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Abstract 26 

Minerals trapped as inclusions within other host minerals can develop residual stresses on 27 

exhumation as a result of the differences between the thermo-elastic properties of the host and 28 

inclusion phases. The determination of possible entrapment pressures and temperatures from 29 

this residual stress requires the mutual elastic relaxation of the host and inclusion to be 30 

determined. Previous estimates of this relaxation have relied on the assumption of linear 31 

elasticity theory. We present a new formulation of the problem that avoids this assumption. 32 

We show that for soft inclusions such as quartz in relatively stiff host materials such as 33 

garnet, the previous analysis yields entrapment pressures in error by the order of 0.1 GPa. The 34 

error is larger for hosts that have smaller shear moduli than garnet. 35 

 36 

Introduction 37 

Minerals trapped as inclusions within other host minerals can develop residual stresses on 38 

exhumation as a result of the differences between the thermo-elastic properties of the host and 39 

inclusion phases (e.g. Fig 3. in Howell et al. 2010). Measurement of the residual stress in the 40 

inclusions can, in combination with the equations of state (EoS) of the two phases, be used to 41 

infer the pressures and temperatures of entrapment if no plastic deformation has occurred  42 

(e.g. Zhang 1998; Izraeli et al. 1999; Guiraud and Powell 2006; Howell et al. 2012; Kohn 43 

2014; Kouketsu et al. 2014). The key concept is that when the inclusion was trapped, the host 44 

and inclusion had the same P and T, and the inclusion fitted perfectly within the cavity in the 45 

host (Fig. 1a), so there were no stress gradients across the host and inclusion. 46 

 47 

Consider a soft inclusion in a relatively stiff host recovered from metamorphic conditions to 48 

room conditions. The volume change of the host will be less than that expected for a free 49 



Angel et al (2014) Host/inclusion relaxation  Page 3 
 

crystal of the inclusion phase. The inclusion phase is therefore compressed to a smaller 50 

volume than expected for the final external P and T and is therefore under pressure. The 51 

volume change of the host can be calculated from its EoS.  The pressure *
IP  in the inclusion 52 

is then calculated from this final host volume and the temperature, using the EoS of the 53 

inclusion. At this point, the host is under the external pressure, endHP , , but the inclusion is 54 

under a stress *
IP  (Fig. 1b). This is a physically unstable “virtual’’ state because there is a 55 

difference in radial stress at the host/inclusion wall that will force the wall outwards because 56 

endHI PP ,
* > . This expansion leads to compression of the host and thus an increase in the radial 57 

stress in the host adjacent to the inclusion, and a relaxation of the pressure inside the 58 

inclusion, relaxIP ,Δ . The resulting expansion of the inclusion continues until the radial stress in 59 

the inclusion matches that in the host adjacent to the inclusion (Fig. 1c) with a stress gradient 60 

in the host that decreases to the external stress at the outside surface of the host (Goodier 61 

1933; Eshelby 1957; Fig. 1c). 62 

  63 

The final observed inclusion pressure endIP ,  is therefore comprised of two parts,  64 

relaxIIendI PPP ,,
* Δ+=  65 

Since *
IP can be calculated from the EoS of the two phases, the problem of estimating 66 

entrapment conditions from observed inclusion pressures lies in the calculation of the change 67 

in pressure upon relaxation. Previous calculations  (e.g. Zhang 1998; Izraeli et al. 1999; 68 

Guiraud and Powell 2006; Howell et al. 2012; Kohn 2014; Kouketsu et al. 2014)  all rely on 69 

an estimate of the relaxation as 
( )

H

endHendII
relaxI G

PPK
P

4
3 ,,

,

−−
=Δ . The derivation of this formula 70 

(Zhang 1998) relies on several assumptions including that the inclusion is small and spherical 71 

and that both phases are elastically isotropic. We will retain these assumptions. But Zhang’s 72 
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(1998) derivation also relied on the assumptions of linear elasticity; that the elastic properties 73 

of the host and the inclusion do not change with P or T. This last condition is clearly not valid 74 

for changes in pressure and temperature that are geologically relevant. Here we derive a new 75 

expression for the relaxation relaxIP ,Δ by an approach that does not require this assumption.  76 

