2 The Structure of Water-Saturated Carbonate Melts 3 Dionysis I. Foustoukos and Bjorn O. Mysen 4 5 6 7 Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington DC 20015 8 Keywords: carbonate melt, water, melting-point depression, trace elements, hydrothermal 9 diamond anvil cell, Raman vibrational spectroscopy 10 ABSTRACT 11 The structure of water-saturated Ca- and Mg-bearing carbonate melts under reducing and oxidizing conditions was investigated in a series of hydrothermal anvil cell 12 13 experiments conducted at 400 - 1100 °C and 442 - 2839 MPa. Equilibria were 14 investigated in the calcite-H₂O, calcite-CaO-H₂O, magnesite-H₂O and magnesite-MgO-15 H₂O systems, with redox conditions controlled by Re/ReO₂ and Ti/TiO₂ assemblages. 16 Melting relationships and the C-O-H speciation of the coexisting aqueous fluid and melt 17 were assessed *in-situ* by Raman vibrational spectroscopy. Hydrous melting of MgCO₃-18 MgO occurred at ~ 850 °C, 1.5-2 GPa. In the CaCO₃-CaO-H₂O system, melt was formed 19 at 600 - 900 °C and pressures of 0.5 - 1.5 GPa because of melting-point depression 20 imposed by the presence of CaO. The C-O-H speciation of the carbonate melts and coexisting supercritical aqueous solutions was mainly H₂O and CO₃²⁻, with traces of 21 CO_{2(aq)} and CH_{4(aq)} in the fluid phase. The melt-fluid H₂O partition coefficients attained 22 23 in the Mg-bearing melt (median 0.5) were higher than in the Ca-bearing melt (median 24 0.3). Under oxidizing redox conditions, dissolved ReO_2^- was present in all phases, 25 underscoring the enhanced solubility of metals in carbonate-bearing melts and

1

26 carbonatites. In effect, the enhanced solubility of H_2O along with the ionic nature of the

27 carbonate melts may promote the solvation of ionic species in the melt structure.

From *in-situ* vibrational spectroscopy, the v_1 -CO₃²⁻ vibration recorded in the melt 28 spectra suggests the presence of intermolecular interactions between the oxygen of the 29 30 carbonate ion with water dissolved in the melt. The thermodynamic properties of this 31 water appear to be similar to the supercritical aqueous phase. For example, the estimated 32 enthalpy for the breakage of the hydrogen bonding between water molecules attained 33 values of 6.8 ± 1.5 kcal/mol and 8.4 ± 1.3 kcal/mol in the melt and fluid phase, respectively. The calculated partial molar volume of H₂O in the melt (~ 48 ± 6 cm³/mol) 34 35 is also comparable to the partial molar volume of supercritical water at similar conditions. Interestingly, this value is considerably greater than published partial molar volume 36 values for H_2O in silicate melts (10-12 cm³/mol). 37

The pressure-temperature melting relationships of the CaO-CO₂-H₂O and MgO-CO₂-H₂O systems highlight the important role of water and alkaline earth oxides on the hydrous melting of the carbonate-bearing subducting oceanic crust. Carbonates present in marine sediments or serpentinized peridotites may melt before complete dehydration at the slab-mantle wedge transition zone, and thus, never reach sub-arc depths. To this end, melting of carbonate minerals at crustal temperatures and pressure can contribute to the volcanic CO₂ flux at the arc through melt/fluid interactions.

45

INTRODUCTION

47 Carbonatites, igneous rocks derived from carbonate melts (Streckeisen, 1980), are 48 thought to be originated from small degree melts in the asthenospheric mantle (e.g. 49 (Gudfinnsson and Presnall, 2005; Nelson et al., 1988)), although a lithospheric origin 50 (Bell and Blenkinsop, 1989) and more complex models of refertilization and melting may 51 be operational (Bizimis et al., 2003). Recent studies also suggest origins as deep as the 52 mantle transition zone (Dalou et al., 2009). Understanding the structure of carbonate 53 melts is important towards constraining the cycling of C-O-H-N volatiles and trace 54 element/metal mobility in the Earth's interior (Jones et al., 2013).

46

55 Experimentally, phase equilibrium relationships in the CaO-CO₂-H₂O and MgO-56 CO₂-H₂O systems have been extensively studied over a wide range of pressure, 57 temperature conditions and for varying water content, in order to address melting 58 behavior of calcite and magnesite coexisting with Ca-Mg oxides and hydroxides 59 (Boettcher et al., 1980; Irving and Wyllie, 1975; Walter et al., 1962; Wyllie and 60 Boettcher, 1969; Wyllie and Tuttle, 1959; Wyllie and Tuttle, 1960). Overall, it's 61 commonly concluded that hydrous melting of calcite-lime and magnesite-periclase 62 assemblages commences at significantly lower temperatures (<900 °C) than for the pure carbonate-fluid equilibria (>1200 °C) at upper mantle pressure conditions (Walter et al., 63 64 1962; Wyllie and Tuttle, 1960).

Water solubility in carbonate melts is significantly higher than in alkaline silicate melts, reaching values of nearly of 15 wt % at 100 MPa, 900 °C (Keppler, 2003), whereas in silicate melts the solubility is only several wt % under such temperature and pressure conditions (e.g., (Holtz et al., 1995)). This high water content likely enhances the 69 solubility of metal cations (Veksler and Keppler, 2000), and, along with the ionic 70 (Zarzycki, 1961) and likely alkaline nature of molten carbonates, may be the reason for 71 the elevated concentrations of REE and other incompatible trace elements in carbonatites (Veksler et al., 2012). However, the ionic behavior of structural CO_3^{2-} and the 72 distribution of hydroxyl/molecular H₂O in carbonate melts are poorly understood, mainly 73 74 because these phases cannot be quenched to ambient conditions (Genge et al., 1995). The 75 very limited data that exist are from experimental studies involving diamond anvil cell 76 techniques (Chou et al., 1995; Williams and Knittle, 2003).

77 Here, we present a series of hydrothermal diamond anvil experiments conducted 78 at 400 - 1100 °C and 442 - 2839 MPa where calcite/CaO- and magnesite/MgO- derived 79 melts coexisted with aqueous solutions under reducing and oxidizing conditions. Raman 80 vibrational spectroscopy was employed to monitor C-O-H speciation in both the melt and 81 fluid phase *in-situ*, and to describe the intermolecular interactions between ionic (e.g. CO_3^{2-} , Ca^{2+} , Mg^{2+}) and neutral species (e.g. H₂O). The experimental data are combined 82 83 with existing measurements of water solubility in Ca-Na-Mg carbonate melts at lower 84 pressure (Keppler, 2003) to assess the thermodynamic properties of H₂O in the structure 85 of carbonate melts and to estimate partition coefficients between melt and fluid.

86

87

EXPERIMENTAL SECTION

Experiments were performed by utilizing externally-heated hydrothermal diamond anvil cells (HDAC) equipped with low fluorescence 1-mm culet diamonds (Bassett et al., 1996). The sample chamber (500 μm I.D.) was structured between the anvil faces in a 125 μm thick rhenium gasket. Temperature was monitored with chromel-

92 alumel thermocouples in contact with the upper and lower diamonds. Pressure was 93 derived by measuring the temperature/-pressure dependent Raman frequency shift of synthetic ¹³C diamond (Schiferl et al., 1997), with an uncertainty of about ± 40 MPa 94 (Mysen and Yamashita, 2010) that corresponds to a ± 0.1 cm⁻¹ frequency uncertainty on 95 the fundamental band of the ¹³C diamond. This level of accuracy is achieved by 96 performing acquisitions at 2400 grooves/mm of the holographic gratings in our JASCO 97 98 NRS-3100 microRaman systems and then normalizing the Raman shift to the 584.72 nm Ne emission line. The Ne emission line and the Raman shift of the ¹³C-diamond 99 100 stretching band are recorded on the same spectroscopic window with a 532 nm 101 continuous wave laser line (see below). To this end, the Ne emission line is used as internal standard for the position of the spectrophotometer at each acquisition of ¹³C-102 103 diamond spectra (Schiferl et al., 1997). The methodology adopted has been calibrated in 104 HDAC experiments involving pure H_2O by using the equation of state of pure H_2O to 105 constrain the *in-situ* pressure at measured temperature (Mysen and Yamashita, 2010).

An experimental design was employed, which uses direct-sintered silicon carbide for the diamond seat assembly. This material (UltraSIC, SC-30, Coorstek) exhibits substantially greater hardness (26 GPa) and thermal conductivity (150 W/m K) than the commonly-used tungsten carbide, while sustaining maximum operational temperatures of nearly 1600 $^{\circ}$ C¹. The SC-30 diamond seats allow HDAC experiments to be conducted to temperatures of 1500 $^{\circ}$ C, and pressure > 3 GPa. Molybdenum wire was placed around the silicon carbide seats to heat the entire sample chamber (±1 $^{\circ}$ C accuracy).

¹ http://www.coorstek.com/resource-library/library/8510-1364_ceramic_properties_mp.pdf

113 Raman Spectroscopy Instrumentation: Vibrational spectroscopy data were 114 collected with a Jasco model NRS-3100 confocal microRaman spectrometer equipped 115 with a λ_{ex} = 532 nm continuous wave laser line (~7 mW at the sample). The beam 116 diameter was nearly 1 µm with a 10 µm focal depth. Signal detection was through 117 50X/0.42 numerical aperture (N.A.) long-working distance Mitutoyo[™] objective lenses. 118 Raman signal was dispersed using 600, 1200 and 2400 grooves/mm. The spectral window was centered at 1100 cm⁻¹, 1250 cm⁻¹, 2250 cm⁻¹, 2400 cm⁻¹, 2800 cm⁻¹ and 3600 119 cm⁻¹ with a frequency resolution of 1-2 cm⁻¹ at 2400 grooves/mm. The signal was 120 121 collected with a Peltier-cooled CCD (Andor™ Model DV401-F1 1024x128 pixel with 25 122 µm pixel size). Acquisition time ranged from 100 to 400 sec/CCD window depending on 123 the signal intensity of the sample. Two acquisitions per window were collected.

