Ichnusaite, $Th(MoO_4)_2 \cdot 3H_2O$, the first natural 26 thorium molybdate: occurrence, description, and 27 crystal structure 28 29 PAOLO ORLANDI^{1,2}, CRISTIAN BIAGIONI^{1,*}, LUCA BINDI³, AND 30 FABRIZIO NESTOLA⁴ 31 32 33 34 ¹Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy 35 ² Istituto di Geoscienze e Georisorse, CNR, Via Moruzzi 1, I-56124 Pisa, Italy 36 ³ Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I-37 50121 Firenze, Italy 38 ⁴ Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy 39 40 41 42 43 *e-mail address: biagioni@dst.unipi.it 44 45

ABSTRACT

The new mineral species ichnusaite, $Th(MoO_4)_2$ ·3H₂O, has been discovered in the Mo-Bi 47 mineralization of Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy. It occurs as colorless thin 48 49 $\{100\}$ tabular crystals, up to 200 µm in length, associated with muscovite, xenotime-(Y), and nuragheite, $Th(MoO_4)_2$ ·H₂O. Luster is pearly-adamantine. Ichnusaite is brittle, with a perfect 50 {100} cleavage. Owing to the very small quantity of available material and its intimate 51 association with nuragheite, density and optical properties could not be measured. Electron 52 microprobe analysis gave (wt% - mean of 4 spot analyses): MoO₃ 47.86(1.43), ThO₂ 53 43.40(79), total 91.26(87). On the basis of 8 O atoms per formula unit and assuming 3 H_2O 54 groups, in agreement with the crystal structure data, the chemical formula of ichnusaite is 55 $Th_{0.99}Mo_{2.01}O_8 \cdot 3H_2O$. Main diffraction lines, corresponding to multiple *hkl* indices, are [d(Å)], 56 relative visual intensity]: 5.66 (m), 3.930 (m), 3.479 (s), 3.257 (s), 3.074 (m). Ichnusaite is 57 monoclinic, space group $P2_1/c$, with a 9.6797(12), b 10.3771(13), c 9.3782(12) Å, β 58 90.00(1)°, V 942.0(2) Å³, Z = 4. The crystal structure has been solved and refined to a final R_1 59 = 0.051 on the basis of 2008 observed reflections [with $F_0 > 4\sigma(F_0)$]. It consists of 60 electroneutral [Th(MoO₄)₂(H₂O)₂]⁰ (100) sheets of polymerized ThO₇(H₂O)₂ and MoO₄ 61 polyhedra; successive sheets, stacked along [100], are connected through hydrogen bonds. 62 Ichnusaite brings new understanding about the crystal chemistry of actinide molybdates, that 63 may form during the alteration of spent nuclear fuel and influence the release of radionuclides 64 under repository conditions. 65

66

46

Keywords: ichnusaite, new mineral species, molybdate, thorium, crystal structure, Su
Seinargiu, Sardinia, Italy.

70

Introduction

71 Thorium (Z = 90) is an actinide element found in the bulk silicate Earth with the estimated average concentration of ~ 0.06 ppm (Plant et al. 1999); even if it is about three 72 times more abundant than uranium, only twenty-two mineral species containing Th as an 73 essential component are known (Table 1), compared to more than 200 uranium mineral 74 species. This difference is discussed by Hazen et al. (2009) and related to three main aspects: 75 i) Th occurs only as Th^{4+} and it does not have an analog of $(UO_2)^{2+}$ ion, not forming 76 isomorphs of the numerous uranyl compounds; ii) the half-life of ²³²Th (the most abundant 77 isotope of Th) is ~ 14 billion years so that thorium minerals do not show extensive degree of 78 radiation damage and chemical alteration; and iii) Th-compounds are relatively insoluble, and 79 Th^{4+} is mobilized under much more restricted chemical-physical conditions than U^{4+} , not 80 being complexed by chloride or carbonate (as occurs for U^{4+}) but only forming F-complexes. 81 Thorium occurs as a minor component in rare-earth element phosphates (e.g., monazite, 82 xenotime) and as a trace element in apatite-group minerals (Luo et al. 2011); owing to its 83 occurrence in these common rock-accessory phases, Th minerals can be used as 84 geochronometers for dating through the U-Th-Pb and (U,Th)/He methods. 85

