) Spectral reflectance and morphologic
- 814 correlations in eastern Terra Meridiani, Mars. Science, 307, 1591-1594.
- 815 Athena Mineralogy URL, http://athena.unige.ch/athena/mineral/minppcl6.html
- Baldridge, A., P. R. Christensen, and M. D. Lane (2014) Thermal emission characterization of
 magnesium sulfates. American Mineralogist, this issue.
- 818 Basciano, L.C., and Peterson, R.C. (2007) Jarosite hydronium jarosite solid solution series with
- 819 full iron occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 1464-820 1473.
- Baur, W. H. (1962) Zur kristallchemie der salzhydrate. Die kristallstrukturen von MgSO₄·4H₂O
 (leonhardtit) und FeSO₄·4H₂O (rozenit). Acta Crystallographica, 15, 815-826.
- 823 Bigham J. M., Carlson L., and Murad E. (1994) Schwertmannite, a new iron oxyhydroxysulphate
- from Pyhäsalmi, Finland, and other localities. Mineralogical Magazine, 58, 641-648.

- Binder, A. B., Arvidson, R. E., Guinness, E. A., Jones, K. L., Morris, E. C., Mutch, T. A., Pieri,
- B26 D. C., and Sagan, C. (1977) The geology of the Viking Lander 1 site. Journal ofB27 Geophysical Research, 82, 4439-4451.
- Bish, D.L., Carey, J. W., Vaniman, D.T., and Chipera, S. J. (2003) Stability of hydrous minerals
 on the martian surface. Icarus, 164, 96-103.
- Bishop J. L. and Murad E. (1996) Schwertmannite on Mars? Spectroscopic analyses of
 schwertmannite, its relationship to other ferric minerals, and its possible presence in the
- 832 surface material on Mars. In M. D. Dyar, C. McCammon, and M. W. Schaefer, Eds.,
- 833 Mineral Spectroscopy: A tribute to Roger G. Burns, Special Publication Number 5, p.
- **834** 337-358. The Geochemical Society. Houston, TX.
- and (2005) The visible and infrared spectral properties of jarosite and alunite. American
 Mineralogist, 90(7), 1100-1107.
- B37 ____, Dyar, M. D., Lane, M. D., and Bandfield, J. (2005) Spectral identification of hydrated
 sulfates on Mars and comparison with acidic environments on Earth. International Journal
 of Astrobiology, 3 (4), 275-285.
- 840 ____, Parente, M., Weitz, C. M., Noe Dobrea, E. Z., Roach, L. H., Murchie, S. L., McGuire, P. C.,
- 841 McKeown, N. K., Milliken, R., and J. F. Mustard (2009) Mineralogy of Juventae Chasma:
- 842 Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and
- 843 hydroxylated ferric sulfate on the plateau. Journal of Geophysical Research, 114, E00D09,
- doi: 10.1029/2009JE003352.
- Bolshakov, A. P. and Ptushko, L. I. (1971) Alteration products of melanterite from the Nikitov
 mercury ore deposits. International Geology Review, 13, 849-854.

- 847 Boynton, W. V., Feldman, W. C., Squyres, S. W., Prettyman, T. H., Brückner, J., Evans, L. G.,
- 848 Reedy, R. C., Starr, R., Arnold, J. R., Drake, D. M., Englert, P. A. J., Metzger, A. E.,
- 849 Mitrofanov, I., Trombka, J. I., d'Uston, C., Wänke, H., Gasnault, O., Hamara, D. K.,
- Janes, D. M., Marcialis, Maurice, S., Mikheeva, I., Taylor, G. J., Tokar, R., and
- 851 Shinohara, C. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for
 852 subsurface ice deposits. Science, 297, 81-85.
- 853 Breidenstein, B., Schlüter, J., and G. Gebhard (1992) On beaverite: New occurrence, chemical
- data, and crystal structure. Neues Jahrbuch für Mineralogie, Monatshefte, 213-220.
- Brown, R. G. and Ross, S. D. (1970) Forbidden transitions in the infra-red spectra of tetrahedral
- anions VI. Tutton's salts and other double sulphates and selenates. Spectrochimica Acta,
 26A, 945-953.
- Burns, R. G. (1987) Ferric sulfates on Mars. Journal Geophysical Research 92, 570-574.
- (1993) Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on
 Mars. Geochimica et Cosmochimica Acta, 57, 4555-4574.
- 861 Chevrier, V. F. and Altheide, T. S. (2008) Low temperature aqueous ferric sulfate solutions on the
 862 surface of Mars. Geophysical Research Letters, 35, L22101.
- Chio, C. H., Sharma, S. K., and Muenow, D. W. (2004) Micro-Raman studies of gypsum in the
 temperature range between 9K and 373K. American Mineralogist, 89, 390-395.
- , ____, and ____ (2007) The hydrates and deuterates of ferrous sulfate (FeSO₄): A Raman
 spectroscopic study. Journal of Raman Spectroscopy, 38, 87-99.
- 867 Christensen, P. R. and Harrison, S. T. (1993) Thermal infrared emission spectroscopy of natural
- surfaces: Application to desert varnish coatings on rocks. Journal of Geophysical
- 869 Research, 98, 19819-19834.

- Clark, A. M. (1993) Hey's Mineral Index, Mineral Species, Varieties and Synonyms, 3rd edition. 870 871 Chapman and Hall, London, 852 pp.
- 872 Clark, R. N. (1999) Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of
- 873 Spectroscopy, In A. N. Rencz, Ed. Manual of Remote Sensing, Volume 3, Remote
- 874 Sensing for the Earth Sciences, John Wiley and Sons, New York, p. 3-58.
- 875 Cloutis E.A. and Gaffey M.J. (1991) Pyroxene spectroscopy revisited: Spectral-compositional
- 876 correlations and relationships to geothermometry. Journal of Geophysical Research, 96, 877 22809-22826.
- 878 , Hawthorne, F. C., Mertzman, S. A., Krenn, K., Craig, M. A., Marcino, D., Methot, M.,
- 879 Strong, J., Mustard, J. F., Blaney, D. L., Bell III, J. F., and Vilas, F. (2006) Detection and 880 discrimination of sulfate minerals using reflectance spectroscopy. Icarus, 184, 121-157.
- 881 Crowley J.K., Williams D.E., Hammarstrom J.M., Piatak N., Chou I.-M., and Mars J.C. (2003)
- 882 Spectral reflectance properties $(0.4-2.5 \,\mu\text{m})$ of secondary Fe-oxide, Fe-hydroxide, and
- 883 Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes.
- 884 Geochemistry: Exploration, Environment, Analysis, 3, 219-228.
- 885 Della Ventura, G., Ventruti, G., Bellatreccia, F., Scordari, F., and Guidi, M. C. (2013) FTIR 886 transmission spectroscopy of sideronatrite, a sodium-iron hydrous sulfate. Mineralogical 887 Magazine, 77 (4), 499-507.
- Deer, W. A., Howie, R. A., and Zussman, J. (1997) Rock-Forming Minerals. 2nd ed., Geological 888 889 Society of London.
- 890 Dyar, M. D., Breves, E. A., Jawin, E., Marchand, G., Nelms, M., O'Connor, V., Peel, S., 891 Rothstein, Y., Sklute, E. C., Lane, M. D., Bishop, J. L., and Mertzman, S. A. (2014)

7/9

- 892 Mössbauer parameters of iron in sulfate minerals. American Mineralogist, v. 98, no. 11-
- **893** 12, pp. 1943-1965, doi:10.2138/am.2013.4604.
- Ertl, A., Dyar, M. D., Hughes, J. M., Brandstätter, F., Gunter, M. E., Prem, M., Peterson, R. C.
 (2008) Pertlikite, a new tetragonal Mg-rich member of the voltaite group from Madeni
 Zakh, Iran. The Canadian Mineralogist, 46, 661-669.
- Fafani, L., Nunzi, A., and Zanazzi, P. F. (1970) The crystal structure of roemerite. American
 Mineralogist, 55, 78-89.
- 899 ____, ___, and ____(1971) The crystal structure of butlerite. American Mineralogist, 56, 751-757.
- 900 Fang, J.H., and Robinson, P.D. (1970) Crystal structures and mineral chemistry of hydrated
- 901 ferric sulfates. I. The crystal structure of coquimbite. American Mineralogist, 55, 1534-902 1540.
- 903 Feldman, W. C., Boynton, W. V., Tokar, R. L., Prettyman, T. H., Gasnault, O., Squyres, S. W.,
- 904 Elphic, R. C., Lawrence, D. J., Lawson, S. L., Maurice, S., McKinney, G. W., Moore, K.
- 905 R., and Reedy, R. C. (2002) Global distribution of neutrons from Mars: Results from
 906 Mars Odyssey. Science, 297, 75-78.
- 907 Feldman, W. C., Mellon, M. T., Maurice, S., Prettyman, T. H., Carey, J. W., Vaniman, D. T.,
- 908 Bish, D. L., Fialips, C. I., Chipera, S. J., Kargel, J. S., Elphic, R. C., Funsten, H. O.,
- **909** Lawrence, D. J., and Tokar, R. L. (2004) Hydrated states of MgSO₄ at equatorial latitudes
- 910 on Mars. Geophysical Research Letters, 31, doi:10.1029/2004GL020181.
- 911 ____, Prettyman, T. H., Maurice, S., Plaut, J. J., Bish, D. L., Vaniman, D. T., Mellon, M. T.,
- 912 Metzger, A. E., Squyres, S. W., Karunatillake, S., Boynton, W. V., Elphic, R. C.,
- 913 Funsten, H. O., Lawrence, D. J., and Tokar, R. L. (2004) Global distribution of near-
- 914 surface hydrogen on Mars. Journal of Geophysical Research, 109, E09006,

915 doi:10.1029/2003JE002160.