Methodology 77 

We first address the ‘forward problem’ of calculating the final pressure on the inclusion at 78 

PH,end and Tend, following entrapment at conditions Ptrap and Ttrap. Elastic deformation is 79 

reversible by definition. Therefore the stress and strain in the system of host and inclusion are 80 

independent of the path taken from entrapment to the final state, and the final inclusion 81 

pressure endIP ,  is the same for any P-T path. Instead of performing calculations for a P-T path 82 

of isothermal decompression followed by cooling (e.g. Zhang 1998; Howell et al. 2010), we 83 

consider a simultaneous reduction of pressure and temperature from entrapment conditions 84 

along a path on which the fractional volume changes of the host and inclusion are the same. 85 

Such a path is known as an ‘isomeke’ (Adams et al. 1975), whose instantaneous slope is 86 

determined by the ratio of the differences in volume thermal expansion coefficients and 87 

compressibilities of the two phases, ( ) βα ΔΔ=∂∂ isomekeTP (Rosenfeld and Chase 1961). 88 

Isomekes are therefore curved lines in P-T space (Fig. 2) that can be calculated directly from 89 

the EoS of the host and the inclusion, without any restrictions on the form of the EoS, and 90 

especially no requirement for the elastic properties of either phase to be constant. 91 

We now consider the cooling of the system along the isomeke from entrapment at Ptrap and 92 

Ttrap to the final temperature Tend.  The key point is that, because we have moved the system 93 

along an isomeke from the initial state, the stress in both the inclusion and the host is uniform 94 

and equal to the external pressure, which we denote Pfoot (Fig 2) to indicate we are at the foot 95 

of the isomeke. So we can now apply the analysis of Goodier (1933) to the isothermal 96 
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decompression of the host from Pfoot to endHP , . Goodier (1933) showed that, starting from a 97 

system in uniform stress and strain, the final stress state is determined solely by the elastic 98 

properties of the system and the volume strain Hε  applied at infinity to the host (at constant 99 

temperature). Under these conditions the volume strain of the inclusion after the application 100 

of the strain Hε  to the host is uniform and constant and given exactly by )1( 21KH −ε , using the 101 

notation of Torquato (2002). The parameter 21K  is an elastic interaction parameter whose 102 

value is dependent on the elastic properties of both the host and inclusion:
H

HI

GK

KKK
I

3
421

+

−= . 103 

The volume strain of the inclusion is thus comprised of two parts, 2121)1( KK HHH εεε −=− . 104 

The first part Hε is the fractional volume change of the inclusion equal to that of the host, 105 

which arises from the decompression of the host from Pfoot on the original isomeke to endHP ,  106 

and gives rise to the pressure *
IP  on the inclusion (Fig. 1b, 2). Therefore the second term in 107 

the inclusion strain, 21KHε−  corresponds to the volume relaxation, which results in the 108 

relaxation in pressure of relaxIP ,Δ (Fig. 1c, 2). Since the pressure variation of all terms in 21K109 

will be similar, it is reasonable to assume that 21K  remains constant over the small pressure 110 

interval (typically < 1 GPa) of relaxIP ,Δ . That is the only approximation that is made in our 111 

derivation because relaxIP ,Δ is then calculated from the volume change 21KHε−  and the full 112 

EoS of the inclusion. 113 

 114 

This new approach via the isomeke provides a way to calculate final inclusion pressures 115 

arising from the entrapment conditions, for any type of EoS. It also allows the calculation of 116 

entrapment conditions from a measured residual pressure on an inclusion ( endIP , ), as follows. 117 

