1	REVISION 1
2	
3	Agakhanovite-(Y), ideally (YCa)□2KBe3Si12O30, a new milarite-group mineral from the
4	Heftetjern Pegmatite, Tørdal, Southern Norway: Description and crystal structure
5	
6	
7	Frank C. Hawthorne ^{1,*} , Yassir A. Abdu ¹ , Neil A. Ball ¹ , Petr Černý ¹ and Roy Kristiansen ²
8	
9	¹ Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
10	² PO Box 32, N–1650 Sellebakk, Norway
11	
12	* E-mail: frank_hawthorne@umanitoba.ca
13	
14	

15

ABSTRACT

16	Agakhanovite-(Y), ideally (YCa) \Box_2 KBe ₃ Si ₁₂ O ₃₀ , is a new milarite-group mineral from
17	the Heftetjern pegmatite, Tørdal, southern Norway. Crystals are prismatic along [001], and show
18	the forms {100} and {100}. Agakhanovite-(Y) is colorless with a white streak and a vitreous
19	luster, and does not fluoresce under ultraviolet light. There is no cleavage or parting, and no
20	twinning was observed. Mohs hardness is 6, and agakhanovite-(Y) is brittle with a conchoidal
21	fracture. The calculated density is 2.672 g/cm ³ . Optical properties were measured with the Bloss
22	spindle stage for the wavelength 590 nm using a gel filter. Agakhanovite-(Y) is uniaxial (-) with
23	indices of refraction $\omega = 1.567$, $\varepsilon = 1.564$, both ± 0.002 ; the calculated birefringence is 0.003 and
24	it is non-pleochroic. Agakhanovite-(Y) is hexagonal, space group P6/mcc, a 10.3476(2), c
25	13.7610(3) Å, V 1276.02(9) Å ³ , Z = 2, c:a = 1.330. The seven strongest lines in the X-ray
26	powder-diffraction pattern are as follows: <i>d</i> (Å), <i>I</i> , (<i>h k l</i>): 2.865, 100, (1 2 4); 3.287, 96, (1 3 1);
27	4.134, 84, (122); 6.877, 56, (002); 2.986, 43, (030); 4.479, 38, (020); 2.728, 36, (024).
28	Chemical analysis by electron microprobe gave SiO ₂ 69.56, Al ₂ O ₃ 0.35, Y ₂ O ₃ 9.69, Yb ₂ O ₃ 0.15,
29	FeO 0.02 CaO 5.75, Na ₂ O 0.07, K ₂ O 4.52, BeO(calc) 7.06, H ₂ O(calc) 1.74, sum 98.91 wt.%.
30	The H ₂ O content was determined by crystal-structure analysis. On the basis of 30 anions with
31	$(H_2O) + Na = 1 a.p.f.u.$, the empirical formula is $(Y_{0.89}Yb_{0.01}Ca_{1.06})_{\Sigma 1.96}(H_2O)_{0.98}Na_{0.02}K_{1.00}$
32	$(Be_{2.93}Al_{0.07})_{\Sigma 3.00}Si_{12.02}O_{30}$. The crystal structure of agakhanovite-(Y) was refined to an R_1 index
33	of 1.9% based on 660 unique observed reflections collected on a three-circle rotating-anode
34	(MoKa X-radiation) diffractometer equipped with multilayer optics and an APEX-II detector. In
35	the end-member structure of agakhanovite-(Y), the A site is occupied equally by Y and Ca, and
36	the B site is vacant; agakhanovite-(Y) is the Y-analogue of oftedalite: $ScCa\Box_2KBe_3Si_{12}O_{30}$, and
37	the Y-Ca-Be analogue of klöchite, $(Fe^{2+}Fe^{3+})\Box_2KZn_3Si_{12}O_{30}$.

5/7

- 38 Keywords: Agakhanovite-(Y), new mineral species, milarite-group mineral, Heftetjern
- 39 pegmatite, Tørdal, southern Norway, crystal structure, electron microprobe analysis, optical
- 40 properties.

42

INTRODUCTION

43	Oftedal & Sæbø (1965) reported significant Y-REE in milarite from Grorud, Norway.
44	Černý et al. (1991) described Y-rich milarite from the Jaguaraçú pegmatite, Minas Gerais,
45	Brazil, and the Strange Lake peralkaline complex, Labrador-Quebec border, Canada, with up to
46	7.9 wt.% Y ₂ O ₃ and 2.9 wt.% REE ₂ O ₃ in the latter. Nysten (1996) reported Y-rich milarite from
47	granitic pegmatites in Sweden with up to 8.89 wt.% Y ₂ O ₃ . These milarites were all strongly
48	compositionally zoned, preventing characterization and description as a new species. Raade and
49	Kristiansen (2000) and Kristiansen (2009) reported Sc as a major element in one sample of
50	milarite from the granitic pegmatite at Heftetjern, Tørdal, southern Norway. Hawthorne (2002)
51	suggested that this could be a new mineral of the milarite-group, and it was described by Cooper
52	et al. (2006) as the new species oftedalite, ideally (ScCa) \Box_2 KBe ₃ Si ₁₂ O ₃₀ . The Heftetjern
53	pegmatite also contains many minerals with essential Y: yttropyrochlore-(Y), yttrobetafite-(Y),
54	polycrase-(Y), gadolinite-(Y), thalenite-(Y), calcian hingganite-(Y), manganoan hellandite-(Y),
55	kainosite-(Y) and kamphaugite-(Y), suggesting the possibility of an Y-analogue of oftedalite.
56	Detailed examination of Y-rich parageneses of the Heftetjern pegmatite eventually led in 2011 to
57	the discovery of tractable crystals of high Y content that could be characterized as a new species.
58	This mineral is named agakhanovite-(Y) after Atali A. Agakhanov (b. 1971),
59	mineralogist at the Fersman Mineralogical Museum, Moscow, Russia, who has worked on a
60	wide variety of pegmatite minerals, and in particular on the minerals of the milarite group. The
61	new mineral and mineral name have been approved by the Commission on New Minerals,
62	Nomenclature and Classification, International Mineralogical Association (IMA 2013-090). The
63	holotype specimen of agakhanovite-(Y) is deposited in the Mineralogy collection of the Royal

