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ABSTRACT 14 

 15 

The structures of high-pressure magmatic liquids have often been inferred from spectroscopic 16 

studies on quenched and decompressed glasses. However, it has not been completely verified 17 

whether the structures of quenched and decompressed glasses are representative of the 18 

structure of their corresponding liquids at the glass transition temperature and synthesis 19 

pressure. Here, we provide quantitative evidence for the retention of pressure-induced 20 

configurational changes upon isobaric quench and isothermal decompression for synthesis 21 

pressures up to 3.5 GPa. We use the degree of densification and elastic compressibility of 22 

permanently densified glasses, together with thermo-elastic data from the literature, to 23 

calculate the density of the melt at the glass transition temperature and synthesis pressure. The 24 

derived densities agree with those derived directly from the thermal equations of state of the 25 



melts. This observation indicates that, at least up to 3.5 GPa, the densified structure of the 26 

melt is preserved in the glass upon quenching and decompression; this validates past and 27 

future structural studies of high-pressure melts based on studies of quenched and 28 

decompressed glasses. 29 
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 33 

INTRODUCTION 34 

 35 

The structure of high-pressure magmatic liquids has often been inferred from 36 

spectroscopic and diffraction studies on quenched and decompressed glasses (Allwardt et al. 37 

2005a, 2005b, 2007; Davoli et al. 1992; Du et al. 2004; Fleet et al. 1984; Fuss et al. 2006; 38 

Gaudio et al. 2008; Hochella and Brown 1985; Kelsey et al. 2009a, 2009b; Lee 2004, 2010, 39 

2011; Lee et al. 2004, 2012; Li et al. 1995; Malfait et al. 2012; O'Neill et al. 2006; Paris et al. 40 

1994; Stebbins and McMillan 1989; Stebbins and Poe 1999; Stebbins and Sykes 1990; Sykes 41 

et al. 1993; Velde and Kushiro 1978; Xue et al. 1989, 1991, 1994; Yamada et al. 2010; Yarger 42 

et al. 1995). The main advantage of using quenched glasses is that more numerous and more 43 

informative structural probes are available at ambient conditions than at in situ high pressure 44 

and temperature conditions. However, pressure-induced structural changes are not necessarily 45 

retained upon decompression, and studies on quenched and decompressed glasses may 46 

underestimate the effect of pressure on melt structure (Farber and Williams 1996; Shim and 47 

Catalli 2009). Until now, it has not been fully tested how representative the structures of 48 

quenched and decompressed glasses are of the structures of the corresponding melts. 49 

 50 



Glasses differ fundamentally from melts. Liquids and glasses are commonly described 51 

in terms of equilibrium (relaxed) and non-equilibrium (unrelaxed) states, respectively 52 

(Dingwell and Webb 1990; Moynihan et al. 1976). The short lifetimes of the Si-O bonds 53 

allow for rapid re-equilibration in liquid silicates, but are too long for re-equilibration in the 54 

glassy state (Farnan and Stebbins 1990,1994; Malfait and Halter 2008). The glass transition 55 

temperature, Tg, the boundary between the liquid and glassy states, defines the temperature at 56 

which the structure is frozen in because the material is no longer able to re-equilibrate to the 57 

change in temperature during cooling. This transition typically occurs over a few tens of 58 

degrees (Mysen and Richet 2005). The temperature for which the frozen structure corresponds 59 

to the equilibrium state is called the fictive temperature, Tf (Moynihan et al. 1976; Tool 60 

1946). Experimental studies on quenched glasses, combined with in situ studies of the 61 

corresponding liquids, have confirmed that the structure of the glass is indeed representative 62 

of the melt at the fictive temperature, at least with respect to the Al coordination number 63 

(Stebbins et al. 2008), water speciation (Behrens and Nowak 2003) and silica speciation 64 

(Brandriss and Stebbins 1988; Malfait et al. 2008; McMillan et al. 1992; Mysen and Frantz 65 

1994).  66 

 67 

Liquids and glasses also show notable differences in the compression mechanisms, with 68 

both elastic and configurational compression in liquids, but only elastic compression in 69 

glasses (Dingwell and Webb 1990). As a result, liquids are more compressible than their 70 

analog glasses. Richet and Neuville (1992) reported that the greater compressibility of liquids 71 

reflects configurational contributions. In other words, liquids are more compressible because a 72 

large number of densified configurational states are available through pressure-induced 73 

structural changes. For a frozen structure, the effects of pressure are elastic only and mostly 74 

related to variations in the interatomic bond lengths (Richet and Neuville 1992). The relative 75 

importance of the vibrational and configurational contributions to the compressibility depends 76 



strongly on melt composition and structure (Askarpour et al. 1993). When a glass that was 77 

isobarically quenched from the liquid is decompressed to ambient pressure, the elastic 78 

contribution to the compressibility is released, but the configurational contribution is at least 79 

partially retained (Maurer 1957). However, the degree to which the configurational 80 

compression is retained upon decompression has not been quantified. Thus, it is not clear in 81 

how far the structure of quenched and decompressed glasses is representative of that of the 82 

melt at synthesis pressure.   83 

 84 

The distinction between glass- and melt-like compressional behaviors becomes blurred 85 

when glasses are compressed to very high pressures. Indeed, glasses compressed to lower 86 

mantle pressures often display pressure-induced structural changes (Benmore et al. 2010; 87 