- Gaines, R. V., Skinner, C. W., Foord, E. E., Mason, B., and Rozenzweig, A. (1997) Dana's new
 mineralogy The system of mineralogy of James Dwight Dana and Edward Salisbury
 Dana, 8th edition, entirely rewritten and greatly enlarged, John Wiley & Sons, New York,
 1819 pp.
- Gendrin, A., Mangold, N., Bibring, J.-P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G.,
 Quantin, C., Mustard, J., Arvidson, R., LeMouelic, S. (2005) Sulfates in marian layered
 terrains: The OMEGA/Mars Express view. Science, 307, 1587-1591.
- 923 Graeber, E. J. and A. Rosenzweig (1971) The crystal structures of yavapaiite, KFe(SO₄)₂, and
 924 goldichite KFe(SO₄)₂ H₂O. American Mineralogist, 56, 1917-1933.
- 925 Griffen, D. T. and Ribbe, P. H. (1979) Distortions in the tetrahedral oxyanions of crystalline
 926 substances. Neues Jahrbuch f
 ür Mineralogie, Abhandlungen, 137, 54-73.
- 927 Grodzicki, A., and Piszczek, P. (1998) A new interpretation of abnormal shift of water
 928 molecules' bending vibration frequencies in kieserite family monohydrates. Journal of
 929 Molecular Structure, 443, 141-147.
- Hapke, B. (1993) Theory of Reflectance and Emittance Spectroscopy, 455 pp., Cambridge
 University Press, New York.
- 932 Hawthorne, F. C. (1985) Towards a structural classification of minerals: The ${}^{VI}M{}^{IV}T_2\Phi_n$ 933 minerals. American Mineralogist, 70, 455-473.
- 934 ____, Krivovichev, S. V., and Burns, P. C. (2000) The crystal chemistry of sulfate minerals. In C.
- 935 N. Alpers, J. L. Jambor, and D. K. Nordstrom, Eds. Sulfate Minerals: Crystallography,

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4762

- Geochemistry, and Environmental Significance, 40, 1-112. Reviews in Mineralogy andGeochemistry, Mineralogical Society of America, Washington, D. C.
- Herzberg, G. (1945) Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, NY.
- 939 Hezel, A. and Ross, S. D. (1966) Forbidden transitions in the infra-red spectra of tetrahedral
- 940 anions—III. Spectra-structure correlations in perchlorates, sulphates and phosphates of
- 941 the formula MXO₄. Spectrochimica Acta, 22, 1949-1961.
- Hug, S. J. (1997) In situ Fourier transform infrared measurements of sulfate adsorbed on
 hematite in aqueous solutions. Journal of Colloid and Interface Science, 188, 415-422.
- 944 Hunt, G. R. and Logan, L. M. (1972) Variation of single particle mid-infrared emission spectrum
 945 with particle size. Applied Optics, 11, 142-147.
- 946 _____ and Vincent, R. K. (1968) The behavior of spectral features in the infrared emission from
 947 particulate surfaces of various grain sizes. Journal of Geophysical Research, 73, 6039948 6046.
- 949 ____, Salisbury J.W., and Lenhoff C.J. (1971) Visible and near-infrared spectra of minerals and
 950 rocks: IV. Sulphides and sulphates. Modern Geology, 3, 1-14.
- Hyde, B. C., King, P. L, Dyar, M. D., Spilde, M. N., and Ali, A.-M. S. (2011) Methods to
 analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals.
 American Mineralogist, 96, 1856-1869.
- Jakosky, B. M. and Christensen, P. R. (1986) Global duricrust on Mars Analysis of remotesensing data. Journal of Geophysical Research, 91, 3547-3559.
- Jambor, J. L., Nordstrom, D. K., and Alpers, C. N. (2000) Metal-sulfate salts from sulfide
 mineral oxidation. In C. N. Alpers, J. L. Jambor, and D. K. Nordstrom, Eds. Sulfate

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-4762

- 958 Minerals: Crystallography, Geochemistry, and Environmental Significance, 40, 303-350.
- 959 Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,960 Washington, D. C.
- Jerz, J. K. and Rimstidt, J. D. (2003) Efflorescent iron sulfate minerals: Paragenesis, relative
 stability, and environmental impact. American Mineralogist, 88, 1919-1932.
- 963 Johnson, J. R., Bell III, J. F., Cloutis, E., Staid, M. S, Farrand, W. H., McCoy, T., Rice, M.,
- Wang, A., and Yen, A. (2007) Mineralogic constraints on sulfur-rich soils from Pancam
 spectra at Gusev crater, Mars. Geophysical Research Letters, 34,
 doi:10.1029/2007/GL029894.
- 967 Karunatillake, S., Gasnault, O., McLennan, S. M., Rogers, A. D., Wray, J. J., Squyres, S. W.,
- Boynton, W. V. (2012) The hydration state of sulfates on Mars. In *Lunar and Planet. Sci. XLIII*, Abstract #2940, Lunar and Planetary Institute, Houston (CD-ROM).
- 970 Karunatillake, S., Wray, J. J., Gasnault, O., McLennan, S. M., Rogers, A. D., Squyres, S. W., and
- 971 Boynton, W. V. (2013) Regional prevalence of Fe-sulfates on Mars. In *The Present-day*
- 972 *Habitability of Mars Conference*, Institute for Planets and Exoplanets, University of973 California at Los Angeles.
- Wing, P. L. and McSween Jr., H. Y. (2005) Effects of H₂O, pH, and oxidation state on the
 stability of Fe minerals on Mars. Journal of Geophysical Research, 110, E12S10,
 doi:10.1029/2005JE002482.
- 977 Klingelhofer, G., Morris, R. V., Bernhardt, B., Schröder, C., Rodionov, D. S., de Souza Jr., P. A.,
- 978 Yen, A., Gellert, R., Evlanov, E. N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E.,
- 979 Gütlich, P., Ming, D. W., Renz, F., Wdowiak, T., Squyres, S. W., and Arvidson, R. E.

- 980 (2004) Jarosite and hematite at Meridianin Planum from Opportunity's Mössbauer
 981 spectrometer. Science, 306, 1740-1745.
- 982 Kong, W. G., Wang, A., and Chou, I.-M. (2011) Experimental determination of the phase
 983 boundary between kornalite and pentahydrated ferric sulfate at 0.1 MPa. Chemical
 984 Geology, 284, 333-338.
- Kossenberg, M. and Cook, A. C. (1961) Weathering of sulphide minerals in coal; production of
 ferrous sulphate heptahydrate. Mineral Magazine, 32, 829-830.
- 987 Kubisz, J. (1960) Rozenite, FeSO₄ 4 H₂O, a new mineral. Bulletin of the Polish Academy of
 988 Sciences, Ser. Sci. Geol. Geogr., 8, 107-113.
- Lane, M. D. (1999) Midinfrared optical constants of calcite and their relationship to particle size
 effects in thermal emission spectra of granular calcite. Journal of Geophysical Research,
- **991** 104, 14099-14108.
- (2007) Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals. American
 Mineralogist, 92, 1-18.
- and Christensen, P. R. (1997) Thermal infrared emission spectroscopy of anhydrous
 carbonates. Journal of Geophysical Research, 102, 25581-25592.
- 996 ____, Bishop, J. L., Dyar, M. D. King, P. L., Parente, M., and Hyde, B. C. (2008) Mineralogy of
 997 the Paso Robles soils on Mars. Amer. Mineral., 93, 728-739.
- 998 ____, Dyar, M. D., and Bishop, J. L. (2004) Evidence for hydrous iron sulfate in the Martian soil.
- **999** Geophysical Research Letters, 31, L19702, doi:10.1029/2004GL021231.

- 1000 Lazaroff, N., Sigal, W., and Wasserman, A. (1982) Iron oxidation and precipitation of ferric
- hydroxysulfates by resting *Thiobacillus ferrooxidans* cells. Applied and Environmental
 Microbiology, 43(4), 924-938.
- Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O-H bond lengths in
 minerals. Monatshefte für Chemie, 130, 1047-1059.
- Ling, Z. C. and Wang, A. (2010) A systematic spectroscopic study of eight hydrous ferric
 sulfates relevant to Mars. Icarus, 209, 422-433.
- Lyon, R. J. P. (1964) Evaluation of infrared spectrophotometry for compositional analysis of
 lunar and planetary soils, II, Rough and powdered surfaces. NASA Conference Report
 CR-100.
- Majzlan, J. and Michallik, R. (2007) The crystal structures, solid solutions and infrared spectra
 of copiapite-group minerals. Mineralogical Magazine, 71 (5), 553-569.
- 1012 , Alpers, C. N., Bender Koch, C., McCleskey, R. B., Myneni, S. C. B., and Neil, J. M. (2011)
- 1013 Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the
 1014 weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284,
 1015 296-305.
- 1016 _____, Botez, C., and Stephens, P. W. (2005) The crystal structures of synthetic Fe₂(SO₄)₃(H₂O₅)
 1017 and the type specimen of lausenite. American Mineralogist, 90, 411-416.
- 1018 _____, Navrotsky, A., McCleskey, R. B., and Alpers, C. N. (2006) Thermodynamic properties and
 1019 crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and
 1020 Fe₂(SO₄)₃(H₂O₅). European Journal of Mineralogy, 18, 175-186.