First, the value of Pfoot at Tend is found that will produce the observed pressure endIP , . The 118 
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isomeke passing through Pfoot, Tend is then calculated from the EoS parameters of the host and 119 

inclusion, and this line represents possible entrapment conditions. Both the forward and 120 

reverse calculations can be performed with any common choice of P-V-T EoS, including that 121 

of Holland and Powell (2011), and both are implemented in the EosFit7c program (Angel et 122 

al. 2014).  123 

Implications 124 

By considering the elastic problem of a host-inclusion system in terms of an initial P-T path 125 

along an isomeke, we have provided a solution to the relaxation problem that is firmly based 126 

in conventional elasticity theory (Goodier 1933). We now see that the ‘thermodynamic’ part, 127 

*
IP , of the final inclusion pressure effectively arises solely from the isothermal 128 

decompression of the host from Pfoot to endHP , . More importantly, the relaxation in pressure 129 

relaxIP ,Δ does not arise from the entire decompression from entrapment, but only from the 130 

isothermal pressure change from Pfoot on the isomeke to PH,end. As we show in the Appendix, 131 

this means that the relaxation term of Zhang (1998) can be obtained from our solution by 132 

assuming constant elastic properties of the host and inclusion over the isothermal 133 

decompression from Pfoot. This explains why the method of Zhang (1998), which was derived 134 

by explicitly assuming linear elasticity for all P and T, may provide good estimates of endIP , , 135 

especially when the final state is at room conditions. For example, for a quartz inclusion 136 

originally entrapped in a garnet at 0.7 GPa and 380oC (Parkinson 2000), the Zhang (1998) 137 

method yields a endIP , =0.45 GPa, only 0.01 GPa higher than the correct solution (Fig. 3). 138 

However, as the difference between Pfoot and PH,end increases, the accuracy of the Zhang 139 

(1998) model decreases. Thus for a quartz trapped further along the pro-grade path at ~1.7 140 

GPa and ~600oC, Pfoot = 2.0 GPa (Fig. 3) and the final inclusion pressure will be 1.06 GPa, 141 

whereas the Zhang (1998) model overestimates this by 0.08 GPa. The same magnitude of 142 
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error occurs when the entrapment conditions are calculated from a final observed inclusion 143 

pressure, but with opposite sign; the Zhang (1998) model underestimates the entrapment 144 

pressure at a given temperature. Because the shear modulus of the host appears in the 145 

denominator of the equations for relaxation, the error will be larger for host materials with 146 

smaller shear moduli than garnet. For stiffer host materials such as diamond, the errors are 147 

smaller. 148 

 149 

The same trend of increasing error with the magnitude of (Pfoot – PH,end) can be seen in 150 

calculations of endIP ,  along the prograde metamorphic evolution following entrapment of the 151 

inclusion. Take the example of the quartz trapped in the cores of the garnets in the Kulet 152 

whiteschist (Parkinson 2000) and illustrated in Figure 3. Pro-grade compression from 153 

entrapment at 0.7 GPa and 380oC to peak conditions of around 3.5 GPa and 780 oC leads to a 154 

Pfoot = 0.52 GPa and GPa 21.1* =IP . Because *
IP  is less than the external pressure, the 155 

relaxation acts to increase the pressure on the inclusion. The exact solution yields relaxIP ,Δ = 156 

+0.51 GPa, and a final inclusion pressure of 1.72 GPa. If the Zhang (1998) expression is used, 157 

but with the values of KI = 51.3 GPa, GH ~ 88 GPa appropriate for garnet at the peak 158 

conditions, one over-estimates the relaxation and the peak inclusion pressure by 0.2 GPa. 159 