4

64	Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada, catalogue number
65	M43863.
66	
67	OCCURRENCE
68	The Heftetjem cleavelandite-amazonite pegmatite is situated in a marshy area between
69	Høydalen and Skarsfjell in Tørdal, southern Norway, at an altitude of ~650 m above sea level, at
70	59°8.6' N 8°45.4' E. The numerous granite pegmatites of the Tørdal area occur within the
71	Nissedal volcano-sedimentary outlier. Both the outlier (1300-1200 Ma) and the older basement
72	(1520-1500 Ma) are intruded by the Tørdal granite (960-850 Ma) which is regarded as the source
73	of the pegmatite swarms (Bergstøl and Juve 1988). The Tørdal area in Telemark is
74	geochemically different from other granite pegmatites in south Norway, being characterized by
75	high levels of Sn, Sc, Y, Be and Li. Bergstøl and Juve (1988) suggested that some of the Sn and
76	a major part of Sc in the amazonite-cleavelandite pegmatites of the area were leached from the
77	volcanogenic rocks of the Nissedal outlier by the pegmatitic fluids.
78	Three types of milarite can be distinguished at Heftetjern: (1) milarite of normal
79	composition (rather common); (2) milarite with roughly 5-7 wt.% $Sc_2O_3 = oftedalite$ (Cooper et
80	al. 2006) (extremely rare); (3) milarite with high yttrium content (rare). Moreover, only one
81	sample shows very high Y (~10 wt% Y_2O_3), the holotype described here. Agakhanovite-(Y)
82	occurs in vugs in a granitic pegmatite, indicating that it is a miarolitic-cavity mineral that
83	crystallized from late-stage hydrothermal solutions enriched in Y.
84	
85	

87

PHYSICAL PROPERTIES

88	The type specimen is approximately 3 x 3 x 1 cm and consists of microcline, albite and
89	interstitial quartz crystals, with several hexagonal, colorless crystals of milarite 1-4 mm long
90	with prominent {100} and {001} forms. Agakhanovite-(Y) occurs as aggregates or clusters up to
91	$350 \ \mu m$ wide (Fig. 1) and consisting of colorless transparent crystals, or as tiny solitary
92	hexagonal crystals partly on or between crystals of milarite or embedded in or deposited on the
93	surface of milarite crystals with random orientation. It occurs more rarely as $\sim 20 \ \mu m$ hexagonal
94	crystals perched on the surface of kristiansenite. Individual crystals of agakhanovite-(Y) are up
95	to 20-60 μm long and 10-20 μm thick.
96	Crystals are prismatic along [001] and show the following forms: {100} and {001}.
97	Agakhanovite-(Y) is colorless with a white streak and a vitreous luster, and does not fluoresce
98	under ultraviolet light. There is no cleavage or parting, and no twinning was observed. Mohs
99	hardness is 6, and agakhanovite-(Y) is brittle with a conchoidal fracture. The calculated density
100	is 2.672 g/cm ³ . Optical properties were measured with a Bloss spindle stage for the wavelength
101	590 nm using a gel filter. It is uniaxial (-) with indices of refraction $\omega = 1.567$, $\varepsilon = 1.564$, both \pm
102	0.002; the calculated birefringence is 0.003.
103	
104	R AMAN SPECTROSCOPY
105	The Raman spectrum of agakhanovite-(Y) is shown in Figure 2. The Raman spectrum
106	shows typical Si-O stretches at 1000-1200 cm ⁻¹ and various "lattice vibrations" at lower wave-
107	numbers. There is an asymmetric envelope from \sim 3400-3560 cm ⁻¹ and two small peaks at 3670
108	and 3730 cm ⁻¹ that correspond to principal stretching bands of H_2O .
109	