- 1021 Makreski, P., Jovanovski, G., Dimitrovska, S. (2005) Minerals from Macedonia: XIV.
- 1022 Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy.
 1023 Vibrational Spectroscopy, 39, Issue 2, 229-239.
- 1024 Mereiter, K. (1972) Die Kristallstruktur des Voltaits, $K_2Fe^{2+}{}_5Fe^{3+}{}_3O_4Al[SO_4]_{12}$ 18 H₂O.
- 1025Tschermaks Mineral. Petrogr. Mitt., 18, 185-202.
- 1026 (1974) Die Kristallstruktur von Rhomboklas, $H_5O_2^+$ {Fe[SO_4]₂·2H₂O}. Tschermaks

1027 Mineralogische und Petrographische Mitteilungen, 21, 216-232.

- 1028 Millikin, R. E., Swayze, G. A., Arvidson, R. E., Bishop, J. L., Clark, R. N., Ehlmann, B. L.,
- 1029 Green, R. O., Grotzinger, J. P., Morris, R. V., Murchie, S. L., Mustard, J. F., and Weitz, C.
- 1030 Opaline silica in young deposits on Mars. Geology, 36, 847-850.
- 1031 Moenke, H. (1962) Mineralspektren I: Die Ultrarotabsorption der häufigsten und wirtschaftlich
- 1032 wichtigsten Halogenid-, Oxyd-, Hydroxyd-, Carbonat-, Nitrat-, Borat-, Sulfat-, Chromat-,
- 1033 Wolframat-, Molybdat-, Phosphat-, Arsenat-, Vanadat- und Silikatmineralien im
 1034 Spektralbereich 400-4000 cm⁻¹. Akademie Verlag, Berlin.
- 1035 Moersch, J. E. (1992) Modeling Particle Size Effects on the Emissivity Spectra of Minerals in
- 1036 the Thermal Infrared, M. S. thesis, Arizona State Univ., Tempe, AZ.
- and Christensen, P. R. (1995) Thermal emission from particulate surfaces: A comparison of
 scattering models with measured spectra. Journal of Geophysical Research, 100, 7465 7477.
- 1040 Morris, R. V., Klingelhofer, G., Schröder, C., Rodionov, D. S., Yen, A., Ming, D. W., de Souza
- 1041 Jr., P. A., Wdowiak, T., Fleischer, I., Gellert, R., Bernhardt, B., Bonnes, U., Cohen, B.
- 1042 A., Evlanov, E. N., Foh, J., Gütlich, P., Kankeleit, E., McCoy, T., Mittlefehldt, D. W.,

47

- 1044 Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's 1045 journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. 1046 Journal of Geophysical Research, 111, doi: 10.1029/2006JE002791.
- 1047 Murchie, S., Roach, L., Seelos, F., Milliken, R., Mustard, J., Arvidson, R., Wiseman, S.,
- 1048 Lichtenberg, K., Andrews-Hanna, J., Bishop, J., Bibring, J.-P., Parente, M., and Morris,
- 1049 R. (2009) Evidence for the origin of layered deposits in Candor Chasma, Mars, from
- 1050 mineral composition and hydrologic modeling. Journal of Geophysical Research, 114,
- 1051 E00D05, doi: 10.1029/2009JE003343.
- 1052 Mustard, J. F. and Hays, J. E. (1997) Effects of hyperfine particles on reflectance spectra from
 1053 0.3 to 25 mm. Icarus , 125, 145-163.
- 1054 Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A., Morris, E. C. (1977) The geology
 1055 of the Viking Lander 2 site. Journal of Geophysical Research, 82, 4452-4467.
- 1056 Myneni, S. (2000) X-ray and vibrational spectroscopy of sulfate in earth materials. In C. N.
- Alpers, J. L. Jambor, and D. K. Nordstrom, Eds. Sulfate Minerals: Crystallography,
 Geochemistry, and Environmental Significance, 40, 113-172. Reviews in Mineralogy and
 Geochemistry, Mineralogical Society of America, Washington, D. C.
- 1060 Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds,
 1061 Wiley & Sons, NY.
- 1062 Omori, K. and Kerr, P. F. (1963) Infrared studies of saline sulfate minerals. Geological Society
 1063 of America Bulletin, 74, 709-734.

- 1064 Parafiniuk, J., Dobrzycki, L., and Wozniak, K. (2010) Slavikite revision of chemical
 1065 composition and crystal structure. American Mineralogist, 95, 11-18.
- 1066 Peterson, R.C. (2003) The relationship between Cu content and distortion in the atomic structure
- 1067 of melanterite from the Richmond mine, Iron Mountain, California. The Canadian
- 1068 Mineralogist, 41, 937-949.
- Powers, D. A., Rossman, G. R., Schugar, H. J., and Gray, H. B. (1975) Magnetic behavior and
 infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. Journal of
 Solid State Chemistry, 13, 1-13.
- 1072 Roach, L. H., Mustard, J. F., Murchie, S. L., Bibring, J.-P., Forget, F., Lewis, K. W., Aharonson,
- 1073 O., Vincendon, M., and Bishop, J. L. (2009) Testing evidence of recent hydration state
 1074 change in sulfates on Mars. Journal of Geophysical Research, 114, E00D02, doi:
 1075 10.1029/2008JE003245.
- 1076 Robinson, P. D. and Fang, J. H. (1973) Crystal structures and mineral chemistry of hydrated
 1077 ferric sulphates. III. The crystal structure of kornelite. American Mineralogist, 58, 5351078 539.
- 1079 Rosenzweig, A. and Gross, E. B. (1954) Goldichite, a new hydrous potassium ferric sulfate from
 1080 the San Rafael swell, Utah. American Mineralogist, 40, 469-480.
- 1081 Ross, S. D. (1962) Forbidden transitions in the infra-red spectra of some tetrahedral anions II.
 1082 Sulphates. Spectrochimica, 18, 1575-1578.
- 1083 (1974) Sulfates and other oxy-anions of Group VI. In V. C. Farmer, Ed., The Infrared
 1084 Spectra of Minerals, 423-444. Mineralogical Society, London.

- 1085 Ruff, S. W., Christensen, P. R., Barbera, P. W., and Anderson, D. L. (1997) Quantitative thermal
- 1086 emission spectroscopy of minerals: A laboratory technique for measurement and
- 1087 calibration. Journal of Geophysical Research, 102, 14899-14913.
- Salisbury, J. W. and Eastes, J. W. (1985) The effect of particle size and porosity on spectral
 contrast in the mid-infrared. Icarus, 64, 586-588.
- and A. Wald (1992) The role of volume scattering in reducing spectral contrast of
 reststrahlen bands in spectra of powdered minerals. Icarus , 96, 121-128.
- Sasaki, K., Tanaike, O., and Konno, H. (1998) Distinction of jarosite-group compounds by
 Raman spectroscopy. Canadian Mineralogist, 36, 1225-1235.
- 1094 Scordari, F., and Ventruti, G. (2009) Sideronatrite, $Na_2Fe(SO_4)_2(OH) \cdot 3 H_2O$: Crystal structure
- 1095 of the orthorhombic polytype and OD character analysis. American Mineralogist, 94,1096 1679-1686.
- 1097 _____, ____, and Stasi, F. (2010) Metasideronatrite: Crystal structure and its relationship with 1098 sideronatrite. American Mineralogist, 95, 329-334.
- 1099 Sejkora, J. and Ďuda, R. (1998) Natroalunite and natrojarosite from Saca (Košice region,
 1100 Slovakia). Mineralia Slovaca, 30, 315-320.
- Serna, C. J., Cortina, C. P., and Ramos, J. V. G. (1986) Infrared and Ramen study of alunitejarosite compounds. Spectrochimica Acta, 42A, 729-834.
- 1103 Shokarev, M. M., Margulis, E. V., Vershinina, F. I., Beisekeeva, L. I., and Savchenko, L. A.
- 1104 (1972) Infrared spectra of iron (III) hydroxide sulphates and hydroxides. Journal of
 1105 Inorganic Chemistry, 17(9), 1293-1296.

1106 Soptrajanov, B. and M. Trpkovska (1993) Copper sulfate monohydrate: Centrosymmetric or

non-centrosymmetric? Journal of Molecular Structure, 293, 109-112.

