5/7

1 Revision 1

2 Trona at extreme conditions: A pollutant-sequestering material at high pressures and low 3 temperatures

4	Earl O'Bannon III, ¹ * Christine M. Beavers, ^{1,2} and Quentin Williams ¹
5	¹ Department of Earth and Planetary Sciences, University of California, Santa Cruz, 1156 High
6	Street, Santa Cruz, California 95064, U.S.A.
7	² Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720,
8	U.S.A.
9	Abstract
10	Single crystal X-ray diffraction of trona, Na ₃ CO ₃ HCO ₃ •2H ₂ O, was measured between
11	100 and 340 K at ambient pressures, and the infrared and Raman spectra of this material
12	characterized to ~25 GPa. The thermal expansion of trona is greatest in the b direction, which is
13	due to a particularly large expansion of the long Na ₂ -O ₁ and the short Na ₂ -O ₄ bonds within the
14	sodium septahedron in the trona structure. This crystallographic direction is associated with the
15	distance between neighboring carbonate groups and neighboring water molecules within the
16	structure. The dimensions of the carbonate group undergo no systematic changes over this
17	temperature range, and the disordered hydrogen atom within the structure does not order at
18	temperatures down to 100 K. Thus, detailed changes in the geometry of the sodium polyhedra
19	primarily modulate the response of trona to decreases in temperature. The infrared and Raman
20	spectra undergo discontinuous and reversible changes at \sim 7 GPa and \sim 14.5 GPa: the former of
21	these phase transitions is likely associated with a shift primarily in the sodium-oxygen polyhedra,
22	while the latter also involves shifts in bonding of the carbonate groups. New assignments are
23	suggested for portions of the vibrational spectrum based on the high-pressure results. Resonance

24	effects between different vibrational modes are observed, including the observation of a
25	transmission maximum associated with a resonant interaction between the carbonate symmetric
26	stretching vibration and a broad mode at similar frequencies. The behavior of trona under
27	extreme conditions is useful for understanding CO2-vapor-saturated alkali-rich systems, and late-
28	stage peralkaline magmatic processes and, in its usage as both a sorbent and scrubber of SO_2 and
29	CO ₂ in flue gasses and lignite coals.
30	
31	Keyword: trona, high pressure, low temperature, single crystal diffraction, vibrational
32	spectroscopy
33	Introduction
34	Trona, Na ₃ CO ₃ HCO ₃ •2H ₂ O, is a non-marine evaporite mineral that, from the perspective
35	of its chemical formula, contains the unusual combination of both a carbonate and bicarbonate
36	anion. It has environmental importance as a product of carbon sequestration of flue gasses (Yoo
37	et al. 2013; Ficicilar and Dogu 2006) and in its utilization in sulfur removal from both flue gasses
38	and lignite coals (Kong and Wood 2010; Su et al. 2011; Sutcu and Eker 2013). Additional uses
39	of trona include as a food additive (Nielsen, 1999; Ekosse, 2010), and as a common source of
40	soda ash, which is a significant economic commodity because of its applications in
41	manufacturing glass, chemicals, paper, detergents, and textiles. Trona is also observed as a phase
42	within deteriorating concrete (Figg et al. 1976). Hence, the properties of trona at differing
43	conditions of pressure and temperature can provide insights into the interplay between the
44	structure and stability of this phase. From a crystal chemical viewpoint, trona is of interest as a
45	carbonated phase that contains both water and hydroxyl units, and hence may provide insights
46	into how water and carbonate ions interact within a single phase: indeed, its response to pressure

may provide insight into the structural changes undergone by salt-bearing carbon-rich aqueous
fluids and/or hydrated carbonatitic magmas under compression.

49 Trona has also been found in magmatic environments: Markl and Baumgartner (2002) 50 show that trona can be formed by autometasomatic reactions of late-magmatic fluids or melts (or 51 supercritical fluid-melt mixtures), with earlier crystallized rocks within the same plutonic 52 complex, or by large-scale vapor unmixing in the very final stages of magmatism. Furthermore, 53 Liu and Fleet (2009) have found that trona's thermal stability is markedly enhanced by pressures 54 of only a few tenths of a GPa: at ambient pressure, trona begins to decompose at ~340 K, but Liu 55 and Fleet (2009) observed it to be stable up to 848 K at 0.21 GPa in equilibrium with CO₂-rich 56 vapor. Thus, understanding the behavior of trona under extreme conditions is useful for 57 understanding late-stage peralkaline magmatic processes, and CO₂-vapor-saturated alkali-rich 58 systems. 59 Brown et al. (1949) first determined the crystal structure of trona using single crystal xray diffraction. Bacon and Curry (1956) refined the structure with two-dimensional single-crystal 60 neutron diffraction, and suggested that the H atom in the symmetric $(HC_2O_6)^{3-}$ anion is 61 62 disordered. This disordering of the hydrogen generates a sharing of the hydrogen atom between

63 the carbonate units, and hence produces the mixed carbonate/bicarbonate character of these

anion groups. Candlin (1956) refined the structure at both low (103 K) and room temperature

using two-dimensional X-ray diffraction, which confined the data to thermal changes within the

66 (010) plane of the trona structure. The results suggested that six of the twelve Na-O nearest

67 neighbor distances measured at 103 K were larger than at ambient conditions, implying that the

68 thermal response of the Na-O polyhedra may be complex. The environment of the disordered H

atom was later investigated by Choi and Mighell (1982) at 300 K with three-dimensional single-

70 crystal neutron diffraction: they concluded that the H atom is dynamically disordered between two equivalent sites, separated from one another by 0.211(9) Å. The dynamically disordered H-71 72 atom was later reinvestigated by Pertlik (1986) with single crystal x-ray diffraction and 73 determined it to be separated by 0.95(4) Å to 0.77(3) Å. 74 From a spectroscopic viewpoint, trona has attracted interest as an example of a phase 75 with weak- to medium strength hydrogen bonds, which displays a variety of resonance-related 76 phenomena, including having an anomalous sharp transmission *maximum* within its infrared 77 spectrum (Novak et al. 1963; Bertoluzza et al. 1981). Additionally, its far-infrared spectrum has 78 recently been characterized as an example of a hydrated acid carbonate (Brusentsova et al. 2010). 79 The response, and stability, of carbonates under pressure utilizing vibrational spectroscopy has 80 been a topic of widespread interest (e.g., Kraft et al. 1991; Biellman et al. 1993; Catalli and 81 Williams 2005; Lin et al. 2012; Palaich et al. 2013). In the instance of trona, we examine the 82 effect of a markedly different chemical environment on the stability of the carbonate unit under 83 pressure: a phase that incorporates the bicarbonate ion and abundant water, and hence is a 84 crystallographic representative of the well-known carbonate-bicarbonate equilibrium. 85 Hence, because of its interest as both an industrial material and its novel crystal 86 chemistry, we have examined trona at temperatures spanning most of its ambient pressure 87 stability range (100 K-340 K), and at high pressures. Trona was reinvestigated with single crystal 88 x-ray diffraction techniques at low and ambient temperature to: (1) improve our understanding of 89 the thermal response of this material at a range of temperatures below the onset of its 90 decomposition at ~340 K (e.g., Cho et al. 2008); and (2) to assess the results of Candlin (1956) in 91 which she calculated that some Na-O bonds anomalously contract with increasing temperature. 92 Correspondingly, we have measured the infrared and Raman spectrum of this phase at high

93	pressures, extending up to ~25 GPa to: (1) examine whether pressure-induced polymorphism
94	occurs in this phase; (2) probe how the bonding of this carbonate/bicarbonate/water-bearing
95	phase shifts as a function of compression and particularly how the hydrogen bonding in this
96	phase changes; (3) investigate the behavior of resonant interactions within this phase under
97	compression; and (4) to constrain how the sodium polyhedra (which comprise both octahedral
98	and septahedral sites) might respond to compression. Our net goals are to gain insights into the
99	underlying cause of trona's low-pressure, modest temperature decomposition, and its stability or
100	metastability under high-pressure conditions.
101	Experimental methods
102	Single-crystal structural refinement
103	The specimen studied is from the Green River Basin in Wyoming and contained
104	columnar, optical quality crystals of trona. The sample identity was confirmed by x-ray
105	diffraction, and both Raman and infrared spectroscopy (Figure 1). Indeed, our spectroscopic
106	results are in excellent accord with prior results on synthetic samples (Novak et al. 1963;
107	Bertoluzza et al. 1981).
108	For low- and ambient-temperature measurements, a single crystal was prepared with
109	approximate dimensions of 0.02 x 0.02 x 0.03 mm, which was mounted in oil (Infineum V8512)
110	on a MiTeGen MicroMount. Data were collected at 100 K, 200 K, and 300 K on a Bruker
111	diffractometer equipped with a Cu-K α I μ S source and MX optic with an APEX-II CCD detector.
112	The sample was placed in a cooled liquid nitrogen stream provided by an Oxford Cryosystems
113	Cryostream 700 liquid nitrogen-cooling device, with a temperature accuracy of ± 2 K. An
114	approximate half sphere of data to $2\theta_{max}$ =135.9° was collected using 0.5° ω and Φ scans.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4910