Interestingly, if one naively uses the exact Zhang (1998) formulation with the clearly 160 

inappropriate elastic parameters for room pressure, this overestimate of relaxIP ,Δ is almost 161 

exactly cancelled out by the value of KI = 37.1 GPa. Such cancellation cannot be relied upon 162 

to occur in all cases! 163 

 164 

We caution that, like previous analyses, this approach only considers elastic behaviour and 165 

assumes that no plastic deformation occurs.  All of these calculations also assume that both 166 

the host and the inclusion are elastically isotropic, that the inclusion is isolated elastically 167 
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from any other inclusion or surface, and that the inclusion is spherical. Isolated inclusions 168 

containing gas, melt or fluid in glass hosts meet these requirements.  While hosts such as 169 

garnet are approximately elastically isotropic (e.g. Sinogeikin and Bass 2000) common 170 

inclusion minerals such as quartz are not. As a consequence of this elastic anisotropy one can 171 

calculate that the deviatoric stress in typical quartz inclusions in metamorphic garnets will be 172 

of the order of 20-40% of the average stress. Further, the volume change of the inclusion also 173 

depends on its shape, even in an elastically isotropic host (e.g. Eshelby 1957; Burnley and 174 

Davis 2004). Thus the current analysis should not be considered to represent an exact solution 175 

for real host/inclusion systems, but instead to approximate their average response to changes 176 

in P and T, upon which the anisotropic response can be considered subsequently as a 177 

perturbation. But this is only true if measurements of the inclusion yield the true average 178 

stress, to be used as endIP , . Techniques such as in-situ X-ray diffraction of the inclusion do 179 

reveal both the anisotropic stress state and its homogeneity (Nestola et al. 2011). But single 180 

measurements of the Raman band positions from quartz inclusions (e.g. Kohn 2014; Kouketsu 181 

et al. 2014), however, may not reveal the average stress state because of the sensitivity of 182 

Raman band positions to anisotropic stresses (Briggs and Ramdas 1977). 183 
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Figure Captions 249 

 250 

Figure 1: Sketches of the radial stress against radius in an ideal host-inclusion system. (a) At 251 

entrapment (Ptrap), and at any other point on the isomeke (e.g. at Pfoot and Tend), there is no 252 

stress gradient. (b) In the virtual state after decompression of the host to ambient pressure ( 253 

=PH,end), the inclusion is under a radial stress *
IP . There is therefore a step in stress at the 254 

inclusion/host boundary. (c) As a consequence, the inclusion expands until the internal stress 255 

drops to PI,end and a stress gradient is developed in the host.  256 

 257 

 258 

Figure 2: The use of the isomeke concept to calculate residual pressures on an inclusion 259 

initially entrapped at Ptrap, Ttrap. (a) The calculation first considers cooling along the isomeke 260 

to the final temperature Tend where the stress in both the inclusion and the host is uniform and 261 

equal to the external pressure, Pfoot. (b) When the external pressure is reduced (isothermally) 262 

to PH,end, the un-relaxed inclusion pressure would be *
IP . Mutual elastic relaxation of host and 263 

inclusion then drops the pressure in the inclusion to the final PI,end.  264 

 265 

 266 

Figure 3: A pressure-temperature plot for a quartz inclusion in a garnet. The light lines are 267 

the isomekes for alpha-quartz in garnet. The heavy line is the estimated pro-grade path for the 268 

Kulet whiteschist (Parkinson 2000). A quartz inclusion entrapped at 0.7 GPa and 380oC lies 269 

on an isomeke with Pfoot = 0.76 GPa. When the garnet is at room conditions,  GPa 59.0* =IP  270 

and the residual pressure is endIP ,  = 0.44 GPa. At peak metamorphic conditions (T =780oC), 271 

the isomeke pressure is 0.52 GPa, and the quartz will be under a pressure of 1.72 GPa, as 272 

indicated on the right-hand side of the diagram. Isomekes were calculated with EosFit7c 273 
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(Angel et al. 2014) from Birch-Murnaghan EoS in combination with a thermal-pressure 274 

model (Holland and Powell 2011). The parameters for alpha-quartz: K0 = 37.12 GPa, 275 

99.50 =′K (Angel et al. 1997), α0 = 3.419 x 10-5 K-1, θE = 314 K. For garnet: K0 = 174.7 GPa, 276 

3.50 =′K , α0 = 2.748 x 10-5 K-1, θE = 757 K. 277 
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