- Steger, E. and Schmidt, W. (1964) Infrarotspektren von Sulfaten und Phosphaten. Berichte der
 Bunsengesellschaft für Physikalische Chemie, 68, 102-109.
- Strunz, H. and Nickel, E. (2001) Strunz Mineralogical Tables: Chemical Structural Mineral
 Classification System (9th edition), pp. 870. E. Schweizerbart'sche Verlagsbuchhandlung,
- 1112 Stuttgart.
- 1113 Süsse, P. (1967) Die kristallstruktur des botryogens. Naturwissenschaften, 54, 139-139.
- 1114 (1968) The crystal structure of amarantite, Fe₂(SO₄)₂O · 7 H₂O. Zeitschrift für
 1115 Kristallographie, 127, 261-275.
- 1116 Vassallo, A. M. and Finnie, K. S. (1992) Infrared emission spectroscopy of some sulfate
 1117 minerals. Applied Spectroscopy, 46, 1477-1482.
- 1118 Ventruti, G., Stasi, F., and Scordari, F. (2010) Metasideronatrite: crystal structure and its relation
 1119 with sidernatrite. American Mineralogist, 85, 329-334.
- 1120 Wang, A., Freeman, J. J., Jolliff, B. L., and Chou, I.-M. (2006) Sulfates on Mars: A systematic
- 1121 Raman spectroscopic study of hydration states of magnesium sulfates. Geochimica et1122 Cosmochimica Acta, 70, 6118-6135.
- and Ling, Z. C. (2011) Ferric sulfates on Mars: A combined mission data analysis of salty
 soils at Gusev crater and laboratory experimental investigations. Journal of Geophysical
 Research, 116, doi:10.1029/2010JE003665.
- 1126 ____, Bell III, J. F., Li, R., Johnson, J. R., Farrand, W. H., Cloutis, E. A., Arvidson, R. E.,
 1127 Crumpler, L., Squyres, S. W., McLennan, S. M., Herkenhoff, K. E., Ruff, S. W.,

- 1129 coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia
- Hills. Journal of Geophysical Research, 113, E12S40, doi:10.1029/2008JE003126.
- 1131 Wenrich, M. L. and Christensen, P. R. (1996) Optical constants of minerals derived from
- emission spectroscopy: Application to quartz. Journal of Geophysical Research, 101,
- **1133** 15921-15931.
- Weitz, C. M., Noe Dobrea, E. Z., Lane, M. D., and Knudson A. (2012) Geologic relationships
 between gray hematite, sulfates, and clays in Capri Chasma. Journal of Geophysical
 Research, E00J09, doi:10.10292012JE004092.
- 1137 Wildner, M., and Giester, G. (1991) The crystal structures of kieserite-type compounds. I.

1138 Crystal structures of $Me(II)SO_4 H_2O$ (Me = Mn,Fe,Co,Ni,Zn). Neues Jahrbuch fur

Mineralogie, Monatshefte, 1991, 296-306.

1140

1139

1141 Figure Captions

- 1142 Figure 1: Pancam image of the bright soils in the *Spirit* rover tracks in Gusev Crater, Mars,
- indicating the presence of Fe sulfates in the subsurface of Mars. A broken, dragging
- 1144 wheel serendipitously exposed the yellowish/whitish minerals. Image credit:
- 1145 NASA/JPL/Cornell/Arizona State University
- 1146 Figure 2a: Mid-infrared thermal emissivity spectra of sulfates with finite clusters of SO₄
- tetrahedra and MX₆ octahedra, including their crystal structure diagrams -- coquimbite
- (Fang and Robinson 1970), römerite (Fanfani et al. 1970), and rozenite (Baur 1962).
- Band depths have been adjusted by multiplying the spectra by the parenthetical amounts;
- spectra are then offset for clarity.

1151	Figure 2b: VNIR reflectance spectra from 0.4-5 μ m of sulfates with finite clusters of SO ₄
1152	tetrahedra and MX_6 octahedra including coquimbite/paracoquimbite, römerite, and
1153	rozenite.
1154	Figure 3a: Mid-infrared thermal emissivity spectra of sulfates with chains of SO ₄ tetrahedra and
1155	MX_6 octahedra, including amarantite, zincobotryogen, butlerite, parabutlerite,
1156	copiapite/ferricopiapite, magnesiocopiapite, and sideronatrite. In addition, the crystal
1157	structure diagrams are shown (amarantite from Süsse 1968; botryogen from Süsse 1967;
1158	butlerite from Fanfani et al. 1971; ferricopiapite from Fanfani et al. 1973; and
1159	metasideronatrite from Ventruti et al. 2010). Band depths have been adjusted by
1160	multiplying the spectra by the parenthetical amounts; spectra are then offset for clarity.
1161	Figure 3b,c,d,e: VNIR reflectance spectra of sulfates with chains of SO ₄ tetrahedra and MX_6
1162	octahedra including b) amarantite, botryogen, butlerite and parabutlerite, c) copiapite
1163	from 0.4-5 μ m, Mg-copiapite, and sideronatrite from 0.4-5 μ m, d) three grain size
1164	fractions of amarantite from 0.3-2.65 μ m, and e) three particle-size fractions of botryogen
1165	from 0.3-2.65 µm.
1166	Figure 4a: Mid-infrared thermal emissivity spectra of sulfates with sheets of $M_3(OH)_6(SO_4)_2$,
1167	including beaverite, hydronium jarosite, jarosite, and natrojarosite. In addition, the crystal
1168	structure diagrams for beaverite (Breidenstein et al. 1992) and jarosite (Basciano and
1169	Peterson 2007) are shown. Band depths have been adjusted by multiplying the spectra by
1170	the parenthetical amounts; spectra are then offset for clarity.
1171	Figure 4b: VNIR reflectance spectra from 0.4-5 μ m of sulfates with sheets of M ₃ (OH) ₆ (SO ₄) ₂ ,
1172	including beaverite, jarosite, hydronium jarosite, and natrojarosite. The beaverite
1173	spectrum is offset for clarity.