115	The higher temperature single-crystal data were collected at 320 K, 330 K, and 340 K.
116	The sample was placed into a warmed nitrogen stream provided by an Oxford Cryosystems
117	Cryostream 700 Plus low/high temperature apparatus, again with an accuracy of ± 2 K. A Bruker
118	D8 diffractometer equipped with an ApexII CCD detector on beamline 11.3.1 at the Advanced
119	Light Source in Berkeley, CA was used. Diffraction data were collected using monochromatic
120	synchrotron radiation at a wavelength of 0.61990(1) Å. An approximate full sphere of data to 2θ
121	$_{max}$ =64° was collected using 0.3° ω scans.
122	The data were integrated using the program SAINT v8.27B. A multi-scan correction for
123	absorption was applied using the program SADABS-2012/1 and TWINABS-2012/1, for high
124	temperatures and low temperatures, respectively. The structure was solved by the charge flipping
125	methods of OLEX 2 (Dolomanov et al., 2009) and refined by full-matrix least-squares on F^2
126	SHELXL-2013 (Sheldrick, 2008).
127	High pressure techniques
128	High static pressures were generated by a Merrill-Basset type diamond anvil cell (DAC)
129	equipped with type Ia diamonds with 500 μ m 16-sided culets. An inconel gasket with a 200 μ m

130 hole was used as the sample compartment. Three to five ruby chips were loaded with each

131 sample to measure the pressure using the standard ruby fluorescence method (Mao et al., 1986).

132 All experiments were conducted at room temperature.

133 Raman Spectroscopy

134 Raman spectra were collected with a Horiba LabRAM HR Evolution Raman

spectrometer with a spectrometer focal length of 800 mm. Spectra were collected to a pressure of

136 25 GPa at 300 K. An excitation wavelength of 633 nm was used to collect spectra from 50-350

137 cm⁻¹, while 532 nm excitation was used to collect from 500-1200 cm⁻¹. An Olympus BXFM-

138	ILHS microscope with a 50x long working distance objective (18 mm working distance and 3.6
139	mm focal distance) was used to focus the laser beam onto the sample. An 1800 lines/mm grating
140	with a corresponding spectral resolution of $\sim 1 \text{ cm}^{-1}$ was utilized. A single crystal of trona was
141	loaded with spectroscopic-grade KBr as the pressure medium: since KBr has no first-order
142	Raman spectrum, no spectral contamination of the trona spectrum is generated, and there is no
143	interaction between the pressure medium and the trona sample. Spectra were collected from a
144	laser spot size of $\sim 2 \ \mu m$, so we do not anticipate that pressure gradients will notably adversely
145	affect our spectra. Multiple samples were run with the trona loaded into the cell in different
146	orientations, so the amplitudes of peaks shift between different runs, due to the orientation-
147	dependence of the Raman modes of trona. Raman spectra were fit using a combination of
148	Gaussian and Lorentzian functions with Horiba Labspec6 software.
149	Infrared spectroscopy
150	Mid-infrared absorbance spectra were collected from 0 to 24 GPa using a Bruker Vertex
151	70v evacuated Fourier transform infrared spectrometer (FTIR) equipped with a globar source,
152	KBr-beamsplitter and a liquid-N $_2$ cooled mercury-cadmium-telluride (MCT) detector. All
153	infrared spectra were collected with a resolution of 4 cm ⁻¹ . Trona was ground into a powder and
154	mixed with spectroscopic-grade KBr in a ratio of 90% KBr: 10% sample by weight, with KBr
155	serving as both an infrared window and the pressure medium. Infrared spectra were fit using a
156	combination of Gaussian and Lorentzian functions with Bruker OPUS6.5 software.
157	Single-Crystal Diffraction Results
158	Trona crystallizes in the monoclinic C2/c crystal system in the range between 100-340 K
159	(Figure 2). The architecture of the structure is comprised of units of 3 edge-sharing sodium
160	polyhedra (a central octahedron flanked by septahedra), cross-linked by carbonate groups and

161 hydrogen bonds. The unit cell dimensions as a function of temperature are given in Table 1, and 162 the volume as a function of temperature in Figure 3. The high temperature data are somewhat 163 scattered, and we do not preclude that this scatter may be associated with behavior precursory to 164 trona decomposition, which has been observed to initiate, with a substantial kinetic impediment, 165 at temperatures as low as 330 K (Cho et al. 2008). Indeed, our sample lost its single crystal character on heating to 350 K. The average thermal expansion is 7.81 (\pm 0.52) x 10⁻⁵/K over this 166 167 temperature range. This is at the lower end of the range of other water-bearing molecular minerals with comparatively low decomposition temperatures, such as gypsum (8.2 x 10^{-5} /K: 168 Ballirano and Melis 2009), mirabilite (~11 x 10^{-5} /K at 300 K; Brand et al. 2009) and ikaite (~12 169 x 10^{-5} /K: Lennie et al. 2004). The modulated structure of γ -Na₂CO₃ has, for comparison, an 170 anomalously high thermal expansion over this temperature range of $\sim 14.6 \times 10^{-5}$ /K (Arakcheeva 171 172 et al. 2010). Yet, the thermal expansion of trona is dramatically greater than that of non-alkali, and non-water-bearing phases such as, for example, calcite at 300 K (3.8 x 10⁻⁶/K; Markgraf and 173 174 Reeder 1985). 175 The normalized a and c axes have similar linear thermal expansion values with increasing 176 temperature, whereas the b axis linear thermal expansion is higher by a factor of three (Figure 4). 177 For each temperature the fractional atomic coordinates are listed in Table 2, the bond lengths and 178 the thermal expansion values listed in Table 3, and the corresponding bond angles are listed in 179 Table 4. The underpinning structural rationale for this anisotropy in thermal expansion is 180 straightforward: the carbonate unit lies within the *a*-*c* plane, and the structural rigidity of this unit

181 likely limits the thermal expansion in both the *a*- and *c*-directions. In contrast, bonding within the

182 *b*-direction is predominantly associated with Na-O bonds, and to a lesser extent hydrogen

183 bonding (Figure 2).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4910

5/7

184 Indeed, the carbonate group undergoes no resolvable changes in geometry over the 185 temperature range of this study, with no systematic changes in either bond length or bond angle. 186 It is slightly distorted from ideal three-fold symmetry: only the O_2 - C_1 - O_3 angle is close to 120° , 187 with the other two angles being near 116° and 124°. The carbonate group is also nearly planar, 188 with deviations from the plane being less than 0.005 Å. 189 The Na-O bonds in the structure all expand with increasing temperature (Figure 5), in 190 contrast to the prior results of Candlin (1956). The volume of the Na_1 octahedron increases 191 systematically with increasing temperature, and does not become more distorted with increasing 192 temperature, as measured by its quadratic elongation (Robinson et al. 1971). The Na₁-O₂ bonds 193 expand by 0.0188(18) Å while the Na₁-O₃ bonds expand by 0.0107(18) and 0.0103(18) Å over 194 the 240 K interval of these measurements. The volume of the Na₂ septahedron increases with 195 increasing temperature and becomes more elongated in the *b*-direction with an increase in 196 temperature. The longer of the two Na₂-O₁ bonds and the shorter of the two Na₂-O₄ bonds 197 expand substantially more than the other bonds in the septahedron, by 0.0322(19) Å and 198 0.0238(19) Å, respectively, while the other Na₂-O bonds of the septahedron expand by notably 199 smaller amounts (ranging from 0.0101(18) Å to 0.0232(16) Å). 200 The Na₂-O₁ bond and the Na₂-O₄ bond that are particularly responsive to temperature are 201 oriented in such a way that their expansion is directly associated with the enhanced thermal 202 expansion of the *b*-direction (Figure 6). The *b*-direction reflects the interplanar separation 203 between the carbonate units and between the hydrogens of the water molecules: this unit cell 204 parameter increases from 3.4583(5) to 3.4922(5) Å from 100 to 340 K. This ~1% linear 205 expansion in the separation between carbonate groups and water molecules in the *b*-direction 206 may represent an indication of the manner in which trona ultimately decomposes, with

207 progressively greater separations being accessed between water groups in the *b*-direction as 208 temperature is increased. The most parsimonious explanation for the means of water escape from 209 the structure during decomposition likely involves migration of the water molecules along the 210 structural channels between sodium polyhedra that are oriented along the *b*-axis of the structure. 211 It is likely that compaction of these channels produces the marked enhancement of the thermal 212 stability of trona that occurs under modest compression (Liu and Fleet 2009). 213 The refinements require that the H3 hydrogen atom remains disordered with 50% 214 occupancy between two O₂ sites at low temperatures, in accord with the 300 K structure derived 215 by Choi and Mighall (1982). Inclusion of the disordered H atom produced a substantial reduction 216 in the R-values of the final structure refinements. Thus, temperatures as low as 100 K are 217 insufficient to induce the structure to have discrete carbonate and bicarbonate units, in lieu of the

shared carbonate/bicarbonate character produced by the hydrogen disorder.