86 During a routine check of mineral samples from Su Seinargiu (Sardinia, Italy) through qualitative EDS chemical analyses, some crystals were identified containing only Th and Mo. 87 Up to now, natural thorium molybdates were unknown and consequently X-ray diffraction 88 studies were performed in order to completely characterize this new compound. X-ray powder 89 diffraction patterns collected through a Gandolfi camera revealed the presence of two 90 91 different Th-Mo phases. Single-crystal X-ray diffraction studies showed that these two phases 92 commonly form intimate intergrowths, making difficult their mineralogical study. Through the examination of several crystals, two pure grains of both phases were identified, allowing 93 the intensity data collection and solution of the two crystal structures. The two Th-Mo phases, 94 95 differing in their hydration states, were proposed as new minerals.

In this paper we describe the first of these two natural thorium molybdates, which was named ichnusaite (pronounced *iknusa-ait*). The name is from the old Greek name of Sardinia, *Ixvovo\sigma \alpha, ichnusa*. The mineral and its name have been approved by the CNMNC-IMA under the number 2013-087. The holotype specimen of ichnusaite is deposited in the mineralogical collection of the Museo di Storia Naturale, Università di Pisa, Via Roma 79, Calci, Pisa, Italy, under catalog number 19679. The other new thorium molybdate, nuragheite, will be described in a separate paper (Orlandi et al. in preparation).

4/2

1	03
1	04

Geological setting

The occurrence of Mo minerals in Sardinia has been known since the second half of the 19^{th} Century (Jervis 1881; Lovisato 1886; Traverso 1898). Numerous Mo mineralizations occur in close association with leucogranites of Variscan age (Ghezzo et al. 1981); Su Seinargiu is one of the smallest prospects. Its molybdenite mineralization has been dated by Boni et al. (2003) at 288.7 ± 0.5 My on the basis of Re-Os dating.

The Su Seinargiu prospect is located on the southern coast of Sardinia, northwest of the small town of Sarroch. Mineralization occurs within three vein systems hosted in leucogranite porphyry and embedded in slightly metamorphosed (greenschist facies) shales of Ordovician-Silurian age; veins are mainly composed of quartz and molybdenite. This latter mineral is also disseminated in the porphyry. A pervasive hydrothermal alteration is common throughout the intrusion, resulting in the widespread occurrence of clay minerals replacing plagioclase and K-feldspar.

In addition to molybdenite, Caboi et al. (1978) reported the occurrence of minor 117 chalcopyrite, pyrite, and traces of "wolframite". Molybdenite is frequently altered in yellow 118 ochres of molybdenum, indicated by Caboi et al. (1978) as molybdite. It is interesting to note 119 that these authors stated that a peculiar feature of this mineralization is related to the small 120 number of mineral species, with the mineral assemblage formed exclusively by quartz and 121 122 molybdenite. On the contrary, Orlandi et al. (2013) described more than 50 mineral species from Su Seinargiu. Most of them are the results of the alteration of the primary Mo-Bi ore, 123 composed of molybdenite, bismuthinite, and bismuth. In addition to ichnusaite, three other 124 new mineral species have their type locality at Su Seinargiu: sardignaite (Orlandi et al. 2010), 125 gelosaite (Orlandi et al. 2011), and tancaite-(Ce) (Bonaccorsi and Orlandi 2010). 126

- 127
- 128

Occurrence and mineral description

Ichnusaite occurs as aggregates of colorless thin {100} tabular crystals, up to 200 μm
in length, with a pearly-adamantine luster. Streak is white. Ichnusaite is transparent, brittle,
and shows a perfect cleavage parallel to (100).

Owing to the intimate intergrowths with nuragheite, $Th(MoO_4)_2$ ·H₂O, and the small amount of homogeneous material available, micro-indentation hardness, density, as well as the optical properties were not measured. The calculated density, based on the empirical formula, is 4.262 g·cm⁻³. The mean refractive index of ichnusaite, obtained from the

4/2

Gladstone-Dale relationship (Mandarino 1979, 1981) using the ideal formula and calculateddensity, is 1.92.

Ichnusaite is intimately intergrown with nuragheite, occurring within vugs of quartz
 veins, in association with muscovite and partially corroded crystals of xenotime-(Y). Its
 crystallization is probably related to the alteration of the molybdenite ore.