110

CHEMICAL COMPOSITION

111	Agakhanovite-(Y) was analyzed with a Cameca SX-100 electron microprobe operating in
112	wavelength-dispersion mode with an accelerating voltage of 15 kV, a specimen current of 20 nA,
113	and a beam diameter of 5 μ m. The following standards were used: quartz: Si; and alusite: Al;
114	YAG: Y; YbPO4: Yb; fayalite: Fe; diopside: Ca; albite: Na; orthoclase: K (Mn, Zn, other REE
115	not detected). The data were reduced and corrected by the PAP method of Pouchou & Pichoir
116	(1985) and the chemical composition (mean of ten determinations) is given in Table 1. The
117	empirical formula was calculated on the basis of 30 anions with $Be = 3 - Al$, and (H ₂ O) was
118	calculated as 0.92 apfu (atom per formula unit) as indicated by site-scattering refinement, giving
119	$(Y_{0.89}Yb_{0.01}Ca_{1.06})_{\Sigma 1.96}(\Box_{1.00}(H_2O)_{0.92}Na_{0.02})_{\Sigma 2.00}K_{1.00}(Be_{2.93}Al_{0.07})_{\Sigma 3.00}Si_{12.02}O_{30}, ideally$
120	$(YCa)\Box_2KBe_3Si_{12}O_{30}.$
121	
122	X-RAY POWDER DIFFRACTION
123	X-ray powder-diffraction data were obtained using a Gandolfi attachment mounted on a
124	Bruker D8 rotating-anode Discover SuperSpeed micro-powder diffractometer with a multi-wire
125	2D detector. Data (in Å for $CuK\alpha$) are listed in Table 2. Unit-cell parameters refined from the
126	powder data are as follows: $a = 10.342(1)$, $c = 13.768(3)$ Å, $V = 1275.5(4)$ Å ³ .
127	
128	CRYSTAL-STRUCTURE SOLUTION AND REFINEMENT
129	A crystal was attached to a tapered glass fiber and mounted on a Bruker D8 three-circle
130	diffractometer equipped with a rotating-anode generator (Mo $K\alpha$), multilayer optics and an
131	APEX-II detector. A total of 44,574 intensities was collected to $60^{\circ} 2\theta$ using 2 s per 0.2° frames
132	with a crystal-to-detector distance of 5 cm. Empirical absorption corrections (SADABS;

133	Sheldrick 2008) were applied and equivalent reflections were corrected for Lorentz, polarization
134	and background effects, averaged and reduced to structure factors. The unit-cell dimensions were
135	obtained by least-squares refinement of the positions of 9975 reflections with $I > 10\sigma I$ and are
136	given in Table 3, together with other information pertaining to data collection and structure
137	refinement.
138	All calculations were done with the SHELXTL PC (Plus) system of programs; R indices
139	are of the form given in Table 3 and are expressed as percentages. The structure was refined in
140	the space group P6/mcc by full-matrix least-squares with anisotropic-displacement parameters on
141	all atoms to convergence at a final R_1 index of 1.90%. Refined atom coordinates and anisotropic-
142	displacement parameters are listed in Table 4, selected interatomic distances are given in Table
143	5, and refined site-scattering values (Hawthorne et al. 1995) and assigned site-populations are
144	given in Table 6.
145	
146	CRYSTAL STRUCTURE
147	The tetrahedron framework
148	The general structure of the milarite-group minerals is a beryllo-aluminosilicate
149	framework (Forbes et al. 1972; Černý et al. 1980) of the form $(4^26^4)_4(6^49^2)$ (Hawthorne & Smith
150	1986, Hawthorne et al. 1991) with several of the interstitial sites occupied by a wide variety of
151	cations. The T1 site is occupied solely by Si, as indicated by the empirical formula given above
152	and by the observed <t1-o> distance of 1.612 Å (Table 5). Hawthorne et al. (1991) developed a</t1-o>
153	relation between <t2-o> and Be / (Be + Al) in the milarite structures; the observed <t2-o></t2-o></t2-o>
154	distance of 1.636 Å (Table 5) and the assigned T2 site-population of 2.93 Be + 0.07 Al (Table 6)
155	are in exact accord with this relation.

156

157 **The interstitial sites**

158	The refined site-scattering value at the A site is in close accord with the site populations
159	assigned from the unit formula derived from the electron-microprobe analysis (Table 6). The
160	observed <a-o> distance of 2.334 Å (Table 5) and the site population for A given in Table 6 are</a-o>
161	in reasonable accord with the relation between <a-o> and the aggregate radius of the cations</a-o>
162	occupying the A site given by Hawthorne et al. (1991). The <c-o> distance of 3.016 Å (Table 5)</c-o>
163	is almost exactly equal to the grand <c-o> distance of 3.017 Å reported by Hawthorne et al.</c-o>
164	(1991) for milarite structures. The B site has a refined site-scattering value of 9.4(2) <i>epfu</i> and the
165	Na content of the crystal is 0.02 apfu. The Raman spectrum indicates the presence of major
166	(H_2O) in the structure (Fig. 2) which provides the balance in scattering at the B site (Table 6).
167	
168	Chemical formula
169	The empirical formula for agakhanovite-(Y) is $(Y_{0.89}Yb_{0.01}Ca_{1.07})_{\Sigma=1.97}(\Box_{1.00}(H_2O)_{0.98})$
170	$Na_{0.02})_{\Sigma=2.00}K_{1.00}(Be_{2.93}Al_{0.07})_{\Sigma=3.00}Si_{12.02}O_{30}$, resulting in a general composition
171	$(Y,Ca)(\Box,H_2O,Na)_2 K(Be,Al)_3 Si_{12}O_{30}$ and an end-member composition $(YCa)\Box_2 KBe_3 Si_{12}O_{30}$.
172	Note that the occurrence of two heterovalent cations at a single site in the structure is in accord
173	with the criteria for an end member (Hawthorne 2002).
174	Agakhanovite-(Y) is the Y-analogue of oftedalite (ScCa) \Box_2 KBe ₃ Si ₁₂ O ₃₀ , related by the
175	substitution Y = Sc. It also has the same charge arrangement as klöchite, $(Fe^{2+}Fe^{3+})\Box_2KZn_3Si_{12}$
176	O_{30} (Bojar et al. 2011), to which it is related by the substitution $Y + Ca + Be_3 = Fe^{3+} + Fe^{2+} + Fe^{3+}$
177	Zn ₃ . The current members of the milarite group are listed in Table 7. Note that armenite is only
178	pseudo-hexagonal and has an orthorhombic superstructure. In the end-member compositions