124 Curve-fitting of the Raman spectra was performed using the commercial software 125 Igor from WavemetricsTM. Background subtraction was conducted by fitting a third-order 126 polynomial function through portions of the spectra with baseline signal intensity only. 127 Replicate measurements were acquired at the same beam spot and with the same 128 instrumental parameters to constrain uncertainties on spectra analysis and processing. 129 The standard deviation on the integrated areas between the fitted Raman spectra in each 130 acquisition reflects a 5% level of uncertainty, which is larger than the uncertainty 131 estimated for the integrated area of each individual Raman peak (Foustoukos and Mysen, 132 2013).

Experimental Procedures: Experiments were designed to study the evolution of carbonate melts coexisting with a discreet fluid phase at conditions ranging from 400 to 1100 °C and from 442 MPa to 2839 MPa (Table 1) in the CaO-CO₂-H₂O and MgO-CO₂- 136 H₂O systems. Experiments were conducted under oxidizing and reducing redox 137 conditions (Table 1) constrained by the presence of Re/ReO₂ and Ti/TiO₂ redox buffers, 138 respectively. This was accomplished by the addition of ReO₂ powder or a titanium metal 139 chip in the sample chamber. These phases (e.g. Ti, TiO_2) were identified in the quenched 140 reaction products. At the experimental conditions of this study, titanium solubility in supercritical fluids should be minimal (Audétat and Keppler, 2005; Tropper and 141 142 Manning, 2005). However, this appears not be the case for the rhenium species (Xiong 143 and Wood, 1999) (see later in discussion). Raman spectra of C-O-H species dissolved in 144 the aqueous solution and melt phase were recorded at elevated temperature/-pressure 145 conditions, and also in samples quenched to ambient conditions ("ex-situ"). Quenching 146 was commenced at a rate of $\sim 600 \,^{\circ}$ C/min until the temperature reached 100 $^{\circ}$ C, and then 147 at 25 °C /min to room temperature. During quenching, degassing of C-O-H volatiles (H₂, 148 CO₂, CH₄) resulted to the formation of a discreet gas phase ("bubble").

149 Carbonate reactants were dried at 400 °C for 72 hours, and the Ca-Mg oxides 150 were fired at 1000 °C for 3 hours prior to experiments. Dehydrated CaCO₃, CaO, MgCO₃, 151 and MgO were stored at 300 °C prior to loading in the HDAC. The sample consisted of 152 mineral mixtures and H₂O at volumetric ratios ~ 2:1 (empirically assessed) resulting to 153 fluid-melt immiscibility at elevated temperatures and pressures (Fig. 1). In addition, ReO2 154 powder was allowed to equilibrate with H2O in a carbonate-free experiment to 155 characterize the speciation of rhenium dissolved in supercritical aqueous solutions, and to 156 accurately identify the frequency position and shape of the stretching fundamental 157 vibrations (v_1) of dominant Re-bearing aqueous species (Xiong and Wood, 2001; Xiong 158 and Wood, 1999) at high pressures and temperatures (Table 1).

159	Spectroscopic data of the melt are strictly from samples volumes within melt
160	pockets encapsulated within the entire height of the sample chamber (Fig. 1a). This was
161	accomplished by evaluating the vertical position of the melt globules relative to the
162	surface of both the upper and lower diamond. The carbonate melting experiments were
163	conducted for at least 12 hours. The samples remained at each experimental condition for
164	more than 2 hours. Time series measurements performed <i>in-situ</i> at high temperature/-
165	pressure indicate that equilibrium was reached at all conditions, which is consistent with
166	the equilibration reaction times reported in previous studies involving melting
167	relationships in the calcite-lime-H ₂ O and magnesite-periclase-H ₂ O system (Chou et al.,
168	1995; Walter et al., 1962; Wyllie and Boettcher, 1969; Wyllie and Tuttle, 1960).
169	
169 170	RESULTS AND DISCUSSION
169 170 171	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions
169 170 171 172	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages
 169 170 171 172 173 	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm
169 170 171 172 173 174	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm (Green and Ringwood, 1963a; Green and Ringwood, 1963b). The highest temperature of
 169 170 171 172 173 174 175 	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm (Green and Ringwood, 1963a; Green and Ringwood, 1963b). The highest temperature of 1100 °C was reached at nearly 3 GPa (Fig. 2a). In some cases, conditions resembled those
169 170 171 172 173 174 175 176	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm (Green and Ringwood, 1963a; Green and Ringwood, 1963b). The highest temperature of 1100 °C was reached at nearly 3 GPa (Fig. 2a). In some cases, conditions resembled those at the hot subduction zone of Central Cascadia (Syracuse et al., 2010). Experimental
 169 170 171 172 173 174 175 176 177 	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm (Green and Ringwood, 1963a; Green and Ringwood, 1963b). The highest temperature of 1100 °C was reached at nearly 3 GPa (Fig. 2a). In some cases, conditions resembled those at the hot subduction zone of Central Cascadia (Syracuse et al., 2010). Experimental conditions attained are relevant to subduction zone environments and within the range of
 169 170 171 172 173 174 175 176 177 178 	RESULTS AND DISCUSSION Melting of carbonates under water-saturated conditions Hydrous melting experiments of the CaCO ₃ -CaO and MgCO ₃ -MgO assemblages were conducted along a pressure and temperature path that follows the oceanic geotherm (Green and Ringwood, 1963a; Green and Ringwood, 1963b). The highest temperature of 1100 °C was reached at nearly 3 GPa (Fig. 2a). In some cases, conditions resembled those at the hot subduction zone of Central Cascadia (Syracuse et al., 2010). Experimental conditions attained are relevant to subduction zone environments and within the range of pressures and temperatures that permit hydrous melting of the subducted oceanic crust

- and lithosphere (Grove et al., 2012; Till et al., 2012).
- *In-situ* experimental observations (Fig. 1) indicate that hydrous melting of the
 carbonate-oxide assemblages occurred at temperatures lower than 850 °C (1 2 GPa)

182 consistent with the melting relationships predicted in previous studies (Fig. 2b). For 183 example, Walter et al. (1962) predicted a five phase (MgO-MgCO₃-H₂O-Mg(OH)₂-melt) 184 invariant point at conditions greater than 700 °C, 400 MPa but less than 1 GPa, whereas 185 Ellis and Wyllie (1979) projected this point to 1210 °C, 4.6 GPa. In our experiments, a 186 sharp transition between magnesite-periclase-fluid and melt-fluid equilibria was documented at ~ 850 °C, 1.5 - 2 GPa (Fig. 2b). Melting of calcite in the presence of CaO 187 188 and H₂O appears to occur at temperatures lower than 600 $^{\circ}$ C (0.5 – 1.5 GPa) extending to 189 nearly 900 °C (1 - 1.5 GPa), whereas in same occasions melting coincided with calcite in 190 the aqueous fluid phase (i.e. Cc-melt (Cc-CaO)-H₂O system in figure 2b, 1b). Phase 191 equilibria in the ternary CaO-H₂O-CO₂ system formulated by Wyllie and Turtle (1960) 192 also show the three-phase domains of calcite-CaO-melt and calcite-melt-H₂O separated by the fields of calcite-melt and calcite-H₂O at 685 – 920 °C and 0.1 GPa. f_{O_2} conditions 193 194 have been suggested to control the hydrous melting of calcite (Chepurov et al., 2011; 195 Lazar et al., 2014), however, we were not able to observe discreet differences on the 196 melting temperature of systems bearing Re/ReO₂ (oxidizing) or Ti/TiO₂ (reducing) 197 mineral redox buffers.

Our *in-situ* HDAC observations highlight the important role of CaO on imposing a melting-point depression on calcite under water-saturated conditions. Experiments that involved pure calcite coexisting with aqueous phase at 950 °C and 1.5 GPa (Table 1) did not produce carbonate melts under these conditions, which is consistent with the wellknown extensive stability field of calcite (Fig. 2b) (Wyllie and Boettcher, 1969). Hydrous melting of pure magnesite, however, did occur at temperatures and pressures similar to those attained in the MgCO₃-MgO-H₂O experiments (Fig. 2b). Such a relatively low

205 temperature (< 1000 °C), high pressure (> 1 GPa) melting of magnesite has been 206 predicted for conditions of low CO_2 fugacity in a H₂O dominant vapor phase (Ellis and 207 Wyllie, 1979). Even though it is not possible to determine quantitatively the concentration of fluid-dissolved $\text{CO}_{2(aq)}$ in the experiments, thermodynamic models 208 209 suggest that for the calcite/-magnesite-H2O system the CO2(aq) concentrations should not exceed 0.01 molal at 700-727 °C, 1 GPa ($f_{\text{CO}_2} \sim 1$ (Johnson et al., 1992))(Manning, 210 211 2013; Pan et al., 2013). Significant lower f_{CO_2} are expected during hydrous melting of 212 carbonates under reducing redox conditions (Lazar et al., 2014)(in this Special 213 Collection). Dissociation of carbonates in the supercritical aqueous fluid yields dissolved cation (i.e. Ca^{2+} , Mg^{2+}) concentrations comparable to those of $CO_{2(aq)}$. 214

