Revision 1 1 Crystal Structure of Guinier-Preston Zones in Orthopyroxene: 2 Z-contrast imaging and ab inito study 3 4 Huifang Xu^{*1,2}, Zhizhang Shen¹, Hiromi Konishi¹, and Gufeng Luo³ 5 ¹NASA Astrobiology Institute, Department of Geoscience, 6 7 University of Wisconsin - Madison Madison, Wisconsin 53706 8 9 ² Material Science Program, 10 11 University of Wisconsin-Madison, Madison, Wisconsin 53706 12 13 ³ Department of Geoscience, 14 Nanjing University, 15 Nanjing, China 210008 16 17 * Corresponding author: Dr. Huifang Xu Tel: 1-608-265-5887 18 19 Fax: 1-608-262-0693 20 Email: hfxu@geology.wisc.edu

21 Abstract

22	Nano-precipitates of Guinier-Preston zones (or G. P. zones) occur in slowly cooled
23	orthopyroxenes (OPX). Due to their nanometer sizes and intergrowth with host OPX, both X-ray
24	diffraction and high-resolution TEM imaging cannot provide a consistent structure model for the
25	G. P. zone precipitates. Combining Z-contrast imaging and density functional theory (DFT)
26	methods, a correct crystal structure for the G. P. zone precipitates can be obtained, because Z-
27	contrast imaging can reveal positions and occupancies of atoms directly. The crystal structure for
28	the G. P. zone has $P2_1/c$ symmetry with 4 types of tetrahedral chains (OA1, OA2, OB, OC). The
29	structure can be considered as periodic stacking of half unit cells of enstatite sub-layers and of
30	diopside sub-layers in a twinning-like relationship along <i>a</i> -axis. The G. P. zones that precipitate
31	out from their host Ca-bearing OPX at low temperature are metastable with respect to end
32	members of enstatite and diopside.
33	Keywords: orthopyroxene, diopside, G. P. zone, nano mineral, DFT, Z-contrast imaging, order-
34	disorder, enstatite
. -	
35	

36

37

38 Introduction

39	Guinier-Preston Zones (or G. P. zones) in orthopyroxenes (OPX) are nanometer scale
40	precipitates with composition between OPX and diopside (Di) (Champness and Lorimer, 1973,
41	1974; Buseck et al., 1980; Nord, 1980; Takeda et al., 1982; Smyth and Swope, 1990; Heinemann
42	et al., 2000). The plate-like precipitates have thickness of one to several unit cells along <i>a</i> -axis
43	(Nord, 1980; Takeda et al., 1982; Langenhorst et al., 2012). It was proposed that the OPX
44	crystals with G. P. zones are products of extremely slow cooling of their host rocks, especially
45	those with multi-layer G. P. zones in extraterrestrial rocks (Nord, 1980; Takeda et al., 1982;
46	Smyth and Swope, 1990).
47	It was proposed that multi-layer G. P. zones (i.e., several unit cells wide along <i>a</i> -axis)
48	have structure with $Pbc2_1$ symmetry (Nord, 1980; Buseck et al., 1980). The structure consists of
49	two half-unit cell layers (or, sub-layers) of diopside (Di) and enstatite (En) with ideal
50	stoichiometry of CaMgSi ₂ O ₆ . (Mg,Fe) ₂ Si ₂ O ₆ , or, Ca(Mg,Fe) ₃ (Si ₂ O ₆) ₂ . Ca atoms are ordered in
51	octahedral strips with opposite skews (Nord, 1980). However, Smyth and Swope (1990)
52	proposed $P2_{I}/c$ symmetry for G. P. zones with Ca atoms in octahedral trips with same skews
53	within diopsode-like sub-layers. Reported unit cell parameters for the Mg-rich G. P. zones are:
54	<i>a</i> =18.40 Å, <i>b</i> =8.83 Å, <i>c</i> =5.18 Å, and β = 90.0° (Smyth and Swope, 1990). A recent study
55	indicates that the Ca atoms are disordered in diopside sub-layers based on high-resolution TEM
56	(HRTEM) images (Langenhorst et al., 2006). The crystal structure for the G. P. zones in OPX
57	still remains controversial.