179	listed in Table 7, the C site (with a rank of 1) is the only site that is not occupied by two species
180	in the set of end-members given here. It is this peculiarity of the milarite structure that is a major
181	factor in the chemical flexibility of this structure type.
182	
183	IMPLICATIONS
184	There are currently 24 milarite-group minerals known from a wide variety of
185	parageneses, and it is certain that others will be found in the future. The discovery of
186	agakhanovite-(Y) draws attention to the following significant question: Why are some structural
187	arrangements very compliant in terms of the ions that they can contain as dominant chemical
188	species, giving rise to relatively large numbers of isostructural mineral species, whereas other
189	structural arrangements are chemically restrictive and are adopted by only one or two mineral
190	species? The issue of what affects the relative chemical stabilities of specific bond topologies is
191	one that challenges our understanding of structure stability and deserves serious consideration in
192	the future.
193	
194	ACKNOWLEDGEMENTS
195	We thank Mark Cooper for his help with this work; Harald Folvik, Natural History
196	Museum, University of Oslo, for the SEM photo of agakhanovite-(Y); and Franz Bernhard,
197	Technical University of Graz, for an early indication of high Y content in milarite. Support was
198	provided by a Canada Research Chair in Crystallography and Mineralogy, and by Discovery,
199	Equipment and Major Installation grants of the Natural Sciences and Engineering Research
200	Council of Canada, and by Innovation grants from the Canada Foundation for Innovation to
201	FCH.
202	

203	References Cited
204	Abraham, K., Gebert, W., Medenbach, O., Schreyer, W., and Hentschel, G. (1983) Eifelite,
205	KNa ₃ Mg ₄ Si ₁₂ O ₃₀ , a new mineral of the osumilite group with octahedral sodium.
206	Contributions to Mineralogy and Petrology, 82, 252-258.
207	Armbruster, T. (1989) Crystal chemistry of double-ring silicates; structure of roedderite at 100
208	and 300 K. European Journal of Mineralogy, 1, 715-718.
209	Armbruster, T. and Oberhänsli, R. (1988a) Crystal chemistry of double-ring silicates: Structural,
210	chemical and optical variation in osumilites. American Mineralogist, 73, 585-593.
211	——— (1988b) Crystal chemistry of double-ring silicates: Structures of sugilite and brannockite
212	American Mineralogist, 73, 594-600.
213	Balassone, G., Mormone, A., Rossi, M., Bernardi, A., Fisch, M., Armbruster, T., Malsy, A.K.,
214	and Berger, A. (2008) Crystal chemical and structural characterization of an Mg-rich
215	osumilite from Vesuvius volcano (Italy). European Journal of Mineralogy, 20, 713-720.
216	Bergstøl, S. and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in
217	Tørdal, Telemark, Norway. A contribution to the mineralogy and geochemistry of
218	scandium and tin. Mineralogy and Petrology, 38, 229-243.
219	Bojar, HP., Walter, F., Hauzenberger, C., and Postl, W. (2011) Klöchite,
220	$K\square_2(Fe^{2+}Fe^{3+})Zn_3[Si_{12}O_{30}]$, a new milarite-type mineral species from the Klöch volcano,
221	Styria, Austria. Canadian Mineralogist, 49, 1115-1124.
222	Bunch, T.E. and Fuchs, L.H. (1969) Yagiite, a new sodium-magnesium analogue of osumilite.
223	American Mineralogist, 54, 14-18.
224	Černý, P., Hawthorne, F.C., and Jarosewich, E. (1980) The crystal chemistry of milarite.
225	Canadian Mineralogist, 18, 41 56.