- 141
- 142

Chemical composition

143 One very small crystal of ichnusaite (20 µm for its largest dimension), not intergrown with nuragheite, was available and it was used for electron-microprobe analysis. Preliminary 144 EDS chemical analysis showed Th and Mo as the only elements with Z > 9. Owing to the 145 very small crystal size, only 4 spot analyses were carried out, using a CAMECA SX50 146 electron microprobe operating in WDS (wave-lenght dispersive) mode; operating conditions 147 were as follows: accelerating voltage 20 kV, beam current 5 nA, beam size 1 µm. Standards 148 used were (element, emission line): metallic Mo (Mo $L\alpha$) and synthetic ThO₂ (Th $M\alpha$). 149 Electron microprobe data are given in Table 2. On the basis of 8 oxygen atoms per formula 150 151 unit (apfu) and assuming the presence of three H₂O groups (as shown by the structural study), the chemical formula of ichnusaite can be written as Th_{0.991}Mo_{2.006}O₈·3H₂O. The ideal 152 formula is $Th(MoO_4)_2$ ·3H₂O, corresponding to (in wt%) ThO₂ 43.57, MoO₃ 47.51, H₂O 8.92, 153 sum 100.00. 154

155

156

X-ray crystallography and structure refinement

157 Single-crystal X-ray diffraction data were collected using a Bruker Smart Breeze diffractometer equipped with an air-cooled CCD area detector. Graphite-monochromatized 158 159 Mo K α radiation was used. The detector-to-crystal distance was 50 mm. 774 frames were collected using ϕ and ω scan modes in 0.5° slices, with an exposure time of 5 seconds per 160 frame. Data were integrated and corrected for Lorentz and polarization effects, background 161 effects, and absorption, using the software package Apex2 (Bruke Axs Inc. 2004). The 162 analysis of systematic absences unequivocally indicated the space group $P2_1/c$. Refined cell 163 parameters are a 9.6797(12), b 10.3771(13), c 9.3782(12), β 90.00(1)°, V 942.0(2) Å³, Z = 4. 164 The crystal structure was solved through direct methods and refined using Shelx-97 165 166 (Sheldrick 2008). Scattering curves for neutral atoms were taken from the International 167 Tables for X-ray Crystallography (Wilson 1992). Crystal data and details of the intensity data collection and refinement are reported in Table 3. 168

After locating the heavier atoms Th and Mo, some O positions were identified on the basis of difference-Fourier maps. However, at this stage, the analysis of the difference-Fourier map revealed large maxima around Th and Mo atoms and the R_1 was too high (0.27). Assuming a twinning on {100}, the R_1 dramatically decreased to 0.13, thus indicating the possible correctness of the structural model. The twin ratio of the two individuals is 0.49(1). Ichnusaite represents an archetypal example of twinning by metric merohedry according to Nespolo and Ferraris (2000).

Successive difference-Fourier maps allowed the correct location of all the oxygen atoms. After several cycles of isotropic refinements, an anisotropic model for all the atoms (with the exception of O7) was refined, achieving a final $R_1 = 0.051$ for 2008 observed reflections with $F_0 > 4\sigma(F_0)$ and 0.060 for all 2223 independent reflections. The highest and deepest residuals are located around the Th atom and may be due to the low diffraction quality of the available crystal, i.e. broad diffraction peaks. Atomic coordinates and displacement parameters are given in Table 4 and Table 5 reports selected bond distances.

The X-ray powder diffraction pattern of ichnusaite was obtained using a 114.6 mm diameter Gandolfi camera, with Ni-filtered Cu *K*α radiation. The observed X-ray powder pattern is compared with the calculated one (obtained using the software Powder Cell; Kraus and Nolze 1996) in Table 6. Unit-cell parameters, refined on the basis of 20 unequivocally indexed reflections using UnitCell (Holland and Redfern 1997), are *a* 9.646(2), *b* 10.471(2), *c* 9.338(2) Å, β 90.34(2)°, *V* 943.2(2) Å³.

- 189
- 190

Crystal structure description

The crystal structure of ichnusaite (Fig. 2) shows three independent cation sites, namely Th, Mo1, and Mo2, and eleven independent ligand sites. The cation-centered polyhedra are arranged in (100) layers, forming electroneutral $[Th(MoO_4)_2(H_2O)_2]^0$ sheets of polymerized ThO₇(H₂O)₂ and MoO₄ polyhedra. The sheets are linked by H bonding to interlayer H₂O (Ow11 site) groups and stacked along [100]; the H bonding involves O2, Ow6, Ow10, and Ow11 sites, as suggested by the examination of O…O distances shorter than 3.0 Å which are not polyhedral edges (Table 7) and bond-valence calculation (Table 8).