215

216 Carbonate Ion in the Melt Structure

217 Spectroscopic data were collected *in-situ* and *ex-situ* for the fluid, gas, melt and crystalline phases². The C-O-H speciation of the carbonate melts and coexisting 218 219 supercritical aqueous solutions is mainly H_2O and CO_3^{2-} . These species were identified at the frequency envelopes of $1060 - 1100 \text{ cm}^{-1}$ and $3400 - 3600 \text{ cm}^{-1}$, respectively (Fig. 220 221 3a). The carbonate ion also exhibits the Raman-active in-plane symmetric vibrational band (v₄) at ~ 695 - 725 cm⁻¹ (Bates et al., 1972; Carper et al., 2012; Maroni and Cairns, 222 1970). Interestingly, coexisting aqueous fluid appears depleted in dissolved CO₃²⁻ relative 223 224 to the melt, in accordance with thermodynamic models that suggest predominance 225 presence of $CO_{2(aq)}$ when carbonates equilibrate with aqueous solutions at high 226 temperatures and pressures (Caciagli and Manning, 2003). Even though the Raman

² Raw spectroscopic data are available by request (dfoustoukos@ciw.edu)

vibrations of the CO₂ fermi-diad (1280 – 1380 cm⁻¹) and C-H stretching band of CH₄ (2960 – 2990 cm⁻¹) were not obvious in all the *in-situ* measurements, the *ex-situ* exsolved gas phase was enriched in these C-O-H volatiles (Fig. 3b, c). The carbon speciation of the quenched fluids also included HCO₃⁻ ($v_1 \sim 1010$ cm⁻¹ (Frantz, 1998)), reflecting rapid reequilibration during quenching at pH conditions lower than the pK₁ of HCO₃⁻dissociation to CO₃⁻² (~10.3 at 25°C, 1 bar) (Stumm and Morgan, 1996).

233 Under oxidizing redox conditions imposed by the Re/ReO₂ assemblage, Raman 234 spectra provide evidence for the presence of ionic rhenium species, such as ReO_2^- and 235 ReO₄⁻ (Fig. 3, 4). Raman spectra reveal that not only the aqueous solution but also both 236 the melt and the quenched carbonate were enriched in rhenium, which marks the 237 enhanced solubility of trace elements and metals in carbonate-bearing melts and 238 carbonatites (Dalou et al., 2009; Dasgupta et al., 2009; Hamilton et al., 1989; Jones et al., 239 1995; Martin et al., 2013; Veksler et al., 2012; Veksler and Keppler, 2000). The position 240 of the Raman vibration of this rhenium specie resides at $\sim 960 \text{ cm}^{-1}$, which is similar to 241 the symmetric stretching bands of ReO_4 , ReO_2 and ReO_2 (Gafurov and Aliev, 2005; 242 Zhou et al., 2000). Bands assigned to antisymmetric v_3 reside at a slightly lower 243 frequency.

To constrain better the speciation of rhenium and to characterize the Raman spectra of the Re-bearing system at high pressures and temperatures, a hydrothermal diamond anvil experiment was performed involving the ReO₂-Re-H₂O equilibrium at 500 -900 °C and 945 – 2185 MPa (Table 1). Raman spectra collected closely resemble the symmetric ($v_1 \sim 960$ cm⁻¹) and antisymmetric ($v_3 \sim 900$ cm⁻¹) stretching vibrations of ReO₄⁻/ReO₂⁻ (Gafurov and Aliev, 2005; Zhou et al., 2000). Characterization of the

250 ReO₄-/ReO₂ vibrational spectrum is also important in order to resolve spectral interferences by HCO_3 . The later, for example, has been shown to register a broad 251 Gaussian C-OH stretching band at lower frequencies (e.g. 948 cm⁻¹, FWHH 72.5 cm⁻¹ at 252 548 °C) with a strong temperature dependence (Frantz, 1998). The in-situ acquired 253 254 Raman spectra are different from those of the initial and quenched ReO₂ solid reactant (Fig. 4a). The intense Lorentzian band assigned to v_1 decreased slightly from 964 cm⁻¹ to 255 960 cm⁻¹ with temperature increase, while the FWHH ranged from 10 cm⁻¹ at 500 °C to 256 15 cm⁻¹ at 900 °C (Fig. 4b and c). The main 960 cm⁻¹ sharp Raman vibron appeared after 257 258 few hours of reaction at high temperatures and pressures (Table 1). It is attributed to 259 ReO₂ because of the trace concentrations of ReO₄ expected at the oxidizing 260 hydrothermal conditions imposed by the Re-ReO₂ redox buffer (Xiong and Wood, 2001). Raman spectra collected in the Ti/TiO₂ – bearing experiments lacked this sharp 960 cm⁻¹ 261 262 vibration (Fig. 3c), indicating that the Re gasket was not altered under reducing redox 263 conditions and supports the assignment of this peak to oxidized rhenium species.

264

265 The Structure of CO_3^{2-} in the Carbonate Melt

In-situ Raman spectra reveal structural differences between the carbonate ions in melt and crystalline phases (Fig. 5). The symmetric stretching vibration of $CO_3^{2^-}$ in melts is clearly at lower frequency (~ 10 cm⁻¹) than what is observed for calcite coexisting with melt and the aqueous phase (Fig. 5a, 6b). This frequency difference is similar to data presented in diamond-anvil experimental studies of anhydrous melting of carbonates at high pressures and temperatures (Williams and Knittle, 2003), and it is indicative of the $CO_3^{2^-}$ units in a melt (liquid) structure. In contrast to the structure of anhydrous carbonate 273 melts (Williams and Knittle, 2003), however, experimental data did not reveal the 274 presence of C-O single bonded species that have been suggested to express stretching vibrations at a much lower frequency (~ 970 cm⁻¹) (Fig. 5) (Williams and Knittle, 2003). 275 Integration of the band assigned to v_1 -CO₃²⁻ required the employment of "high" 276 and "low" frequency Gaussian components (Fig. 5b). Similar structures have been 277 observed in spectra of Na-K-Mg carbonates quenched from high temperature/-pressure 278 279 (Genge et al., 1995; Shatskiy et al., 2013). These features have been attributed to the 280 coexistence of polymorph phases (Genge et al., 1995). In our experiments, the full width 281 at half height (FWHH) of the high frequency component is within the range of values expected for CO₃²⁻ ions dissolved in supercritical aqueous solutions (Frantz, 1998), 282 whereas the low frequency contribution (melt structure) is broader by 30 - 40 cm⁻¹ (Fig. 283 6a). The position of the frequency envelope is also shifted by 30 - 60 cm⁻¹ relative to the 284 symmetric stretch of CO_3^{2-} aqueous species (Frantz, 1998) (Fig. 6b). This frequency shift 285 286 may suggest a stronger C-O bonding environment in the melt, and similar to that of 287 molten and crystalline Na-Li-K-Ca carbonates at high temperatures and pressures (Bates 288 et al., 1972; Kraft et al., 1991; Maroni and Cairns, 1970). Those studies, however, did not report the asymmetry topology of the v_1 -CO₃²⁻ observed in our experiments. 289

For the water-saturated carbonate melts of our study (Fig. 3a, 5b), we hypothesize that this low frequency component of the v_1 -CO₃²⁻ is because of H₂O that is bonded to the oxygen of the carbonate ion through intermolecular attraction (i.e O=C-O····H-O). Another possibility is contributions from a O=C-O-H-O bonding environment involving an oxygen that is shared between the carbonate ion and the structural water (O-H groups) in the melt. Analogous oxygen sharing between SiO₄ and CO₃²⁻ groups have been 296 proposed to exist in polymerized carbonate-bearing silicate melts (Brooker et al., 2001; 297 Brooker et al., 1999; Kubicki and Stolper, 1995; Morizet et al., 2010; Mysen et al., 2011). 298 However, a Raman band assigned to stretching vibrations of such a bond would be 299 expressed at significantly lower frequency and probably comparable to the position of the C-O-H in HCO₃⁻ groups (e.g. 948 cm⁻¹, FWHH 72.5 cm⁻¹ at 548 °C) (Frantz, 1998). The 300 reason for the asymmetry of the v_1 -CO₃²⁻ vibron observed in the recrystallized calcite and 301 302 magnesite at conditions (Fig. 5b, 6) is not clear and could be of hydrogen bonding effects 303 or due to Raman inferences from the coexisting carbonate melt.

304

305 The Structure of Water in the Carbonate Melt

306 Spectroscopic data collected *in-situ* at high temperature/-pressure also provide 307 insights about the structure of water in the Ca/-Mg carbonate melts. The de-convolution of the vibrational frequency envelope between 3400 and 3600 cm⁻¹ allows us to assess the 308 309 relative contribution of the different O-H bonding environments in both the fluid and melt phase. Raman spectra in the aqueous phase are composed of a band ~ 3550 cm^{-1} 310 311 assigned to O-H stretching in isolated OH-groups (O-H v_1) and of a lower frequency contribution (O-H_{HB} $v_1 \sim 3450 \text{ cm}^{-1}$) attributed to O•••H-O bonding induced by the 312 313 intermolecular coupling and dipole properties of water molecules (Frantz et al., 1993; 314 Walrafen et al., 1986) (Fig. 7). The thermodynamic properties of hydrogen bonding has 315 been studied in supercritical aqueous solutions (Foustoukos and Mysen, 2012) and in 316 hydrated silicate melts (Mysen, 2012; Mysen, 2011), with a strong negative effect of 317 temperature on the stability of the bond.