- Černý, P., Hawthorne, F.C., Jambor, J.J., and Grice, J.D. (1991) Yttrian milarite. Canadian
 Mineralogist, 29, 533-542.
- 228 Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K., Aksenov, S.M., Belakovskiv, D.I., Van, K.V., 229 Schüller, W., and Ternes, B. (2012) Osumilite-(Mg): Validation as a mineral species and 230 new data. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 141(4), 27-36. 231 Cooper, M.A., Hawthorne, F.C., and Grew, E.S. (1999) The crystal chemistry of sogdianite, a 232 milarite-group mineral. American Mineralogist, 84, 764-768. Cooper, M., Hawthorne, F.C., Ball, N.A., Černý, P., and Kristiansen, R. (2006) Oftedalite, 233 234 ScCaKBe₃Si₁₂O₃₀, a new mineral of the milarite group from the Heftetjern pegmatite, 235 Tørdal, Norway: Description and crystal structure. Canadian Mineralogist, 44, 943-949. 236 Dodd, R.T. van Schmus, W.R., and Marvin, U.B. (1965) Merrihueite, a new alkali ferro-237 magnesian silicate from the Mezo-Madaras chondrite. Science, 149, 972-974. 238 Dusmatov, V.D., Efimova, A.F., Kataeva, Z.T., Khoroshilova, L.A., and Yanulov, K.P. (1968) 239 Sogdianite, a new mineral. Doklady Akademia Nauk SSSR, 182, 1176-1177 (in Russian). 240 Ferraris, G., Prencipe, M., Pautov, L.A., and Sokolova, E.V. (1999) The crystal structure of darapiosite and comparison with Li- and Zn-bearing minerals of the milarite group. 241 242 Canadian Mineralogist, 37, 769-774. 243 Forbes, W.C., Baur, W.H., and Khan, A.A. (1972) Crystal chemistry of milarite-type minerals. 244 American Mineralogist, 57, 463-472.
 - Fuchs, L.H., Frondel, C., and Klein, C., Jr. (1966) Roedderite, a new mineral from the Indarch
 meteorite. American Mineralogist, 51, 949-955.

-	
5/	1
J	

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4880 5/7
247	Grice, J.D., Ercit, T.S., Van Velthuizen, J., and Dunn, P.J. (1987) Poudretteite KNa ₂ B ₃ Si ₁₂ O ₃₀ , a
248	new member of the osumilite group from Mont Saint-Hilaire, Quebec, and its crystal
249	structure. Canadian Mineralogist, 25, 763-766.
250	Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining new mineral
251	species and heterovalent substitutions in complex minerals. Canadian Mineralogist, 40,
252	699-710.
253	Hawthorne, F.C. and Smith, J.V. (1986) Enumeration of 4-connected 3-dimensional nets and
254	classification of framework silicates. 3-D nets based on insertion of 2-connected vertices
255	onto 3-connected plane nets. Zeitschrift für Kristallographie, 175, 15-30.
256	Hawthorne, F.C., Kimata, M., Ball, N., Černý, P., Ball, N., Rossman, G.R., and Grice, J.D.
257	(1991) The crystal chemistry of the milarite group minerals. American Mineralogist, 76,
258	1836-1856.
259	Hawthorne, F.C., Ungaretti, L., and Oberti, R. (1995) Site populations in minerals: terminology
260	and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33,
261	907-911.
262	Hentschel, G., Abraham, K., and Schreyer, W. (1980) First terrestrial occurrence of roedderite in
263	volcanic ejecta of the Eifel, Germany. Contributions to Mineralogy and Petrology,
264	73,127-130.
265	Kato, T., Miura, Y., and Murakami, N. (1976) Crystal structure of sugilite. Mineralogical
266	Journal, 8, 184-192.
267	Kristiansen, R. (2009) A unique assemblage of scandium-bearing minerals from the Heftetjern-

pegmatite, Tørdal, south Norway. Norsk Bergverkmuseum, Skrifter, 41, 75-104. 268

269	Lengauer, C.L., Hrauda, N., Kolitsch, U., Krickl, R., and Tillmanns, E. (2009) Friedrichbeckeite,
270	$K(\Box_{0.5}Na_{0.5})_2(Mg_{0.8}Mn_{0.1}Fe_{0.1})_2(Be_{0.6}Mg_{0.4})_3[Si_{12}O_{30}]$, a new milarite type mineral from
271	the Bellerberg volcano, Eifel area, Germany. Mineralogy and Petrology, 96, 221-232.
272	Mihajlović, T., Lengauer, C.L., Ntaflos, T., Kolitsch, U., and Tillmanns, E. (2004) Two new
273	minerals, rondorfite, Ca ₈ Mg[SiO ₄] ₄ Cl ₂ , and almarudite, K(□,Na) ₂ (Mn,Fe,Mg) ₂ (Be,Al) ₃
274	[Si ₁₂ O ₃₀], and a study on iron-rich wadalite, Ca ₁₂ [(Al ₈ Si ₄ Fe ₂)O ₃₂]Cl ₆ , from the Bellerberg
275	volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie – Abhandlungen, 179, 265-
276	294.
277	Miyashiro, A. (1956) Osumilite, a new silicate mineral and its crystal structure. American
278	Mineralogist, 41, 104-116.
279	Murakami, N., Kato, T., Miura, Y., and Kirotatari, F. (1976) Sugilite, a new silicate mineral from
280	Iwagi Islet, southwest Japan. Mineralogical Journal, 8, 110-121.
281	Neumann, H. (1941) Armenite, a water-bearing barium-calcium-aluminosilicate. Norsk
282	Geologisk Tidsskrift, 21, 19-24.
283	Nysten, P. (1996) Paragenetic setting and crystal chemistry of milarites from Proterozoic granitic
284	pegmatites in Sweden. Neues Jahrbuch für Mineralogie, Monatshefte, H12, 564-576.
285	Oftedal, I. and Sæbø, P.C. (1965) Contributions to the mineralogy of Norway. 30. Minerals from
286	nordmarkite druses. Norsk Geologisk Tidsskrift, 45, 171-175.
287	Pautov, L.A. and Agakhanov, A.A. (1997) Berezanskite KLi ₃ Ti ₂ Si ₁₂ O ₃₀ , a new mineral. Zapiski
288	Vsesoyuznogo Mineralogicheskogo Obshchestva, 126(4), 75-80 (in Russian).
289	Pautov, L.A., Agakhanov, A.A., Sokolova, E.V., and Ignatenko, K.I. (1996) Dusmatovite, a new
290	mineral of milarite group. Vestnik Moskovskogo Universiteta, Seriya 4, Geologiya, N2,
291	54-60 (in Russian).