219 High-pressure Raman and infrared spectral results and assignments

220 Raman spectra of trona have been obtained on both compression and decompression; 221 representative Raman spectra are shown in Figure 7, and the change in frequency for each mode 222 as a function of pressure is plotted in Figure 8, with results tabulated in Table 5. The assignments 223 of the mid- (above ~500 cm⁻¹) and high-frequency Raman and infrared modes of trona have been 224 presented by Bertoluzza et al. (1981) and for the infrared bands by Novak et al. (1963), based on 225 comparisons with NaHCO₃-nahcolite, 3NaHCO₃Na₂CO₃-wegscheiderite, and deuterated samples 226 of these phases and trona (although Novak et al.'s (1963) assignments hinged on the hydrogen 227 being symmetric between carbonate groups, rather than disordered between two sites). The low-228 frequency Raman vibrations of trona have not previously been assigned. However, based on (1) 229 their minimal shift in frequency with deuteration (Bertoluzza et al. 1981); (2) the ubiquity of

230	vibrations near 70, 90, 110 and 140 cm ⁻¹ in the sodium bicarbonate salts (Bertoluzza et al. 1981);
231	and (3) the presence of vibrations near the first three of these frequencies within the well-
232	understood Raman spectrum of NaOH (e.g., Kanesaka et al. 1982), it appears that the assignment
233	of these vibrations to Na-O associated vibrations is robust. Which of these vibrations might be
234	Na-O stretching vibrations or Na-O-Na bending vibrations is less obvious: it is possible, by
235	analogy with NaOH, that the two lowest frequency of these bands are Na-O-Na bending
236	vibrations, with the vibrations between 140 and 180 cm ⁻¹ being associated with Na-O stretching
237	modes. This interpretation is in general accord with the smaller pressure shifts of the two lowest
238	frequency vibrations: compaction is likely to have less of an effect on interpolyhedral bending
239	vibrations.
240	Infrared spectra between \sim 550 and 1800 cm ⁻¹ on compression and decompression are
241	shown in Figure 9a,b, and the hydroxyl stretching vibrations are shown in Figure 10a,b, with
242	mode shifts shown in Figure 11a,b,c. The pressure dependences of the different infrared modes
243	provide insight into their assignments. In particular, the vibrations associated with the carbonate
244	group are readily identified through both their positions and pressure shifts. The infrared in-plane
245	bends (v_4) of the carbonate group at 684 cm ⁻¹ and 710 cm ⁻¹ shift smoothly under compression
246	(Figure 12a). The corresponding Raman vibration at 699 cm ⁻¹ shifts at a rate intermediate
247	between those of the 684 and 710 cm ⁻¹ infrared bands. The infrared bands modestly increase in
248	their separation with pressure, implying that the distortion of the carbonate group (or of its local
249	environment) may weakly increase with pressure: site group-associated splitting likely produces
250	the separation of the two infrared bands (Greenaway et al. 1986). At ~5.7 GPa, an additional
251	infrared mode for which the pressure shift is compatible with the other in-plane bends becomes

resolvable near 670 cm⁻¹: this band may simply be separating from a highly-absorbing broad
feature near 550 cm⁻¹.

254	The IR active mode at 805 cm ⁻¹ shifts rapidly with increasing pressure and crosses
255	through, but does not appear to resonantly interact with, the carbonate out-of-plane bend (v_2) at
256	850 cm ⁻¹ (Figure 11a). The former band has been attributed to an H_2O -associated vibration,
257	based on its non-appearance in deuterated spectra (Novak et al., 1963): the most likely
258	assignment, based on its frequency, is to an H2O-libration (e.g., Lutz, 1988), and its robust
259	pressure shift is in accord with increasing hydrogen-bonding of the water-molecule under
260	pressure. An alternate possibility, discussed below, is that it could be associated with vibrational
261	transitions associated with the double-well potential of the disordered hydrogen of the hydroxyl
262	unit. The out-of-plane bend at 850 cm ⁻¹ shifts by -1.0 cm ⁻¹ /GPa with increasing pressure: this
263	negative shift is in accord with the behavior of this vibration in a wide suite of other carbonates,
264	and is likely generated by increases in cation-oxygen bond strength under pressure (e.g., Kraft et
265	al. 1991; Williams et al. 1992; Gillet et al. 1993; Catalli et al. 2005). The asymmetric stretch (v ₃)
266	of the carbonate unit falls at 1461 cm ⁻¹ , and evolves a high-frequency shoulder that becomes
267	deconvolvable above ~4 GPa: these bands have almost identical pressure shifts.
268	For the bands between 1550 and 1800 cm ⁻¹ , our assignments differ from those of Novak
269	et al. (1963) and Bertoluzza et al. (1981). In particular, the band with a zero pressure frequency
270	of 1557 cm ⁻¹ has a pressure shift that is markedly larger than any other within trona: nearly 12
271	cm ⁻¹ /GPa. Both the location and pressure shift of this band indicate that it is the first overtone of
272	the vibration at 806 cm ⁻¹ , shifted to lower frequency by anharmonicity. Furthermore, its behavior
273	strongly suggests that its intensity is enhanced by a resonant interaction with the band at 1749
274	cm ⁻¹ : at low pressures, its intensity renders it barely resolvable, but it increases in strength as it

275	approaches the higher frequency peak (Figure 9a). Hence, the symmetry of this overtone is likely
276	the same as that of the band at 1749 cm ⁻¹ , and the two undergo increased levels of Fermi
277	resonance with one another as pressure is increased. The coupling constant (which is equal to
278	half the closest approach of these bands) of these modes within trona appears to be on the order
279	of 50 cm ⁻¹ , or a bit over half an order of magnitude larger than previously observed resonant
280	couplings between vibrations in hydrous phases (e.g., Duffy et al. 1995; Knittle et al. 2001). As
281	with prior studies (Novak et al. 1963; Bertoluzza et al. 1981), we do not resolve an unambiguous
282	H-O-H bending vibration in our spectra: given the somewhat broadened (relative to free H_2O) H-
283	O-H angle in trona of 107.4° (Choi and Mighell 1982), such a vibration would be anticipated to
284	occur near 1600 cm ⁻¹ (e.g., Lutz 1988). Unless the band at 1698 cm ⁻¹ is the H-O-H stretch, which
285	is unlikely, as this is an anomalously high frequency for such a vibration (particularly given the
286	wide H-O-H angle in this phase: e.g., Lutz 1988), it appears that this vibration is not
287	characterized.

288 The origins of the infrared bands at 1698 and 1749 cm⁻¹ are thus problematic: the former 289 band was attributed by Novak et al. (1963) and Bertoluzza et al. (1981) to either a high-lying 290 asymmetric stretch of the carbonate unit, or a water-associated vibration. The latter interpretation 291 is consistent with the shift of these bands on deuteration: the frequency ratio between the 292 hydrogen-bearing vibrations and the deuterium-bearing vibrations is near 1.09 (Novak et al. 293 1963; Bertoluzza et al. 1981). Within crystalline carbonates, it has long been appreciated that 294 overtones and combinations commonly fall in this spectral range as well (Ross and Goldsmith 295 1964): such combinations can be the 2 x v_2 (e.g., Kraft et al. 1991) or $v_1 + v_4$ vibrations of the 296 carbonate group (e.g., Catalli et al. 2005), and can often be distinguished by their pressure shifts. 297 However, neither of the bands' pressure shifts appears compatible with an obvious combination

298 band. The possibility that these bands might be associated with C=O vibrations, which occur in KHCO₃ at frequencies as high as 1650 cm⁻¹ (e.g., Dopieralski et al. 2010) does not explain their 299 300 shift on deuteration. With respect to these vibrations, it is worth noting that the disordered 301 hydrogen positions of the hydroxyl unit in trona occupy a symmetric, double-well potential that 302 is almost linearly oriented between the O(2) oxygens within the structure. As noted for trona 303 (among other phases) by Sokolov et al. (1988, 1990), a quantum mechanical analysis of this 304 configuration gives rise to a number of energy levels associated with the protons, and optical 305 transitions between these levels (e.g., Romanowski and Sobczyk 1977). In short, multiple optical 306 transitions can be generated between different proton states, including the ground and excited states. Given the approximate nature of the theory, it is possible that either the 1698 or 1740 cm⁻¹ 307 308 bands could be generated by a transition between either the fundamental and a higher-lying 309 excited state, or between excited states of the proton (which would imply a marked temperature 310 dependence for the absorption). If this were the case, the ground state to first excited state 311 transition in trona would be anticipated to occur at substantially lower frequencies, and could be associated with the 800 cm⁻¹ band: this might provide a natural explanation for the strong Fermi 312 313 resonant coupling constant between the overtone of this transition and the transition between the 314 two excited states. Indeed, Fillaux (1983) proposed that a highly temperature-dependent infrared band near 1870 cm⁻¹ in KHCO₃ may be associated with transitions between excited states of the 315 316 hydroxyl stretching vibration within a double minimum potential. An appealing aspect of this 317 explanation is that compaction of the O-O distance generally produces increases in the 318 frequencies of transitions associated with excited states (Romanowski and Sobczyk 1977; 319 Sokolov et al. 1988, 1990), and thus a positive pressure shift of these vibrations would be 320 anticipated, in accord with our observations.