58

59 We report new results from Z-contrast images of an OPX with G. P. zones, and a crystal 60 structure model for multi-layer G. P. zones based on observed cation positions and *ab-initio* 61 calculation using density function theory (DFT) methodology. Scanning transmission electron microscopy (STEM) uses a high-angle annular dark-field (HAADF) detector to give the most 62 63 highly localized 1s Bloch state imaging, which eliminates most of the obvious effects of dynamical diffraction (Kirkland, 1998; Pennycook, 2002). Z-contrast images are HAADF 64 65 images with atomic resolution. Multiple diffraction effects that appear in high-resolution transmission electron microscopic (HRTEM) imaging can be eliminated or minimized in Z-66 contrast imaging, because Z-contrast imaging uses non-coherent elastically scattered electrons at 67 high scattering angle (Fig. 1A). Using a HAADF detector and annular bright-field (ABF) 68 detector, both a Z-contrast image and an annular bright-field image can be obtained 69 70 simultaneously (Fig. 1). Bright spots in the Z-contrast image correspond to positions of atom 71 columns. The contrast is roughly reversed in ABF image (Fig. 1B, 1C). The intensity of Zcontrast images is dependent on the atomic number of atom and occupancy in the site through Z^n 72 73 (Kirkland, 1998; Pennycook, 2002). The power **n** depends on experimental conditions. For the instrument used to acquire our images (FEI Titan 80-200 aberration corrected 74 scanning/transmission electron microscope), n values are 1.70, 1.97, 2.27, and 2.15 for camera 75 76 lengths of 77 mm, 128 mm, 160 mm, and 196 mm, respectively (Shi, 2013). Local composition 77 and occupancy may be obtained from measured intensities. We can obtain positions of atoms 78 directly over a large range of thickness, with Z-contrast to help distinguish columns of different 79 atoms and their occupancies along the beam direction.

80

81

82 Sample and Experimental Methods

Orthopyroxene megacrysts were collected from a norite pegmatite in Black Hill of
Chengde, Hebei Province, North China. The OPX appears brown in color with (100) parting.
The reported chemical formula for the OPX is:

86 $(Ca_{0.068}Mg_{1.102}Fe_{0.812}Mn_{0.019}Ti_{0.008}Al_{0.042})(Si_{1.920}, Al_{0.080})O_6.$

It can also be expressed as $En_{56}Fs_{41}Wo_3$ (Luo et al., 1988, 1992). Unit cell parameters for OPX are: a = 18.310Å, b = 8.900Å, c = 5.223Å. A double-side polished thin section normal to caxis cutting was prepared. Fresh OPX areas were mounted on TEM Cu grids and ion milled. The ion milled TEM sample was thinly coated with carbon.

91 TEM and STEM studies were carried out using a FEI Titan 80-200 aberration corrected scanning/transmission electron microscope operated at 200 kV coupled with an EDAX high 92 93 resolution EDS detector and Gatan image filtering system. This instrument can image single atoms with ~ 0.1 nm or better spatial resolution in STEM mode. Probe current was set at 24.5 pA. 94 95 All Z-contrast images were acquired using a condition of camera length of 160 mm, in order to maximize the difference among different atoms. Intensity (I) from an atom column is 96 proportional to $Z^{2.27}$ for the image acquisition condition (Shi, 2013). Atomic number (Z) of Si, Fe 97 and Mg are 4, 26 and 12, respectively. Intensity at Si site is $I \sim 14^{2.27}$. Intensity at an M site 98 occupied by x Fe and (1-x) Mg is I ~ $[x 26^{2.27} + (1-x)12^{2.27}]$. Occupancies of Fe and Mg in 99 individual M1 and M2 sites (columns along *c*-axis) can be calculated based on their relative 100 intensities with respect to neighboring Si sites (columns). Average occupancy is obtained by 101 measuring occupancies of multiple sites. 102

103	The code VASP was used for DFT calculations (Kresse et al., 1996). The general
104	gradient approximation (GGA) with the Perdew, Burke, and Ernzerhof (PBE) parameters was
105	employed for the exchange correlation functional (Perdew et al., 1996). The projector augmented
106	wave (PAW) method with an energy cutoff of 600 eV was used for calculation. Monkhorst-Pack
107	meshes of $4 \times 2 \times 1$, $4 \times 2 \times 1$, and $2 \times 2 \times 2$ were found to be sufficient for the structures of enstatite, G.
108	Pzones, and diopside, respectively. All DFT calculations are performed at 0K for Fe-free end-
109	members.