292	Pautov. L.A.	Agakhanov.	A.A., ai	nd Sokolova.	E.V. ((1998)) Shibkovite.	a new mineral	of
/			,				,,		

- 293 milarite group. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 127(4), 89-94
 294 (in Russian).
- 295 Postl, W., Walter, F., Ettinger, K., Hauzenberger, C., and Bojar, H.P. (2004) Trattnerite,
- 296 (Fe,Mg)₂(Mg,Fe)₃[Si₁₂O₃₀], a new mineral of the milarite group: mineral data and crystal
- structure. European Journal of Mineralogy, 16, 375-380.
- 298 Pouchou, J.L. and Pichoir, F. (1985) 'PAP' $\varphi(\rho Z)$ procedure for improved quantitative
- 299 microanalysis. In J.T. Armstrong, Ed., Microbeam Analysis, p. 104-106. San Francisco
- 300 Press, San Francisco, California.
- 301 Raade, G. and Kristiansen, R. (2000) Mineralogy and geochemistry of the Heftetjern granite

302 pegmatite, Tørdal: a progress report. Norsk Bergverksmusem, Skrifter, 17, 19-25.

303 Semenov, E.I., Dusmatov, V.D., Khomyakov, A.P., Voronkov, A.A., and Kazakova, M. (1975)

304 Darapiosite, a new mineral of the milarite goup. Zapiski Vsesoyuznogo

305 Mineralogicheskogo Obshchestva, 104, 583-584 (in Russian).

- 306 Sheldrick, G.M. (2008) A short history of *SHELX*. Acta Crystallographica, A64, 112-122.
- 307 Sokolova, E.V. and Pautov, L.A. (1995) Crystal structure of dusmatovite. Physics Doklady, 40,
 308 607-610.
- 309 Sokolova, E.V., Rybakov, V.B., and Pautov, L.A. (1999) Crystal structure of shibkovite.

310 Doklady Akademia Nauk, 369(3), 378-380 (in Russian).

- 311 Sokolova, E.V., Hawthorne, F.C., and Pautov, L.A. (2000) The crystal chemistry of Li-bearing
- 312 minerals with the milarite-type structure: The crystal structure of end-member sogdianite.
- 313 Canadian Mineralogist, 38, 853-859.

- Velde, D., Medenbach, O., Wagner, C., and Schreyer, W. (1989) Chayesite, K(Mg,Fe²⁺)₄Fe³⁺
- $[Si_{12}O_{30}]$: A new rock-forming silicate of the osumilite group from the Moon Canyon
- 316 (Utah) lamproite. American Mineralogist, 74, 1368-1373.
- 317 White, J.S.Jr., Arem, J.E., Nelen, J.A., Levens, P.B., and Thomssen, R.W. (1973) Brannockite, a
- new tin material. Mineralogical Record, 4, 73-76.
- 319

320	FIGURE CAPTIONS
520	
321	
322	Figure 1. Back-scattered-electron image of crystals of agakhanovite-(Y), and Y-bearing milarite.
323	
324	Figure 2. The Raman spectrum of agakhanovite-(Y) in the regions 100-1300 cm ⁻¹ (A) and 3100-
325	3900 cm ⁻¹ (B).
326	
327	

TABLE I.	agakhanovite-(Y)					
Constituent	Wt.%	Range	Stand. Dev.			
SiO ₂	69.56	68.36-70.45	0.58			
Al ₂ O ₃	0.35	0.24-0.63	0.14			
Y_2O_3	9.69	9.43-10.35	0.24			
Yb ₂ O ₃	0.15	0.06-0.30	0.07			
FeO	0.02	0.00-0.04	0.01			
CaO	5.75	5.66-5.95	0.08			
Na ₂ O	0.07	0.03-0.09	0.02			
K ₂ O	4.52	4.41-4.57	0.04			
BeO(calc.)	7.06					
H ₂ O(calc.)	1.74					
Total	98.91					

Chemical composition of TARIE 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4880