321	Above 3000 cm ⁻¹ , we fit three separate peaks to the infrared spectra, with zero pressure
322	frequencies of 3050, 3449 and 3530 cm ⁻¹ : the locations of the first and third of these are in
323	reasonable agreement with Novak et al. (1963) and Bertoluzza et al. (1981), while the
324	intermediate peak is required to adequately match the shape of the observed hydroxyl stretching
325	envelope. The initial pressure shift of these peaks is generally similar, with each shifting to lower
326	frequencies on compression, implying that hydrogen bonding increases with pressure within
327	trona. The assignment of these peaks to hydroxyl stretching vibrations associated with the water
328	molecule is compatible with the hydrogen bonding lengths of water within trona, based on
329	general correlations between band frequency and O-O separation (e.g., Nakamoto et al. 1955).
330	High-Pressure Phase Transitions
331	The low frequency Raman vibrations with ambient pressure frequencies at \sim 71 and 100
332	cm ⁻¹ are associated with vibrations of the Na-O polyhedra: they shift non-linearly to higher
333	frequency under compression. At ~7.0 GPa, the lower frequency band splits, and its lower
334	frequency component and the continuation of the 100 cm ⁻¹ band each abruptly begin to shift to
335	lower frequency. This negative shift persists until ~14.5 GPa (Figure 8a). Other Raman peaks
336	may undergo modest shifts in their pressure-dependence at this pressure (particularly the 139
337	and 155 cm ⁻¹ bands), but no discontinuities in peak positions are observed. The combination of
338	mode splitting and shifts in pressure-dependences suggests that the phase transition near \sim 7.0
339	GPa is second order in character and, based on its Raman spectral signature, predominantly
340	involves changes in the geometry of the sodium polyhedra.
341	The infrared spectra are compatible with this interpretation of the \sim 7.0 GPa transition:
342	specifically, the pressure dependence of the in-plane bending vibration with a zero-pressure
343	frequency of 710 cm ⁻¹ shifts, and changes in the H_2O rotational vibration and its overtone at 805

and 1557 cm⁻¹, respectively, occur. A shift in sign of the pressure dependence of the O-H
stretching vibrations with zero pressure frequencies of 3449 cm⁻¹ and 3530 cm⁻¹ also occurs at
this pressure, indicating that a shift in the hydrogen bonding geometry has occurred associated
with this transition. Each of these vibrations involves oxygen anions that form part of the sodium
septahedron, and hence this transition is plausibly produced by a shift in the geometry of this
sodium polyhedral unit.

350 At~14.5 GPa, changes in mode frequencies, the appearance of new bands, and 351 disappearance of bands imply that a second phase transition takes place. In particular, a change 352 in the nature of the lowest frequency Raman vibrational modes at ~ 14.5 GPa suggests that the 353 coordination geometry of the Na-O polyhedra changes significantly (Figure 8a): a new band appears near 85 cm⁻¹, the band with a zero-pressure frequency near 155 cm⁻¹ disappears, and the 354 frequency of the mode with a zero pressure frequency near 172 cm⁻¹ drops in frequency by ~ 10 355 cm⁻¹. At higher frequencies, the in-plane bend, the symmetrical stretch, and the asymmetric 356 357 stretches of the carbonate group each shift discontinuously to lower frequency at this pressure 358 (Figures 8b, 11b), and continue to shift to higher frequency with increases in pressure. The 359 symmetrical stretch peak of the carbonate group becomes asymmetrical at ~ 11.0 GPa and splits 360 at ~14.5 GPa and remains split up to 25.4 GPa. The pressure dependence of the H_2O vibrational mode at 3049 cm⁻¹ changes sign at this transition (and a weak positive discontinuity in mode 361 362 frequency may be present), and begins to shift positively at pressures greater than 14.5 GPa (Figure 11c). It is near this pressure that a new hydroxyl stretching band appears at \sim 3580 cm⁻¹: 363 364 this band ultimately becomes the dominant feature in the hydroxyl region of the spectrum (Figure 10a, 11c). The band with a zero pressure frequency near 1750 cm^{-1} that we have 365 366 attributed to transitions associated with the O-H^{...}O strongly bound hydroxyl unit disappears at

this transition, which may imply that the double-welled potential (and associated H-disorder) isnot present within this phase.

369 In terms of its effect on the carbonate group vibrations (a decrease in the frequencies, and 370 hence force constants, of the carbonate group), the manifestations of this higher pressure 371 transition closely resemble those of a transition in KHCO₃ that occurs near 2.8 GPa (Kagi et al. 372 2003): a transition associated with tilting of the carbonate units, displacement of molecular layers 373 relative to one another, and an increase in K-coordination from 8- to 10-fold (Allan et al. 2007). 374 Additionally, a splitting of the symmetric stretching vibration of the carbonate group occurs at 375 this transition, indicating that either multiple carbonate group environments may be present in 376 the high-pressure phase, or that the unit cell may be expanded. The weakening of the carbonate 377 bonds may be associated with a displacement in the three-membered sodium polyhedral units 378 (e.g., Figure 2) relative to one another, with accompanying elongation of the C-O bonds within 379 the carbonate units. This transition also appears to be associated with a notable decrease in 380 hydrogen bonding, as manifested by the positive pressure shifts of the hydroxyl stretching bands 381 and the appearance of a new, higher frequency hydroxyl stretching band. This is again 382 compatible with a shift in the neighboring sodium polyhedral units relative to one another. It is 383 also possible that, due to the large number of water molecules present within trona and their 384 closely juxtaposed positions, hydrogen-hydrogen repulsion may become increasingly important 385 within the phase of trona that occurs above 14.5 GPa. 386 This transition is reversible, but with substantial hysteresis: for example, the symmetric stretch of the carbonate group remains split during decompression down to ~2.5 GPa (Figure 8b). 387

Both the carbonate in-plane bend and symmetric stretch return to within a few wavenumbers of

their initial peak locations. The low frequency vibrations (Figure 8a) show similar shifts upon

388

390	decompression and also return to within a few wavenumbers of their initial peak locations. Thus,
391	the higher pressure transition we observe is, based on the observed hysteresis, likely first-order in
392	character: however, the high-pressure phase cannot be quenched to ambient pressures at 300 K.
393	Novel Resonance Effects
394	An interesting feature of the infrared spectrum of trona (Figure 1) is the transmission
395	window that is present at 1050 cm ⁻¹ . This sharp decrease in absorbance was first noted in trona
396	by Novak et al. (1963), and assigned to a peculiar resonance effect first observed by Evans and
397	Wright (1960) in the infrared spectrum of <i>m</i> -toluidine. This effect has been further studied, and
398	quantitatively modeled, by Evans (1960, 1962) and Claydon and Sheppard (1969). Trona may be
399	the single example observed to date of this "Evans window" effect in minerals: in short, a
400	transmission maximum is generated when a broad band overlaps a sharp fundamental band of the
401	same symmetry. A form of Fermi resonance thus occurs, with the intensity of the fundamental
402	band being resonantly redistributed at frequencies surrounding the fundamental, and a
403	transmission window within the broad band being produced at the frequency of the sharp
404	fundamental (Evans and Wright 1960). In the case of trona, the transmission window is the result
405	of the symmetrical carbonate stretch interacting with a broad band at a similar frequency. The
406	nature of the broad band is unclear: it appears that it is a combination band or overtone
407	associated with a hydroxyl or water vibration (presumably a libration or translation), as the
408	transmission maximum disappears within deuterated samples (Novak et al., 1963).
409	We are able to monitor the pressure shift of this transmission window under compression
410	and decompression (Figure 12a,b). The transmission window shifts smoothly with increasing
411	pressure into a diamond absorption region and returns upon decompression (Figure 12a). Its
412	pressure shift is in close accord with the shift of the corresponding Raman (v_1) symmetric

stretching vibration, confirming the identification of this spectral hole as being associated withthis sharp fundamental vibration.