111 **Results and Discussions**

112 Electron Diffraction and Z-contrast Imaging

Selected-area electron diffraction (SAED) from the OPX with G. P. zones shows 113 diffraction streaks along a^* direction and weak diffraction spots that violate *a*-glide in OPX (Fig. 114 115 2). This is very similar to the diffraction pattern from a lunar OPX with multi-layer G. P. zones reported by Nord (1980). The weak diffraction spots (odd *h*) are slightly off center from two 116 neighboring strong diffraction spots with even h, especially the high-order diffraction spots. For 117 instance, the position of the (11 00) weak spot is slightly off center between strong diffraction 118 spots of (10 00) and (12 00) (Fig. 2). The weak diffraction spots (odd) are not from host OPX, 119 but from multi-layer G. P. zones. Unit cell dimensions for multi-layer G. P. zones along *a*-axis 120 are slightly larger than the host OPX. Unit cell dimensions along *b*-axis and *c*-axis are about 121 same as those of the host OPX. Measured unit cell parameters for multi-layer G.P. zones are: a 122 = 18.35 (± 0.02) Å, b = 8.90 (± 0.02) Å, c = 5.22 (± 0.02) Å. 123

124	A low-magnification STEM bright-filed (BF) image and HAADF image show G. P.
125	zones (Fig. 3). The contrast of G. P. zones is better in the HAADF image (Z-contrast image) than
126	in the ABF image, because Z-contrast images are sensitive to chemical composition. An outlined
127	area in the Z-contrast image contains a G. P. zone with a 3-layer repetition layers, that is 3 x
128	18.35 Å. A fast Fourier transform (FFT) pattern from an area without G. P. zones only shows
129	spots that obey the <i>a</i> -glide absences perpendicular to <i>c</i> -axis and the 2-fold screw axis along the
130	<i>b</i> -axis due to even <i>0k0</i> reflections (Fig. 4A). However, the FFT pattern from the outlined area
131	with a multi-layer G. P. zone shows extra weak spots (e.g., 100, 700) that violate a-glide
132	absences perpendicular to the <i>c</i> -axis (Fig. 4B). High magnification Z-contrast imaging (Fig. 5B)
133	clearly shows positions of M1 sites with low intensity and M2 sites with high intensity in the
134	host OPX, because Fe atoms preferentially occupy M2 sites. Based on intensities from columns
135	of Si, M1 and M2 sites, M1 sites are dominated by Mg (~92% Mg and ~8% Fe), and M2 sites are
136	dominated by Fe ($\sim 80\%$ Fe and 20% Mg). Uncertainty for the occupancies is about 3%. The
137	FFT pattern from the Z-contrast image does not show odd 0k0 spots (Fig. 5D), however, the FFT
138	pattern from the ABF image (Fig. 5A) clearly shows odd 0k0 spots (Fig. 5C) due to multiple
139	diffraction of low-angle scattered electrons. For an OPX with bulk composition of En ₅₆ Fs ₄₁ Wo ₃ ,
140	if the entire Wo component is combined with some amount of En component from diopside sub-
141	layers in the G. P. zones, the remaining OPX will have a composition of En ₅₆ Fs ₄₄ . The intensity
142	profile for M1 and M2 sites shows much stronger intensity in M2 sites than in M1 sites (Fig. 6A),
143	because M2 sites are dominated by Fe (Z=26) and M1 sites are dominated by Mg (Z=12).
144	However, the intensity difference in the diopside sub-layer of the G. P. zone is much smaller
145	than that in the host OPX (Fig. 6B), because M2 sites are occupied by Ca (Z=20) and M1 sites in
146	the G.P. zones are very similar to M1 sites in the host and dominated by Mg (Z=12). The

intensity profile across the diopside sub-layer shows that the Ca-Mg sub-layer has lower
intensity than that in the host OPX (Fig. 6C). The Z-contrast image support early models of
diopside-like sub-layer in the G.P. zone that were proposed by Nord (1980) and Smyth and
Swope (1990).

