1	Rey	vision 1	
2			1
3	Ti resetting in quartz during dyna	mic recrysta	allization: Mechanisms and
4	sign	ificance	
5			
6	Kyle T. Ashley ^{1,*} , William D. Carlsor	² , Richard D.	Law ¹ , and Robert J. Tracy ¹
7	¹ Department of Geosciences, Virginia Te	ch, 4044 Derri	ng Hall (0420), Blacksburg, VA
8	240	60, USA	
9	² Department of Geological Sciences, Univ	versity of Texa	s at Austin, 2275 Speedway Stop
10	C9000, Austi	n, TX 78712, U	JSA
11	*Corresponding author: Tel. +1 3	15 244 5546; I	E-mail: ktashley@vt.edu
12			
13	Running title: Ti resetting in qu	artz during dy	namic recrystallization

Ti resetting in quartz during dynamic recrystallization: Mechanisms and significance

- 16
- 17

ABSTRACT

18 The ubiquity of quartz in continental crust, and the involvement of SiO₂ in multiple metamorphic processes such as reactions, fluid flux, and solution-transfer processes, makes 19 quartz an obvious choice for reconstructing prograde metamorphic conditions in a variety of rock 20 21 types. Recent studies have shown the usefulness of analyzing Ti distribution in quartz to constrain pressure - temperature - (relative) time - deformation (P-T-t-D) in metamorphosed 22 tectonites. New high-precision single crystal X-ray diffraction volume constraints on Ti-doped 23 and chemically pure quartz provide further evidence for substitution of Ti^{4+} for Si^{4+} in the 24 tetrahedral site in guartz, with resultant lattice strain on the structure. 25

26 Recent applications of the Ti-in-quartz thermobarometer to dynamically recrystallized quartz have identified recrystallized subgrains that contain lower Ti concentrations ([Ti]) than 27 their host porphyroclasts. In addition, [Ti] are lower than expected for the temperatures of 28 29 recrystallization. Atomistic simulations that estimate energetic perturbations resulting from Ti incorporation into the quartz lattice indicate that significant increases in strain energy occur only 30 31 at very high [Ti]; the strain-energy increase is negligible for [Ti] typical of quartz grown under mid-crustal conditions. This suggests that lattice strain rarely provides an appreciable driving 32 force for Ti loss from quartz; instead, it appears that subgrain boundaries and dislocation arrays 33 migrating through recrystallizing quartz crystals can promote localized re-equilibration, 34 thermodynamically regulated by the composition of the intergranular medium (typically 35 undersaturated in Ti). It therefore appears that analyses from dynamically recrystallized quartz 36

- cannot be meaningfully interpreted until methods are developed that can account quantitatively
- for the reduction of Ti resulting from crystal plastic flow.
- 39
- 40 Keywords: Titanium, quartz, dynamic recrystallization, lattice strain, atomistic simulation

41

INTRODUCTION

42 Thermobarometry is of key importance in metamorphic and structural petrology for 43 reconstructing the pressure-temperature-deformation (P-T-D) histories of metamorphic tectonites and the geologic evolution of orogenic terranes. Peak metamorphism is often considered because 44 equilibration is most prominent at peak temperature and speaks most directly to the depth the 45 rocks reached and the mechanisms for burial and exhumation. Tectonic models are derived from 46 P-T profiles with respect to structural transects to explain the evolution of the tectonic 47 48 environment. The Ti-in-quartz ("TitaniQ") thermobarometer has been applied to a wide variety of rocks in various tectonic environments since its initial calibration by Wark and Watson 49 (2006). Applied to pelitic schists metamorphosed at mid-crustal depths, the TitaniQ 50 51 thermobarometer has been shown to be an effective monitor of Si-flux resulting from: (i) metamorphic reactions, (ii) strain-induced solution transfer, and (iii) Si-charged fluid influx 52 53 (Ashley et al., 2013). The commonality among these three re-equilibration scenarios is that they 54 are all the result of quartz growth events. In no cases studied by Ashley et al. (2013) were peak-Tconditions preserved. This is because of the low diffusivity of Ti in quartz under typical 55 Barrovian metamorphic conditions and the inability of Ti in the quartz lattice to re-equilibrate at 56 tectonically significant time scales under the PT conditions studied. Recent attempts have been 57 aimed at interpreting results from deformed quartzites. However, dynamically recrystallized 58 59 quartz has concentrations of Ti ([Ti]) much lower than expected for the temperatures required to activate dislocation slip systems for the inferred recrystallization regimes (e.g., Grujic et al., 60 61 2011; Ashley et al., 2013; Nachlas et al., 2013). In this article, we discuss: (i) potential 62 mechanisms to drive quartz re-equilibration with respect to Ti (growth vs. recrystallization); (ii) crystallographic and energetic consequences resulting from Ti substitution for Si, including 63