415 Mode Grüneisen Parameters

416 Using the pressure derivative of a vibrational frequency v_i for a mode *i*, (dv_i/dP) , a mode 417 Grüneisen parameter (γ_i) can be calculated using $\gamma_i = K_0 / v_{0i}$ (d v_i /dP). Here, K_0 is the bulk modulus 418 of trona, which was estimated to be 36 GPa, as calculated from the P- and S- wave velocities in 419 trona-dominated strata and the known density of trona (Ge et al. 2012). This value is of unknown 420 accuracy. However, it lies in the vicinity of that of other water-rich evaporite minerals (for 421 example, the bulk modulus of gypsum is ~45 GPa: Stretton et al. 1997). The v_{0i} values were 422 determined by infrared and Raman spectroscopy at room temperature and pressure, and the 423 calculated dv_i/dP and γ_i are listed in Table 5. For comparison, the thermodynamic value of the 424 Grüneisen parameter can be determined using our thermal expansion (α), coupled with the bulk 425 modulus of 36 GPa (K_0), the density (ρ), and the heat capacity at 300 K (C_p) from Haynes (2003) 426 using $\gamma_i = \alpha K_0 / \rho C_p$. The calculated thermodynamic Grüneisen parameter is 1.06: our overall 427 average mode Grüneisen parameter for the fundamental bands in Table 5 is 0.48. This 428 discrepancy is certainly associated with the oversampling of high-frequency, low-Grüneisen 429 parameter molecular modes in our study, and in particular in our mid-infrared spectral 430 measurements. An averaging of our Raman modes, which sample both low- and high-frequency 431 portions of the trona spectrum, yield an average value of 0.91, which is in substantially closer 432 accord with the thermodynamic value. Unsurprisingly, the dominant contributors to the 433 thermodynamic Grüneisen parameter are low-frequency modes, and particularly modes that are 434 likely to be associated with the Na-O polyhedra. 435 Implications

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4910

436	The behavior of trona under extreme conditions is useful for understanding late-stage
437	peralkaline magmatic processes (e.g., Markl and Baumgartner 2002), as well as the behavior of
438	water molecules within a carbonate-dominated framework. Notably, the interactions between
439	water/hydrogen and carbonate units are quite insensitive to pressure: while hydrogen bonding
440	weakly increases with compression in trona (and may decrease across high-pressure polymorphic
441	transitions), the carbonate unit behaves in a similar manner to the carbonate unit in other
442	carbonate minerals under high pressure such as aragonite and dolomite (Kraft et al. 1991; Gillet
443	et al. 1993), siderite and rhodochrosite (Santillan and Williams 2004), and witherite (Lin and Liu
444	1997). Hence, at least within trona, carbonate ions and water molecules behave as largely
445	independent molecular units, with limited interactions, under compression.
446	As an industrial material whose thermal stability is important in its usage as both a
447	sorbent and scrubber of SO_2 (Kong and Wood 2010; Su et al. 2011; Sutcu and Eker 2013) and
448	CO ₂ (Ficicilar and Dogu, 2006), the effect of temperature appears to be most notably manifested
449	in the sodium septahedron within the structure. The thermal expansions of two bonds in this
450	polyhedron appear to be anomalous (as is the thermal expansion of the <i>b</i> -axis), and this
451	expansion may be a key contributor to the thermal stability limit of trona. In this respect, it is
452	notable that substitution of potassium into trona induces both a change in crystal symmetry and a
453	weak increase in thermal stability from ~330 K (Cho et al. 2008) to 341 K (Adam and Cirpus
454	1996). Hence, enhancing the thermal stability of trona may require substitution into the
455	septahedral site: a site that is not amenable to substitution by heavier elements (Adam and Cirpus
456	1996). Finally, we note that the disordered hydrogen position within trona could be associated
457	with tunneling and quantum correlation effects: these are hinted at by our possible assignment of
458	bands between 1690 and 1750 cm ⁻¹ to transitions between the ground and excited states of the O-

459	H O unit. Such anomalous quantum effects in phases containing protons with multiple sites
460	have been extensively documented within KHCO ₃ (Fillaux et al. 2006; Fillaux 2007), and the
461	disordered hydrogens associated with the O-H O units within trona may represent candidates for
462	similar quantum effects.
463	Acknowledgements
464	The authors would like to thank the organizers of the American Crystallographic
465	Association summer course in chemical crystallography: Dr. Amy Sarjeant, Ms. Charlotte Stern,
466	and Dr. Allen Oliver. The authors would also like to thank Dr. Simon Teat at the ALS for
467	assistance, Dr. Paul Mattern at UCSC for assistance, and three anonymous reviewers for
468	constructive comments. Work partially supported by NSF through EAR-1215745, and
469	COMPRES under NSF Cooperative Agreement EAR 11-57758. The Advanced Light Source is
470	supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S.
471	Department of Energy under Contract No. DE-AC02-05CH11231.
472	
473	References
474	Adam, A., and Cirpus, V. (1996) Darstellung und Structur der ersten gemischten
475	Alkalimetallhydrogencarbonate $NaA_2[H(CO_3)_2]^2H_2O$ mit A = K, Rb. Zeitschrift fur
476	Anorganische Allgemeine Chemie, 622, 2023-2030.
477	Allan, D.R., Marshall, W.G., and Pulham, C.R. (2007) The high-pressure crystal structure of
478	potassium hydrogen carbonate (KHCO ₃). American Mineralogist, 92, 1018-1025.
479	Arakcheeva, A., Bindi, L., Pattison, P., Meisser, N., Chapuis, G., and Pekov, I. (2010) The
480	incommensurately modulated structures of natural natrite at 120 and 293 K from
481	synchrotron X-ray data, American Mineralogist, 95, 574-581.

- 482 Bacon, G.E., and Curry, N.A. (1956) A neutron-diffraction study of sodium sesquicarbonate.
- 483 *Acta Crystallographica*, *9*, 82-85.
- Ballirano, P., and Melis, E. (2009) Thermal behaviour and kinetics of dehydration of gypsum in
 air from in situ real-time laboratory parallel beam X-ray powder diffraction. *Physics and Chemistry of Minerals*, *36*, 391-402.
- 487 Bertoluzza, A., Monti, P., Morelli, M.A., and Battaglia, M.A. (1981) A Raman and infrared
- 488 spectroscopic study of compounds characterized by strong hydrogen bonds. *Journal of*489 *Molecular Structure*, 73, 19-29.
- 490 Brand, H.E.Q., Fortes, A.D., Wood, I.G., Knight, K.S., and Vocadlo, L. (2009) The thermal
- 491 expansion and crystal structure of mirabilite (Na₂SO₄·10H₂O) from 4.2 to 300 K as
- determined by time-of-flight neutron powder diffraction. *Physics and Chemistry of*
- 493 *Minerals*, *36*, 29-46.
- Brown, C.J., Peiser, H.S., and Turner-Jones, A. (1949) The crystal structure of sodium
 sequicarbonate. *Acta Crystallographica*, *2*, 167-174.
- 496 Brusentsova, T.N., Peale, R.E., Maukonen, D., Harlow, G.E., Boesenberg, J.S., and Ebel, D.
- 497 (2010) Far infrared spectroscopy of carbonate minerals. *American Mineralogist*, 95,
- 498 1515-1522.
- 499 Candlin, R. (1956) Thermal changes in the structure of sodium sequicarbonate. Acta
- 500 *Crystallographica*, *9*, 545-554.
- 501 Catalli, K., Santillan, J., and Williams, Q. (2005) A high pressure infrared spectroscopic study of
- 502 PbCO₃-cerussite: Constraints on the structure of the post-aragonite phase. *Physics and*
- 503 *Chemistry of Minerals, 32,* 412-417.

- Catalli, K., and Williams, Q. (2005) A high-pressure phase transition of calcite-III. *American Mineralogist*, *90*, 1679-1682.
- 506 Cho, K.J., Keener, T.C., and Khang, S.-J. (2008) A study on the conversion of trona to sodium
 507 bicarbonate, *Powder Technology*, *184*, 58-63.
- 508 Choi C.S., and Mighell A.D., (1982) Neutron diffraction study of sodium sesquicarbonate
 509 dihydrate. *Acta Crystallographica*, *B38*, 2874-2876.
- 510 Claydon, M.F., and Sheppard, N. (1969) The nature of "A, B, C"-type infrared spectra of
- 511 strongly hydrogen-bonded systems; pseudo-maxima in vibrational spectra. *Journal of the*512 *Chemical Society D: Chemical Communications*, 23, 1431-1433.
- 513 Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., and Puschmann, H. (2009) OLEX2:

a complete structure solution, refinement and analysis program.