151

The image also shows the difference between OA and OB chains in OPX (Fig. 7). The 152 difference is in their tetrahedral chain angle that is the angle between bridge oxygen in O_3 - O_3 -153 O₃. The angle in OA chains is close to 180° degrees ($160^{\circ} \sim 170^{\circ}$) while the angle in OB chains 154 is close to 120° degrees ($135^{\circ} \sim 145^{\circ}$) (Cameron and Papike, 1980). If we view the structure 155 along *c*-axis, the bridge oxygen atoms approximately overlap in OA chains, and not overlap in 156 OB chains (see the overlaid structure model of OPX at low-left corner of Fig. 7). The bridge 157 158 oxygen atoms in OB chains will be approximately overlapping with Si atoms. In [001]-zone axis Z-contrast images, the OA chains will display "V"-like contrast while OB chains will display 159 dumbbell-like contrast (Fig. 7). The structure model of OPX can be overlaid on the image based 160 on positions of OA and OB chains. The skews of octahedral layers (++-- for OPX, and ++ for 161 diopside) (Cameron and Papike, 1980) can be determined in the Z-contrast image if we can 162 identify OA and OB chains. The distances between neighboring M2 sites (Ca atoms) in the 163 diopside sub-layer of a G. P. zone are \sim 3.7 Å, and \sim 5.1 Å, respectively. The distances between 164 neighboring M2 sites in the OPX are ~4.2 Å, and ~4.7 Å, respectively (Fig. 6). The Z-contrast 165 166 image clearly shows ordering of Ca atoms within the (100) sub-layer of the G. P. zone. The 167 octahedral strips for the Ca-Mg atoms will have the same skew direction (i.e., either ++, or --), instead of opposite skews in a previously hypothesized structure model proposed by Nord (1980). 168

169	Previously reported Ca-Mg disordering in diopside-like sub-layers (Langenhorst et al., 2006)
170	could be an artifact of the strong dynamic effect in HRTEM imaging mode. HRTEM images are
171	phase contrast images, and not sensitive to chemical composition.

172	The tetrahedral chains between two Ca-Mg layers or in diopside sub-layers are not OB-
173	like chains (with smaller tetrahedral chain angle), but are OA-like chains (with large tetrahedral
174	chain angle). We label them as OC chains because they are in OB chain positions of the host
175	OPX, but more like OA chains regarding their bridge oxygen atoms (i.e., "V"-like appearance in
176	Z-contrast image). There are two types of chains in OPX with Pbca symmetry. However, at least
177	three different types of chains are evident in the Z-contrast images: chains in enstatite sub-layer,
178	chains in diopside sub-layer, and chains between enstatite sub-layer diopside sub-layer (Fig. 7).
179	Previously proposed G.P. zone structures have 4 types of chains (Nord, 1980; Smyth and Swope,
180	1990). The observed positions for Ca, Mg, and Fe, and different types of chains can test
181	structure model of the G.P. zone.

DFT Calculation:

An initial crystal structure model for multi-layer G. P. zone was constructed based on OPX structure and the observed positions of Ca atoms and differences in tetrahedral chains. Structure model with *P1* symmetry and chains in enstatite structure was used as initial input, although we do not know exact rotation angles for the chains. The final calculated structure with lowest energy has $P2_1/c$ symmetry that is consist with a model proposed by Smyth and Swope (1990). The calculated structure has 4 types of chains, although the OA1 and OA2 chains between diopside-sublayer and enstatite sub-layer have similar rotation angles (Fig. 8). In order

191	to compare the energy of two end members and to evaluate the accuracy of calculations for
192	pyroxene, enstatite and diopside structures were also calculated. The volumes of unit cells
193	calculated for enstatite and diopside shrink by 1~2% compared to experimentally measured data.
194	This is because the calculations were done at 0K while the experimental samples, to which they
195	are compared, were quenched at 323K (Cameron et al., 1973; and Carlson et al., 1988). The <i>a</i>
196	and c lattice parameters of the calculated G. P. zones match quite well with those of the
197	experimental values, although the calculated structures are unconstrained by host OPX. The
198	calculated unit cell volume of Fe-free G. P. zones is slightly larger than reported by Smyth and
199	Swope (1990) (Table 2). The host enstatite with a slightly smaller unit cell will confine the
200	lattice of the G. P. zone precipitates due to coherent and semi-coherent interfaces between the G.
201	P. zone precipitates and the host enstatite.

203	The calculated crystal structure for multi-layer G. P. zone has 4 types of tetrahedral
204	chains (Figs. 8-10). OB chains (O3-O3-O3=133.58°) are similar to OB chains in OPX (Figs. 8,
205	10). There are 2 types of OA chains (OA1: O3-O3-O3=158.24° and OA2: O3-O3-O3=145.91°)
206	between the Ca-Mg octahedral layer and Fe-Mg-octahedral layer (Figs. 8, 10). OC chains (O3-
207	O3-O3=151.52°) between Ca-Mg-octahedral layers are very similar to OA chains in OPX. The
208	space group of a calculated G. P. zone is determined to be $P2_1/c$. The β angle is very close to 90°
209	(Table 2).