53

7/9

1174	Figure 5a: Mid-infrared thermal emissivity spectra of sulfates with sheets of SO ₄ tetrahedra and
1175	MX_6 octahedra, and their crystal structure diagrams including goldichite (Graeber and
1176	Rosenzweig 1971), kornelite (Robinson and Fang 1973), rhomboclase (Mereiter 1974),
1177	slavikite (Parafiniuk et al. 2010), and yavapaiite (Graeber and Rosenzweig 1971). Band
1178	depths have been adjusted by multiplying the spectra by the parenthetical amounts;
1179	spectra are then offset for clarity.
1180	Figure 5b: VNIR reflectance spectra from 0.4-5 μ m of sulfates with sheets of SO ₄ tetrahedra and
1181	MX_6 octahedra including rhomboclase, yavapaiite, slavikite, kornelite, and goldichite.
1182	The slavikite spectrum is offset for clarity.
1183	Figure 6a: Mid-infrared thermal emissivity spectra of sulfates with frameworks of SO ₄ tetrahedra
1184	and MX ₆ octahedra, and their crystal structure diagrams including szomolnokite
1185	(Wildner and Geister 1991) and voltaite (Mereiter 1972). Spectra are offset for clarity.
1186	Figure 6b: VNIR reflectance spectra from 0.4-5 μ m of sulfates with frameworks of SO ₄
1187	tetrahedra and MX_6 octahedra including szomolnokite and voltaite.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mineral	Stoichiometric Composition	Sample and	Locale
Amarantic (pure) $Fc(SO_i)(OH) + 3 H_2O$ $R623 + A$ c ch; $R < 45 \mu m$ Siera Borda, Antolagasta, Chile; Collection of hatural HistoryBeaverite (w' -5-7%) anglesite)PbCu(Fe,Al)_2(SO_i)_2(OH) + TH_5OG1241Unknown e ch; R <45 µm	(XRD character)	F	Character ^a	
	Amarantite	$Fe(SO_4)(OH) \bullet 3 H_2O$	R6254-A	Sierra Borda, Antofagasta, Chile; Collection
Beaverite (w' $\rightarrow 5^{-78}$)PbCu(Pc,Al) ₂ (SO ₄) ₂ (OH) ₅ G1241 ϵ pclit; R <150 µmUnknown ϵ pclit; R <150 µmUnknown ϵ pclit; R <150 µmBotryogen-Zn (W $\rightarrow 5^{-78}$)(Za,Mg,Mn)Fe(SO ₄) ₂ (OH) ϵ PfC5525-3 ech; R <45 µm	(pure)		ϵ ch; R <45 μm	of the Smithsonian - National Museum of Natural History
	Beaverite	PbCu(Fe,Al) ₂ (SO ₄) ₂ (OH) ₆	G1241	Unknown
anglesite) μm Botryogen-Zn(Zn,Mg,Mn)Fe(SO_4)_2(OH) + $\epsilon ch; R < 45 \ \mu m$ ButleriteFe(SO_4)(OH) + 2 H_2O $\epsilon ch; R < 45 \ \mu m$ ButleriteFe(SO_4)_0(OH) + 2 H_2OVZO108 h e pellet; R < 45 \ \mu mCopiapite ⁴ Fe(C_5O_4)_4(OH)_2 + 20 H_2OSPT125Copiapite ⁶ Fe(C_5O_4)_4 + 0.00 H_2 + 0.0	(w/ ~5-7%		ε pellet; R <150	
Botryogen-Zn $(Zn, Mg, Mn)Fc(SO_4)_2(OH) + CS25-3 \\ T, H_2O$ (Zn, Mg, Mn)Fc(SO_4)_2(OH) + CS25-3 \\ c, h; R < 45 µmMina Quetcana, Calairana, Chile; Collection of the Smithsonian - National Museum of Natural HistoryButleriteFc(SO_4)(OH) + 2 H_2O \\ with sparabutlerite)VZO108 b coparatic ' FeFe_4(SO_4)_6(OH)_2 + 20 H_2O (W 25% Ferricopiapite)Sierra Gorda, Chile; Collection of Ed Cloutis e ch; R < 45 µm	anglesite)		μm	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Botryogen-Zn	$(Zn,Mg,Mn)Fe(SO_4)_2(OH) \bullet$	C5525-3	Mina Quetena, Calama, Chile; Collection of
Butterite (w/ 5% parabutlerite)Fe(SO ₄)(OH) • 2 H ₂ O e pollet; R <45 µmBorate, Calico Hills, San Bernardino, e pollet; R <45 µmCopiapite * Coquimbite d*FeFe ₄ (SO ₄) ₈ (OH) ₂ • 20 H ₂ O e ch; R <45 µm		7 H ₂ O	ε ch; R <45 μm	the Smithsonian - National Museum of Natural History
(w. 5% parabulerice) Copiapite ° (w. 25% $e pellet; R < 45$ parabulerice) 	Butlerite	$Fe(SO_4)(OH) \bullet 2 H_2O$	VZO108 ^b	Borate, Calico Hills, San Bernardino,
$ \begin{array}{c} \label{eq:parabulerite} \\ \mbox{Copiaptic}^{\rm int} \\ Copiapti$	(w/ 5%		ε pellet; R <45	California
CopinpteFeFe ₄ (SO ₄) ₀ (OH) ₂ • 20 H ₂ OSPT125Sterra Gorda, Chile; Collection of Ed Cloutis(w/ 25%E ch; R < 45 µm	parabutlerite)		μm april 25	
	Copiapite °	$FeFe_4(SO_4)_6(OH)_2 \bullet 20 H_2O$	SP1125	Sierra Gorda, Chile; Collection of Ed Cloutis
	(W/25% formiconienita)		ϵ ch; R <45 μ m	
Coquinitie $Fe_{2}(SO_{4})^{2-9} FigO$ $Fied_{100}(S)^{2-9} FigO$ $Fied_{100}(S)^{2-9} FigO$ $Fied_{100}(S)^{2-9} FigO$ Goldichite (pure) $KFe_{3}(SO_{4})_{2} \cdot 4 H_{2}O$ $e ch; R < 125 \mu m$ $Pozzuoli, Soffatara, Italy; Collection of thesmithsonian - National Museum of NaturalHistoryHydronium jarosite(+ minor cation)(H_{3}O)Fe_{3}(SO_{4})_{2}(OH)_{6}R10101Boolcomata, South Australia, Australia;e ch; R < 45 \mu mJarosite(w/ trace unknown)Kornelite fKFe_{3}(SO_{4})_{2}(OH)_{6}ML-S51Collection of the Smithsonian - NationalMuseum of Natural HistoryMagnesiocopiapite(pure)MgFe_{4}(SO_{4})_{6}(OH)_{2} \cdot 20 H_{2}OML-S86e pellet; R < 45 \mu mAma Pyrite Mine, Leona Heights, Oakland,e pellet; R < 45 \mu mNatrojarosite(pure)NaFe_{3}(SO_{4})_{2}(OH)_{6}Bfofe1e pellet; R < 45 \mu mSunset Mining claim near Kingman, AZe pellet; R < 45 \mu mNatrojarosite(pure)NaFe_{3}(SO_{4})_{2}(OH)_{6}ML-S85e ch; R < 45 \mu mSunset Mining claim near Kingman, AZe clict con of the Smithsonian - National Museum ofNatural HistoryRhomboclase(pure)(H_{5}O_{2})Fe(SO_{4})_{2} \cdot 2 H_{2}OML-S85e ch; R < 250 \mu mNar Sauriatissa, Island of Cyprus, Greece;e collection of the Smithsonian - National Museum ofNatural HistoryRozenite(pure)FeSO_{4} \cdot 4 H_{2}OBfo26-Be pellet; R < 45 \mu mNar Sauriatissa, Island of Cyprus, Greece;e collection of the Smithsonian - National Museum of NaturalHistorySlavikite(pure)NaMg_2Fe_{3}(SO_{4})_{2}(OH), \bullet 33(Pure)H_{$	Coquimbite ^d	$Fe_{2}(SO_{1})_{2} \bullet 9 H_{2}O_{1}$	MI -\$46	Alcaparrosa Chile
Goldichite (pure)KFe $(SO_4)_2 \cdot 4 H_2O$ Descuoi, Solfatara, Italy; Collection of the smithsonian - National Museum of Natural HistoryHydronium jarosite ° (+ minor cation)(H ₃ O)Fe ₃ (SO ₄) ₂ (OH) ₆ R10101 $\epsilon ch; R < 45 \mu m$ Poczuoli, Solfatara, Italy; Collection of the Smithsonian - National Museum of Natural HistoryJarosite (w/ trace unknown) Kornelite ¹ (pure)KFe ₃ (SO ₄) ₂ (OH) ₆ R10101 $\epsilon ch; R < 45 \mu m$ Poczuoli, Solfatara, Italy; Collection of the Smithsonian - National Museum of Natural HistoryMagnesiocopiapite (pure)KFe ₃ (SO ₄) ₂ · • 7 H ₂ OML-S105 $\epsilon ch; R < 45 \mu m$ Synthesized by co-authors PLK and BCH $\epsilon ch; R < 45 \mu m$ Natrojarosite (pure)NaFe ₃ (SO ₄) ₂ (OH) ₆ 95661 $\epsilon ch; R < 45 \mu m$ Alma Pyrite Mine, Leona Heights, Oakland, ϵ pellet; R <45 ϵ pellet; R <45 ϵ Parabutlerite (pure)Fe(SO ₄)(OH) • 2 H ₂ O157716 $\epsilon ch; R < 25 \mu m$ Chiquicamata, Antofagasta, Chile; Collection of the Smithsonian - National Museum of Natural HistoryRhomboclase (pure)(H ₃ O ₂)Fe(SO ₄) ₂ · 0 H ₂ OML-S85 $\epsilon ch; R < 250 \mu m$ Naera Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 \mu m; R$ $< 45 \mu m$ Rozenite (pure)FeSO ₄ • 4 H ₂ OB626-B $\epsilon pellet; R <45$ ItalistorySideronatrite (+ minor phase)NaMg ₂ Fe ₃ (SO ₄) ₂ (OH) • 3 H ₂ OH0229 $\epsilon ch; R < 45 \mu m$ Sidevinative (pure)NaMg ₂ Fe ₃ (SO ₄) ₂ (OH) • 3140229 $\epsilon ch; R < 45$ Chiquicamata, Chile; Collection of the ϵ mithsonian - National Museum of Natural HistorySlavikite (pure)NaMg	Coquimone	$10_{2}(50_{4})_{3} = 711_{2}0$	$\epsilon ch \cdot R < 125 \mu m$	Alcapariosa, enne
	Goldichite	$KFe(SO_4)_2 \bullet 4 H_2O_1$	123922	Pozzuoli, Solfatara, Italy: Collection of the
Hydronium jarosite " (+ minor cation)(H_3O)Fe_3(SO_4)_2(OH)_6HistoryHistoryHydronium jarosite " (+ minor cation)(H_3O)Fe_3(SO_4)_2(OH)_6R10101 ϵ ch; R <45 µm	(pure)		ϵ ch: R <500 µm	Smithsonian - National Museum of Natural
Hydronium jarosite (+ minor cation)(H_3O)Fe_3(SO_4)_2(OH)_6R10101 ϵ ch; R <45 µmBoolcoomatta, South Australia, Australia; Collection of the Smithsonian - National Museum of Natural HistoryJarosite (w/ trace unknown) Kornelite ^f (pure)KFe_3(SO_4)_2(OH)_6ML-S51Copiapo Jarosite Mine, Dona Ana Co., NM ϵ ch; R <45 µm	`		, p	History
	Hydronium jarosite ^e	$(H_3O)Fe_3(SO_4)_2(OH)_6$	R10101	Boolcoomatta, South Australia, Australia;
