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ABSTRACT

The structures of high-pressure magmatic liquids have often been inferred from spectroscopic
studies on quenched and decompressed glasses. However, it has not been completely verified
whether the structures of quenched and decompressed glasses are representative of the

structure of their corresponding liquids at the glass transition temperature and synthesis

pressure. Here, we provide quantitative evidence for the retention of pressure-induced

configurational changes upon isobaric quench and isothermal decompression for synthesis

pressures up to 3.5 GPa. We use the degree of densification and elastic compressibility of

permanently densified glasses, together with thermo-elastic data from the literature, to

calculate the density of the melt at the glass transition temperature and synthesis pressure. The

derived densities agree with those derived directly from the thermal equations of state of the
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melts. This observation indicates that, at least up to 3.5 GPa, the densified structure of the
melt is preserved in the glass upon quenching and decompression; this validates past and
future structural studies of high-pressure melts based on studies of quenched and

decompressed glasses.

Keywords. configurational compressibility, elastic compressibility, high pressure, silicate

melts, density, relaxation, rhyolite, phonolite, basalt

INTRODUCTION

The structure of high-pressure magmatic liquids has often been inferred from
spectroscopic and diffraction studies on quenched and decompressed glasses (Allwardt et al.
2005a, 2005b, 2007; Davoli et al. 1992; Du et al. 2004; Fleet et al. 1984; Fuss et al. 2006;
Gaudio et al. 2008; Hochella and Brown 1985; Kelsey et al. 2009a, 2009b; Lee 2004, 2010,
2011; Lee et al. 2004, 2012; Li et al. 1995; Malfait et al. 2012; O'Neill et al. 2006; Paris et al.
1994; Stebbins and McMillan 1989; Stebbins and Poe 1999; Stebbins and Sykes 1990; Sykes
et al. 1993; Velde and Kushiro 1978; Xue et al. 1989, 1991, 1994; Yamada et al. 2010; Yarger
et al. 1995). The main advantage of using quenched glasses is that more numerous and more
informative structural probes are available at ambient conditions than at in situ high pressure
and temperature conditions. However, pressure-induced structural changes are not necessarily
retained upon decompression, and studies on quenched and decompressed glasses may
underestimate the effect of pressure on melt structure (Farber and Williams 1996; Shim and
Catalli 2009). Until now, it has not been fully tested how representative the structures of

quenched and decompressed glasses are of the structures of the corresponding melts.
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Glasses differ fundamentally from melts. Liquids and glasses are commonly described
in terms of equilibrium (relaxed) and non-equilibrium (unrelaxed) states, respectively
(Dingwell and Webb 1990; Moynihan et al. 1976). The short lifetimes of the Si-O bonds
allow for rapid re-equilibration in liquid silicates, but are too long for re-equilibration in the
glassy state (Farnan and Stebbins 1990,1994; Malfait and Halter 2008). The glass transition
temperature, 7,, the boundary between the liquid and glassy states, defines the temperature at
which the structure is frozen in because the material is no longer able to re-equilibrate to the
change in temperature during cooling. This transition typically occurs over a few tens of
degrees (Mysen and Richet 2005). The temperature for which the frozen structure corresponds
to the equilibrium state is called the fictive temperature, T¢ (Moynihan et al. 1976; Tool
1946). Experimental studies on quenched glasses, combined with in situ studies of the
corresponding liquids, have confirmed that the structure of the glass is indeed representative
of the melt at the fictive temperature, at least with respect to the Al coordination number
(Stebbins et al. 2008), water speciation (Behrens and Nowak 2003) and silica speciation
(Brandriss and Stebbins 1988; Malfait et al. 2008; McMillan et al. 1992; Mysen and Frantz

1994).

Liquids and glasses also show notable differences in the compression mechanisms, with
both elastic and configurational compression in liquids, but only elastic compression in
glasses (Dingwell and Webb 1990). As a result, liquids are more compressible than their
analog glasses. Richet and Neuville (1992) reported that the greater compressibility of liquids
reflects configurational contributions. In other words, liquids are more compressible because a
large number of densified configurational states are available through pressure-induced
structural changes. For a frozen structure, the effects of pressure are elastic only and mostly
related to variations in the interatomic bond lengths (Richet and Neuville 1992). The relative

importance of the vibrational and configurational contributions to the compressibility depends
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77  strongly on melt composition and structure (Askarpour et al. 1993). When a glass that was
78  isobarically quenched from the liquid is decompressed to ambient pressure, the elastic
79  contribution to the compressibility is released, but the configurational contribution is at least
80 partially retained (Maurer 1957). However, the degree to which the configurational
81  compression is retained upon decompression has not been quantified. Thus, it is not clear in
82  how far the structure of quenched and decompressed glasses is representative of that of the
83  melt at synthesis pressure.