- 515 *J. Appl. Cryst.* 42, 339-341.
- 516 Dopieralski, P.D., Latajka, Z., and Olovsson, I. (2010) Proton-transfer dynamics in the (HCO₃⁻)₂
- 517 dimer of KHCO₃ from Car-Parrinello and path-integrals molecular dynamics calculations.
 518 *Acta Crystallographica*, *B66*, 222-228.
- 519 Duffy, T.S., Meade, C., Fei, Y., Mao, H.K., and Hemley, R.J. (1995) High-pressure phase
- 520 transition in brucite, Mg(OH)₂. *American Mineralogist, 80, 222-230.*
- 521 Ekosse, G.I.E. (2010) X-ray diffraction study of kanwa used as active ingredient in achu soup in
- 522 Cameroon. *African Journal of Biotechnology*, *9*, 7928-7929.
- 523 Evans, J.C. (1960) Further studies of unusual effects in the infrared spectra of certain molecules.
- 524 *Spectrochimica Acta*, *16*, 994-1000.
- Evans, J.C. (1962) Narrow transmission regions within broad infrared absorption bands in solids.
 Spectrochimica Acta, *19*, 507-512.

- 527 Evans, J.C., and Wright, N. (1960) A peculiar effect in the infrared spectra of certain molecules.
- 528 *Spectrochimica Acta*, *16*, 352-357.
- Ficicilar, B., and Dogu, T. (2006) Breakthrough analysis for CO₂ removal by activated
 hydrotalcite and soda ash. *Catalysis Today*, *115*, 274-278.
- 531 Figg, J., Moore, A.E., and Gutteridge, W.A. (1976) On the occurrence of the mineral trona
- 532 (Na₂CO₃ NaHCO₃ 2H₂O) in concrete deterioration products. *Cement and Concrete*
- 533 *Research, 6,* 691-696.
- 534 Fillaux, F. (1983) Calculations of infrared and Raman band profiles of strong hydrogen bonds.
- 535 OH stretching bands and proton dynamics in crystalline potassium hydrogen carbonate.
- 536 *Chemical Physics, 74,* 405-412.
- 537 Fillaux, F. (2007) Proton transfer in the KHCO₃ and benzoic acid crystals: A quantum view.
- 538 *Journal of Molecular Structure*, 844/845, 308-318.
- 539 Fillaux, F., Cousson, A., and Gutmann, M.J. (2006) Macroscopic quantum entanglement and
- 540 'super-rigidity' of protons in the KHCO₃ crystal from 30 to 300 K. *Journal of Physics:*
- 541 *Condensed Matter, 18, 3229-3249.*
- 542 Ge, M., Wang, H., Schissler, A., and Ramani, R. (2012). Measuring pillar width in trona mines
- 543 using a body wave based in-seam seismic technique. *International Journal of Rock*
- 544 *Mechanics and Mining Sciences*, *53*, 10-17.
- 545 Gillet, P., Biellmann, C., Reynard, B., and McMillan, P. (1993) Raman spectroscopic studies of
- 546 carbonates: Part 1. High-pressure and high-temperature behavior of calcite, magnesite,
- 547 dolomite and aragonite. *Physics and Chemistry of Minerals, 20,* 1-18.

548	Greenaway, A.M., Dasgupta, T.P., Koshy, K.C., and Sadler G.G. (1986) A correlation between
549	infrared stretching mode absorptions and structural angular distortions for the carbonato
550	ligand in a wide variety of complexes. Spectrochimica Acta A, 42, 949-954.
551	Haynes, H.W. (2003) Thermodynamic solution model for trona brines. AIChE Journal, 49, 1883-
552	1894.
553	Kanesaka, I., Tsuchida, M., and Kawai, K. (1982) Vibrational spectra and normal coordinate
554	analysis of NaOX (X = H or D). Journal of Raman Spectroscopy, 13, 253-256.
555	Knittle, E., Phillips, W., and Williams, Q. (2001) An infrared and Raman spectroscopic study of
556	gypsum at high pressures. Physics and Chemistry of Minerals, 28, 630-640.
557	Kong Y., and Wood M.D. (2010) Dry injection of trona for SO ₃ control. <i>Power</i> , 154, 114-118.
558	Kraft, S., Knittle, E., and Williams, Q. (1991). Carbonate stability in the Earth's mantle: a
559	vibrational spectroscopic study of aragonite and dolomite at high pressures and
560	temperatures. Journal of Geophysical Research: Solid Earth, 96, 17997-18009.
561	Lennie, A.R., Tang, C.C., and Thompson, A.P. (2004) The structure and thermal expansion
562	behavior of ikaite, $CaCO_3 6H_2O$, from T = 114 to T = 293 K. <i>Mineralogical Magazine</i> ,
563	<i>68</i> , 135-146.
564	Lin, C.C., and Liu, L.G. (1997) High-pressure Raman spectroscopic study of post-aragonite
565	phase transition in witherite (BaCO ₃). European Journal of Mineralogy, 9, 785-792.
566	Liu, X., and Fleet, M.E. (2009) Phase relations of nahcolite and trona at high PT conditions.
567	Journal of Mineralogical and Petrological Sciences, 104, 25-36.
568	Lutz, H.D. (1988) Bonding and structure of water molecules in solid hydrates. Correlation of
569	spectroscopic and structural data. Structure and Bonding, 69, 97-125.

- 570 Markgraf, S.A., and Reeder, R.J. (1985) High-temperature structure refinements of calcite and
- 571 magnesite. *American Mineralogist*, *70*, 590-600.
- 572 Mao, H.K., Xu, J.A., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar
- 573 under quasi-hydrostatic conditions. *Journal of Geophysical Research*, *91*, 4673-4676.
- 574 Markl, G., and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids.
- 575 *Contributions to Mineralogy and Petrology*, *144*, 331-346.
- 576 Nakamoto, K., Margoshes, M., and Rundle, R.E. (1955) Stretching frequencies as a function of
- 577 distances in hydrogen bonds. *Journal of the American Chemical Society*, 77, 6480-6486.
- 578 Nielsen, J.M. (1999) East African magadi (trona): Fluoride concentration and mineralogical
- 579 concentration. *Journal of African Earth Sciences*, *29*, 423-428.
- 580 Novak, A., Saumagne, P., and Bok, L.D.C. (1963) Etude par spectroscopie infrarouge de
- 581 quelques hydrogenocarbonates alcalins: NaHCO₃, NH₄ HCO₃, KHCO₃, et du
- sesquicarbonate de sodium Na₂CO₃ NaHCO₃ 2H₂O. *Journal de Chimie Physique*, 60,
- 583 1385-1395.
- 584 Pertlik, F. (1986) Ein vergleich von ergebnissen routine assiger strukturbestimmungen mittels
- 585 rontgen- BZW. Neutronen-einkristalldaten am beispiel der trona, Na₃H[CO₃]₂·2H₂O.
- 586 *Mitteilungen Osterreichischen Mineralogischen Gesellschaft, 131*, 7-14.
- 587 Robinson, K., Gibbs, G.V., and Ribbe, P.H., (1971) Quadratic elongation: A quantitative
- 588 measure of distortion in coordination polyhedra. *Science*, *172*, 567-570.
- 589 Romanowski, H., and Sobczyk, L. (1977) A stochastic approach to the IR spectra of the OHO
- 590 symmetrical hydrogen bond. *Chemical Physics, 19*, 361-370.

- 591 Ross, S.D., and Goldsmith, J. (1964) Factors affecting the infrared spectra of planar anions with
- 592 D_{3h} symmetry-I. Carbonates of the main group and first row transition elements.
- *Spectrochimica Acta, 20, 781-784.*
- 594 Santillan, J., and Williams, Q. (2004) A high-pressure infrared and X-ray study of FeCO₃ and
- 595 MnCO₃: comparison with CaMg (CO₃)₂-dolomite. *Physics of the Earth and Planetary*
- 596 *Interiors*, *143*, 291-304.
- 597 Sheldrick G.M. (2008) A short history of *SHELX*. Acta Cryst. A64, 112-122.
- Sokolov, N.D., Vener, M.V., and Savel'ev, V.A. (1988) Tentative study of strong hydrogen bond
- dynamics. Part I. Geometric isotope effects. *Journal of Molecular Structure*, 177, 93-110.
- 600 Sokolov, N.D., Vener, M.V., and Savel'ev, V.A. (1990) Tentative study of strong hydrogen bond
- 601 dynamics. Part II. Vibrational frequency considerations. *Journal of Molecular Structure*,
- 602 *222*, 365-386.
- Stretton, I.C., Schofield, P.F., Hull, S., and Knight, K.S. (1997) The static compressibility of
 gypsum. *Geophysical Research Letters*, *24*, 1267-1270.
- 605 Sutcu H., and Eker Y. (2013) The removal of sulfur from Dursunbey and Iskilip lignites in
- 606Turkey, using natural trona: 1. The effect of the thermal method. Energy Sources Part A-
- 607 *Recovery Utilization and Environmental Effects*, 35, 83-91.

Williams, Q., Collerson, B., and Knittle, E. (1992) Vibrational spectra of magnesite and calciteIII at high-pressures. *American Mineralogist*, *77*, 1158-1165.