$ \begin{array}{c} \text{Museum of Natural History} \\ \text{Museum of Natural History} \\ \text{Copiapo Jarosite Mine, Dona Ana Co., NM} \\ (w' trace unknown) \\ \text{Kornelite}^{f} \\ \text{Fe}_2(SO_4)_2(OH)_6 \\ \text{Fe}_2(SO_4)_3 \bullet 7 \text{ H}_2O \\ \text{Fe}_2(SO_4)_6(OH)_2 \bullet 20 \text{ H}_2O \\ \text{Harojarosite} \\ (pure) \\ \text{Marejarosite} \\ \text{Natrojarosite} \\ \text{Natrojarosite} \\ (pure) \\ \text{Natrojarosite} \\ \text{Parabutlerite} \\ \text{Fe}(SO_4)(OH) \bullet 2 \text{ H}_2O \\ \text{Fe}(SO_4)(OH) \bullet 2 \text{ H}_2O \\ \text{Harojarosite} \\ (pure) \\ \text{Fe}(SO_4)(OH) \bullet 2 \text{ H}_2O \\ \text{Harojarosite} \\ (pure) \\ \text{Fe}(SO_4)(OH) \bullet 2 \text{ H}_2O \\ \text{Fe}(SO_4)_2 \bullet 2 \text{ H}_2O \\ \text{Harojarosite} \\ (pure) \\ \text{Rhomboclase} \\ (pure) \\ \text{Rhomboclase} \\ (pure) \\ \text{Fe}Fe_2(SO_4)_4 \bullet 14 \text{ H}_2O \\ \text{Fe}Co_4(SO_4)_4 \bullet 14 \text{ H}_2O \\ \text{Harojarosite} \\ \text{Fe}(SO_4) \bullet 4 \text{ H}_2O \\ \text{Harojarosite} \\ \text{Fe}(SO_4) \bullet 4 \text{ H}_2O \\ \text{Harojarosite} \\ \text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Harojarosite} \\ \text{Sideronatrite} \\ \text{Fe}SO_4 \bullet 4 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{Fe}SO_4 \bullet 4 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{Sideronatrite} \\ \text{Natrojarosite} \\ \text{Fe}SO_4 \bullet 4 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{Namogradium} \\ \text{Natrojarosite} \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Harojarosite} \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Harojaromatrite} \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Harojaromatrite} \\ \text{Harojaromatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{Sideronatrite} \\ \text{NaMg}_2\text{Fe}(SO_4)_2(OH) \bullet 3 \text{ H}_2O \\ \text{E} \text{ pellet; R < 45 \\ \mum \\ \text{History} \\ Starihsonian - National Museum of Natural History \\ \text{Starihsonian - National Museum of Natural History \\ \text{Starihsonian - National Museum of Natural History \\ \text{Starihsonian - National Museum of Natural History \\ \text{Starihosonian - National Museum of Natural History \\ \text{Starihosonian - National Museum $	(+ minor cation)		ε ch; R <45 μm	Collection of the Smithsonian - National
Jarosite KFe ₃ (SO ₄) ₂ (OH) ₆ ML-S51 Coptapo Jarosite Mine, Dona Ana Co., NM (w/ trace unknown) Kornelite ¹ (pure) Fe ₂ (SO ₄) ₃ • 7 H ₂ O ML-S105 Synthesized by co-authors PLK and BCH (pure) MgFe ₄ (SO ₄) ₆ (OH) ₂ • 20 H ₂ O MgFe ₄ (SO ₄) ₆ (OH) ₂ • 20 H ₂ O ML-S86 Alma Pyrite Mine, Leona Heights, Oakland, ϵ pellet; R <45 µm Magnesiocopiapite NaFe ₃ (SO ₄) ₂ (OH) ₆ 95661 Sunset Mining claim near Kingman, AZ ϵ pellet; R 45- 125 µm Parabutlerite Fe(SO ₄)(OH) • 2 H ₂ O 157716 Chiquicamata, Antofagasta, Chile; Collection (pure) ϵ ch; R <45 µm Rhomboclase (H ₅ O ₂)Fe(SO ₄) ₂ • 2 H ₂ O ML-S85 Alcaparrosa, Chile (pure) Fe ⁵ O ₂ (-4 H ₂ O) Kata H ₂ O R8415 Near Skauriatissa, Island of Cyprus, Greece; (pure) Fe ⁵ O ₄ • 4 H ₂ O JB626-B Iron Mountain, CA (pure) Fe ⁵ O ₄ • 4 H ₂ O JB626-B Iron Mountain, CA (pure) Kate Fe ⁵ O ₄ • 4 H ₂ O ϵ ch; R <125 µm Sideronatrite Na ₂ Fe ₅ (SO ₄) ₂ (OH) • 3 H ₂ O 115164 Chiquicamata, Chile; Collection of the spellet; R <45 m History Slavikite NaMg ₂ Fe ₅ (SO ₄) ₇ (OH) ₆ • 33 140229 Valachov, Czech Rebublic; Collection of the spellet; R 45- 125 µm History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Collection of the Smithsonian - National Museum of Natural History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Collection of the Smithsonian - National Museum of Natural History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Cate Cate Magnet Algo Natural Museum of Natural History Natural History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Magnet Algo Natural Museum of Natural Museum of Natural History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Cate Magnet Mater Mater National Museum of Natural History Natural History Szomolnokite Fe ⁵ O ₄ • H ₂ O 104276 Tintic Standard Mine, Dividend, UT; (pure) Cate Cate Magnet Mater	. .		NG 051	Museum of Natural History
	Jarosite	$KFe_3(SO_4)_2(OH)_6$	ML-S51	Copiapo Jarosite Mine, Dona Ana Co., NM
Kneme $Fe_{2}(3O_{4})_{3} \bullet 7 Fa_{2}O$ $ML-SROSynthesized by co-autilots FLK and BCH(pure)\epsilon ch; R <45 µm$	(W/ trace unknown)	$E_{2}(SO) \bullet 7 HO$	ϵ ch; K <45 μ m	Supplication of the second sec
	(pure)	$Fe_2(3O_4)_3 \bullet 7 H_2O$	ML-S103 c ch: $P < 45$ µm	Synthesized by co-additions FLK and BCH
$\begin{array}{cccc} \mbox{Magnesheedphaphe} & \mbox{Mg} req(504)_{5}(504)_{2} & \mbox{Disp} respective} \\ \mbox{(pure)} & \mbox{Marcel} respective} \\ \mbox{Natrojarosite} & \mbox{NaFe}_{3}(SO_{4})_{2}(OH)_{6} & \mbox{95661} & \mbox{sunset Mining claim near Kingman, AZ} \\ \mbox{(pure)} & \mbox{sunset Mining claim near Kingman, AZ} \\ \mbox{(pure)} & \mbox{sunset Mining claim near Kingman, AZ} \\ \mbox{pellet; R 45-} & \mbox{125 } \mu m \\ \mbox{Parabutlerite} & \mbox{Fe}(SO_{4})(OH) \bullet 2 \mbox{H}_{2}O & \mbox{157716} & \mbox{Chiquicamata, Antofagasta, Chile; Collection} \\ \mbox{(pure)} & \mbox{e} ch; R < 45 \mbox{\mum} \\ \mbox{Rhomboclase} & \mbox{(H}_{5}O_{2})\mbox{Fe}(SO_{4})_{2} \bullet 2 \mbox{H}_{2}O & \mbox{ML-S85} & \mbox{Alcaparrosa, Chile} \\ \mbox{(pure)} & \mbox{e} ch; R < 250 \mbox{\mum} \\ \mbox{Romerite} & \mbox{Fe}\mbox{Fe}\mbox{fe}_{2}(SO_{4})_{4} \bullet 14 \mbox{H}_{2}O & \mbox{RM}_{4}S \mbox{H}_{4}S & \mbox{Museum of Natural History} \\ \mbox{Romerite} & \mbox{Fe}\mbox{Fe}\mbox{Q}_{4} \bullet 4 \mbox{H}_{2}O & \mbox{JB626-B} & \mbox{Iron Mountain, CA} \\ \mbox{(pure)} & \mbox{e} ch; R < 125 \mbox{\mum} \\ \mbox{Sideronatrite} & \mbox{Na}_{2}\mbox{Fe}(SO_{4})_{2}(OH) \bullet 3 \mbox{H}_{2}O & \mbox{II}\mbo$	Magnesioconianite	$M_{0}Fe_{1}(SO_{1})_{2}(OH)_{2} \bullet 20 H_{2}O_{1}$	MI -S86	Alma Pyrite Mine, Leona Heights, Oakland
parabutleriteNaFe3(SO4)2(OH)695661Sunset Mining claim near Kingman, AZparabutleriteFe(SO4)(OH) • 2 H2O57716Chiquicamata, Antofagasta, Chile; Collection(pure) ϵ ch; R <45 µm	(pure)		ϵ nellet: R < 45	Alameda Co., CA
Natrojarosite (pure)NaFe3(SO4)2(OH)695661 $\epsilon pellet; R 45-125 \ \mu m$ Sunset Mining claim near Kingman, AZParabutlerite (pure)Fe(SO4)(OH) • 2 H2O157716 $\epsilon ch; R < 45 \ \mu m$ Chiquicamata, Antofagasta, Chile; Collection of the Smithsonian - National Museum of Natural HistoryRhomboclase (pure)(H ₃ O ₂)Fe(SO ₄) ₂ • 2 H ₂ OML-S85 $\epsilon ch; R < 250 \ \mu m$ Alcaparrosa, Chile $\epsilon ch; R < 250 \ \mu m$ Römerite (pure)FeFe2(SO ₄) ₄ • 14 H2OR8415 $\epsilon ch; R < 250 \ \mu m$ Near Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 \ \mu m$ Rozenite (pure)FeSO4 • 4 H2OJB626-B $\epsilon ch; R < 125 \ \mu m$ Iron Mountain, CA $\epsilon ch; R < 125 \ \mu m$ Sideronatrite (+ minor phase)NaJ2Fe(SO ₄) ₂ (OH) • 3 H2O115164 $\epsilon pellet; R < 45$ μm Chiquicamata, Chile; Collection of the $\epsilon pellet; R 45-$ $115164Slavikite(pure)NaMg2Fe3(SO4)7(OH)6 • 33H2O140229Valachov, Czech Rebublic; Collection of the\epsilon pellet; R 45-125 \ \mu mSzomolnokite(pure)FeSO4 • H2O104276\epsilon ch; R <45 \ \mu mNatural HistorySzomolnokite(pure)FeSO4 • H2O104276\epsilon ch; R <45 \ \mu mNatural HistorySzomolnokite(pure)FeSO4 • H2O104276\epsilon ch; R <45 \ \mu mNatural History$	(F)		um	
	Natrojarosite	$NaFe_3(SO_4)_2(OH)_6$	95661	Sunset Mining claim near Kingman, AZ
Parabutlerite (pure) $Fe(SO_4)(OH) \cdot 2 H_2O$ $125 \mu m$ 157716Chiquicamata, Antofagasta, Chile; Collection of the Smithsonian - National Museum of Natural HistoryRhomboclase (pure) $(H_5O_2)Fe(SO_4)_2 \cdot 2 H_2O$ ML - S85 $\epsilon ch; R < 250 \mu m$ Alcaparrosa, Chile $\epsilon ch; R < 250 \mu m$ Römerite (pure)FeFe2(SO_4)_4 \cdot 14 H_2OR8415Near Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 \mu m; R$ $< 01ection of the Smithsonian - National< 45 \mu mRozenite(pure)FeSO_4 \cdot 4 H_2OJB626-B\epsilon ch; R < 125 \mu mIron Mountain, CA\epsilon ch; R < 125 \mu mSideronatrite(+ minor phase)Nag_Fe(SO_4)_2(OH) \cdot 3 H_2O115164\epsilon pellet; R < 45\mu mChiquicamata, Chile; Collection of the\epsilon pellet; R < 45\mu mSlavikite(pure)NaMg_2Fe_5(SO_4)_7(OH)_6 \cdot 33H_2O140229\epsilon ch; R < 125 \mu mValachov, Czech Rebublic; Collection of the\epsilon pellet; R 45-125 \mu mSzomolnokite(pure)FeSO_4 \cdot H_2O104276\epsilon ch; R < 45 \mu mTintic Standard Mine, Dividend, UT;\epsilon ch; R < 45 \mu m$	(pure)		ε pellet; R 45-	