64	atomistic simulation to evaluate interactions among Ti defects; and (iii) the effect of dynamic
65	recrystallization on Ti solubility in quartz. Insights gained from application of the TitaniQ
66	thermobarometer to quartz mylonites by various research groups are discussed to help guide
67	future applications of the TitaniQ thermobarometer in geologically appropriate scenarios.
68	
69	TITANIUM INCORPORATION IN QUARTZ
70	Crystallographic incorporation
71	The incorporation of Ti ⁴⁺ into quartz has previously been attributed to isomorphic and
72	isoelectronic substitution for the Si ⁴⁺ ion, with significant temperature and, to a lesser extent,
73	pressure, influences (e.g., Müller et al., 2003). Numerous experiments, including X-ray
74	absorption near-edge structure (XANES) and density functional theory (DFT) calculations,
75	support the tetrahedral incorporation of Ti ⁴⁺ , with no evidence for octahedral coordination
76	(Thomas et al., 2010, and references therein). The stereochemistry of Si^{4+} in the tetrahedral sites
77	is controlled by \sim 50/50 ionic-covalent bonding with oxygen (determined through
78	electronegativity, electron-density calculations, and valence-bond structuring; Pauling, 1980),
79	forming four molecular hybrid orbitals (sp^3) that are arranged in a regular tetrahedral form to
80	minimize electron repulsion. Ionic modeling of the substitution alone cannot explain this
81	exchange, because Ti ⁴⁺ ions may not be of appropriate size. However, a bonding-orbital
82	(covalent) model could explain this substitution because the electronic configurations of Ti^{4+}
83	(with zero 3d electrons) would result in no crystal field stabilization energy resulting between the
84	transition metal and the ligands (Burns, 1970), and would minimize lattice energies, except for
85	strain energy, with this coordination. Ti may also be present in quartz as nano-inclusions or
86	mineral precipitates; in that case, however, six-fold coordination is expected, as in rutile,

brookite, or possibly more exotic alkali oxides (e.g., Li₄TiO₄, Gunawardane et al., 1994). It is 87 important to determine unequivocally the dominant incorporation mechanisms of Ti in quartz 88 because the most appropriate functional form of the thermodynamic equations used to describe 89 90 the temperature dependence is different for different mechanisms: precipitate-based incorporation is better described by an Arrhenian temperature-dependence equation (with a 91 diffusion coefficient), rather than the configurational entropy mixing term used for substitution 92 in the lattice. For example, in the case of non-lattice structural substitution, pressure and 93 94 temperature would strongly affect precipitate densities and could yield the [Ti] correlation 95 previously described in the literature (e.g. Wark and Watson, 2006; Thomas et al., 2010). 96

97 Volume XRD measurements

The hydrothermal experimentation technique used to grow quartz at P and T conditions 98 99 of interest in Thomas et al. (2010) relies on quenching the sample to preserve Ti atoms in their incorporated crystallographic sites. Absolute X-ray diffraction (XRD) volumetric measurements 100 are warranted here for samples prepared in this manner, because elastic properties are not 101 quenchable and regress to ambient values after the experiment is finished (Raz et al., 2002). Ti 102 present as rutile nanoinclusions or precipitates would be expected to induce some degree of 103 lattice strain, but should not expand the lattice volume. Any observable volume increase may be 104 an indication that Ti substitutes for Si in the tetrahedral site. 105

Single-crystal X-ray diffraction measurements were conducted on a customized Huber
 four-circle goniometer diffractometer fitted with an unfiltered Mo sealed-tube X-ray source
 (without a monochromator). Measurements are made with a fixed-\varphi mode and driven 0.001° per

109 motor step for ω and χ . For a complete description of the experimental set-up and