214 Discussion regarding a G. P. zone with *Pbc2*₁ symmetry and OPX with *P2*₁*ca* symmetry

An OPX with G. P. zones will display weak diffraction spots that violate *a*-glide and *b*glide planes in [001] and [100] zone-axis diffraction patterns of the OPX, respectively. Nord (1980) proposed a symmetry for the G. P. zone precipitates based on weak diffraction spots in violation of *a*-glide only. According to this model, Ca atoms will be in octahedral bands with opposite skews similar to Mg in proto-enstatite (Nord, 1980, Buseck et al., 1980). This type of structure will be unstable for large cations of Ca (Cameron, and Papike, 1970).

221 The reported OPX with P21ca symmetry contains G. P. zones (Smyth, 1974; Steel, 1975; 222 Evensen et al., 1979; Harlow et al., 1979; Smyth and Swope, 1990). The studied sample also 223 shows diffraction violating *b*-glide perpendicular to *a*-axis (Luo et al., 1988, 1992). The presence 224 of G. P. zones with $P2_{1/c}$ symmetry explains the observed diffraction spots that violate b-glide in 225 reported OPX and extra diffraction spots that violate a-glide from the G. P. zones with $P2_1/c$ 226 symmetry (Smyth, 1974; Smyth and Swope, 1990). Because G. P. zones are very thin nanoplates parallel to (100) of the host OPX, it is very difficult to recognize them in [100] zone-axis 227 228 TEM images. The weak diffraction spots and streaking that violate a- and b-glide plans are considered resulting from G. P. zones instead of OPX. Smyth and Swope (1990) provided 229 230 detailed explanations.

OPX with G. P. zones indicates slow cooling of its host rock (Nord, 1980; Smyth and Swope, 1990). The nano-precipitates of G. P. zones are intermediary or transition phases between both the structures and compositions of the host OPX and a thermodynamically stable precipitate of diopside (Champness and Lorimer, 1973; Nord, 1980). The structure of a G. P. zone can be considered as the combination of a one-half enstatite unit cell and a unit cell of

236	diopside, i.e. G. P. = $\frac{1}{2}$ En + Di. The energy of the right side (i.e., $\frac{1}{2}$ En + Di) is lower (~0.18 eV
237	per MSiO ₃) than that of a G. P. zone. The G. P. zones are metastable nano-phases with respect
238	end-members of diopside and enstatite. Precipitation of the G. P. zones may lower interfacial
239	energy between the precipitates and the host OPX. Figure 11 schematically illustrates the
240	variations of free energies in a diopside-enstatite binary system. At low temperature, coherent
241	precipitation of G. P. zones within OPX may have lower energy than coherent precipitation of
242	diopside (CPX) within OXP due to lattice mis-fit in their <i>a</i> -dimensions. However, the energy is
243	higher than a mechanical mixture of thermodynamically stable phases of OPX and diopside.

245 Implications

246 Because Z-contrast imaging can provide information about both positions and occupancies of atom columns, an intracrystalline Fe-Mg distribution coefficient (K_d) between the 247 248 M1 (Fe/Mg=8/92) and M2 (Fe/Mg=80/20) sites can be obtained. OPX with a low distribution coefficient (~0.02) corresponds to a structural state at an apparent temperature of ~ 250° C to 249 250 350 °C based on the published relationship between the intracrystalline Fe-Mg distribution coefficient and equilibrium temperature (Molin et al., 1991; Zema et al., 1999; Heinemann et al., 251 2000; Stimpfl et al., 2005; Wang et al., 2005). The low apparent equilibrium temperature is 252 253 related to extremely slow cooling of the host rock (Heinemann et al., 2008). 254 It was reported that OPX with G. P. zones has larger activation energy for Fe-Mg 255 disordering at high temperature than an OPX with the same composition but without G. P. zones 256 (Heinemann et al., 2000). Ordered Ca atoms in diopside-like sub-layers may inhibit Fe diffusion into M1 sites and even Ca sites. Uniform distribution of G. P. zones may slow down Fe-Mg 257