Parabutlerite (pure) $Fe(SO_4)(OH) \cdot 2 H_2O$ 157716 $\epsilon ch; R < 45 \ \mu m$ Chiquicamata, Antofagasta, Chile; Collection of the Smithsonian - National Museum of Natural HistoryRhomboclase (pure) $(H_5O_2)Fe(SO_4)_2 \cdot 2 H_2O$ ML-S85 $\epsilon ch; R < 250 \ \mu m$ Alcaparrosa, Chile $\epsilon ch; R < 250 \ \mu m$ Römerite (pure)FeFe2(SO_4)_4 \cdot 14 H_2OR8415 $\epsilon 252 \ \mu m$; R $< 152 \ \mu m$; RNear Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 \ \mu m$; R $< Collection of the Smithsonian - NationalMuseum of Natural HistoryRozenite(pure)FeSO_4 \cdot 4 H_2OJB626-B\epsilon ch; R < 125 \ \mu mIron Mountain, CA\epsilon ch; R < 125 \ \mu mSideronatrite(+ minor phase)Nag2Fe(SO_4)_2(OH) \cdot 3 H_2O115164\epsilon pellet; R < 45\mu mChiquicamata, Chile; Collection of the\epsilon pellet; R < 45\mu mSlavikite(pure)NaMg2Fe_5(SO_4)_7(OH)_6 \cdot 33H_2O140229Valachov, Czech Rebublic; Collection of the\epsilon pellet; R 45-125 \ \mu mSzomolnokite(pure)FeSO_4 \cdot H_2O104276\epsilon ch; R < 45 \ \mu mTintic Standard Mine, Dividend, UT;\epsilon ch; R < 45 \ \mu m$			125 µm	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Parabutlerite	$Fe(SO_4)(OH) \bullet 2 H_2O$	157716	Chiquicamata, Antofagasta, Chile; Collection
Rhomboclase (pure) $(H_5O_2)Fe(SO_4)_2 \cdot 2 H_2O$ ML-S85 $\epsilon ch; R < 250 \ \mu m$ Alcaparrosa, Chile $\epsilon ch; R < 250 \ \mu m$ Römerite (pure)FeFe2(SO_4)_4 \cdot 14 H_2OR8415Near Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 \ \mu m; R$ $< 45 \ \mu m$ Collection of the Smithsonian - National $< 45 \ \mu m$ Rozenite (pure)FeSO_4 \cdot 4 H_2OJB626-BIron Mountain, CA(pure) $\epsilon ch; R < 125 \ \mu m$ Information of the $\epsilon ch; R < 125 \ \mu m$ Sideronatrite (+ minor phase)Na2Fe(SO_4)_2(OH) \cdot 3 H_2O115164Slavikite (pure)NaMg_2Fe_5(SO_4)_7(OH)_6 \cdot 33140229Valachov, Czech Rebublic; Collection of the $\epsilon pellet; R 45$ - Smithsonian - National Museum of Natural HistorySzomolnokite (pure)FeSO_4 \cdot H_2O104276Szomolnokite (pure)FeSO_4 \cdot H_2O104276Stavikite (pure)FeSO_4 \cdot H_2OCollection of the Smithsonian - National Museum of Natural History	(pure)		ε ch; R <45 μm	of the Smithsonian - National Museum of
Knomboclase $(H_5O_2)Fe(SO_4)_2 \bullet 2 H_2O$ ML-385Alcaparrosa, Chile(pure) $\epsilon ch; R < 250 \ \mu m$ Reference $\epsilon ch; R < 250 \ \mu m$ Römerite $FeFe_2(SO_4)_4 \bullet 14 \ H_2O$ $R8415$ Near Skauriatissa, Island of Cyprus, Greece; $(pure)$ $\epsilon > 125 \ \mu m; R$ Collection of the Smithsonian - NationalRozenite $FeSO_4 \bullet 4 \ H_2O$ JB626-BIron Mountain, CA $(pure)$ $\epsilon ch; R < 125 \ \mu m$ Isomountain, CASideronatrite $Na_2Fe(SO_4)_2(OH) \bullet 3 \ H_2O$ 115164Chiquicamata, Chile; Collection of the ϵ pellet; $R < 45$ Smithsonian - National Museum of NaturalSlavikite $NaMg_2Fe_5(SO_4)_7(OH)_6 \bullet 33$ 140229Valachov, Czech Rebublic; Collection of the $(pure)$ H_2O ϵ pellet; $R 45$ -Smithsonian - National Museum of Natural $History$ Szomolnokite $FeSO_4 \bullet H_2O$ 104276 Tintic Standard Mine, Dividend, UT; $(pure)$ $\epsilon ch; R < 45 \ \mu m$ Collection of the Smithsonian - National	D11	(U, O) = (SO) + 2UO	MI 695	Natural History
(pure) ϵ Cit; K < 250 µmRömeriteFeFe2(SO4)4 • 14 H2OR8415Near Skauriatissa, Island of Cyprus, Greece; $\epsilon > 125 µm; R$ $< 45 µmRozeniteFeSO4 • 4 H2OJB626-BIron Mountain, CA(pure)\epsilon ch; R < 125 µmInon Mountain, CASideronatriteNa2Fe(SO4)2(OH) • 3 H2O115164Chiquicamata, Chile; Collection of the\epsilon pellet; R <45SlavikiteNaMg2Fe5(SO4)7(OH)6 • 33140229Valachov, Czech Rebublic; Collection of the\mumSzomolnokiteFeSO4 • H2O104276Tintic Standard Mine, Dividend, UT;\epsilon ch; R <45 µmSzomolnokiteFeSO4 • H2O104276Tintic Standard Mine, Dividend, UT;\epsilon ch; R <45 µm$	Knombociase	$(\Pi_5 \cup_2) \Gamma e(S \cup_4)_2 \bullet 2 H_2 \cup$	WIL-585	Aicapariosa, Cille
Romenic $\operatorname{rer} e_2(36_{4})^4 \cdot \operatorname{rr} H_2O$ $\operatorname{Roer13}$ $\operatorname{Reeal Skauraussa, Island of Cypfus, Greece, \varepsilon > 125 \ \mu\text{m}; R(pure)\varepsilon > 125 \ \mu\text{m}; RCollection of the Smithsonian - NationalRozenite\operatorname{FeSO}_4 \cdot 4 \ H_2O\operatorname{JB626-B}Iron Mountain, CA(pure)\varepsilon \ ch; R < 125 \ \mu\text{m}Ito for the smithsonian - NationalSideronatrite\operatorname{Na}_2\operatorname{Fe}(\operatorname{SO}_4)_2(\operatorname{OH}) \cdot 3 \ H_2O115164Chiquicamata, Chile; Collection of the(+ minor phase)\varepsilon \ ch; R < 455 \ \mu\text{m}Smithsonian - National Museum of NaturalSlavikite\operatorname{NaMg}_2\operatorname{Fe}_5(\operatorname{SO}_4)_7(\operatorname{OH})_6 \cdot 33140229Valachov, Czech Rebublic; Collection of the(pure)\operatorname{H}_2O\varepsilon \ pellet; R \ 45-Smithsonian - National Museum of NaturalSzomolnokite\operatorname{FeSO}_4 \cdot \operatorname{H}_2O104276Tintic Standard Mine, Dividend, UT;(pure)\varepsilon \ ch; R \ 45- \ \mu mCollection of the Smithsonian - NationalMuseum of Natural HistoryNatural History$	(puic) Römerite	$E_{e}E_{e}(SO_{i}) = 14 H_{i}O_{i}$	ε cii, κ <200 μm R8/15	Near Skauriatissa Island of Cuprus Greace
Cycle (pure)FeSO4 • 4 H2OConcertor of the Sinthsonian - NationalRozeniteFeSO4 • 4 H2OJB626-BIron Mountain, CA(pure) ϵ ch; R <125 µm	(pure)	10102(004)4 - 14 1120	e >125 µm· P	Collection of the Smithsonian - National
Rozenite (pure) $FeSO_4 \cdot 4 H_2O$ JB626-B $\epsilon ch; R < 125 \mu m$ Iron Mountain, CASideronatrite (+ minor phase)Na ₂ Fe(SO ₄) ₂ (OH) \cdot 3 H ₂ O $\epsilon ch; R < 125 \mu m$ Chiquicamata, Chile; Collection of the $\epsilon pellet; R < 45$ Slavikite (pure)NaMg ₂ Fe ₅ (SO ₄) ₇ (OH) ₆ \cdot 33140229Valachov, Czech Rebublic; Collection of the ϵ pellet; R 45- $125 \mu m$ Szomolnokite (pure)FeSO ₄ \cdot H ₂ O104276Tintic Standard Mine, Dividend, UT; 	(Pare)		<45 um	Museum of Natural History
	Rozenite	$FeSO_4 \bullet 4 H_2O$	JB626-B	Iron Mountain, CA
Sideronatrite (+ minor phase)Na2Fe(SO4)2(OH) • 3 H2O115164 ϵ pellet; R <45 μ mChiquicamata, Chile; Collection of the Smithsonian - National Museum of Natural HistorySlavikite (pure)NaMg2Fe5(SO4)7(OH)6 • 33 H2O140229Valachov, Czech Rebublic; Collection of the ϵ pellet; R 45- 125 μ mSmithsonian - National Museum of Natural HistorySzomolnokite (pure)FeSO4 • H2O104276 ϵ ch; R <45 μ mTintic Standard Mine, Dividend, UT; ϵ ch; R <45 μ m	(pure)		ε ch; R <125 μm	
$ \begin{array}{c c} (+ \mbox{ minor phase}) & \epsilon \mbox{ pellet; } R < 45 & Smithsonian - National Museum of Natural \\ \mu m & History \\ Slavikite & NaMg_2Fe_5(SO_4)_7(OH)_6 \cdot 33 \\ (pure) & H_2O & 140229 & Valachov, Czech Rebublic; Collection of the \\ \epsilon \mbox{ pellet; } R \ 45- & Smithsonian - National Museum of Natural \\ 125 \ \mu m & History \\ Szomolnokite & FeSO_4 \cdot H_2O & 104276 & Tintic Standard Mine, Dividend, UT; \\ (pure) & \epsilon \ ch; R \ <45 \ \mu m & Collection of the Smithsonian - National \\ Museum of Natural History \\ \end{array} $	Sideronatrite	$Na_2Fe(SO_4)_2(OH) \bullet 3 H_2O$	115164	Chiquicamata, Chile; Collection of the
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(+ minor phase)		ε pellet; R <45	Smithsonian - National Museum of Natural
SlavikiteNaMg2Fe5(SO4)7(OH)6 • 33140229Valachov, Czech Rebublic; Collection of the(pure) H_2O ϵ pellet; R 45-Smithsonian - National Museum of NaturalSzomolnokiteFeSO4 • H2O104276Tintic Standard Mine, Dividend, UT;(pure) ϵ ch; R <45 µm			μm	History
(pure) H_2O ϵ pellet; R 45- 125 µmSmithsonian - National Museum of Natural HistorySzomolnokiteFeSO ₄ • H ₂ O104276Tintic Standard Mine, Dividend, UT; c ch; R <45 µm	Slavikite	$NaMg_2Fe_5(SO_4)_7(OH)_6 \bullet 33$	140229	Valachov, Czech Rebublic; Collection of the
SzomolnokiteFeSO4 • H2O125 μ mHistory(pure)FeSO4 • H2O104276Tintic Standard Mine, Dividend, UT;(pure) ϵ ch; R <45 μ mCollection of the Smithsonian - National Museum of Natural History	(pure)	H_2O	ε pellet; R 45-	Smithsonian - National Museum of Natural
SzomoinokiteFeSO4 • H2O104276Tintic Standard Mine, Dividend, UT;(pure) ϵ ch; R <45 µm	C		125 μm	HISTORY
ϵ cn; κ <45 μ m Collection of the Smithsonian - National Museum of Natural History	Szomolnokite	$resU_4 \bullet H_2U$	1042/6	Tinuc Standard Mine, Dividend, UT; Collection of the Smithsonian National
	(pure)		e UI, κ <43 μm	Museum of Natural History