110	instrumentation conditions used, see Angel et al. (1997).
111	The diffractometer was driven by the program SINGLE (Angel et al., 2000), which uses
112	vector-least-squares refinement of unit-cell parameters and 8-position peak-centering algorithms
113	(described by Angel et al., 1997) to produce extremely high-precision measurements. Lattice
114	refinements on a synthetic high-Ti sample from Thomas et al. (2010) (QTip-38, ca. 380 ppm Ti)
115	and on a chemically pure crystal were completed to determine if volume perturbation with Ti
116	substitution exists. Both crystals were untwinned and nearly spherical. The resultant refined
117	lattice volumes are 113.0180(40) $Å^3$ and 113.1342(236) $Å^3$ for the chemically-pure standard and
118	Ti-doped crystal, respectively; this difference is statistically significant at the 95% confidence
119	level.
120	
120 121	MECHANISMS FOR TI REDISTRIBUTION
120 121 122	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz
120 121 122 123	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz (e.g., chemical thermodynamics, strain-minimizing dislocation creep systems, etc.),
120 121 122 123 124	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz (e.g., chemical thermodynamics, strain-minimizing dislocation creep systems, etc.), understanding the dominant factor controlling Ti redistribution is important for
120 121 122 123 124 125	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz (e.g., chemical thermodynamics, strain-minimizing dislocation creep systems, etc.), understanding the dominant factor controlling Ti redistribution is important for thermobarometric calibrations. Here we examine two mechanisms for loss of Ti from the quartz
120 121 122 123 124 125 126	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz (e.g., chemical thermodynamics, strain-minimizing dislocation creep systems, etc.), understanding the dominant factor controlling Ti redistribution is important for thermobarometric calibrations. Here we examine two mechanisms for loss of Ti from the quartz lattice during recrystallization, which differ importantly in terms of the principal driving force
120 121 122 123 124 125 126 127	MECHANISMS FOR TI REDISTRIBUTION Due to multiple re-equilibrating drivers active during dynamic recrystallization of quartz (e.g., chemical thermodynamics, strain-minimizing dislocation creep systems, etc.), understanding the dominant factor controlling Ti redistribution is important for thermobarometric calibrations. Here we examine two mechanisms for loss of Ti from the quartz lattice during recrystallization, which differ importantly in terms of the principal driving force for Ti loss.

128

129 Mechanism 1: Strain-driven relocation of Ti

5/7

130	Substitution of Ti into a Si site in quartz will induce strain on the structure; the strain
131	energy increases non-linearly with Ti concentration, because Ti atoms in close proximity yield
132	greater total strain than Ti atoms far from one another. Such structural strain is thus an energetic
133	driver for Ti atoms in quartz to migrate to positions with maximum separation. If an appropriate
134	path for fast diffusion is made available (e.g., as a grain boundary sweeps through the crystal),
135	then movement of Ti ions completely out of the quartz grain and into the intergranular medium
136	or a subgrain boundary is expected to decrease the energy of the quartz structure. However, for
137	this mechanism to be a primary driver for Ti redistribution in quartz undergoing crystal plastic
138	flow, the energy perturbation resulting from the removal must be appreciable at [Ti] observed in
139	natural settings. That is, if removing a Ti atom from a quartz crystal results in a negligible
140	decrease in strain energy, this mechanism may be insufficient to drive Ti mobility.
141	
142	Mechanism 2: Localized thermodynamic control from intergranular medium
143	An alternative mechanism for Ti loss during deformation is local re-equilibration within a
144	microenvironment where the intergranular medium constitutes the subgrain boundary. Fluids
145	present in this region would control the effective concentration of TiO_2 , where the TiO_2 activity
146	is most likely below unity (i.e., not rutile-saturated). In this scenario, chemical-potential
147	differences would be the dominant driving force for Ti loss from quartz and would result in [Ti]
148	much lower than expected when assuming an activity close to 1 (typically valid for metapelites;
149	Ghent and Stout, 1984).

150

151 **ATOMISTIC SIMULATION OF INTERACTIONS AMONG TI DEFECTS**

Atomistic simulation provides a means of estimating the magnitude of the increases in strain energy due to interactions of Ti defects at varying levels of concentration. Such calculations help to discriminate between the two mechanisms described above, by identifying concentration levels below which the defects are sufficiently far apart that further reduction in concentration has only a negligible effect on the lattice energy.

These simulations use interatomic potentials based on an ionic model with formal integral 157 charges. Short-range interactions for Si⁴⁺–O²⁻, Ti⁴⁺–O²⁻, and O^{2–}–O^{2–} are described by two-body 158 159 Buckingham potentials, for which the potential (U) for ions separated by distance r is given by $U(r) = A \cdot \exp(-r/\rho) - (C/r^6)$. O-Si-O bending terms have the form $U(\theta) = \frac{1}{2} K_B (\theta - \theta_0)^2$. Oxygen-160 ion polarizability (shell model of Dick and Overhauser, 1958) is included via a core-shell 161 interaction potential at separation r of the form $U(r) = \frac{1}{2} k r^2$. We note that although the potential 162 set used by Lewis and Catlow (1986) included polarizability for Ti, the effect is negligibly small 163 164 and is therefore omitted in this work. Cation-cation interactions beyond electrostatics are neglected. Values for potential parameters and their sources are given in Table 1. This potential 165 set was shown by Sanders et al. (1984) to successfully reproduce the known properties of SiO_2 166 167 polymorphs, including α -quartz as modeled here.

168 All simulations were performed using GULP, the General Utility Lattice Program (Gale,

169 1997; Gale and Rohl, 2003). Calculations were done in the static limit (T = 0 K, P = 0 GPa).