Champagnon et al. 2008; Hemley et al. 1986; Kubicki et al. 1992; Lee et al. 2008; Lin et al. 88 

2007; Meade et al. 1992; Sato and Funamori 2008; Shim and Catalli 2009; Williams and 89 

Jeanloz 1988) and some irreversible, hence non-elastic, densification (Champagnon et al. 90 

2008; Gaudio et al. 2008; Sanchez-Valle and Bass 2010; Zha et al. 1994).   91 

 92 

In this study, we demonstrate that quenched and decompressed glasses represent the 93 

structure of the melt at high pressure and Tg, at least for subduction zone conditions. In 94 

particular, we use the degree of densification and elastic compressibility of permanently 95 

densified glasses, together with thermo-elastic data from the literature, to calculate the density 96 

of the melt at Tg and synthesis pressure. Within uncertainty, the obtained densities agree with 97 

those derived from the equations of state of the corresponding melts. This observation implies 98 

that the configurational compressibility is fully retained upon decompression for synthesis 99 

pressures up to at least 3.5 GPa. 100 

 101 

DATA SOURCE 102 



 103 

Three glass compositions were considered in this study: haplo-rhyolitic, haplo-104 

phonolitic and haplo-basaltic. All samples are part of a set of well-characterized samples 105 

prepared for a previous study on the partial molar properties of dissolved CO2, and a full 106 

description of their synthesis and characterization can be found there (Seifert et al. 2013a). 107 

For the current study, only the data for the CO2-free glasses are considered. Briefly, 108 

permanently densified glasses were synthesized from 2 to 3.5 GPa and 1400-1750 °C in a 109 

piston cylinder apparatus using Pt capsules and a talc-MgO-silica assembly. The samples 110 

were quenched with an estimated quench rate of 100-200 K/s and decompressed at a rate of 111 

~10 MPa/s. The major element composition and volatile contents were analyzed by electron 112 

microprobe and by Fourier transform infrared spectroscopy (FTIR), respectively (Table 1). 113 

The density of the glasses was determined with the sink/float method in a diiodomethane 114 

(CH2I2)-acetone (C3H6O) mixture. Relaxation experiments were performed on a fraction of 115 

each sample in order to remove the residual densification of the samples synthesized at high 116 

pressure. In this process, the samples undergo a structural reconfiguration by annealing them 117 

at ambient pressure near Tg, at 898, 879 and 913 K for the basaltic, phonolitic and rhyolitic 118 

glasses, respectively (Seifert et al. 2013a). Microscopic observation with crossed polarizers 119 

indicated that the annealed samples were free of crystals. Brillouin scattering spectroscopy 120 

has been used to measure the acoustic velocities and to derive the elastic properties of both 121 

permanently densified and relaxed glasses (Table 2) (Seifert et al. 2013a). All measurements 122 

were carried out in a 90° symmetric/platelet scattering geometry using the experimental setup 123 

described in Sanchez-Valle et al. (2010). The acoustic velocities were employed to calculate 124 

the adiabatic bulk modulus, Ks, of each sample using the relationship: 125 
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where ρ is the density, νP and νS are the compressional and shear wave velocities, 127 

respectively.  128 

 129 

RESULTS & DISCUSSION 130 

 131 

The density of the melt at the synthesis pressure and Tg (Giordano et al. 2008) was 132 

calculated based on the properties of the quenched glasses (Table 2) and the results compared 133 

with the density predicted by in situ measurements conducted in the corresponding haplo-134 

ryholitic and haplo-phonolitic melts (Malfait et al. 2014; Seifert et al. 2013b). No in situ data 135 

are available for this particular haplo-basaltic glass composition, and the density of the melt, 136 

calculated from the quenched glasses, was compared to that predicted by a multi-component 137 

model for silicate melt density. This model predicts melt density based on the available 138 

density and compressibility data at ambient pressure and in situ density data for a range of 139 

melt compositions (Malfait et al., (subm.)).  140 

 141 

The procedure to calculate the density of the high-pressure melt from the data on the 142 

ambient pressure glasses is illustrated in Figure 1. The configurational contribution to the 143 

pressure-induced densification of melts (βconfigurational), ∆(ρ0-ρ1), was determined from density 144 

measurements on relaxed (ρ0) and permanently densified (ρ1) glasses. The elastic contribution 145 