318 There is a similar asymmetric shape for the O-H intensity envelope in the carbonate melt in the present study. This asymmetry might reflect intermolecular 319 interactions between the dissolved water dipoles (i.e. H-O•••H-O) or the CO_3^{2-} and 320 structural O-H groups (i.e. O=C-O•••H-O) (Fig. 7). Here, however, the asymmetry of the 321 322 O-H Raman spectra also indicates the existence of one more component at the high end of the frequency envelope (~ 3600 cm^{-1}) (O-H_M, str), which is attributed to the interaction 323 324 of O-H groups with the cations (M) in the carbonate melt. This band exists regardless of 325 the MgO/-CaO in the reacting mineral assemblage. This vibrational contribution is not 326 evident in the O-H frequency envelope for the coexisting supercritical aqueous fluid. This 327 may be because of the dilute concentrations of dissolved cations (0.01 molal, see 328 discussions earlier). Interestingly, development of hydroxyl bonds between cations and 329 water molecules in the melt has been suggested to affect the alkalinity of the H₂O-330 enriched melts, enhancing the solubility of REE (Veksler et al., 2012).

331 Analogous bonding environments have also been inferred from Raman spectra of 332 quenched Ca-Al-Na bearing silicate melts (Mysen and Virgo, 1986) and crystalline OH-333 enriched phases (Aines and Rossman, 1984). In our study, the structure of this M•••O-H 334 contribution probable is a symmetric O-H stretching vibration (A1g), resembling what 335 has been observed and calculated for Mg and Ca-bearing hydroxides (Dawson et al., 336 1973; Frost, 2011; Reynard and Caracas, 2009; Wang and Andrews, 2005). The presence 337 of portlandite $(Ca(OH)_2)$ and brucite $(Mg(OH)_2)$ has also been shown to induce a 338 melting-point depression on calcite and magnesite, respectively (Boettcher et al., 1980; 339 Irving and Wyllie, 1975; Walter et al., 1962; Wyllie and Boettcher, 1969; Wyllie and 340 Tuttle, 1959; Wyllie and Tuttle, 1960). However, we did not observe Mg/Ca-hydroxide

recrystallization or exsolution from the melt. Accordingly, this high frequency Ramanband is not attributed to crystalline hydroxides coinciding with the melt.

343 The dominant O-H stretching vibration in the aqueous phase (O-H, v_1) was 344 integrated with either Lorentzian or Voigt line shape consistent with previous 345 spectroscopic studies in supercritical water (Foustoukos and Mysen, 2012; Maiella et al., 346 1999), whereas Gaussian functions were chosen for the vibrations of the O-H groups 347 bonded to water dipoles (O- $H_{HB} v_1$). The component corresponding to the interaction of 348 the O-H groups with cations dissolved in the melt (O-H,M str) was integrated 349 predominantly with a Gaussian function (Fig. 7). However, for the measurements 350 performed at temperatures greater than 850°C Lorentzian peak functions provided the 351 best statistical fit.

352 The frequencies and width of the deconvoluted bands from this frequency 353 envelope are strikingly similar to those of water in the aqueous fluid and melt phase (Fig. 354 8a-d) with the position of the O-H v_1 band placed between 3520 to 3620 cm⁻¹ (Fig. 8a) 355 and the O-H_{HB} v_1 residing at a slightly lower frequency (Fig. 8b). The O-H stretching band in the melt is 20 - 40 cm⁻¹ wider than in the fluid with FWHH values ranging from 356 357 160 to 80 cm⁻¹ at 600 to 900 °C, respectively (Fig. 8b). However, the shape of the $O-H_{HB}$ 358 vibron is similar in the two phases (FWHH ~ $350 - 100 \text{ cm}^{-1}$) (Fig. 8d), further 359 suggesting that this bonding environment might correspond mainly to an H-O---H-O 360 rather than an O=C-O···H-O intermolecular interaction. To this end, the relative 361 contribution of molecular vs. structural water on the formation of hydrogen bonding 362 cannot be assessed. For all practical purposes, we refer to this bond as O•••H-O in the 363 discussions that follow.

364	The frequency of the $O-H_M$ stretch recorded in the melt is in the narrow range of
365	$3600 - 3640 \text{ cm}^{-1}$ (Fig. 8e). With temperature increase, the band becomes narrower with
366	FWHH ranging from 80 to 30 cm ⁻¹ at 600 to 900 °C (Fig. 8f). In all cases, the effect of
367	temperature on peak position and shape is similar to that documented in other studies
368	(Foustoukos and Mysen, 2012; Frantz et al., 1993; Mysen, 2012; Mysen, 2011; Walrafen
369	et al., 1986). However, in contrast to water-saturated aluminosilicate melts (Mysen, 2013)
370	the stability of hydrogen bonding (O•••H-O) in the carbonate melt seems to extend to
371	temperatures significantly beyond 400 °C.

373 The Thermodynamic Properties and Solubility of Water in the Carbonate Melt

374 To access the thermodynamic properties of water dissolved in the carbonate melt, 375 the energy required to rapture the O•••H-O bond ($\Delta H_{O••H-O}$) is estimated adopting the 376 van't Hoff approach employed previously for the stability of hydrogen bonding in 377 supercritical water (Foustoukos and Mysen, 2012; Walrafen, 1968). These calculations 378 derive ΔH_{O} describing the equilibrium quotient of O $\bullet \bullet \bullet H$ -O conversion to isolated 379 O-H bonds in structural water as a linear relationship between the logarithmic values of 380 the relative Raman integrated peak areas and the reverse of absolute temperatures (Fig. 381 9). There is a general trend of decreasing intermolecular interactions as temperature 382 increases, similar to what has been observed for H₂O in silicate melts (Mysen, 2013). 383 However, the O•••H-O in the carbonate melts has an enthalpy of 6.8 ± 1.5 kcal/mol, 384 which is nearly 300 % of the $\Delta H_{0\dots H-0}$ calculated for the water present in SiO₂-bearing 385 melts (~ 2.4 ± 0.5 kcal/mol). Accordingly, hydrogen bonding is significantly stronger in 386 carbonate relative to silicate water-saturated melts allowing for the development of more polar H-bonded water clusters (Schwarzer et al., 2005), and thus, possible enhancing the solubility of ionic species of trace elements and metal in the CO_3^{2-} bearing melt. Interestingly, the energy of the hydrogen bond for the H₂O component of the carbonate melt appears to be comparable with the $\Delta H_{O\cdots H-O}$ in the coexisting supercritical aqueous solution (8.4 ± 1.3 kcal/mol) (Fig. 8), highlighting the significant similarity in the thermodynamic properties of water present in these two phases.

To approximate qualitatively the solubility of H₂O in the carbonate melt, the relative distribution of the integrated peak areas of the O-H and O•••H-O stretching vibrations were used to derive the partition coefficient of H₂O (molecular and structural) present in the coexisting phases $\binom{m}{t} D_{H_2O}$ (Table 2):

$${}^{397} \qquad {}^{m}_{f}D = \frac{(Area_{O-H} + Area_{O...H-O})_{melt}}{(Area_{O-H} + Area_{O...H-O})_{fluid}} = \frac{X_{melt}}{X_{fluid}} \qquad (1)$$

398 These estimates assume that the relative normalized differential Raman scattering cross 399 sections (σ_i) of the O-H and O···H-O v_1 vibrations in the spectra of coexisting melt and 400 aqueous phase at the temperatures and pressures of interest are the same. This assumption 401 is supported by the apparent similarity in the thermodynamic properties of the water 402 solvating in the phases (Fig. 9). The water solubility is enhanced in the Mg-bearing carbonate melt with ${}^{m}_{f}D_{H_{2}O}$ values ranging from 0.46 to 0.89 (median = 0.5) at 856 – 900 403 404 °C, 1728 - 2011 MPa (Table 2). In contrast, in the CaO-CO₂-H₂O system the smaller 405 partition coefficients (median of 0.3) probable are because of the lower melting 406 temperatures attained.

407 The only other experimental data available on the solubility of water in Ca-Na-408 Mg carbonate melts are from Keppler (2003) with a melt water content of nearly 14 wt % 409 at 225 MPa and 900 $^{\circ}$ C. In this study, the melt-fluid H₂O partition coefficients attained

410 values of 0.27 - 0.48, which are comparable to those estimated in our experiments (Table 411 2). This solubility suggests a greater H₂O melt/fluid partitioning for carbonate melt 412 systems than for water-saturated silicate melts (Behrens, 1995; Burnham and Jahns, 413 1962; Lesne et al., 2011; Mysen and Acton, 1999; Richet et al., 2000; Tamic et al., 2001). 414 The solubility data can also provide constrains on the partial molar volume of water ($\overline{V}_{H_2O}^{melt}$) dissolved in melt (Lange, 1995; Mysen, 2007). In detail, this 415 thermodynamic treatment is based on the formulation of $\overline{V}_{H_{2O}}^{melt}$ as function of the fugacity 416 of pure H₂O $(f_{H_2O}^{0})$ (Haar et al., 1984; Johnson et al., 1992) and the molar fraction of 417 418 water $(X_{H_2O}^{melt})$ in the melt for the $H_2O_{fluid} = H_2O_{melt}$ equilibrium conditions:

419

420
$$\Delta G_T(P) = \Delta G_T^o(1 \ bar) + RT ln \frac{a_{H_2O}^{melt}}{f_{H_2O}^o} + \int_1^P \overline{V}_{H_2O}^{melt} dP = 0$$
(2)