- 610 Yoo M., Han S.J., and Wee J.H. (2013) Carbon dioxide capture capacity of sodium hydroxide
- 611 aqueous solution, *Journal of Environmental Management*, 114, 512-519.
- 612
- 613

614	
615	Figure 1. Representative ambient temperature and pressure infrared and Raman spectra of trona.
616	
617	Figure 2. Crystal structure of trona at 300K looking down the b-axis note: the dynamically
618	disordered H ₃ atom is represented with light hatchmarked circles (H-atom positions from Choi
619	and Mighell 1982). Unit cell is outlined in the solid gray line. Image generated using
620	CrystalMaker ® v8.7.6.
621	
622	Figure 3. Unit cell volume of trona as a function of temperature.
623	
624	Figure 4. Normalized unit-cell parameters as a function of temperature, with lines representing
625	least square fits to our observations. With temperature, the <i>b</i> -axis changes by almost a factor of
626	three greater than the <i>a</i> and <i>c</i> axes.
627	
628	Fig 5. Normalized Na-O bond lengths as a function of temperature, with lines representing least
629	square fits to our observations. All Na-O bonds expand with increasing temperature. The long
630	Na_2-O_1 and the short Na_2-O_4 bonds expand substantially more than the any other $Na-O$ bond
631	with temperature.
632	
633	Figure 6. Na octahedral and septahedral sites, with changes in Na-O bond angles, and distances
634	between Na ₁ -Na ₁ , Na ₂ -Na ₂ , O_1 - O_1 , O_3 - O_3 , and O_1 - O_4 bonds from 100 K to 340 K being labeled.
635	Crystal structure image generated using CrystalMaker ® v8.7.6.
636	Eigune 7. Democratetive Democrate of theme up to 25.4 CDe (a) for fragmentation
620	Figure 7. Representative Raman spectra of from up to 25.4 GPa (a) low frequency under decompression
030 620	(d) carbonate v_1 peak under compression (c) fow frequency under decompression (d) carbonate v_1 under decompression. Because multiple runs were conducted with trong crystals
640	(d) carbonate v ₁ under decompression. Because multiple runs were conducted with trona crystals mounted in different orientations, peak intensities vary between spectra (this is particularly
641	notable in the contrast between the low frequency spectra of samples at 2.0 and 3.9 GPa)
642	notable in the contrast between the low nequency spectra of samples at 2.0 and 5.9 Gray.
643	Figure 8 Peak positions of observed Raman modes in trona as a function of pressure at room
644	temperature solid circles are compression open circles are decompression. Error bars are smaller
645	than symbols and vertical dashed lines indicate likely phase transitions (a) low frequency (b)
646	carbonate asymmetric stretch and I-P bend.
647	
648	Figure 9 Representative infrared spectra of trona in the mid-infrared region up to 24.2 GPa (a)
649	under compression (b) under decompression.
650	
651	Figure 10 Representative infrared spectra of trona in the hydroxyl stretching region up to 24.2
652	GPa (a) under compression (b) under decompression.
653	
654	Figure 11. Peak positions of observed infrared modes in trona as a function of pressure at room
655	temperature. Solid circles are on compression, and open circles are on decompression. Error bars
656	are smaller than the symbols, and vertical dashed lines indicate likely phase transitions. (a)
657	carbonate bending vibrations, H ₂ O libration, and transmission window; (b) carbonate asymmetric
658	stretches, 1 st overtone of 806 cm ⁻¹ , and a transition or combination band; and (c) O-H stretches of

the H_2O molecule.

660	
661	Figure 12 Infrared spectra of the transmission window shifting as a function of pressure (a)
667	under compression (b) under decompression. Inset in 12b: Schematic diagram of Earmi
002	under compression (0) under decompression. Inset in 120. Schematic diagram of Fermi
663	resonance effect, with the dashed line showing two overlapping modes (one sharp, and one
664	broad) in the absence of a Fermi resonance, and the solid line illustrating the resultant spectrum
665	when Fermi resonance occurs (after Claydon and Sheppard, 1969).
666	
667	
668	
669	
670	
671	
672	
072	
6/3	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
605	
606	
000	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
600	
700	
/00	
701	
702	
703	
704	
705	

Table 1: Uni	t cell paramete	ers and experi	mental detail	s of trona sii
$T(\pm 2)(K)$	100	200	300	320
Wavelength (Å)	1.54187 (1)	1.54187 (1)	1.54187 (1)	0.61990 (1)
a (Å)	20.366 (3)	20.370 (4)	20.4124 (10)	20.398 (3)
b (Å)	3.4583 (5)	3.4749 (7)	3.4927 (2)	3.4887 (5)
c (Å)	10.2946 (13)	10.3146 (19)	10.3327 (4)	10.3248 (16)
β (°)	106.483 (9)	106.484 (14)	106.471 (3)	106.545 (8)
Volume (Å ³)	695.26 (17)	700.1 (2)	706.43 (6)	704.33 (19)

621

560

4.08

10.92

1.081

711 712 Ζ

N_{reflections}

 N_{unique}

R1 (%) wR2 (%)

GooF

4

624

582

3.41

10.65

1.646

706 707 708

709 ngle-crystal refinements. 710

4

625

550

4.26

11.09

1.112

4

1615

1509

4.97

13.88

1.164

330

0.61990(1)

20.402 (4)

3.4881 (6)

10.3085 (18)

106.552 (10)

703.20 (2)

4

1613

1466

4.97

14.01

1.119

340

0.61990(1)

20.400 (3)

3.4922 (5)

10.3279 (14)

106.469 (7)

705.59 (8)

4

1623

1425

4.18

13.06

1.167

713	Table 2: Fractional	atomic coordinate	es as a function	n of temperature	(refined	anisotropically).
-----	---------------------	-------------------	------------------	------------------	----------	-----------------	----

Atom	T (K)	Х	У	Z
Na ₁	100	0.0000	0.7475 (3)	0.2500
	200	0.0000	0.7466 (3)	0.2500
	300	0.0000	0.7462 (3)	0.2500
	320	0.0000	0.7461 (2)	0.2500
	330	0.0000	0.7460 (2)	0.2500
	340	0.0000	0.7461 (2)	0.2500
Na ₂	100	0.15092 (4)	0.1598 (2)	0.42574 (7)
	200	0.15081 (5)	0.1620 (3)	0.42569 (9)
	300	0.15064 (5)	0.1641 (3)	0.42549 (8)
	320	0.15053 (3)	0.16492 (17)	0.42604 (6)
	330	0.15050 (4)	0.16531 (19)	0.42606 (6)
	340	0.15053 (3)	0.1657 (16)	0.42604 (6)
C ₁	100	0.09308 (10)	0.2662 (5)	0.10314 (19)
	200	0.09316 (12)	0.2648 (6)	0.1033 (2)
	300	0.09337 (11)	0.2638 (7)	0.10346 (19)
	320	0.09308 (6)	0.2651 (3)	0.10345 (11)
	330	0.09314 (6)	0.2649 (3)	0.10349 (12)
	340	0.09314 (5)	0.2650 (3)	0.10349 (10)
O ₁	100	0.15142 (6)	0.4000 (4)	0.10124 (13)
	200	0.15127 (8)	0.4001 (5)	0.10161 (15)
	300	0.15102 (7)	0.3989 (5)	0.10214 (13)
	320	0.15112 (5)	0.3987 (3)	0.10227 (9)
	330	0.15111 (6)	0.3988 (3)	0.10225 (11)
	340	0.15107 (5)	0.3985 (3)	0.10222 (9)
O ₂	100	0.05416 (7)	0.1293 (4)	0.98697 (13)
	200	0.05436 (6)	0.1299 (5)	0.98764 (15)
	300	0.05424 (8)	0.1300 (5)	0.98804 (13)
	320	0.05441 (5)	0.1298 (3)	0.98799 (9)
	330	0.05457 (5)	0.1300 (3)	0.98818 (10)
	340	0.05448 (5)	0.1303 (3)	0.98812 (9)
O ₃	100	0.07272 (7)	0.2554 (4)	0.20811 (13)
	200	0.07255 (8)	0.2466 (5)	0.20803 (15)
	300	0.07252 (8)	0.2465 (5)	0.20792 (14)
	320	0.07249 (5)	0.2533 (3)	0.20794 (9)
	330	0.07240 (5)	0.2532 (3)	0.20787 (10)
	340	0.07245 (5)	0.2535 (2)	0.20781 (9)
O ₄	100	0.21200 (7)	0.6623 (4)	0.35447 (15)
	200	0.21206 (9)	0.6641 (4)	0.35455 (18)

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4910						
	300	0.21192 (9)	0.6651 (5)	0.35428 (17)		
	320	0.21207 (6)	0.6657 (3)	0.35454 (11)		
	330	0.21205 (7)	0.6657 (4)	0.35469 (12)		
	340	0.21209 (6)	0.6662 (3)	0.35454 (11)		

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

	T 11 A D 11 1 1			11 1	• •
	Table 3. Rond langths ()	A) as a tunction of .	tomnorature and their	linoor thormal	AVNONCION IN
/1/	$1 a \cup i \in J$. Duilu ichemis M	A as a function of		inical uncimal	
)	· · · · · · · · · · · · · · · · · · ·		· · · · ·

718 trona.