170 Defect energies in this limit approximate corresponding defect enthalpies at elevated

temperatures to within a few percent (Taylor et al., 1997), and defect free energies in silicates

172 (garnet) have been shown to change very little across a wide range of geologic temperatures and

- 173 pressures (Carlson et al., 2014). Lattice energies were computed for supercells containing a
- single Ti atom in place of Si, relaxing the structure to its minimum energy state. Sizes of

175	supercells were progressively increased to evaluate the energy variance with decreasing [Ti], and
176	increasing Ti-Ti distance (Table 2). The energy due to defect interactions drops off sharply with
177	increased Ti-Ti spacing (Fig. 1), and is negligible at separation distances $> \sim 30$ Å, which
178	corresponds to < 1000 ppm Ti. To validate this result, the energy of a single isolated defect (Ti in
179	limit of infinite dilution) was evaluated using the embedded-cluster method and the two-region
180	Mott-Littleton approach (Mott and Littleton, 1938), with region sizes progressively enlarged
181	until energy convergence was achieved (region 1 radius = 18 Å (3397 atoms); region 2 radius =
182	24 Å (4688 atoms)). The energy calculated in this way for an isolated defect is indistinguishable
183	from the defect energy for a 9x9x9 supercell, confirming the inference that interactions between
184	Ti defects are energetically negligible once [Ti] drops below ~1000 ppm.
185	
100	DIGOLIGGION
186	DISCUSSION
187	Titanium distribution in quartz can be qualitatively evaluated using cathodoluminescence
188	(CL) imaging through blue filtration, due to the proportionality of Ti concentration to the
189	resultant CL emission (Wark and Spear, 2005; Rusk et al., 2006; Rusk et al., 2008; Spear and

Wark, 2009). Zoning patterns in individual grains can be interpreted with respect to pressure-

191 temperature-growth histories (Spear and Wark, 2009; Ashley et al., 2013), whereas distribution

analysis of a population of grains can be interpreted in the context of deformation histories. 192

Here we will evaluate the results from a compilation of various studies in which Ti-in-193 quartz thermometry was applied to dynamically recrystallized quartz in shear zones to obtain 194 temperatures of deformation. Our intent is to make a global evaluation of mechanisms driving Ti 195 re-equilibration, rather than focusing on results from one field site. 196

197

190

198 Experimentally deformed Ti-doped quartz aggregates

Investigating the effects that crystal plastic flow has on Ti redistribution is difficult due to 199 the large number of variables that may perturb the system. For a quartz mylonite, for example, 200 201 water weakening, strain rate, grain size, temperature, and other factors all influence crystal 202 mechanics. From a thermodynamic perspective, starting aggregate heterogeneity, TiO₂ activity, diffusion, and the presence of fluids on defects and grain boundaries further complicate this 203 204 assessment. Many of these variables are difficult to constrain accurately in natural settings, and 205 cross-term effects may obscure some intrinsic trends. Nachlas et al. (2013) conducted dynamic deformation experiments at constant P and T in a shear-assembly apparatus for various strain 206 207 rates. They developed an innovative doping technique to prepare homogenized quartz aggregates 208 of known starting [Ti]. These experiments evaluated the influence of constrainable variables 209 (starting [Ti], strain rate, water content, duration, etc.) on grain size, resultant recrystallized grain 210 [Ti], and subgrain heterogeneity. Newly formed recrystallized grains typically have [Ti] much 211 lower than expected when using the Thomas et al. (2010) calibration for the experimental 212 conditions. More importantly, Nachlas et al. (2013) recognized the impact of duration of 213 dynamic recrystallization for resultant trace element composition, and acknowledged the 214 significance of kinetics and diffusion on Ti redistribution.

215

216 [Ti] in recrystallized quartz subgrains in natural systems

Recent applications of the TitaniQ thermobarometer have pursued the effects of crystal plastic flow on Ti resetting. The findings from Ashley et al. (2013), Grujic et al. (2011) and Kidder et al. (2013) are discussed to provide a natural context for interpreting the data presented This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4943

in this study. In each investigation, recrystallized subgrains contained [Ti] lower than that of

their host porphyroclastic cores (Fig. 2).

The study by Ashley et al. (2013) emphasized the utility of the TitaniQ thermobarometer 222 223 in constraining *P*-*T*-*D* histories and monitoring Si-flux in metapelitic tectonites. The results 224 presented in that study are in good agreement with previous petrologic estimates on the same rocks. The abundant biotite present in their samples acts as a weak interconnected phase that 225 226 accommodates strain in the rock, with dynamically recrystallized quartz being largely absent as a 227 result. Two generations of quartz veining were observed in the Ashley et al. (2013) investigation: 228 undeformed retrograde veins, and pre- or syn-kinematic veins that are extensively recrystallized 229 by subgrain rotation recrystallization. Ti-in-quartz thermometry on recrystallized grains result in temperature estimates lower than expected from the inferred recrystallization mechanisms. This 230 231 is an interesting observation, considering that undeformed quartz in these rocks yields expected 232 temperatures, suggesting that dynamic recrystallization had a significant impact on the resultant 233 [Ti] present in grains. Ashley et al. did not interpret the analytical results from these deformed 234 quartz veins due to this discrepancy.