Thorium atoms are bonded to seven oxygen atoms and two H_2O groups in a tricapped trigonal prismatic coordination. Average $\langle Th-O \rangle$ bond distance is 2.459 Å, in agreement with ideal Th-O distance of 2.44 Å, assuming the ionic radii given by Shannon (1976). Every Th-centered polyhedron shares corners with seven Mo-centered tetrahedra. The Mo1 tetrahedron shares corners with four Th-centered polyhedra, whereas the Mo2 tetrahedron

4/2

8

shares corners with three Th polyhedra. The free vertex of the Mo2 tetrahedron (O2 site) is at hydrogen bond distance with H_2O groups belonging to two distinct Th polyhedra, namely Ow6 and Ow10 sites. Average <Mo-O> bond distances are 1.751 and 1.768 Å for Mo1 and Mo2 sites, respectively.

As reported above, O···O distances shorter than 3.0 Å suggest the presence of hydrogen bonds. Figure 3 shows the proposed hydrogen bond network connecting successive $[Th(MoO_4)_2(H_2O)_2]^0$ sheets as seen down **c**. The connection is achieved through the bonds Ow10···O2 and Ow6···Ow11···Ow10; the former involves the interlayer H₂O groups and forms an angle of 111.8(9)°. In addition to hydrogen bonds connecting successive layers, the short O···O distance between Ow6 and O2, which occupies the free vertex of Mo2 tetrahedron in the same sheet, suggests an intrasheet hydrogen bond between the Mo2 and Th polyhedra.

- 214
- 215

Discussion

The term molybdate indicates a compound containing an oxoanion with molybdenum 216 in its highest oxidation state +6. Molybdenum can form a large range of oxoanions, e.g., 217 $(MoO_4)^{2-}$ and $(Mo_2O_7)^{2-}$. Forty-eight minerals contain Mo as an essential component; among 218 them, twelve valid species are characterized by the oxoanion $(MoO_4)^{2-}$ (Table 9). One 219 potential new mineral species, never submitted to the formal IMA approval, is represented by 220 the phosphate analogue of molybdofornacite described by Nickel and Hitchen (1994). Among 221 the phases reported in Table 9, it should be noted that the crystal structure of ferrimolybdite 222 has not been solved vet, so the presence of the $(MoO_4)^{2-}$ oxoanion is speculative. Delorvite, 223 Cu₄(UO₂)(MoO₄)₂(OH)₆, and umohoite, (UO₂)MoO₄·2H₂O, have chemical formulas showing 224 (MoO₄) groups; however, Mo has five-fold and six-fold coordinations, respectively, in those 225 structures (Pushcharovsky et al. 1998; Krivovichev and Burns 2000). Taking into account the 226 usual five-fold and six-fold Mo coordination in all U molybdates known so far, sedovite, 227 ideally U(MoO₄)₂ (Skvortsova and Sidorenko 1965), is not reported in Table 9, owing to the 228 229 lack of structural data and the consequent uncertainties about the actual Mo coordination in such mineral. 230

Ichnusaite fits the 07.GB group of Strunz and Nickel classification; i.e., molybdates with additional anions and/or H_2O (Strunz and Nickel 2001). Whereas eight mineral species contain Mo and U, no Th molybdates were known: ichnusaite is the first natural thorium molybdate to be described. Among synthetic compounds, two polymorphic phases of anhydrous Th(MoO₄)₂ are known, having orthorhombic and trigonal symmetry, respectively (Cremers et al. 1983; Larson et al. 1989). Ichnusaite shows a new type of layered structure;

the relations between this structure and those of nuragheite and synthetic $Th(MoO_4)_2$ will be described elsewhere (Orlandi et al., in preparation).

Ichnusaite is likely the product of the alteration of the primary Mo-Bi ore at Su Seinargiu under basic pH conditions. In fact, according to Birch et al. (1998), phases with tetrahedral $(MoO_4)^{2^-}$ oxoanions could form at pH 7-8, under more basic conditions than do species with octahedrally coordinated Mo. Molybdenite could be the source of Mo at Su Seinargiu, whereas the occurrence of corroded crystals of xenotime-(Y) suggests that this REE phosphate, isostructural with thorite, ThSiO₄, might the source of Th. Indeed, some authors reported high Th concentrations in xenotime-(Y) (e.g., Förster 2006).