84

85 The distinction between glass- and melt-like compressional behaviors becomes blurred
86  when glasses are compressed to very high pressures. Indeed, glasses compressed to lower
87 mantle pressures often display pressure-induced structural changes (Benmore et al. 2010;
88  Champagnon et al. 2008; Hemley et al. 1986; Kubicki et al. 1992; Lee et al. 2008; Lin et al.
89  2007; Meade et al. 1992; Sato and Funamori 2008; Shim and Catalli 2009; Williams and
90 Jeanloz 1988) and some irreversible, hence non-elastic, densification (Champagnon et al.
91  2008; Gaudio et al. 2008; Sanchez-Valle and Bass 2010; Zha et al. 1994).

92

93 In this study, we demonstrate that quenched and decompressed glasses represent the
94  structure of the melt at high pressure and 7,, at least for subduction zone conditions. In
95 particular, we use the degree of densification and elastic compressibility of permanently
96 densified glasses, together with thermo-elastic data from the literature, to calculate the density
97  of the melt at 7, and synthesis pressure. Within uncertainty, the obtained densities agree with
98 those derived from the equations of state of the corresponding melts. This observation implies
99 that the configurational compressibility is fully retained upon decompression for synthesis
100  pressures up to at least 3.5 GPa.

101

102 DATA SOURCE
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103

104 Three glass compositions were considered in this study: haplo-rhyolitic, haplo-
105  phonolitic and haplo-basaltic. All samples are part of a set of well-characterized samples
106  prepared for a previous study on the partial molar properties of dissolved CO,, and a full
107  description of their synthesis and characterization can be found there (Seifert et al. 2013a).
108 For the current study, only the data for the CO,-free glasses are considered. Briefly,
109  permanently densified glasses were synthesized from 2 to 3.5 GPa and 1400-1750 °C in a
110  piston cylinder apparatus using Pt capsules and a talc-MgO-silica assembly. The samples
111 were quenched with an estimated quench rate of 100-200 K/s and decompressed at a rate of
112 ~10 MPa/s. The major element composition and volatile contents were analyzed by electron
113 microprobe and by Fourier transform infrared spectroscopy (FTIR), respectively (Table 1).
114  The density of the glasses was determined with the sink/float method in a diiodomethane
115  (CHzlp)-acetone (C3HgO) mixture. Relaxation experiments were performed on a fraction of
116  each sample in order to remove the residual densification of the samples synthesized at high
117  pressure. In this process, the samples undergo a structural reconfiguration by annealing them
118  at ambient pressure near Ty, at 898, 879 and 913 K for the basaltic, phonolitic and rhyolitic
119  glasses, respectively (Seifert et al. 2013a). Microscopic observation with crossed polarizers
120  indicated that the annealed samples were free of crystals. Brillouin scattering spectroscopy
121 has been used to measure the acoustic velocities and to derive the elastic properties of both
122 permanently densified and relaxed glasses (Table 2) (Seifert et al. 2013a). All measurements
123 were carried out in a 90° symmetric/platelet scattering geometry using the experimental setup
124  described in Sanchez-Valle et al. (2010). The acoustic velocities were employed to calculate

125  the adiabatic bulk modulus, Ks, of each sample using the relationship:

126 K= p[vﬁ —%1/;) (1)
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127  where p is the density, vp and vs are the compressional and shear wave velocities,

128  respectively.

129

130 RESULTS & DISCUSSION

131

132 The density of the melt at the synthesis pressure and 7, (Giordano et al. 2008) was

133 calculated based on the properties of the quenched glasses (Table 2) and the results compared
134  with the density predicted by in situ measurements conducted in the corresponding haplo-
135  ryholitic and haplo-phonolitic melts (Malfait et al. 2014; Seifert et al. 2013b). No in situ data
136  are available for this particular haplo-basaltic glass composition, and the density of the melt,
137  calculated from the quenched glasses, was compared to that predicted by a multi-component
138  model for silicate melt density. This model predicts melt density based on the available
139  density and compressibility data at ambient pressure and irn situ density data for a range of
140  melt compositions (Malfait et al., (subm.)).