TABLE 2.	Powder-diffraction data for agakhanovite-(Y)						
$I_{(\text{meas.})}$ %	$d_{(\text{meas.})}$ Å	$d_{(ext{calc.})} ext{\AA}$	h k l				
56	6.877	6.884	0 0 2				
16	5.464	5.458	0 1 2				
19	5.170	5.171	$\overline{1}$ 2 0				
38	4.479	4.479	0 2 0				
84	4.134	4.135	$\overline{1}$ 2 2				
11	3.755	3.754	0 2 2				
25	3.445	3.442	0 0 4				
96	3.287	3.288	$\overline{1}$ 3 1				
27	3.214	3.213	0 1 4				
43	2.9861	2.9857	0 3 0				
100	2.8653	2.8654	$\overline{1}$ 2 4				
36	2.7283	2.7291	0 2 4				
		2.7244	$\overline{1}$ 3 3				
15	2.5842	2.5857	$\overline{2}$ 4 0				
5	2.4832	2.4843	$\overline{1}$ 4 0				
10 B	2.4280 *						
5	2.2513	2.2554	0 3 4				
6	2.1858	2.1847	1 4 3				
8	2.0977	2.0975	$\overline{1}$ 2 6				
14	2.0159	2.0144	$\overline{1}$ 4 4				
15	1.9541	1.9546	$\overline{1}$ 5 0				
21	1.8801	1.8803	$\overline{1}$ 5 2				
15	1.8450	1.8445	$\overline{1}$ 4 5				
10	1.8196	1.8193	0 3 6				
10	1.7915	1.7914	0 5 0				
16	1.7181	1.7210	0 0 8				
		1.7163	$\overline{2}$ 4 6				
16	1.6995	1.6997	$\overline{1}$ 5 4				
9	1.6793	1.6801	$\overline{2}$ 6 1				
3	1.6436	1.6438	$\overline{2}$ 6 2				
6	1.6059	1.6065	0 2 8				
5	1.5909	1.5891	0 5 4				
		1.5882	$\overline{2}$ 6 3				
3	1.5661	1.5665	$\overline{1}$ 6 2				
9	1.5406	1.5413	3 6 4				
4	1.5184	1.5182	$\overline{1}$ 6 3				
9	1.4915	1.4911	0 3 8				
5	1.4590	1.4589	0 6 2				
14	1.4342	1.4343	$\overline{2}$ 7 0				

TABLE 3.	Miscellaneous information for agakhanovite-(Y)						
<i>a</i> (Å)	10.3476(2)	Crystal size (µm)	15 x 15 x 30				
С	13.7610(3)	Radiation	ΜοΚα				
$V(\text{\AA}^3)$	1276.02(9)	No. of unique reflections	660				
Space Group	P6/mcc	No. $ F_{o} > 5\sigma F$	430				
Ζ	2	<i>R</i> (merge) (%)	2.5				
		R_1 (%)	1.9				
		wR (%)	6.3				
$R = \Sigma(F_{\rm o} - F_{\rm o})$	$F_{\rm c}) / \Sigma F_{\rm o} $						

 $wR = [\Sigma w(|F_{o}| - |F_{c}|)^{2} / \Sigma F_{o}^{2}]^{\frac{1}{2}}, w = 1$

INDL			and displaced	nem purumete	15 IOI ugukilu					
	X	У	Z.	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{ m eq}$
A	1/3	2/3	0.2363(1)	0.0071(2)	0.0071(2)	0.0139(11)	0	0	0.0036(1)	0.0094(4)
В	1/3	2/3	0.0545(6)	0.044(3)	0.044(3)	0.031(4)	0	0	0.022(2)	0.039(3)
С	0	0	1/4	0.0187(5)	0.0187(5)	0.0220(6)	0	0	0.0093(2)	0.0198(4)
T1	0.08107(4)	0.33803(4)	0.11267(3)	0.0082(2)	0.0106(2)	0.0073(2)	-0.0013(1)	-0.0002(1)	0.0048(2)	0.0086(1)
T2	0	1/2	1/4	0.009(2)	0.0092(13)	0.0088(15)	0	0	0.0045(8)	0.0091(10)
01	0.0938(2)	0.3867(2)	0	0.0308(10)	0.0211(8)	0.0076(7)	0	0	0.0130(7)	0.0199(4)
02	0.1955(1)	0.2774(1)	0.1334(1)	0.0173(6)	0.0247(6)	0.0193(6)	-0.0049(5)	-0.0031(5)	0.0158(5)	0.0181(3)
O3	0.1155(1)	0.4748(1)	0.18233(7)	0.0123(5)	0.0132(5)	0.0111(5)	-0.0031(4)	0.0001(4)	0.0075(4)	0.0117(2)

TABLE 4.Atom coordinates and displacement parameters for agakhanovite-(Y)

TABLE 5.	Selected interatomic distances (Å) in agakhanovite-(Y)						
A-O3 x3	2.258(1)	T1-O1	1.6153(6)				
A-O3′ x3	<u>2.409(1)</u>	T1-O2	1.619(1)				
<a-o></a-o>	2.334	T1-O2″	1.617(1)				
		T1-O3	<u>1.595(1)</u>				
B-O1 x3	2.814(3)	<t1-o></t1-o>	1.612				
B-O3 x3	<u>2.764(5)</u>						
<b-o></b-o>	2.789	T2-O3 x4	1.636(1)				
C-O2 x12	3.016(1)						