719

T (±2) (K)	100	200	300	320	330	340	Thermal Expansion
C ₁ -O ₁	1.283 (2)	1.277 (3)	1.228 (3)	1.2760 (13)	1.2756 (15)	1.2747 (13)	-0.0083 (13)
C ₁ -O ₂	1.320 (2)	1.316 (3)	1.321 (3)	1.3152 (14)	1.3127 (16)	1.3151 (13)	-0.0049 (13)
C ₁ -O ₃	1.263 (2)	1.266 (3)	1.268 (2)	1.2649 (13)	1.2640 (14)	1.2651 (12)	0.0021 (12)
$Na_1-O_2 x_2$	2.4139 (13)	2.4244 (16)	2.4327 (14)	2.4297 (10)	2.4265 (11)	2.4327 (10)	0.0188 (18)
Na ₁ -O ₃ x2	2.3750 (15)	2.3813 (18)	2.3893 (18)	2.3869 (11)	2.3862 (12)	2.3857 (10)	0.0107 (18)
Na ₁ -O ₃ x2	2.4134 (15)	2.4162 (18)	2.4255 (18)	2.4232 (10)	2.4225 (12)	2.4237 (10)	0.0103 (18)
Na ₂ -O ₁	2.6479 (15)	2.6640 (18)	2.6786 (19)	2.6769 (12)	2.6754 (14)	2.6801 (12)	0.0322 (19)
Na ₂ -O ₁	2.3588 (15)	2.3665 (18)	2.3738 (17)	2.3697 (11)	2.3661 (13)	2.3689 (11)	0.0101 (18)
Na ₂ -O ₂	2.4453 (15)	2.4518 (18)	2.4609 (17)	2.4546 (11)	2.4551 (13)	2.4553 (11)	0.0101 (17)
Na ₂ -O ₃	2.3744 (15)	2.3773 (18)	2.3829 (16)	2.3787 (12)	2.3769 (13)	2.3828 (11)	0.0232 (16)
Na ₂ -O ₄	2.3596 (14)	2.3689 (19)	2.382 (2)	2.3838 (12)	2.3839 (14)	2.3854 (12)	0.0238 (19)
Na ₂ -O ₄	2.3707 (14)	2.3779 (18)	2.3881 (18)	2.3875 (11)	2.3860 (13)	2.3880 (11)	0.0173 (18)

720 721

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4910

723

Table 4: Bond angles of trona as a function of temperature.

725

$T(\pm 2)(K)$	100	200	300	320	330	340
O_1 - C_1 - O_2	115.95 (16)	116.03 (93)	116.23 (13)	116.17 (10)	116.32 (11)	116.21 (9)
O_1 - C_1 - O_3	123.63 (17)	123.8 (2)	123.92 (18)	123.66 (11)	123.71 (12)	123.69 (10)
O_2 - C_1 - O_3	120.42 (17)	120.02 (2)	119.52 (18)	120.16 (10)	119.96 (11)	120.09 (10)
O ₂ -Na ₁ -O ₂	159.43 (8)	159.64 (9)	159.54 (11)	159.49 (6)	159.48 (7)	159.53 (6)
O ₃ -Na ₁ -O ₃ x2	179.12 (5)	179.21 (6)	179.18 (7)	179.18 (4)	179.18 (4)	179.14 (4)
O_2 -Na ₁ -O ₃ x2	100.48 (5)	100.49 (6)	100.61 (6)	100.60 (3)	100.61 (4)	100.61 (3)
O_2 -Na ₁ -O ₃ x2	94.26 (4)	94.15 (5)	94.11 (5)	94.16 (3)	94.17 (4)	94.14 (3)
O ₂ -Na ₁ -O ₃ x2	79.46 (4)	79.46 (6)	79.34 (6)	79.34 (3)	79.34 (4)	79.34 (3)
O_3 -Na ₁ -O ₃ x2	92.47 (5)	92.82 (6)	93.00 (5)	92.98 (3)	93.00 (4)	93.12 (3)
O ₃ -Na ₁ -O ₃	88.41 (7)	87.97 (8)	87.82 (8)	87.84 (5)	87.83 (6)	87.74 (5)
O ₃ -Na ₁ -O ₃	86.65 (7)	86.39 (8)	85.74 (6)	86.20 (5)	86.18 (6)	86.02 (5)
O ₁ -Na ₂ -O ₁	87.18 (5)	87.17 (6)	87.25 (5)	87.24 (4)	87.33 (4)	87.29 (4)
O_1 -Na ₂ - O_2	51.17 (4)	50.73 (5)	50.55 (5)	50.54 (3)	50.53 (4)	50.47 (3)
O ₁ -Na ₂ -O ₂	83.91 (5)	84.00 (6)	84.10 (6)	84.19 (4)	84.25 (4)	84.28 (4)
O ₁ -Na ₂ -O ₃	119.33 (6)	119.60 (7)	119.78 (7)	119.96 (4)	119.95 (5)	120.02 (4)
O ₁ -Na ₂ -O ₃	128.06 (5)	127.81 (6)	127.66 (6)	127.66 (4)	127.57 (4)	127.57 (4)
O ₃ -Na ₂ -O ₂	85.74 (5)	85.95 (6)	86.04 (6)	86.11 (4)	86.05 (4)	86.09 (4)
O ₄ -Na ₂ -O ₁	77.16 (5)	76.99 (6)	76.92 (6)	76.87 (4)	76.77 (4)	76.76 (4)
O ₄ -Na ₂ -O ₁	82.95 (5)	82.92 (6)	83.10 (6)	83.07 (4)	83.03 (4)	83.05 (4)
O ₄ -Na ₂ -O ₁	145.10 (6)	145.09 (7)	145.17 (7)	145.00 (4)	144.96 (5)	144.98 (4)
O ₄ -Na ₂ -O ₁	147.85 (6)	147.89 (7)	148.02 (7)	147.85(4)	147.83 (5)	147.86 (4)
O ₄ -Na ₂ -O ₂	108.49 (5)	108.02 (7)	107.76 (7)	107.74(4)	107.68 (5)	107.57 (4)
O_4 -Na ₂ - O_2	155.58 (6)	155.98 (7)	156.17 (8)	156.41(4)	156.47 (5)	156.51 (5)
O ₄ -Na ₂ -O ₃	82.90 (5)	82.92 (6)	83.10 (6)	83.19(4)	83.29 (5)	83.25 (4)
O ₄ -Na ₂ -O ₃	94.53 (5)	94.36 (6)	94.10 (6)	94.07(4)	94.12 (5)	94.06 (4)
O_4 -Na ₂ - O_4	93.96 (5)	94.12 (7)	94.15 (6)	93.97(4)	93.99 (5)	94.04 (4)

Table 5. Raman and infrared modes observed at room temperature and pressure, pressure
dependences of peak positions, and calculated mode Grüneisen parameters of trona (some
assignments based on Novak et al. (1963), others based on this study).

732

v_{0i}	Assignment	(dv_{0i}/dP) to 7GPa	γ_i
(cm^{-1})	-	(cm ⁻¹ /GPa)	·
71	Na-O-Na (R)	1.78 (±0.24)	0.90
100	Na-O-Na (R)	2.06 (±0.09)	0.74
108	Na-O (R)	6.03 (±0.48)	2.01
139	Na-O (R)	4.34 (±0.31)	1.12
155	Na-O (R)	4.74 (±0.37)	1.10
172	Na-O (R)	4.69 (±0.36)	0.98
684	$v_4(IR)$	4.14 (±0.25)	0.22
699	$v_4(R)$	4.79 (±0.36)	0.25
710	v ₄ (IR)	5.66 (0.40)	0.29
806	H ₂ O Lib (IR)	6.21 (±0.72)	0.28
850	$v_2(IR)$	-1.01 (±0.10)	-0.04
1051	Transmission Window	5.89 (±0.35)	0.20
	(IR)		
1060	$v_1(\mathbf{R})$	5.37 (±0.25)	0.18
1461	$v_3(IR)$	3.80 (±0.30)	0.09
1557	1 st Overtone of 806 (IR)	11.60 (±1.0)	0.26
1698	O-H […] O transition?	1.58 (±0.90)	0.03
	Combination? (IR)		
1749	O-H […] O transition?	5.95 (±0.73)	0.12
	Combination? (IR)		
3049	$H_2O(IR)$	-7.98 (±0.26)	-0.09
3449	$H_2O(IR)$	-5.46 (±0.76)	-0.06
3530	$H_2O(IR)$	-6.10 (±1.34)	-0.06

733 734

735

Normalizied Unit Cell Parameters

Compression

Absorbance

Compression

Absorbance

Absorbance

Frequency (cm⁻¹

Decompression