141

142 The procedure to calculate the density of the high-pressure melt from the data on the
143  ambient pressure glasses is illustrated in Figure 1. The configurational contribution to the
144  pressure-induced densification of melts (Beonfigurational), A(Po-p1), was determined from density
145  measurements on relaxed (pg) and permanently densified (p;) glasses. The elastic contribution
146 (Pelastic)> A(p2-p1), was calculated from Ky determined by Brillouin scattering data and a 3
147  order Birch-Murnaghan equation of state. In the absence of data for the pressure derivatives of
148  the bulk modulus, K, of the investigated glasses, calculations of the elastic compressibility
149  were performed for K* values of 2, 4, 6 and 8. The lower bound of this range was selected
150  based on results from high-pressure Brillouin studies on glasses with soda-lime or enstatite
151 (K'= 2.740.1) compositions that show a relatively small increase of K upon compression up

152 to 5-8 GPa (Sanchez-Valle and Bass 2010; Tkachev et al. 2005). The upper bound was set
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153  based on values obtained from compressibility data on liquids (Malfait et al. 2014; Sakamaki
154 et al. 2010; Seifert et al. 2013b). The possible variation of K' between 2 and 8 was found to
155  affect the calculated densities by less than 0.6, 0.2 and 0.3 % for the rhyolitic, phonolitic and
156  basaltic glasses, respectively. This variation was included in the uncertainty calculation on p,.
157  The small dependence of the calculated densities on K’ is related to the rather limited range of
158  compression of the present study (Table 2). In the last step, the temperature dependence of the
159  density, A(p2-p3), was estimated from the ambient pressure thermal expansion coefficient, o
160  (Bouhifd et al. 2001; Ochs and Lange 1999; Richter and Simmons 1974). This step assumes
161  that the temperature dependence of a is not significant, consistent with the small pressure-
162  temperature cross terms in the equations of state of silicate melts (Malfait et al. 2014;
163  Sakamaki et al. 2010; Seifert et al. 2013b).

164

165 The derived densities for the high-pressure melt at 7, p3, appear to be slightly lower
166  than those predicted by the equations of state of the analog melts, ps, but are the same within
167  the estimated uncertainties (Table 2, Fig. 1). This implies that, within uncertainty, the
168  configurational compression is fully retained in the glasses during the isobaric quench and
169  isothermal decompression at the end of the piston cylinder experiments. Thus, no significant
170  configurational changes occurred during decompression. Hence, the glasses quantitatively
171  probe the configurations of the melt at the synthesis pressure and 7, at least for the
172 investigated pressure range up to 3.5 GPa, and structural studies on quenched glasses can
173  provide valuable insights into the structure of high pressure melts at crustal and subduction
174  zone conditions.

175

176 There are some indications that some of the configurational changes during
177  compression may not be fully retained during decompression from higher pressures than those

178  investigated in this study. For example, the degree of densification and Al coordination
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179  number decrease with decreasing decompression rate for glasses quenched and decompressed
180  from 5 GPa, although the changes are relatively small: V/V increases from 0.88 to 0.90 and
181  the average Al coordination decreases from 4.95 to 4.75 for a decrease in decompression rate
182 by over four orders of magnitude (Allwardt et al. 2005b). In addition, cold-compressed
183  glasses display partly reversible pressure-induced structural changes (Hemley et al. 1986; Lin
184 et al. 2007; Williams and Jeanloz 1988), although annealing glasses at high pressure makes
185  the densification less reversible (Gaudio et al. 2008) and quenching from the melt at high
186  pressure, rather than after cold compression of the glass, may result in a better retention of the
187  pressure induced densification.

188

189 In summary, we provide quantitative evidence for the preservation of the pressure-
190 induced densification and configurations of silicate melts upon quenching and decompression
191  from subduction zone pressures. This observation validates past and future structural studies
192 of high pressure melts based on quenched and decompressed glasses, for which more, and
193  often more informative, analytical techniques are available, compared to liquids that require
194  challenging in situ measurements.

195

196 ACKNOWLEDGEMENTS

197

198  We would like to thank Sung Keun Lee and two anonymous reviewers for their comments
199  that substantially improved this manuscript and [an Swainson for efficient editorial handling.
200 This work was supported by the Swiss National Science Foundation (200020 140558 to

201 CSV).

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld



202

203

204

205

206

207

208

209

210

211

212

213

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-5019 6/11

2.8

2.7 4

2.6

fcm3)
[ o]
un
£

2.2 densified 1

/

2

§ ey / Belastic
/

Bconﬁgurational

relaxed  Pos

2

200 0 Pressure (GPa)

Fig. 1. Elastic and configurational contributions to the compression of rhyolitic glasses and
melts. p3 is the density of the melt at 7, and synthesis pressure (3.5 GPa) calculated from
thermo-elastic data for glasses measured at ambient conditions: the configurational
compression is estimated from the permanent densification (p;-po); the elastic compression
(p2-p1) from Brillouin scattering on densified glasses (Seifert et al. 2013a) and a 3™ order
Birch-Murnaghan equation of state; and the thermal expansion (p3-p;) from the literature
(Ochs and Lange 1999). p4 is the density derived from the equation of state of the melt at 7,
(Malfait et al. 2014). Within uncertainty, ps and ps are the same, implying that the
configurational compressibility of silicate liquids is preserved upon quenching and

decompression.
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