- 246
- 247

Implications

Thorium, as well as uranium, has a special importance to geoscientists. In fact, the energy released by their radioactive decay has driven the thermal evolution of Earth, resulting in the layering of Earth's internal structure and plate tectonics. As is well known, the radioactive decay of ²³²Th, as well as ²³⁸U and ²³⁵U, to stable Pb isotopes provided the basis for geochronological measurements providing absolute ages for the geologic time scale. Moreover, in agreement with Hazen et al. (2009), the mineralogy of uranium and thorium can provide a measure of planets' geotectonic and geobiological history.

In addition to its geological importance, thorium has extensive industrial applications, 255 256 e.g., as an alloying agent in gas tungsten arc welding to increase the melting temperature of tungsten electrodes (Carv and Helzer 2005) or as a catalyst in the conversion of NH₃ to HNO₃ 257 258 and the production of H₂SO₄ (Patnaik 2003). Moreover, thorium has been tentatively used in the production of energy in nuclear plants and for the production process of the fissile isotope 259 ²³³U. Owing to its natural abundance, attractive physical, chemical, and nuclear properties, 260 there is an increasing interest in the thorium fuel cycle (e.g., Lung and Gremm 1998; Ünak 261 262 2000). Consequently, the disposal of thorium waste is an important environmental issue (e.g., Luo et al. 2011). 263

Owing to the fact that molybdenum is one of the many fission products in a nuclear reactor, the formation of actinide molybdates has been reported during the alteration of spent nuclear fuel (e.g., Buck et al. 1997), under conditions similar to those expected in the onceproposed geological repository at Yucca Mountain, Nevada, U.S.A. Ichnusaite, being a new structure type among actinide molybdates, brings new data to the understanding of the crystal chemistry of such compounds, potentially useful for understanding the release of radionuclides under repository conditions.

271

272 Acknowledgements

The first specimen of ichnusaite was provided by Giuseppe Tanca; other specimens were given by Fernando Caboni, Marzio Mamberti, and Antonello Vinci. We are grateful to all these Sardinian mineral collectors for their efforts in the sampling of the Su Seinargiu prospect. Electron microprobe analyses were performed with the help of Raul Carampin; we are grateful to Leonardo Tauro and Elena Masiero for the preparation of the sample for electron microprobe analysis. The paper was handled by Peter Burns and benefited of the comments of the two reviewers Robert Finch and Sergey Krivovichev.

281 **References**

- Aleksandrov, V.B., Gorbatyii, L.V., and Ilyukhin, V.V. (1968) Crystal structure of powellite
 CaMoO₄. Soviet Physics Crystallography, 13, 414–415.
- Berlepsch, P., Armbruster, T., Brugger, J., Bykova, E.Y., and Kartashov, P.M. (1999) The
 crystal structure of vergasovaite Cu₃O[(Mo,S)O₄SO₄], and its relation to synthetic
 Cu₃O[MoO₄]₂. European Journal of Mineralogy, 11, 101–110.
- Birch, W.D., Pring, A., McBriar, E.M., Gatehouse, B.M., and McCammon, C.A. (1998)
 Bamfordite, Fe³⁺Mo₂O₆(OH)₃·H₂O, a new hydrated iron molybdenum oxyhydroxide
 from Queensland, Australia: Description and crystal chemistry. American Mineralogist,
 83, 172–177.
- Bonaccorsi, E. and Orlandi, P. (2010) Tancaite-(Ce), a new molybdate from Italy. Acta
 Mineralogica Petrographica Abstract Series. 20th General Meeting of the International
 Mineralogical Association, 21st-27th August, 2010. Budapest, Hungary, 6, 494.
- Boni, M., Stein, H.J., Zimmerman, A., and Villa, I.M. (2003) Re-Os age for molybdenite from
 SW Sardinia (Italy): A comparison with ⁴⁰Ar/³⁹Ar dating of Variscan granitoids.
 Mineral Exploration and Sustainable Development, Eliopoulos et al. (ed), 247–250.
- Brese, N.E. & O'Keeffe, M. (1991): Bond-valence parameters for solids. Acta
 Crystallographica, B47, 192–197.
- Bruker AXS Inc. (2004) APEX 2. Bruker Advanced X-ray Solutions, Madison, Wisconsin,
 USA.
- Buck, E.C., Wronkiewicz, D.J., Finn, P.A., and Bates, J.K. (1997) A new uranyl oxide
 hydrate phase derived from spent fuel alteration. Journal of Nuclear Materials, 249, 70–
 76.
- Burns, P.C. (1998) The crystal structure of szenicsite, Cu₃MoO₄(OH)₄. Mineralogical
 Magazine, 62, 461–469.
- Caboi, R., Massoli-Novelli, R., and Sanna, G. (1978) La mineralizzazione a molibdenite di
 P.ta de Su Seinargiu (Sarroch Sardegna meridionale). Rendiconti della Società Italiana
 di Mineralogia e Petrologia, 34, 167–186.
- Calvert, L.D. and Barnes, W.H. (1957) The structure of lindgrenite. The Canadian
 Mineralogist, 6, 31–51.
- Cary, H. and Helzer, S. (2005) Modern Welding Technology, Prentice Hall, New Jersey.
- Cremers, T.L., Eller, P.G., and Penneman, R.A. (1983) Orthorhombic Thorium(IV)
 Molybdate, Th(MoO₄)₂. Acta Crystallographica, C39, 1165–1167.

Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O…O hydrogen bonds. Acta

Crystallographica, B44, 341–344.

4/2

316	Förster, HJ. (2006) Composition and origin of intermediate solid solutions in the system
317	thorite-xenotime-zircon-coffinite. Lithos, 88, 35-55.
318	Ghezzo, C., Guasparri, G., Riccobono, F., Sabatini, G., Pretti, S., and Uras, I. (1981) Le
319	mineralizzazioni a molibdeno associate al magmatismo intrusivo ercinico della
320	Sardegna. Rendiconti della Società Italiana di Mineralogia e Petrologia, 38, 133–145.
321	Hazen, R.M., Ewing, R.C., and Sverjensky, D.A. (2009) Evolution of uranium and thorium
322	minerals. American Mineralogist, 94, 1293-1311.
323	Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data:
324	the use of regression diagnostics. Mineralogical Magazine, 61, 65–77.
325	Horn, E., Kurahashi, M., Huang, D., and Wu, C. (1995) Crystal data and X-ray powder-
326	diffraction data for ferrimolybdite, Fe ₂ (MoO ₄) ₃ 6.8H ₂ O. Powder Diffraction, 10, 101-
327	103.
328	Jervis, G. (1881) I tesori sotterranei d'Italia. Parte Terza: Regione delle isole Sardegna e
329	Sicilia e addenda ai precedenti volumi. Ermanno Loescher Ed., Torino, 539 pp.
330	Kraus, W. and Nolze, G. (1996) Powder Cell - a program for the representation and
331	manipulation of crystal structures and calculation of the resulting X-ray powder
332	patterns. Journal of Applied Crystallography, 29, 301-303.
333	Krivovichev, S. and Burns, P.C. (2000) Crystal chemistry of uranyl molybdates. I. The
334	structure and formula of umohoite. The Canadian Mineralogist, 38, 717–726.
335	Larson, E.M., Eller, P.G., Cremers, T.L., Penneman, R.A., and Herrick, C.C. (1989) Structure
336	of trigonal thorium molybdate. Acta Crystallographica, C45, 1669–1672.
337	Lovisato, D. (1886) Contributo alla mineralogia sarda. Rendiconti dell'Accademia Nazionale
338	dei Lincei, 2, 254-259.
339	Lung, M. and Gremm, O. (1998) Perspectives of the thorium fuel cycle. Nuclear Engineering
340	and Design, 180, 133–146.
341	Luo, Y., Rakovan, J., Tang, Y., Lupulescu, M., Hughes, J.M., and Pan, Y. (2011) Crystal
342	chemistry of Th in fluorapatite. American Mineralogist, 96, 23-33.
343	Mandarino, J.A. (1979) The Gladstone-Dale relationship. Part III. Some general applications.
344	The Canadian Mineralogist, 17, 71–76.
345	Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept
346	and its application. The Canadian Mineralogist, 19, 441–450.