258	disordering in host OPX. The combination of Z-contrast imaging and DFT methods may be used
259	for determining occupancies of atoms in crystallographic sites of minerals with solid solutions as
260	well as solving crystal structures of other natural nano-precipitates and nano-minerals.
261	The original meaning of G. P. zones refers to nano-precipitates with intermediate
262	structure and composition between 2 end-members in metal alloys (see detail description in
263	Buseck et al., 1980). The G. P. zones in OPX are very similar to mixed-layer clay minerals, such
264	as interstratified chlorite/serpentine minerals (Banfield and Bailey, 1996; Xu and Veblen, 1996).
265	The observed G. P. zones in the enstatite - diopsiode system may also be described as nano-
266	precipitates of interstratified enstatite / diopside, although OA1 and OA2 chains between
267	enstatite sub-layer and diopside sub-layer are new and different.
268	
269	
270	ACKNOWLDEGEMENTS
271	This work is supported by NASA Astrobiology Institute (N07-5489) and NSF (EAR-095800, MRI).
272	Authors thank Prof. Izabela Szlufarska of University of Wisconsin for the help in DFT calculation.

Authors than Dr. Jun Wu and an anomynous reviewer for critical reviews and helpful suggestions.

274

276	References
277	Banfield, J.F., and Bailey, S.W. (1996) Formation of regularly interstratified serpentine -
278	chlorite minerals by tetrahedral inversion in long-period serpentine polytypes. American
279	Mineralogist, 81, 79-81.
280	Buseck, P. R., Nord, G. L., and Veblen, D. R. (1980) Subsolidus phenomena in pyroxenes. In
281	Charles T. Prewitt ed. "Pyroxenes". Reviews in Mineralogy, Vol. 7, page117-211.
282	Cameron, M., Sueno, S., Prewitt, C.T., and Papike, J.J. (1973) High-temperature crystal
283	chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite, 58, 594-618
284	Cameron, M., and Papike, J.J. (1970) Crystal chemistry of silicate pyroxenes. Reviews in
285	Mineralogy, Vol. 7, page 5-92.
286	Carlson, W.D., Swinnea, J.S., and Miser, D.E. (1998) Stability of orthoenstatite at high
287	temperature and low pressure. American Mineralogist, 73, 1255-1263
288	Champness, P.E., and Lorimer, G.W., (1973) Precipitation (exsolution) in an orthopyroxene.
289	Journal of Material Science, 8, 467–474.
290	Champness, P.E. and Lorimer, G.W. (1974) A direct lattice-resolution study of precipitation
291	(exsolution) in orthopyroxene. Phil. Mag., 30, 357-365.
292	Evensen, N.M., Hamilton, P.J., Harlow, G.E., Klimentidis, R., O'Nion, R.K., and Prinz, M.
293	(1979) Silicate inclusions in Weekeroo station: planetary differentiates in an iron
294	meteorite. Lunar and Planetary Science, X, 376-377.
295	Harlow, G.E., Nehru, C.E., Prinz, M., Taylor, G.J., and Keil, K. (1979) Pyroxene in Serra de
296	Mage: History in comparison with Moama and Moor County. Earth and Planetary
297	Science Letters, 43, 173-181.
298	Heinemann, R., Kroll, H., Langenhorst, F., and Lueder, T. (2000) Time and temperature
299	variation of the intracrystalline Fe ²⁺ , Mg fractionation in Johnstown meteoritic
300	orthopyroxene. European Journal of Mineralogy, 12, 163-176.

301	Heinemann, R., Kroll, H., and Langenhorst, F. (2008) Relationship between Guinier-Preston
302	zones and the kinetics of the intracrystalline Fe^{2+} , Mg exchange reaction in Johnstown
303	meteoritic orthopyroxene. European Journal of Mineralogy, v. 20, 551-561.
304	Kirkland, E.J. (2010) Advanced computing in electron microscopy. Plenum Press, New York.
305	250 pp.
306	Kresse, G., and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals
307	and semiconductors using a plane-wave basis set. Computational Materials Science, 1,
308	15-50.
309	Langenhorst, F., Smyth, J.R., and H. Kroll, H. (2006) On the nature of Guinier-Preston zones in
310	meteoritic and lunar orthopyroxene. Lunar and Planetary Science, XXXVII, 2104.
311	Luo, G., Xu, H. F., Xue, J., Hu, M., Fan, C., and Zhang, S. (1988) The first discovery of
312	terrestrial orthopyroxene with space group P21ca. Kexue Tongbao (Science Bulletin,
313	China), 33, 1552-1554.
314	Luo, G., Xue, J., Xu, H.W., Xu, H. F., and Hu, M. (1992) Confirmation of the terrestrial
315	occurrence of orthopyroxene with space group P21ca. American Mineralogist, 77, 115-
316	120.
317	Molin G. M., Saxena S. K., and Brizi E. (1991) Iron-magnesium order-disorder in an
318	orthopyroxene crystal from the Johnstown meteorite. Earth Planet. Sci. Lett., 105, 260 -
319	265.
320	Nord, G. L. (1980) The composition, structure, and stability of guinier-preston zones in lunar and
321	terrestrial orthopyroxene. Physics and Chemistry of Minerals, 6: 109 - 128
322	Pennycook, S. (2002) Structure determination through Z-contrast microscopy. Advances in
323	imaging and electron physics, 173-206.
324	Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made
325	simple. Physical Review Letters, 18, 3865-3868.