Table 1. Listing of the Fe-sulfate Minerals.

Voltaite	$K_2Fe_5Fe_3Al(SO_4)_{12}\bullet 18\ H_2O$	115035	United Verde Mine, Jerome, AZ; Collection
(pure)		ε ch; R <45 μm	of the Smithsonian - National Museum of
Yavapaiite (pure)	KFe(SO ₄) ₂	ML-S79 ε pellet; R <45	Synthesized by Ferenc Forray (Babes-Bolyai U.)

^a Character of sample where ch=chunk/chip(s) or pellet; otherwise particle size fraction is listed for measurements in emissivity (ε) or reflectivity (R)

^b VNIR data used sample C5534 (Mina Quetena, Calama, Chile; XRD shows butlerite + minor other phase)

^c Sample SPT125: Cloutis et al, 2006 identify this sample as 90% ferricopiapite/ 10% jarosite

^d Sample ML-S46 contains subequal amounts of coquimbite and paracoquimbite

^e Sample R10101 may contain have some cation substitution (e.g., K⁺ or Na⁺) for H₃O because the XRD peaks were shifted slightly from those of a hydronium jarosite reference endmember

^fSample ML-S105 spectrum was corrupted and data from 200 – 400 cm⁻¹ were lost

Mineral	$\delta H_2 O$	ν_3	δОН	v_1	H ₂ O libration	δОН	ν_4	γОН	v_2	H ₂ O libration, M-O, or lattice
Amarantite	~1642	~1215 (sh) 1154 1090 1059	1018?	1004		804 ~748	~645 595 ~528		463	~289 trunc.
Beaverite	~1602	1163 1110 984?	1019	1001		~735	625 604 575		423	512 469 trunc.
Botryogen-Zn	~1660	1220 1164 (sh) 1132 1068 1031	1010	999		805	655 602 545 485		393?	280 trunc.
Butlerite	~1688	~1200 (sh) 1123 ~1045 (sh)	1013	992		806	694 657 592 506		441 ~413	252?/trunc.
Copiapite	~1662	~1212 ~1109 1047		998		~790	~603 ~542		~410	trunc.
Coquimbite	1690 (s)	1180 1100		1013		890 816	685 (s) 650 597		480 443	304 284 (sh) 278 252 (s) 247 218
Goldichite	~1640	1258 1169 1119		997		786	689 627 597		476 428	359 trunc.
Hydronium jarosite	~1651	1204 (s) 1121	1033	997?		898? 845? 760?	675 635		428 393	~526 475 ~336 ~265 or trunc
Jarosite	1633	1220 1112	1020	1006			~662 (sh) 635		445	524 476 ~336 ~242?

Table 2. Band Assignments of the Fundamental Vibrational Modes in Fe-sulfate Minerals (in cm⁻¹).

Kornelite	~1665	1206 (sh) 1160 1121 1054		1020	751		650? 627 593		492? 448	No data below 400 cm ⁻¹
Magnesio- copiapite	~1656	1034 1213 1146 (sh) 1107 1049 1031? (sh)	1013	997			639 595 556		414	~262 or trunc.
Natrojarosite	~1635	1200 1107	1026	~1010			~666 632		441	524 478 347? 327 trunc.
Parabutlerite	~1688	1233 1176 1098 1054 1024	1013	997			650 602 503 ~476		446 ~330	256? trunc.
Rhomboclase	~1585	~1210 (sh) 1180 1068 (sh) 1043		1022		745	664 ~627	593	~485	308 trunc.
Romerite / roemerite	~1673	~1168 (sh) 1139 1078 1035		996	815?		~658 ~593		~477	trunc.
Rozenite	~1680	~1220 (sh) 1100 ~1013		992		818 ~760 735 ~692	~660 (sh) ~645 (sh) 602		~468	
Sideronatrite	~1637	1270 1217 1208 1139 1112 (sh) 1068 1034	see text	997			666 650 634 620 609 519	see text	409 400	308 ~265 trunc.
Slavikite [*]	~1612 [‡]	1199 ~1084		~1000			597		462	trunc.

Szomolnokite		1226	1018	846		626	361?	trunc.
		1195				606		
		1149				554		
Voltaite	~1670 [‡]	1171	1004		~832	671 (s)	439	251
		~1123 (sh)			(s)	625	375	
		1050			~735	584		
		979 (sh)?				520		
Yavapaiite		1254				676	469	370?
		~1142 (sh)				620	444	255
		1024				588	416?	

(s) Band is subtle.

(s) Band is subte.
(sh) Band occurs as a shoulder on a larger band.
trunc. Band is truncated, so band minimum is not known.
* Spectral quality is inferior.
* Feature is very broad; position uncertain.