TABLE 6.Refined and calculated^a site-scattering values (*epfu*) and
assigned site-populations (*apfu*) in agakhanovite-(Y)

Site	Refined site- scattering	Assigned site populations	Calculated site- scattering
A	59.6(2)	0.91 Y + 0.01 Yb + 1.08 Ca	57.8
В	9.4(2)	0.02 Na + 0.92 H ₂ O	9.4
С	19	1.0 K	19
T2	12.6(2)	2.93 Be + 0.07 Al	12.6

^{*a*} corresponding to the assigned site-populations.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live) DOI: http://dx.doi.org/10.2138/am-2014-4880

Name	A ₂	B ₂	C	T(2) ₃	$T(1)_{12}$	O ₃₀	Refs.
Agakhanovite-(Y)	YCa	\square_2	K	Be ₃	Si ₁₂	O ₃₀	(1)
Almarudite	Mn ₂	\square_2	K	Be ₂ Al	Si ₁₂	O ₃₀	(2)
Armenite	Ca ₂	\square_2	Ba	Al ₃	(Si ₉ Al ₃)	O ₃₀	(3)
Berezanskite	Ti ₂	\square_2	K	Li ₃	Si ₁₂	O ₃₀	(4)
Brannockite	Sn ₂	\square_2	K	Li ₃	Si ₁₂	O ₃₀	(5)
Chayesite	Mg_2	Na□	Κ	Mg ₃	Si ₁₂	O ₃₀	(6)
Darapiosite	Mn ₂	Na ₂	Κ	LiZn ₂	Si ₁₂	O ₃₀	(7)
Dusmatovite	Mn ₂	KП	K	Zn ₃	Si ₁₂	O ₃₀	(8)
Eifelite	MgNa	Na ₂	K	Mg ₃	Si ₁₂	O ₃₀	(9)
Friedrichbeckeite	Mg_2	Na□	Κ	Be ₃	Si ₁₂	O ₃₀	(10)
Klöchite	Fe ²⁺ Fe ³⁺	\square_2	K	Zn ₃	Si ₁₂	O ₃₀	(11)
Merrihueite	Fe^{2+}_{2}	Na□	Κ	Fe^{2+}_{3}	Si ₁₂	O ₃₀	(12)
Milarite	Ca ₂	\square_2	K	Be ₂ Al	Si ₁₂	O ₃₀	(13)
Oftedalite	ScCa	\square_2	K	Be ₃	Si ₁₂	O ₃₀	(14)
Osumilite	Fe^{2+}_{2}	\square_2	K	Al ₃	Si ₁₀ Al ₂	O ₃₀	(15)
Osumilite-(Mg)	Mg_2	\square_2	K	Al ₃	Si ₁₀ Al ₂	O ₃₀	(16)
Poudretteite	Na ₂	\square_2	K	B_3	Si ₁₂	O ₃₀	(17)
Roedderite	Mg_2	Na□	Κ	Mg ₃	Si ₁₂	O ₃₀	(18)
Shibkovite	Ca ₂	KП	K	Zn ₃	Si ₁₂	O ₃₀	(19)
Sogdianite	Zr_2	\square_2	K	Li ₃	Si ₁₂	O ₃₀	(20)
Sugilite	Fe^{3+}_{2}	Na ₂	K	Li ₃	Si ₁₂	O ₃₀	(21)
Trattnerite	Fe^{3+}_{2}	\square_2		Mg ₃	Si ₁₂	O ₃₀	(22)
Yagiite	Mg ₂	\square_2	Na	Al ₃	Si10Al2	O ₃₀	(23)

TABLE 7.	Current minerals of the milarite group: compositions*,
	site ecouponaise and charge arrangements

*omitting (H₂O) in the channels.

References: (1) This study; (2) Mihajlović et al. (2004); (3) Neumann (1941); (4) Pautov and Agakhanov (1997); (5) White et al. (1973), Armbruster and Oberhänsli (1988b); (6) Velde et al. (1989); (7) Semenov et al. (1975), Ferraris et al. (1999); (8) Pautov et al. (1996), Sokolova and Pautov (1995); (9) Abraham et al. (1983); (10) Lengauer et al. (2009); (11) Bojar et al. (2011); (12) Dodd et al. (1965); (13) Hawthorne et al. (1991); (14) Cooper et al. (2006); (15) Miyashiro (1956), Armbruster and Oberhänsli (1988a); (16) Chukanov et al. (2012), Balassone et al. (2008); (17) Grice et al. (1987); (18) Fuchs et al. (1966), Hentschel et al. (1980), Armbruster (1989); (19) Pautov et al. (1998), Sokolova et al. (1999); (20) Dusmatov et al. (1968), Cooper et al. (1999), Sokolova et al. (2000); (21) Murakami et al. (1976), Kato et al. (1976); (22) Postl et al. (2004); (23) Bunch and Fuchs (1969).

FIGURE 1

FIGURE 2