235 The Tonale mylonites studied by Grujic et al. (2011) have been extensively investigated 236 and this locality is often used as a natural laboratory for petrologic and fabric studies. Despite a well-constrained *P*-*T* framework, many of the recrystallized quartz grains contain [Ti] much 237 238 lower than expected from syn-deformation metamorphic mineral assemblages when using the 239 Thomas et al. (2010) calibration. Decreasing the TiO_2 activity to *ca*. 0.2 results in temperature 240 estimates that agree reasonably well with previous petrologic studies, but in the subgrain-rotation 241 recrystallization regime, calculated temperatures are still much lower than indicated by 242 metamorphic mineral assemblages. Although Grujic et al. acknowledge that it is unclear why the

243 TiO₂ activities in quartz mylonites would be so low, they attribute this discrepancy to: (i) recrystallization influencing the activity (or resulting in an apparent activity) and, (ii) the 244 245 importance of a Ti-phase that may be recrystallizing or participating in a metamorphic reaction that is synchronous with quartz recrystallization (an observation also discussed by Thomas, 246 2013). Considering the effects of recrystallization on the apparent TiO₂ activity explains why 247 248 adjusting the activity may work for some regimes (e.g., dynamic recrystallization) but does not 249 extrapolate into other regimes (e.g., subgrain rotation recrystallization). This is to be expected 250 because different recrystallization regimes may have different mechanisms operating to 251 minimize intracrystalline strain. For example, subgrain rotation recrystallization may have 252 dominant rhomb and prismatic slip to homogenize dislocation densities (Blacic, 1975), whereas 253 grain boundary bulging recrystallization may be dominated by basal slip (Hirth and Tullis, 1992). 254

255 Kidder et al. (2013) suggested two important factors should be considered when 256 analyzing [Ti] in recrystallized quartz: (i) the duration of deformation may have a significant 257 impact on Ti resetting due to diffusional limits (also acknowledged by Nachlas et al., 2013, in 258 the experimental deformation studies discussed above); and (ii) the importance of deviation of 259 fluid pressure from lithostatic pressure. The equivalence of fluid and lithostatic pressure is often assumed, and in many systems may be appropriate (e.g., magmas, mid-to-deep crustal 260 metamorphism, very dry rocks). However, in systems where the fluid pressure deviates greatly 261 262 from lithostatic pressure (e.g., shallow quartz veins), this difference could have a significant 263 impact on the solubility of Ti in guartz and may result in erroneous estimated temperatures. 264

265 Lattice energetics with Ti substitution

The XRD measurements conducted in this study reflect structural adjustments that result from substituting Ti for Si on tetrahedral sites. The observed (mean) volume difference can be attributed to differences in [Ti] because all other conditions (e.g., analytical conditions, crystal morphology, absence of twins) are identical. A larger unit cell volume is measured for the Tidoped quartz, suggesting that substituting the larger Ti cation for Si results in an expanded lattice. The larger uncertainty for the measured volume of the Ti-doped crystal is likewise attributed to lattice strain resulting from the substitution of Ti for Si.

Our atomistic simulations illustrate the energy consequences of substituting Ti in quartz for a range of concentrations. Quartz grown under typical Barrovian metamorphic conditions contains [Ti] in the 10s of ppm or less. At these concentrations, there would be a negligible increase in lattice energy relative to a pristine crystal (Fig. 1). This suggests that the amount of lattice strain resulting from typical levels of Ti substitution is not sufficient to drive significant Ti redistribution. Therefore, localized thermodynamic factors must provide the dominant driving force for removing Ti from quartz.

Diffusion rates for Ti in quartz at temperatures < 600 °C are sluggish (Cherniak et al., 280 281 2007), and the duration of deformation in tectonic systems may be too short to expect complete 282 equilibration of the recrystallized subgrains. For example, deformation is believed to have 283 occurred in < 1 Myr for the Tonale mylonites (Grujic et al., 2011). At the temperatures reported 284 for subgrain rotation recrystallization in that study, the maximum distance of diffusion is < 10285 um. The process of sweeping grain boundaries and dislocations through the crystals during 286 dynamic recrystallization provides short pathways for Ti diffusion. This intergranular medium 287 would regulate the thermodynamics of this re-equilibration, and any fluids present would likely be far removed from TiO₂ saturation. Unlike new quartz growth, for which activity is driven by a 288

larger effective ("bulk rock") composition (controlled by local mineral content in a
microstructural domain), the effective composition regulating Ti partitioning during dynamic
recrystallization is of a much smaller volume (< 10 radial microns). Therefore
thermodynamically controlled re-equilibration would result in the removal of Ti from the lattice,
aided by the short diffusive pathways when migrating dislocations and subgrain boundaries are
present.