(βelastic), ∆(ρ2-ρ1), was calculated from KS determined by Brillouin scattering data and a 3rd-146 

order Birch-Murnaghan equation of state. In the absence of data for the pressure derivatives of 147 

the bulk modulus, K’, of the investigated glasses, calculations of the elastic compressibility 148 

were performed for K’ values of 2, 4, 6 and 8. The lower bound of this range was selected 149 

based on results from high-pressure Brillouin studies on glasses with soda-lime or enstatite 150 

(K'= 2.7±0.1) compositions that show a relatively small increase of Ks upon compression up 151 

to 5-8 GPa (Sanchez-Valle and Bass 2010; Tkachev et al. 2005). The upper bound was set 152 



based on values obtained from compressibility data on liquids (Malfait et al. 2014; Sakamaki 153 

et al. 2010; Seifert et al. 2013b). The possible variation of K' between 2 and 8 was found to 154 

affect the calculated densities by less than 0.6, 0.2 and 0.3 % for the rhyolitic, phonolitic and 155 

basaltic glasses, respectively. This variation was included in the uncertainty calculation on ρ2. 156 

The small dependence of the calculated densities on K’ is related to the rather limited range of 157 

compression of the present study (Table 2). In the last step, the temperature dependence of the 158 

density, ∆(ρ2-ρ3), was estimated from the ambient pressure thermal expansion coefficient, α 159 

(Bouhifd et al. 2001; Ochs and Lange 1999; Richter and Simmons 1974). This step assumes 160 

that the temperature dependence of α is not significant, consistent with the small pressure-161 

temperature cross terms in the equations of state of silicate melts (Malfait et al. 2014; 162 

Sakamaki et al. 2010; Seifert et al. 2013b).   163 

  164 

The derived densities for the high-pressure melt at Tg, ρ3, appear to be slightly lower 165 

than those predicted by the equations of state of the analog melts, ρ4, but are the same within 166 

the estimated uncertainties (Table 2, Fig. 1). This implies that, within uncertainty, the 167 

configurational compression is fully retained in the glasses during the isobaric quench and 168 

isothermal decompression at the end of the piston cylinder experiments. Thus, no significant 169 

configurational changes occurred during decompression. Hence, the glasses quantitatively 170 

probe the configurations of the melt at the synthesis pressure and Tg, at least for the 171 

investigated pressure range up to 3.5 GPa, and structural studies on quenched glasses can 172 

provide valuable insights into the structure of high pressure melts at crustal and subduction 173 

zone conditions.  174 

 175 

There are some indications that some of the configurational changes during 176 

compression may not be fully retained during decompression from higher pressures than those 177 

investigated in this study. For example, the degree of densification and Al coordination 178 



number decrease with decreasing decompression rate for glasses quenched and decompressed 179 

from 5 GPa, although the changes are relatively small: V/V0 increases from 0.88 to 0.90 and 180 

the average Al coordination decreases from 4.95 to 4.75 for a decrease in decompression rate 181 

by over four orders of magnitude (Allwardt et al. 2005b). In addition, cold-compressed 182 

glasses display partly reversible pressure-induced structural changes (Hemley et al. 1986; Lin 183 

et al. 2007; Williams and Jeanloz 1988), although annealing glasses at high pressure makes 184 

the densification less reversible (Gaudio et al. 2008) and quenching from the melt at high 185 

pressure, rather than after cold compression of the glass, may result in a better retention of the 186 

pressure induced densification. 187 

 188 

In summary, we provide quantitative evidence for the preservation of the pressure-189 

induced densification and configurations of silicate melts upon quenching and decompression 190 

from subduction zone pressures. This observation validates past and future structural studies 191 

of high pressure melts based on quenched and decompressed glasses, for which more, and 192 

often more informative, analytical techniques are available, compared to liquids that require 193 

challenging in situ measurements. 194 
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 202 

Fig. 1. Elastic and configurational contributions to the compression of rhyolitic glasses and 203 

melts. ρ3 is the density of the melt at Tg and synthesis pressure (3.5 GPa) calculated from 204 

thermo-elastic data for glasses measured at ambient conditions: the configurational 205 

compression is estimated from the permanent densification (ρ1-ρ0); the elastic compression 206 

(ρ2-ρ1) from Brillouin scattering on densified glasses (Seifert et al. 2013a) and a 3rd order 207 

Birch-Murnaghan equation of state; and the thermal expansion (ρ3-ρ2) from the literature 208 

(Ochs and Lange 1999). ρ4 is the density derived from the equation of state of the melt at Tg 209 

(Malfait et al. 2014). Within uncertainty, ρ3 and ρ4 are the same, implying that the 210 

configurational compressibility of silicate liquids is preserved upon quenching and 211 

decompression. 212 

213 
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