421

422 Here, $\Delta G_{\rm T}(l \ bar)$ is the Gibbs free energy of solution for H₂O (J/mol) at 1 bar, *R* is the 423 gas constant, *T* is temperature (kelvin), and $a_{\rm H_2O}^{\rm melt}$ is the activity of water in the melt. By 424 assuming $a_{\rm H_2O}^{\rm melt} = X_{\rm H_2O}^{\rm melt}$, which implies ideal mixing for the H₂O-carbonate solution 425 (Mysen, 2007), and no pressure effects on the activity coefficient of water dissolved in 426 melt ($\gamma_{\rm H_2O}^{\rm melt}$)(Lange, 1995), we have:

427

428
$$ln \frac{f_{H_2O}^0}{x_{H_2O}^{melt}} = \frac{\Delta G_T^0(1 \ bar)}{RT} + \frac{\overline{V}_{H_2O}^{melt}}{RT} (P-1) + \ln \gamma_{H_2O}^{melt}$$
(3)

By plotting $\ln f_{H_2O}^o/X_{H_2O}^{melt}$ vs. (P-1)/RT, the partial molar of H₂O dissolved in melt 430 is derived as the slope of the linear regression with a value of $\sim 48 \pm 6$ cm³/mol at 900 °C 431 432 (Fig. 10). Strikingly this estimate is very close to the partial molar volume of supercritical 433 water that ranges from 61.4 to 44 cm³/mol at 900 °C and 150 – 225 MPa (Haar et al., 434 1984; Johnson et al., 1992). In the case of silicate melts, the partial molar volume of 435 water has been calculated of less than 23 cm³/mol (1000 °C, 1 bar)(Mysen and Acton, 1999; Ochs and Lange, 1999), approximating values of ~ 12 cm³/mol in aluminum-free 436 melts (Richet et al., 2000) but decreasing to ~ 9 cm³/mol for aluminum-enriched melt 437 438 compositions (Mysen, 2007).

Thus, it appears that the H_2O might be a stronger solvent in the structure of CO_3^{2-} 439 440 melts than when dissolved in silicate melts, contributing to the enhanced solubility of 441 trace elements and metals observed in carbonate-bearing melts (Dalou et al., 2009; 442 Dasgupta et al., 2009; Hamilton et al., 1989; Jones et al., 1995; Martin et al., 2013; Veksler et al., 2012; Veksler and Keppler, 2000). Furthermore, adopting $\overline{V}_{H_{2}O}^{melt} \sim 48$ and 443 444 13 wt % H₂O_{melt} at 200 MPa, 900 °C (Keppler, 2003), the activity coefficient of water 445 dissolved in the carbonate melt is nearly 9, yielding a natural logarithmic value of \sim -6 for the equilibrium constant of $H_2O_{fluid} = H_2O_{melt}$. Thus, the ionic structure of the 446 carbonate-bearing melt might impose a strong "salting-out" effect on the neutral species 447 448 of H₂O, similar to what has been seeing for neutral non-polar aqueous species (e.g. H_{2(aq)}, 449 H₂S_(aq)) in electrolyte-bearing supercritical solutions (Foustoukos and Seyfried, 2007; 450 Oelkers and Helgeson, 1991; Pitzer and Schreiber, 1987). Nevertheless, the enhanced 451 solubility of H₂O and the development of M•••O-H bonding environment along with the 452 strong ionic nature of the carbonate melts is anticipated to promote the solvation of ionic

species (such as ReO₂⁻) in the melt structure (Fig. 4) (Veksler et al., 2012; Veksler and
Keppler, 2000).

- 455
- 456

IMPLICATIONS

457 Hydrous Melting of Carbonates and CO₂ fluxes in Subduction Zones

458 The existence of a univariant equilibria between carbonates-oxides-hydroxides 459 and fluid/melt at crustal temperatures and pressures (<1 GPa, 900 °C) was first 460 hypothesized by Wylie and Tuttle (1960) and Walter et al. (1962). This has been 461 experimentally demonstrated in the present study (Fig. 2b). These melting relationships 462 and pressure-temperature paths for the CaO-CO₂-H₂O and MgO-CO₂-H₂O systems 463 highlight the important role of alkaline earth oxides on the hydrous melting of the 464 carbonate-bearing subducting oceanic crust and the release of CO_{2(g)} in volcanic arcs. To 465 this end, carbonates present in marine sediments (Plank and Langmuir, 1998) or 466 serpentinized peridotites (Kodolanyi et al., 2012) may not survive transfer to sub-arc 467 depths and commence melting before the complete dehydration at the slab-mantle wedge 468 interface. Experimental data suggest that this is may occur even at the subduction zones 469 of Vanuatu, Makran and Central America that register cold to intermediate surface 470 temperatures (Syracuse et al., 2010).

Thus, carbonate minerals may not serve as CO_2 storage recycled in the deep mantle (Kerrick and Connolly, 2001), but actually contribute to the volcanic CO_2 flux at the arc through melt/fluid interactions at temperatures and pressures well within the stability field of minerals such as serpentine, amphibole and chlorite. These mineral phases have been shown to facilitate H₂O-saturated melting (Grove et al., 2012; Till et

481	ACKNOWLEDGMENTS
480	
479	NaCl) on the flux of $\text{CO}_{2(g)}$ during open-system water-saturated melting of carbonates.
478	needed to describe the effect of fluid pH and halogen composition/concentration (e.g.
477	carbonate melts and supercritical fluids is poorly constrained, and future studies are
476	al., 2012). However, the speciation and partitioning of C-O-H volatiles between

This research was conducted with support from the Carnegie Institution of Washington (DF), the NSF-EAR-1250499 (DF, BM) and the NSF-EAR-0734182 (BM) and a NASA Astrobiology Institute (BM). A grant from the W. M. Keck Foundation supported acquisition of the Jasco IRS-3100 microRaman and the Jasco IMV4000 microFTIR spectrometers. Li Zhang synthesized the ¹³C diamond, and her efforts are greatly appreciated. Discussions with Dr. Michael Bizimis are highly appreciated.

Table 1. Description of the HDAC experiments conducted

Phase	T (°C)	P (MPa)	Redox Control	$\log f_{O_2}$
Calcite - H ₂ O	700 - 950	784 - 1508	Re/ReO ₂	(-13.8) - (-6.8)
Calcite – CaO – H_2O	550 - 650	442 - 2663	Re/ReO ₂	(-17.1) – (4.4)
Calcite - CaO - H ₂ O	600 - 900	892 - 2003	Re/ReO ₂	(-9.3) – (2.5)
Calcite - CaO - H ₂ O	575 - 900	791 - 1283	Ti/TiO ₂	(-48.2) – (-32)
Magnesite - H ₂ O	600 - 900	1045 - 1279	Re/ReO ₂	(-6) – (-9.7)
Magnesite - MgO - H ₂ O	860 - 1050	1789 - 2839	Re/ReO ₂	(0) - (4)
Magnesite - MgO - H ₂ O	400 - 1100	920 - 2439	Ti/TiO ₂	(-13.7) – (-2.8)
$\mathrm{Re}-\mathrm{ReO}_2-\mathrm{H}_2\mathrm{O}$	500 - 900	945 - 2185		(-4.4) – (5.6)

* Calculated based on the thermodynamic data of Knacke et al (1991) and adopting the density model theory (Anderson and Crear, 1993). Redox reactions: Re + $O_{2(g)}$ = ReO₂ and Ti + $O_{2(g)}$ = TiO₂ f_{O_2} conditions estimated for the Ti/TiO2 redox buffer are the lowest values possible, and not

accounting for diffusion of H_2 through the Re gasket at elevated temperatures. In all the Ti-TiO₂ bearing experiments, the presence of reduced volatiles (i.e. H_2 , CH_4) was confirmed *in-situ* at T-P by Raman spectroscopy.

488

489

Table 2. H₂O partition coefficients between carbonate melts and coexisting supercritical fluids

T (°C)	P (MPa)	${}^{m}_{f}D_{H_{2}O}$
M	elt (calcite-CaO)-H ₂	0
600	1462	0.45
600	1462	0.20
700	2003	0.52
775	1728	0.36
800	1899	0.28
800	1899	0.37
850	1675	0.27
900	892	0.26
900	892	0.21
700	1117	0.83
Melt ((magnesite – MgO) –	H_2O
856	1728	0.46
856	1728	0.51
860	2011	0.76
880	1726	0.89
910	1677	0.48
Ca/Na/Mg	CO_3 melt – H_2O (Ke	ppler, 2003)
900	50	0.27
900	75	0.24
900	100	0.37
900	125	0.35
900	150	0.42
900	175	0.36
900	200	0.45
900	225	0.48

7/23

493	Figure 1. Microphotographs from the high temperature/-pressure HDAC experiments
494	performed to study carbonate (e.g. calcite) melting in the presence of supercritical
495	aqueous solution and under reducing/-oxidizing (e.g. Re/ReO2) redox conditions.
496	Experiments included fluid, melt, and crystalline phases (oxides, carbonates, Re metal).
497	The size of the excitation laser beam is $1 \mu m$ (A).
498	

501 502	Figure 2. (a) Experiments were conducted at temperatures and pressures resembling the
503	oceanic geotherm (a). The "hot subduction" zone is after the D80 model of Central
504	Cascadia (Syracuse et al., 2010) that assumes coupling of the subduction slab with the
505	mantle wedge at 80 km depth. At this transition point and beyond, the subducted
506	sediments are considered fully dehydrated and the extent of hydrous melting is minimal.
507	(b) "In-situ" observations reveal a strong melting-point depression for calcite and
508	magnesite when coexisting with supercritical fluids and CaO or MgO, respectively. The
509	melting relationships identified correspond to conditions similar to those proposed by
510	Wylie and Tuttle (1960), Walter et al. (1962), and Ellis and Wyllie (1979) for the
511	univariant equilibria between carbonates-oxides-hydroxides and fluid/melt.