- 295
- 296

IMPLICATIONS

297 Proper recognition of the mechanisms for Ti re-equilibration in quartz is essential to 298 minimize the potential for erroneous temperature or pressure estimates. We question the interpretation of measurements from extensively recrystallized quartz by means of calibrations 299 that were derived from growth experiments (e.g., Thomas et al., 2010; Huang and Audétat, 300 301 2012). Previous studies acknowledged the importance of starting heterogeneity in the deforming 302 quartz aggregate and duration of deformation on equilibrating subgrains. This study adds to these 303 observations by noting the importance of sweeping grain boundaries and defects through the 304 crystals to establish TiO₂-undersaturated thermodynamic "microenvironments" that drive diffusion of Ti out of the crystal structure. Although the strain-energy increase produced by the 305 306 substitution of Ti for Si on tetrahedral sites in quartz is likely to be energetically unimportant in typical Barrovian-sequence rocks, high-Ti quartz in other systems may have a significant energy 307 308 driver for redistributing Ti. Future work should focus on a calibration that takes into 309 consideration the dynamic recrystallization regime, duration of deformation, and greatly reduced TiO₂ activities. This would serve as a more appropriate expression to infer temperatures of 310 deformation. 311

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4943

312 Considering the current state of the Ti-in-quartz thermobarometer, the following protocols 313 are recommended to ensure appropriate usage:

314	1.	CL imaging of quartz should always be conducted to prevent erroneous interpretations
315		that may arise from assuming homogenized Ti distributions that are not actually present.
316	2.	In instances where there is evidence for quartz growth (e.g., via quartz-producing
317		metamorphic reactions, strain-induced solution transfer, Si-influx), the Thomas et al.
318		(2010) calibration should be used. This may only be warranted in systems where pore
319		fluid pressure is equal to the lithostatic pressure (e.g., application to mid-crustal rocks); in
320		other circumstances, the Huang and Audétat (2012) calibration may be preferred.
321	3.	Interpreting Ti-in-quartz data from dynamically recrystallized quartz should be done with
322		caution or avoided until a calibration is developed that considers the mechanisms driving
323		re-equilibration on these localized scales, along with the duration of recrystallization. It is
324		likely that [Ti] in recrystallized quartz will yield spuriously low temperatures if the
325		Thomas et al. (2010) calibration is used, and applying calibrations that result in higher T
326		estimates for these conditions (e.g., Huang and Audétat, 2012) may also be erroneous.
327	4.	When estimating temperatures from vein quartz, TiO ₂ activity should be carefully
328		considered, in recognition that veins free of Ti-saturated phases are common, and within
329		such veins, restricted equilibration with the surrounding host rock may preclude rutile

331

330

saturation.

332

ACKNOWLEDGEMENTS

333	We are very grateful for the assistance of John Hughes, Elinor Spencer, Jing Zhao and
334	Nancy Ross in the collection of X-ray diffraction analyses. We thank John Hughes for his review
335	of this manuscript and Oliver Tschauner for editorial handling. This paper is based on work
336	supported by the National Science Foundation under grant No. EAR-1220345 (awarded to R.D.
337	Law) and by a Grant-In-Aid of Research from Sigma Xi, The Scientific Research Society
338	(awarded to K.T. Ashley). The Texas Advanced Computing Center (TACC) at the University of
339	Texas at Austin provided high-performance computing resources used for atomistic simulation.

340	References
341	Angel, R.J., Allan, D.R., Miletich, R., and Finger, L.W. (1997) The use of quartz as an internal
342	pressure standard in high-pressure crystallography. Journal of Applied Crystallography,
343	30, 461-466.
344	Angel, R.J., Downs, R., and Finger, L.W. (2000) High-temperature-high-pressure diffractometry.
345	In R.M. Hazen, and R. Downs, Eds. High-Temperature and High-Pressure Crystal
346	Chemistry, 41, p. 559-596. Reviews in Mineralogy and Geochemistry, Washington, DC.
347	Ashley, K.T., Webb, L.E., Spear, F.S., and Thomas, J.B. (2013) P-T-D histories from quartz: A
348	case study of the application of the TitaniQ thermobarometer to progressive fabric
349	development in metapelites. Geochemistry Geophysics Geosystems, 14(9), 3821-3843.
350	Blacic, J.D. (1975) Plastic deformation mechanisms in quartz: The effect of water.
351	Tectonophysics, 27, 271-294.
352	Burns, R.G. (1970) Mineralogical Applications of Crystal Field Theory. 224 p. Cambridge
353	University Press, Great Britain.
354	Carlson, W.D., Gale, J.D., Wright, K. (2014) Incorporation of REEs in aluminosilicate garnet:
355	Energetics from atomistic simulation. American Mineralogist, in press. DOI:
356	10.2138/am.2014.4720.
357	Cherniak, D.J., Watson, E.B., and Wark, D.A. (2007) Ti diffusion in quartz. Chemical Geology,
358	236, 65-74.
359	Dick, B.G., Jr., and Overhauser, A.W. (1958) Theory of the dielectric constants of alkali halide
360	crystals. Physical Review, 112, 90-103.
361	Gale, J.D. (1997) GULP: A computer program for the symmetry-adapted simulations of solids.
362	Faraday Transactions, 93, 629-637.