Mede	nbach, O., Abraham,	K., and Gebo	ert, W. (19	983) Moly	bdoforn	acit, ein n	eus	Blei-Kupfer-
	Arsenat-Molybdat-H	ydroxid von	Tsumeb,	Namibia.	Neues	Jahrbuch	für	Mineralogie,

349 Monatshefte, 1983, 289–295.

347

348

- Nespolo, M. and Ferraris, G. (2000) Twinning by syngonic and metric merohedry. Analysis,
 classification and effects on the diffraction pattern. Zeitschrift für Kristallographie, 215,
 77–81.
- Nickel, E.H. and Hitchen, G.J. (1994) The phosphate analog of molybdofornacite from Whim
 Creek, Western Australia. Mineralogical Record, 25, 203–204.
- Orlandi, P., Pasero, M., and Bigi, S. (2010) Sardignaite, a new mineral, the second known
 bismuth molybdate: description and crystal structure. Mineralogy and Petrology, 100, 17–
 22.
- Orlandi, P., Demartin, F., Pasero, M., Leverett, P. Williams, P.A., and Hibbs, D.E. (2011) Gelosaite, $BiMo^{6+}_{(2-5x)}Mo^{5+}_{6x}O_7(OH) \cdot H_2O$ ($0 \le x \le 0.4$), a new mineral from Su Senargiu (CA), Sardinia, Italy, and a second occurrence from Kingsgate, New England, Australia. American Mineralogist, 96, 268–273.
- Orlandi, P., Gelosa, M., Bonacina, E., Caboni, F., Mamberti, M., Tanca, G.A., and Vinci, A.
 (2013) Sardignaite, gelosaite et tancaite-(Ce): trois nouveaux minéraux de Su Seinargiu,
 Sarroch, Sardaigne, Italie. Le Règne Minéral, 112, 39–52.

Patnaik, P. (2003) Handbook of Inorganic Chemicals, 931 p. McGraw-Hill, New York.

- ³⁶⁶ Plant, J.A., Simpson, P.R., Smith, B., and Windley, B.F. (1999) Uranium ore deposits -
- products of the radioactive Echo Bay U-Ni-Ag-Cu deposits, North West Territories,
 Canada. Economic Geology, 68, 635–656.
- Pushcharovsky, D.Yu., Rastsvetaeva, R.K., and Sarp, H. (1998) Crystal structure of deloryite,
 Cu₄(UO₂)[Mo₂O₈](OH)₆. Journal of Alloys and Compounds, 239, 23–26.
- Secco, L., Nestola, F., and Dal Negro, A. (2008) The wulfenite-stolzite series: centric or
 acentric structures? Mineralogical Magazine, 72, 987–990.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
 distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- 375 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 376 Skvortsova, K.V. and Sidorenko, G.A. (1965) Sedovite, a new supergene mineral of uranium
- and molybdenum. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 94, 548–
 554 (in Russian).
- Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. 9th Edition, E. Schweizerbart
 Verlag, Stuttgart, 870 p.

381	Traverso, G.B. (1898) Sarrabus e i suoi minerali: note descrittive sui minerali del Sarrabus
382	facienti parte della collezione di minerali italiani presso il Museo civico di Genova.
383	Tipografia Sansoldi, Alba, Cuneo, 73 p.
384	Ünak, T. (2000) What is the potential use of thorium in the future energy production
385	technology? Progress in Nuclear Energy, 37, 1–4.
386	Wilson, A.J.C. (1992) International Tables for X-ray Crystallography Volume C. Kluwer,
387	Dordrecht.
388	Yang, H., Jenkins, R.A., Thompson, R.M., Downs, R.T., Evans, S.H., and Bloch, E.M. (2012)
389	Markascherite, Cu ₃ (MoO ₄)(OH) ₄ , a new mineral species polymorphic with szenicsite,
390	from Copper Creek, Pinal County, Arizona, U.S.A. American Mineralogist, 97, 197-
391	202.
392	Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Y.S., and Pushcharovsky, D.Yu.
393	(2012) Cupromolybdite, Cu ₃ O(MoO ₄) ₂ , a new fumarolic mineral from the Tolbachik
394	volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749-757.
395	