326	Shi, F. (2013) Advanced electron microscopy of novel ferromagnetic materials and ferromagnet /
327	oxide interfaces in magnetic tunnel junctions. Ph. D. Dissertation, University of
328	Wisconsin - Madison.
329	Smyth, J. R. (1974) Low orthopyroxene from a lunar deep crustal rock: a new pyroxene
330	polymorph of space group P2 ₁ ca. Geophyical Research Letters, 1, 27-29.
331	Smyth J.R., and Swope R.J. (1990) The origin of space group violations in a lunar orthopyroxene.
332	Phys. Chem. Min., 17, 438-443.
333	Steele, I.M. (1975) Mineralogy of lunar norite 78235: second lunar occurrence of P21ca
334	pyroxene from Apollo 17 soils. American Mineralogist, 60, 1086-1091.
335	Stimpfl, M., Ganguly, J., and Molin, G. M. (2005) Kinetics of Fe ²⁺ – Mg order-disorder in
336	orthopyroxene: experimental studies and applications to cooling rates of rocks. Contrib
337	Mineral Petrol, 150, 319-334.
338	Takeda, H., Mori, H., and Miyamoto, M. (1982) Comparison of thermal history of
339	orthopyroxenes between Lunar Norites 78236, 72255, and diogenites. Proceedings of the
340	Thirteenth Lunar and Planetary Science Conference, Part 1. Journal of Geophysical
341	Research, 87, supplement, p. A124-A130.
342	Wang, L., Moon, N, Zhang Y., Dunham, W. R., and Essene, E. J. (2005) Fe-Mg order-disorder
343	in orthopyroxenes. Geochimica et Cosmochimica Acta, 69, 5777-5788.
344	Xu, H, and Veblen, DR (1996) Interstratification and other reaction microstructures in the
345	chlorite-berthierine series. Contribution to Mineralogy and Petrology, 124, 291-301.
346	Zema, M., Domeneghetti, M. C., and Tazzoli, V. (1999) Order-disorder kinetics in
347	orthopyroxene with exsolution products. American Mineralogist, 84, 1895–1901.
348 349	
320	

Figure 1: (A) Schematic diagram of STEM showing formation of a Z-contrast image (or HAADF

image) and annular bright-field (ABF) image. ABF image (B) and Z-contrast image (C) of

351 Figure captions352

353

354

magnetite (Fe₃O₄) showing position of Fe atom columns. ABF image also shows positions of 355 oxygen atom columns (B). Structure model of magnetite along [110] zone-axis is also inserted in 356 357 both images for comparison. 358 Figure 2: SAED pattern from OPX with G. P. zones showing streaking and very weak diffraction 359 360 spots that violate *a*-glide. 361 Figure 3: Low magnification ABF STEM image (A) and Z-contrast image (B) showing G. P. 362 363 zones with relatively lower intensity with respect to host OPX (B). An outlined area shows a 3layer G. P. zone. The intensity changes from top-left to low-right indicate specimen thickness 364 changes (from thin at top-left to thick in low-right). 365 366 367 Figure 4: FFT patterns from Z-contrast image without G. P. zones (A) and with a 3-layer G. P. 368 zone (B). Some extra spots violating a-glide appear (arrowed). No odd 0k0 spots appear in either FFT pattern. 369 370 371 Figure 5: High magnification ABF STEM image (A) and Z-contrast image (B) of OPX with G. P. 372 zones (relatively low intensity). Layers labeled with G. P. are the positions of the diopside sublayers. FFT patterns from the BF STEM image show even and odd 0k0 spots, whereas FFT 373 374 patterns from the Z-contrast image show even 0k0 spots only. 375 376 Figure 6: Line profiles of intensities along line a (OPX host), line b (diopside sub-layer), and across the diopside sub-layer zone area outlined in Figure 5B. Notice the differences in distance 377 between neighboring M2 sites, ~ 4.2 Å for Fe atoms in the OPX, and ~ 3.7 Å for Ca atoms in the 378

380

379

diopside sub-layer.