363	Gale, J.D., and Rohl, A.L. (2003) The General Utility Lattice Program (GULP). Molecular
364	Simulation, 29, 291-341.
365	Ghent, E.D., and Stout, M.Z. (1984) TiO ₂ activity in metamorphosed pelitic and basic rocks:
366	principles and applications to metamorphism in southeastern Canadian Cordillera.
367	Contributions to Mineralogy and Petrology, 86, 248-255.
368	Grujic, D., Stipp, M., and Wooden, J.L. (2011) Thermometry of quartz mylonites: Importance of
369	dynamic recrystallization of Ti-in-quartz reequilibration. Geochemistry Geophysics
370	Geosystems, 12(6), 1-19.
371	Gunawardane, R.P., Fletcher, J.G., Dissanayake, M.A.K.L., Howie, R.A., and West, A.R. (1994)
372	Crystal structure refinement of Li_4TiO_4 containing tetrahedrally coordinated Ti^{4+} and
373	tetragonally packed oxide ions. Journal of Solid State Chemistry, 112, 70-72.
374	Hirth, G., and Tullis, J. (1992) Dislocation creep regimes in quartz aggregates. Journal of
375	Structural Geology, 14, 145-159.
376	Huang, R., and Audétat, A. (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical
377	examination and re-calibration. Geochimica et Cosmochimica Acta, DOI:
378	10.1016/j.gca.2012.01.009, 31.
379	Kantorovich, L.N. (1995) Thermoelastic properties of perfect crystals with nonprimitive lattices.
380	I. General theory. Physical Review B, 51, 3520-3534.
381	Kidder, S., Avouac, JP., and Chan, YC. (2013) Application of titanium-in-quartz
382	thermobarometry to greenschist facies veins and recrystallized quartzites in the
383	Hsüehshan range, Taiwan. Solid Earth, 4, 1-21.

384	Lewis, G.V., and Catlow, C.R.A. (1986) Defect studies of doped and undoped Barium Titanate
385	using computer simulation techniques. Journal of Physics and Chemistry of Solids, 47(1),
386	89-97.
387	Mott, N.F., and Littleton, M.J. (1938) Conduction in polar crystals. I. Electrolytic conduction in
388	solid salts. Transactions of the Faraday Society, 34, 485-499.
389	Müller, A., Wiedenbeck, M., Van Den Kerkhof, A.M., Kronz, A., and Simon, K. (2003) Trace
390	elements in quartz - a combined electron microprobe, secondary ion mass spectrometry,
391	laser-ablation ICP-MS, and cathodoluminescence study. European Journal of
392	Mineralogy, 15, 747-763.
393	Nachlas, W.O., Hirth, G., Teyssier, C., Whitney, D.L., and Zimmermann, M. (2013) Synthesis
394	and deformation of a Ti doped quartz aggregate. EGU General Assembly, EGU2013-
395	9892.
396	Pauling, L. (1980) The nature of silicon-oxygen bonds. American Mineralogist, 65, 321-323.
397	Purton, J.A., Allan, N.L., Blundy, J., and Wasserman, E.A. (1996) Isovalent trace element
398	partitioning between minerals and melts — a computer simulation model. Geochimica et
399	Cosmochimica Acta, 60, 4977-4987.
400	Raz, U., Girsperger, S., and Thompson, A.B. (2002) Thermal expansion, compressibility and
401	volumetric changes of quartz obtained by single crystal dilatometry to 700 $^{\circ}$ C and 3.5
402	kilobars (0.35 GPa). Schweizerische Mineralogische und Petrographische Mitteihurgen
403	83, 173-182.
404	Rusk, B.G., Lowers, H.A., and Reed, M.H. (2008) Trace elements in hydrothermal quartz:
405	Relationships to cathodoluminescent textures and insights into vein formation. Geology,
406	36(7), 547-550.