Figure 3. Examples of Raman spectra collected in-situ at 950 °C, 2.3 GPa (a), 800°C, 1 2 >1.1 GPa (c) and for samples quenched from high temperature/-pressure (b). Under 3 oxidizing redox conditions rhenium species (e.g. ReO_2) and H_2O are dissolved in both 4 the melt and aqueous phase (a). However, fluids are enriched in $CO_{2(aq)}$ (b), while the melts are composed of CO_3^{2-} ions (a). At reducing conditions established by the Ti/TiO₂ 5 6 redox buffer, the fluid phase coexisting with the carbonate-bearing melt at high 7 temperatures and pressures is enriched in CH₄ and H₂, but depleted in dissolved rhenium 8 species relative to the melt-fluid equilibrium at oxidizing conditions (a). For "ex-situ" 9 samples, presence of CH_4 and H_2 is evident in the exsolved gas phase (c). The complex group of bands recorded at $\sim 2300 - 2800 \text{ cm}^{-1}$ corresponds to the second-order Raman 10 scattering (overtones and combination vibrational states) of the ¹²C diamond anvils 11 12 (Nemanich and Solin, 1979).

- 13
- 14

Figure 4. Raman spectra of dissolved rhenium species identified in melt, fluid and precipitated carbonates (a). The intense Lorentzian vibrational band at ~ 960 cm⁻¹ does not correlate with the Raman spectrum of the initial and the quenched ReO₂ solid reactant (a). This sharp Raman vibron is attributed to ReO₂⁻. A series of HDAC experiments conducted in the Re-ReO₂-H₂O system constrained the effect of temperature on the frequency position (b) and the shape (c) of the ReO₂⁻ v_1 stretching band.

1	Figure 5. Raman spectra collected from CaCO ₃ -CaO-H ₂ O bearing HDAC experiments at
2	in-situ temperatures and pressures a) Spectra of calcite-melt mixtures (red line) reveal
3	that the frequency of the symmetric stretching vibration of CO_3^{2-} is different in spectra of
4	the melt and crystalline phase. b) This is also apparent in Raman measurements of
5	distinct melt (red line) /- crystalline (blue line) carbonate phases. Furthermore, integration
6	of the v_1 band (green line) reveals the presence of a "low" frequency Gaussian
7	component, along with the main frequency contribution, attributed to the hydrogen from
8	the dissolved H ₂ O bonded to the oxygen of the carbonate ion.

- 1 Figure 6. The shape (a) and position (b) of the integrated "low" and "high" components
- 2 of the CO_3^{2-} frequency envelope assigned to the symmetric stretching vibration (v_1). The
- 3 molecular and bonding characteristics of the carbonate ion in the melt structure differs
- 4 greatly from the species dissolved in supercritical aqueous solution (Frantz, 1998).
- 5
- 6

Figure 7. Raman spectra of the $3400 - 3600 \text{ cm}^{-1}$ frequency envelope that describes the bulk H₂O composition and the O-H bonding environments in the aqueous and melt phase. Raman spectra include contributions from the isolated O-H bonds (O-H) and from intermolecular interactions between water molecules (hydrogen bonding, O-H_{HB}). In the case of melt, there is one more contribution (O-H_{Mg}) from the interaction of the O-H groups with dissolved in the melt cations (e.g Mg).

10	Figure 8. The shape (FWHH) and frequency position of the stretching vibrations
11	assigned to the different O-H bonding environments of water dissolved in fluid and melt.
12	The integrated Raman spectra of the O-H frequency envelope at $3400 - 3600 \text{ cm}^{-1}$
13	illustrates the striking similarity of water structure in these two phases (a-d). To this end,
14	the hydrogen bonding contributions in the melt structure are more likely to mainly reflect
15	intermolecular interactions between water dipoles (H-O+++H-O) than between CO_3^{2-} and
16	structural O-H groups (O=C-O•••H-O). With temperature increase, the position of the O-
17	H_M stretch does not shift much and there is a minimal effect on the shape of the band (f).

isolated and hydrogen bonded O-H groups in the carbonate melt and the supercritical 20 21 aqueous fluid. The slope of the linear regression between ln(Area_O-H/Area_O-H/Area_O-H-O) vs 22 1000/T corresponds to the enthalpy ($\Delta H_{O \dots H-O}$) required to disrupt the intermolecular 23 interaction between water dipoles. Results highlight the similar thermodynamic 24 properties of water dissolved in these two phases. For range of pressure conditions (0.5 -25 3 GPa) attained in the present study, the effect of pressure on the stability of 26 intermolecular hydrogen bonding appears to be minimal relative to temperature. Linear 27 regression was performed utilizing the technical graphic and data analysis software Arc

1.06 (http://www.stat.umn.edu/arc) (Cook and Weisberg, 1999). The values of
1/(analytical error)² were applied as weight (YORK, 1969) and the error in fit parameters
of the regression was derived from the covariance matrix as SQRT(cov_{ii}) and for a 95.4%
confidence interval. The results of least-squares fitting are considered statistical
significant if the two-tail probability (*p-value*) is 0.05 or less (Cook and Weisberg, 1999;
Devore, 1995; Press et al., 2007).

Figure 10. Thermodynamic treatment that estimates the apparent partial molar volume of water ($\overline{V}_{H_2O}^{melt}$) based on water solubility measurements in Na-Ca-Mg carbonate melts that were developed at 900 °C across a pressure gradient (25 to 225 MPa) (Keppler, 2003). The calculated value of ~ 48 ± 6 cm³/mol is very similar to the partial molar volume of supercritical water at conditions, indicative of strong solvation power for water in the melt structure. The statistical treatment of the linear regression between $\ln f_{H_2O}^o/X_{H_2O}^{melt}$ vs. (P-1)/RT is described in figure 9.

43 *References:*

44	Aines, R.D., and Rossman, G.R. (1984) Water in minerals - a peak in the infrared.
45	Journal of Geophysical Research, 89, 4059-4071.
46	Anderson, G.M., and Crerar, D. (1993) Thermodynamics in Geochemistry - The
47	Equilibrium Model. 588 p. Oxford University Press, New York Oxford.
48	Audétat, A., and Keppler, H. (2005) Solubility of rutile in subduction zone fluids, as
49	determined by experiments in the hydrothermal diamond anvil cell. Earth and
50	Planetary Science Letters, 232(3-4), 393-402.
51	Bassett, W.A., Wu, T.C., Chou, I.M., Haselton, H.T., Jr., Frantz, J., Mysen, B.O.,
52	Huang, W.L., Sharma, K., and Schiferl, D. (1996) The hydrothermal diamond
53	anvil cell (HDAC) and its applications. In M.D. Dyar, McCammon C., and W.M.
54	Schaefe, Eds. Mineral Spectroscopy: A Tribute to Roger G. Burns. The
55	Geochemical Society Special Publication, No. 5, p. 261-272.
56	Bates, J.B., Boyd, G.E., Brooker, M.H., and Quist, A.S. (1972) Raman spectra of molten
57	alkali-metal carbonates. Journal of Physical Chemistry, 76(11), 1565-1571.
58	Behrens, H. (1995) Determination of water solubilities in high-viscosity melts: An
59	experimental-study on NaAlSi ₃ O ₈ and KAlSi ₃ O ₈ melts. European Journal of
60	Mineralogy, 7(4), 905-920.
61	Bell, K., and Blenkinsop, J. (1989) Neodymium and strontium isotope geochemistry of
62	carbonatites. In K. Bell, Ed. Carbonatites - Genesis and Evolution, p. 278-300.
63	Unwin Hyman, Boston, Mass.
64	Bizimis, M., Salters, V.J.M., and Dawson, J.B. (2003) The brevity of carbonatite sources
65	in the mantle: evidence from Hf isotopes. Contributions to Mineralogy and
66	Petrology, 145(3), 281-300.
67	Boettcher, A.L., Robertson, J.K., and Wyllie, P.J. (1980) Studies in synthetic carbonatite
68	systems - Solidus relationships for CaO-MgO-CO2-H2O to 40 Kbar and CaO-
69	MgO-SiO ₂ -CO ₂ -H ₂ O to 10 Kbar. Journal of Geophysical Research, 85, 6937-
70	6943.
71	Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F. (2001) Structural controls
72	on the solubility of CO2 in silicate melts Part II: IR characteristics of carbonate
73	groups in silicate glasses. Chemical Geology, 174(1-3), 241-254.
74	Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R. (1999)
75	Solubility, speciation and dissolution mechanisms for CO_2 in melts on the
76	NaAlO ₂ -SiO ₂ join. Geochimica et Cosmochimica Acta, 63(21), 3549-3565.
77	Burnham, C.W., and Jahns, R.H. (1962) A method for determining solubility of water in
78	silicate melts. American Journal of Science, 260(10), 721-745.
79	Caciagli, N.C., and Manning, C.E. (2003) The solubility of calcite in water at 6-16 kbar
80	and 500-800°C. Contributions to Mineralogy and Petrology, 146(3), 275-285.
81	Carper, W.R., Wahlbeck, P.G., and Griffiths, T.R. (2012) DFT models of molecular
82	species in carbonate molten salts. Journal of Physical Chemistry B, 116(18),
83	5559-5567.
84	Chepurov, A.I., Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., and Tomilenko, A.A.
85	(2011) On the formation of element carbon during decomposition of $CaCO_3$ at
86	high P-1 parameters under reducing conditions. Doklady Earth Sciences, 441(2),
87	1/38-1/41.