381	Figure 7: Z-contrast image containing a G. P. zone with projections of the OPX structure and G.
382	P. zone structure along [001] zone-axis. OA and OB tetrahedral chains are can be identified in
383	the OPX host based on their appearance as "V" or dumbbell-like shapes.
384	
385	Figure 8: Structure models of OPX (with <i>Pbca</i> symmetry and a G. P. zone with $P2_1/c$ symmetry
386	projected along c -axis). OC chains are between Ca-Mg bands in the diopside sub-layer.
387	
388	
389	Figure 9: Structure models of OPX (with <i>Pbca</i> symmetry and a G. P. zone with $P2_1/c$ symmetry
390	projected along <i>b</i> -axis). OC chains are in the diopside sub-layer. Two Ca-Mg polyhedral bands
391	in the diopside sub-layer have the same skew.
392	
393	Figure 10: Diagrams showing rotations and angles between bridge oxygen atoms (O3-O3-O3) of
394	the 4 types of tetrahedral chains in the structure of a G. P. zone. The O3-O3-O3 angles in
395	tetrahedral chains are 151.52° for OC chains, 133.58° for OB chains, 158.24° for OA1 chains,
396	and 145.91° for OA2 chains, respectively.
397	
398	
399	Figure 11: Diagram which schematically illustrates free energies for OPX (<i>Pbca</i>), CPX (<i>C2</i> ₁ / <i>c</i>),
400	CPX $(C2_1/c)$ within OPX, and a G. P. zone within OPX. The energy for coherent intergrowth of
401	OPX and a G. P. zone is lower than the coherent intergrowth of OPX and CPX, although it is
402	higher than the energy of equilibrium phases of OPX and CPX (lower red curve).
403	

35 Å, along *b*-axis

28 Å, along *a*-axis

Atom	X	у	Z	Atom	X	У	Z
Mg1A	0.1213	0.1526	0.8560	Mg2A	0.1190	0.5123	0.8483
Mg1B	0.3719	0.6591	0.8708	Ca2B	0.3788	0.0377	0.8744
Si1	0.2644	0.1556	0.5240	Si2	0.2245	0.6614	0.5609
Si3	0.4796	0.1592	0.3122	Si4	0.0277	0.6635	0.3073
01	0.1767	0.1599	0.5173	O2	0.3124	0.6652	0.5403
03	0.0607	0.1617	0.1902	O4	0.4330	0.6713	0.1968
05	0.3073	0.0013	0.5089	O6	0.1856	0.5017	0.5283
07	0.4455	0.0008	0.2358	08	0.0662	0.5193	0.1848
09	0.2936	0.2221	0.8044	O10	0.1935	0.7055	0.8577
011	0.4463	0.2131	0.5975	012	0.0531	0.6877	0.6172

Table 1: Coordinates of atoms in a multi-layer G. P. zone structure with $P2_1/c$ symmetry.

Enstatite/diopside G. P. zone: $CaMg_3(Si_2O_6)_2$, Z = 4.

Table 2: Unit cell	parameters of G. P.	zone precipitate	, enstatite.	and diopside.
			,	

I attica naramatars	Enstatite		Diopside		G. P. zone	
Lattice parameters	Calculated	Measured ^a	Calculated	Measured ^b	Calculated	Measured ^c
a (Å)	18.188	18.280	9.700	9.745	18.403	18.40
b (Å)	8.858	8.834	8.929	8.899	8.909	8.83
c (Å)	5.096	5.197	5.182	5.251	5.177	5.18
$V(Å^3)$	821.066	839.240	434.578	438.532	848.620	841.61
β (°)	90	90	104.46	105.63	90.53	90.0
E (eV)	-575.169		-294.351		-579.003	

^a Carlson et al., 1988; ^b Cameron et al., 1973; ^c Smyth and Swope, 1990. Uncertainties for the measured unit-cell parameters of the host enstatite are ± 0.006 Å, ± 0.002 Å, and ± 0.001 Å, along a- b- and c-axis respectively (Smyth and Swope, 1990). The uncertainties for the measured cell parameters of G.P. zone should be larger than those for the host crystal because of weak and diffuse reflections from the G.P. zones.