407	Rusk, B.G.	, Reed, M.H	., Dilles, J.H.	, and Kent.	A.J.R. ((2006)) Intensity	/ of q	uartz
		, , .		7	,				

- 408 cathodoluminescence and trace-element content in quartz from the porphyry copper
- deposit at Butte, Montana. American Mineralogist, 91, 1,300-1,312.
- Sanders, M.J., Leslie, M., and Catlow, C.R.A. (1984) Interatomic potentials for SiO₂. Journal of
 the Chemical Society, Chemical Communications, 1271-1273.
- Spear, F.S., and Wark, D.A. (2009) Cathodoluminescence imaging and titanium thermometry in
 metamorphic quartz. Journal of Metamorphic Geology, 27, 187-205.
- Taylor, M.B., Barrera, G.D., Allan N.L., Barron, T.H.K., and Mackrodt W.C. (1997) Free energy
 of formation of defects in polar solids. Faraday Discussions, 106, 377-387.
- 416 Thomas, J.B. (2013) Experimental calibration of a Ti-in-quartz thermobarometer: An overview
- for applications to mylonites. EGU General Assembly Conference Abstracts, 15, p. 8555.
- 418 Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K., and Lanzirotti, A. (2010)
- TitaniQ under pressure: The effect of pressure and temperature on the solubility of Ti in
- 420 quartz. Contributions to Mineralogy and Petrology, 160(5), 743-759.
- 421 Wark, D.A., and Spear, F.S. (2005) Titanium in quartz: Cathodoluminescence and thermometry.
- 422 Geochimica et Cosmochimica Acta Supplement, 69, A592.
- 423 Wark, D.A., and Watson, E.B. (2006) TitaniQ: A titanium-in-quartz geothermometer.
- 424 Contributions to Mineralogy and Petrology, 152, 743-754.

425

426	FIGURE CAPTIONS
427	
428	Figure 1. Calculated lattice energy for supercells of varying dimension, each containing a single
429	Ti cation substituting for Si. Small supercells contain high [Ti] and yield elevated lattice
430	energies due to interactions among closely spaced defects; however, at lower
431	concentrations, with Ti cations separated by $> \sim 30$ Å or more, this energy perturbation is
432	negligible.
433	
434	Figure 2. CL imaging for Ti distribution analysis in quartz mylonites from: (a,b) Ashley et al.
435	(2013); (c) Grujic et al. (2011); (d) Kidder et al. (2013). (a) Ti equilibration during quartz
436	growth events has aided in reconstructing prograde and early retrograde P-T-D histories
437	in quartz tectonites (Ashley et al., 2013). However, in dynamically recrystallized quartz,
438	subgrains typically contain lower [Ti] than relict porphyroclastic cores (appearing darker
439	in CL images; b-d). These Ti-deficient grains result in temperature estimates much lower
440	than those produced by other thermobarometric techniques.

Table 1. Parameters for interatomic potentials

Interaction	A	ρ	С	Source
	(kJ·mol ⁻¹)	(Å)	(kJ·mol ⁻¹ ·Å ⁻⁶)	
${\rm Si}^{4+}$ ${\rm O}^{2-}$	123878	0.3205	1028	1
${\rm Ti}^{4+}$ ${\rm O}^{2-}$	84637	0.3810	868	2
O^{2-} O^{2-}	2196384	0.1490	2690	1
Interaction	Shell charge (e)		<i>k</i> (kJ·mol ⁻¹ ·Å ⁻²)	Source
O ²⁻ (core-shell)	-2.8690	2	7229	3, 1
Interaction	K _B (kJ·mol ⁻¹ ·rad ⁻²)		θ_0 (°)	Source
O^{2-} Si ⁴⁺ O ²⁻	2.097		109.47	1

Notes: All short-range interactions for O^{2-} act on the shell of the ion. The cut-off distance for the Si⁴⁺ O^{2-} and Ti⁴⁺ O^{2-} Buckingham potentials was 12 Å.

Sources: 1 - Sanders et al. (1984); 2 - Lewis and Catlow (1986); 3 - Purton et al. (1996).

Table 2. Lattice energies (per 2 oxygens) of α -quartz supercells with single Ti substitution

Supercell	No. of	Su	percell c	comp.	[Ti]	[Ti]	Min. Ti-Ti	Lattice Energy
dim.	unit cells	Ti	Si	0	(ppm)	(wt. %)	dist. (Å)	(kJ·mol⁻¹)
1x1x1	1	1	2	6	239290	23.93	4.835	-11903.74
2x2x2	8	1	23	48	32744	3.27	9.669	-12352.89
3x3x3	27	1	80	162	9795	0.98	14.504	-12399.40
4x4x4	64	1	191	384	4142	0.41	19.339	-12410.74
5x5x5	125	1	374	750	2123	0.21	24.174	-12414.77
6x6x6	216	1	647	1296	1229	0.12	29.008	-12416.56
7x7x7	343	1	1028	2058	774	0.08	33.843	-12417.47
8x8x8	512	1	1535	3072	519	0.05	38.678	-12417.98
9x9x9	729	1	2186	4374	364	0.04	43.512	-12418.28

Abbreviations: dim. – dimensions; no. – number; comp. – composition; min. – minimum; dist. – distance.