88 89 90	Chou, I.M., Bassett, W.A., and Bai, T.B. (1995) Hydrothermal diamond-anvil cell study of melts - Eutectic melting of the assemblage Ca(OH) ₂ +CaCO ₃ with excess H ₂ O and lack of evidence for portlandite-II phase. American Mineralogist, 80(7-8),
91	865-868.
92	Cook, D.R., and Weisberg, S. (1999) Applied regression including computing and
93	graphics. 632 p. whey-interscience.
94 95	partitioning between carbonatitic melts and mantle transition zone minerals:
96	Implications for the source of carbonatites. Geochimica Et Cosmochimica Acta,
97	73(1), 239-255.
98	Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M., and Withers,
99	A.C. (2009) Trace element partitioning between garnet lherzolite and carbonatite
100	at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of
101	mantle-derived melts. Chemical Geology, 262(1-2), 57-77.
102	Dawson, P., Hadfield, C.D., and Wilkinso.Gr. (1973) Polarized Infrared and Raman-
103	Spectra of Mg(OH) ₂ and Ca(OH) ₂ . Journal of Physics and Chemistry of Solids.
104	34(7), 1217-1225.
105	Devore, J.L. (1995) Probability and statistics for engineering and the sciences. Duxbury
106	Press.
107	Ellis, D.E., and Wyllie, P.J. (1979) Carbonation, hydration, and melting relations in the
108	system MgO-H ₂ O-CO ₂ at pressures up to 100-Kbar. American Mineralogist,
109	64(1-2), 32-40.
110	Foustoukos, D.I., and Mysen, B.O. (2012) D/H isotopic fractionation in the H ₂ -H ₂ O
111 112	system at supercritical water conditions: Composition and hydrogen bonding effects Geochimica et Cosmochimica Acta 86, 88-102
112	- (2013) H/D methane isotopologues dissolved in magmatic fluids: Stable hydrogen
114	isotope fractionations in the Earth's interior. American Mineralogist, 98, 946-954.
115	Foustoukos, D.I., and Seyfried, W.E. (2007) Fluid phase separation processes in
116	submarine hydrothermal systems. Fluid-Fluid Interactions, 65, 213-239.
117	Frantz, J.D. (1998) Raman spectra of potassium carbonate and bicarbonate aqueous fluids
118	at elevated temperatures and pressures: comparison with theoretical simulations.
119	Chemical Geology, $152(3-4)$, $211-225$.
120	Frantz, J.D., Dubessy, J., and Mysen, B.O. (1993) An optical-cell for Raman
121	spectroscopic studies of supercritical fluids and its application to the study of
122	water to 500 °C and 2000 bar. Chemical Geology, $106(1-2)$, 9-26.
123	Frost, R.L. (2011) Raman spectroscopic study of the magnesium carbonate mineral
124	hydromagnesite $(Mg_5[(CO_3)_4(OH)_2].4H_2O)$. Journal of Raman Spectroscopy,
125	42(8), 1690-1694.
126	Gaturov, M.M., and Aliev, A.R. (2005) Changes in the local symmetry of the ReO_4
127	anion near the melting point of alkali metal perrhenates. Journal of Structural
128	Chemistry, 46(5), 824-828.
129	Genge, M.J., Jones, A.P., and Price, G.D. (1995) An Intrared and Raman-study of
130	carbonate glasses - Implications for the structure of carbonatife magmas.
131	Geochimica Et Cosmochimica Acta, $59(5)$, $92/-93/$.
132	Green, D.H., and Kingwood, A.E. (1963a) The genesis of basaltic magmas. Contributions
133	to mineralogy and Petrology, 15, 103-190.

134	Green, D.H., and Ringwood, A.E. (1963b) Mineral assemblages in a model mantle
135	Composition. Journal of Geophysical Research, 68(5), 957-945.
130	Grove, I.L., IIII, C.B., and Krawczyński, M.J. (2012) The fole of H_2O in subduction
13/	Zone magmatism. Annual Review of Earth and Planetary Sciences, Vol 40, 40,
138	413-439.
139	Gudinnsson, G.H., and Presnail, D.C. (2005) Continuous gradations among primary
140	carbonatitic, kimberlitic, mellititic, basaltic, picritic, and komatilitic melts in
141	equilibrium with garnet inerzolite at 3-8GPa. Journal of Petrology, 46(8), 1645-
142	1009.
143	Haar, L., Gallagner, J.S., and Kell, G.S. (1984) NBS/NRC steam tables: Inermodynamic
144	and transport properties and computer programs for vapor and liquid states of
145	water in SI units. 320 p.
146	Hamilton, D.L., Bedson, P., and Esson, J. (1989) The behaviour of trace elements in the
147	evolution of carbonatites. In K. Bell, Ed. Carbonatites: Genesis and Evolution, p.
148	405-427. Uwin Hyman, London.
149	Holtz, F., Behrens, H., Dingwell, D.B., and Johannes, W. (1995) H ₂ O solubility in
150	haplogranitic melts - Compositional, pressure, and temperature dependence.
151	American Mineralogist, 80(1-2), 94-108.
152	Irving, A.J., and Wyllie, P.J. (1975) Subsolidus and melting relationships for calcite,
153	magnesite and the join $CaCO_3$ -MgCO ₃ to 36 Kb. Geochimica Et Cosmochimica
154	Acta, 39(1), 35-53.
155	Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992) SUPCR192 - A software
156	package for calculating the standard molal thermodynamic properties of minerals,
157	gases, aqueous species, and reactions from 1-bar to 5000-bar and 0°C to 1000°C.
158	Computers and Geosciences, $18(7)$, $899-947$.
159	Jones, A.P., Genge, M., and Carmody, L. (2013) Carbonate melts and carbonatites.
160	Reviews in Mineralogy and Geochemistry, 75, 289-322.
161	Jones, J.H., Walker, D., Pickett, D.A., Murrell, M. I., and Beattie, P. (1995) Experimental
162	investigations of the partitioning of Nb, Mo, Ba, Ce, Pb, Ra, Ih, Pa, and U
163	between immiscible carbonate and silicate liquids. Geochimica Et Cosmochimica
164	Acta, $59(7)$, $1307-1320$.
165	Keppier, H. (2003) water solubility in carbonatite meits. American Mineralogist, 88(11-
166	12), 1822-1824. Kennish D.M. and Cannella, I.A.D. (2001) Maternamicia developtilization of subducted
16/	Kerrick, D.M., and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted
168	marine sediments and the transport of volatiles into the Earth's mantie. Nature,
109	411(0855), 295-296.
170	Knacke, U., Kubaschewski, U., and Hesselmann, K. (1991) Inermochemical properties
1/1	of inorganic substances. 2412 p. Springer-Verlag, Berlin, Heidelberg.
172	Kodolanyi, J., Pettke, I., Spandler, C., Kamber, B.S., and Gmeling, K. (2012)
1/3	Geochemistry of ocean floor and fore-arc serpentinites: Constraints on the
1/4	unramatic input to subduction zones. Journal of Petrology, 53(2), 235-270.
1/5	Kraii, S., Kniiue, E., and Williams, Q. (1991) Carbonate stability in the Earth's mantle - a
1/0	violational spectroscopic study of aragonite and dolomite at high-pressures and temperatures lowered of Coophysical Descent Solid Forth O((D11) 17007
1//	temperatures. Journal of Geophysical Research-Solid Earth, 96(B11), 1/99/-
1/8	18009.

179	Kubicki, J.D., and Stolper, D. (1995) Structural roles of CO ₂ and CO ₃ ²⁻ in fully
180	polymerized sodium aluminosilicate melts and glasses. Geochimica et
181	Cosmochimica Acta, 59, 683-698.
182	Lange, R.A. (1995) The effect of H ₂ O, CO ₂ and F on the density and viscocity of silicate
183	melts. In M.R.C.a.J.R. Holloway, Ed. Volatiles in Magmas, 30. Mineralogical
184	Society of America, Washington, DC.
185	Lazar, C., Zhang, C., Manning, C.E., and Mysen, B.O. (2014) Redox effects on calcite-
186	portlandite-fluid equilibria at forearc conditions: carbon mobility,
187	methanogenesis, and reduction melting of calcite. American Mineralogist, in
188	press.
189	Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., and Beny, J.M. (2011) The
190	H ₂ O solubility of alkali basaltic melts: an experimental study. Contributions to
191	Mineralogy and Petrology, 162(1), 133-151.
192	Maiella, P.G., Schoppelrei, J.W., and Brill, T.B. (1999) Spectroscopy of hydrothermal
193	reactions. Part XI: Infrared absorptivity of CO2 and N2O in water at elevated
194	temperature and pressure. Applied Spectroscopy, 53(3), 351-355.
195	Manning, C.E. (2013) Thermodynamic modeling of fluid-rock interaction at mid-crustal
196	to upper-mantle conditions. Reviews in Mineralogy and Geochemistry, 76, 135-
197	164.
198	Maroni, V.A., and Cairns, E.J. (1970) Raman spectra of fused carbonates. Journal of
199	Chemical Physics, 52(9), 4915-4916.
200	Martin, L., Schmidt, M., Mattsson, H., and Guenther, D. (2013) Element partitioning
201	between immiscible carbonatite and silicate melts for dry and H2O-bearing
202	systems at 1-3 GPa. Journal of Petrology, 54(11), 2301-2338.
203	Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in
204	haplobasalt under reducing conditions: An experimental study. Chemical
205	Geology, 279(1-2), 1-16.
206	Mysen, B. (2012) High-pressure and high-temperature titanium solution mechanisms in
207	silicate-saturated aqueous fluids and hydrous silicate melts. American
208	Mineralogist, 97(7), 1241-1251.
209	(2013) Structure-property relationships of COHN-saturated silicate melt coexisting
210	with COHN fluid: A review of in-situ, high-temperature, high-pressure
211	experiments. Chemical Geology, 346, 113-124.
212	Mysen, B.O. (2007) The solution behavior of H ₂ O in peralkaline aluminosilicate melts at
213	high pressure with implications for properties of hydrous melts. Geochimica et
214	Cosmochimica Acta, 71(7), 1820-1834.
215	(2011) An experimental study of phosphorous and aluminosilicate speciation in and
216	partitioning between aqueous fluids and silicate melts determined in-situ at high
217	temperature and pressure. American Mineralogist, 96(10), 1636-1649.
218	Mysen, B.O., and Acton, M. (1999) Water in H ₂ O-saturated magma-fluid systems:
219	Solubility behavior in K ₂ O-Al ₂ O ₃ -SiO ₂ -H ₂ O to 2.0 GPa and 1300 °C. Geochimica
220	Et Cosmochimica Acta, 63(22), 3799-3815.
221	Mysen, B.O., Kumamoto, K., Cody, G., and Fogel, M. (2011) Solubility and solution
222	mechanisms of C-O-H volatiles in silicate melts with variable redox conditions
223	and melt composition at upper mantle temperatures and pressures. Geochimica et
224	Cosmochimica Acta(75), 6183-6199.

225	Mysen, B.O., and Virgo, D. (1986) Volatiles in silicate melts at high pressure and
226	temperature: 1. Interaction between OH groups and Si ⁴⁺ , Al ³⁺ , Ca ²⁺ , Na ⁺ and H ⁺ .
227	Chemical Geology, 57(3-4), 303-331.
228	Mysen, B.O., and Yamashita, S. (2010) Speciation and solubility of reduced C-O-H
229	fluids in coexisting fluids and silicate melts determined in situ to 1.45 GPa and
230	800°C. Geochimica et Cosmochimica Acta, 74, 4577-4588.
231	Nelson, D.R., Chivas, A.R., Chappell, B.W., and Mcculloch, M.T. (1988) Geochemical
232	and isotopic systematics in carbonatites and implications for the evolution of
233	ocean-island sources. Geochimica Et Cosmochimica Acta. 52(1), 1-17.
234	Nemanich, R.J., and Solin, S.A. (1979) First-order and second-order raman-scattering
235	from finite-size crystals of graphite. Physical Review B, 20(2), 392-401.
236	Ochs, F.A., and Lange, R.A. (1999) The density of hydrous magmatic liquids. Science,
237	283(5406), 1314-1317.
238	Oelkers, E.H., and Helgeson, H.C. (1991) Calculation of activity coefficients and degrees
239	of formation of neutral ion pairs in supercritical electrolyte solutions. Geochimica
240	et Cosmochimica Acta, 55(5), 1235-51.
241	Pan, D., Spanu, L., Harrison, B., Sverjensky, D.A., and Galli, G. (2013) Dielectric
242	properties of water under extreme conditions and transport of carbonates in the
243	deep Earth. Proceedings of the National Academy of Sciences of the United
244	States of America, 110(17), 6646-6650.
245	Pitzer, K.S., and Schreiber, D.R. (1987) The restricted primitive model for ionic fluids:
246	properties of the vapor and the critical region. Molecular Physics, 60, 1067-1078.
247	Plank, T., and Langmuir, C.H. (1998) The chemical composition of subducting sediment
248	and its consequences for the crust and mantle. Chemical Geology, 145(3-4), 325-
249	394.
250	Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. (2007) Numerical
251	recipes in C: The art of scientific computing. 1256 p. Cambridge University Press,
252	p. 661-666.
253	Reynard, B., and Caracas, R. (2009) D/H isotopic fractionation between brucite Mg(OH) ₂
254	and water from first-principles vibrational modeling. Chemical Geology, 262(3-
255	4), 159-168.
256	Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlhorst, S., and Wilke, M. (2000)
257	Water and the density of silicate glasses. Contributions to Mineralogy and
258	Petrology, 138(4), 337-347.
259	Schiferl, D., Nicol, M., Zaug, J.M., Sharma, S.K., Cooney, T.F., Wang, SY., Anthony,
260	T.R., and Fleischer, J.F. (1997) The diamond ¹³ C/ ¹² C isotope Raman pressure
261	sensor system for high temperature/pressure diamond-anvil cells with reactive
262	samples Journal of Applied Physics, 82, 3256-3265.
263	Schwarzer, D., Lindner, J., and Vohringer, P. (2005) Energy relaxation versus spectral
264	diffusion of the OH-stretching vibration of HOD in liquid-to-supercritical
265	deuterated water. Journal of Chemical Physics, 123(16), 161105.
266	Shatskiy, A., Gavryushkin, P.N., Sharygin, I.S., Litasov, K.D., Kupriyanov, I., Higo, Y.,
267	Borzdov, Y.M., Funakoshi, K., Palyanov, Y.N., and Ohtani, E. (2013) Melting
268	and subsolidus phase relations in the system Na_2CO_3 -MgCO ₃ ±H ₂ O at 6 GPa and
269	the stability of Na ₂ Mg(CO ₃) ₂ in the upper mantle. American Mineralogist, 98,
270	2172-2182.

271	Streckeisen. (1980) Classification and nomeclature of volcanic rocks, lamprophyres,
272	carbonatites and melilitic rocks. IUGS Subcommission on the systematics of
273	Igneous Rocks. Geol Rundsch, 69, 194-207.
274	Stumm, W., and Morgan, J. (1996) Aquatic Chemistry. Wiley-Interscience, 3rd edition.
275	Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction
276	zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2), 73-
277	90.
278	Tamic, N., Behrens, H., and Holtz, F. (2001) The solubility of H ₂ O and CO ₂ in rhyolitic
279	melts in equilibrium with a mixed CO ₂ -H ₂ O fluid phase. Chemical Geology,
280	174(1-3), 333-347.
281	Till, C.B., Grove, T.L., and Withers, A.C. (2012) The beginnings of hydrous mantle
282	wedge melting. Contributions to Mineralogy and Petrology, 163(4), 669-688.
283	Tropper, P., and Manning, C.E. (2005) Very low solubility of rutile in H2O at high
284	pressure and temperature, and its implications for Ti mobility in subduction
285	zones. American Mineralogist, 90(2-3), 502-505.
286	Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V.,
287	Jeffries, T., and Dingwell, D.B. (2012) Partitioning of elements between silicate
288	melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts.
289	with implications to the origin of natrocarbonatite. Geochimica Et Cosmochimica
290	Acta, 79, 20-40.
291	Veksler, I.V., and Keppler, H. (2000) Partitioning of Mg. Ca, and Na between carbonatite
292	melt and hydrous fluid at 0.1-0.2 GPa. Contributions to Mineralogy and
293	Petrology, 138(1), 27-34.
294	Walrafen, G.E. (1968) Raman Spectral Studies of HDO in H ₂ O. Journal of Chemical
295	Physics, 48(1), 244-251.
296	Walrafen, G.E., Fisher, M.R., Hokmabadi, M.S., and Yang, W.H. (1986) Temperature
297	dependence of the low-frequency and high-frequency Raman scattering from
298	liquid water. Journal of Chemical Physics, 85(12), 6970-6982.
299	Walter, L.S., Wyllie, P.J., and Tuttle, O.F. (1962) The System MgO-CO ₂ -H ₂ O at high
300	pressures and temperatures. Journal of Petrology, 3(1), 49-64.
301	Wang, X.F., and Andrews, L. (2005) Infrared spectra and electronic structure calculations
302	for the group 2 metal M(OH) ₂ dihydroxide molecules. Journal of Physical
303	Chemistry A, 109(12), 2782-2792.
304	Williams, Q., and Knittle, E. (2003) Structural complexity in carbonatite liquid at high
305	pressures. Geophysical Research Letters, 30(1), doi:10.1029/2001gl013876.
306	Wyllie, P.J., and Boettcher, A.L. (1969) Liquidus phase relationships in system CaO-
307	CO ₂ -H ₂ O to 40 kilobars pressure with petrological applications. American Journal
308	Of Science, 267, 489-508.
309	Wyllie, P.J., and Tuttle, O.F. (1959) Melting of calcite in the presence of water.
310	American Mineralogist, 44(3-4), 453-459.
311	(1960) The system CaO-CO ₂ -H ₂ O and the origin of carbonatites. Journal Of Petrology,
312	1(1), 1-46.
313	Xiong, Y., and Wood, S.A. (2001) Hydrothermal transport and deposition of rhenium
314	under subcritical conditions (up to 200 °C) in light of experimental studies.
315	Economic Geology and the Bulletin of the Society of Economic Geologists,
316	96(6), 1429-1444.

- 317 Xiong, Y.L., and Wood, S.A. (1999) Experimental determination of the solubility of
- 318 ReO₂ and the dominant oxidation state of rhenium in hydrothermal solutions.
- 319 Chemical Geology, 158(3-4), 245-256.
- 320 Zarzycki, J. (1961) High-temperature X-Ray diffraction studies of fused salts - Structure 321 of molten alkali carbonates and sulphates. Discussions of the Faraday Society(32), 322 38-48.
- 323 Zhou, M.F., Citra, A., Liang, B.Y., and Andrews, L. (2000) Infrared spectra and density 324 functional calculations of MO₂, MO₃, (O₂)MO₂, MO₄, MO₂⁻ (M = Re, Ru, Os) 325 and ReO3, ReO4 in solid neon and argon. Journal of Physical Chemistry A, 326 104(16), 3457-3465.
- 327 328

50X/0.42 N.A.

900 °C - 0.9 GPa Cc-CaO-H₂O

Re

Fluid

Melt

775 °C - 1.8 GPa

Re

B

ReO₂

Cc

100 μ**m**

Melt

Fluid