4/2

Table captions

- **Table 1.** Mineral species with Th as essential component. Chemical formulae after the IMA
- list (updated to October 2013).
- **Table 2.** Microprobe analyses of ichnusaite (in wt%).
- 400 **Table 3**. X-ray powder diffraction data for ichnusaite.
- 401 **Table 4**. Crystal data and summary of parameters describing data collection and refinement
- 402 for ichnusaite.
- 403 **Table 5**. Atomic positions and displacement parameters (in $Å^2$) for ichnusaite.
- 404 **Table 6**. Selected bond distances (in Å) for ichnusaite.
- 405 **Table 7**. O···O distances (in Å) and corresponding bond-valence values (in valence units, *v.u.*)
- 406 calculated with parameters from Ferraris and Ivaldi (1988).
- 407 **Table 8**. Bond-valence values calculated with parameters from Brese & O'Keeffe (1991).
- 408 **Table 9**. Molybdate minerals containing the oxoanion $(MoO_4)^{2-}$.
- 409

410 **Figure captions**

- 411 **Fig. 1**. Ichnusaite, tabular crystals on {100}.
- 412 Fig. 2. Ichnusaite, crystal structure as seen down c (a) and a (b). Polyhedra: grey = Th-
- 413 centered polyhedra; dark grey = Mo1 tetrahedra; white = Mo2 tetrahedra. Circles = interlayer
- 414 H_2O groups. H_2O groups are not shown in (b).
- 415 **Fig. 3**. Hydrogen bond system in ichnusaite as seen down **c**. Polyhedra: grey = Th-centered
- 416 polyhedra; dark grey = Mo1 tetrahedra; white = Mo2 tetrahedra. Circles: black = O2 site; dark
- 417 grey = H_2O groups bonded to Th^{4+} cations (Ow6 and Ow10 sites); light grey = interlayer
- 418 H₂O groups (Ow11 site).
- 419

4/2

420 Table 1. Mineral species with Th as essential component. Chemical formulae after the IMA

421	list (updated to October 2013).	
422		
423	Mineral species	Chemical formula
424	Althupite	AITh(UO ₂) ₇ (PO ₄) ₄ (OH) ₅ ·15H ₂ O
425	Aspedamite	$\Box_{12}(Fe^{3+},Fe^{2+})_3Nb_4[Th(Nb,Fe^{3+})_{12}O_{42}](H_2O,OH)_{12}$
120	Cheralite	CaTh(PO ₄) ₂
426	Ciprianiite	Ca ₄ (Th,REE) ₂ Al(B ₄ Si ₄ O ₂₂)(OH) ₂
427	Coutinhoite	$Th_xBa_{1-2x}(UO_2)_2Si_5O_{13}\cdot 3H_2O$
428	Ekanite	Ca ₂ ThSi ₈ O ₂₀
429	Eylettersite	$Th_{0.75}AI_3(PO_4)_2(OH)_6$
130	Grayite	(Th,Pb,Ca)PO ₄ ·H ₂ O
430	Huttonite	ThSiO₄
431	Ichnusaite	$Th(MoO_4)_2 \cdot 3H_2O$
432	Nuragheite	$Th(MoO_4)_2 H_2O$
433	Steacyite	$K_{0.3}(Na,Ca)_2$ ThSi ₈ O ₂₀
434	Thorbastnäsite	ThCa(CO ₃) ₂ F ₂ ·3H ₂ O
135	Thorianite	ThO ₂
426	Thorite	ThSiO₄
436	Thornasite	Na ₁₂ Th ₃ (Si ₈ O ₁₉) ₄ ·18H ₂ O
437	Thorogummite	(Th,U ⁶⁺)[(SiO ₄), (OH) ₄]
438	Thorosteenstrupine	(Ca,Th,Mn) ₃ Si ₄ O ₁₁ F·6H ₂ O

441 442

439

440

444

445 Table 2. Microprobe analyses of ichnusaite (in wt%).

Thorutite

Tuliokite

Turkestanite

Umbozerite

446

Oxide	1	2	3	4	average	e.s.d.	Ideal
MoO ₃	49.85	47.17	46.54	47.87	47.86	1.43	47.51
ThO_2	42.28	43.42	43.89	44.01	43.40	0.79	43.57
Total	92.13	90.59	90.43	91.88	91.26	0.87	91.08

(Th,U,Ca)Ti₂(O,OH)₆

Na₆BaTh(CO₃)₆·6H₂O

Na₃Sr₄ThSi₈(O,OH)₂₄

(K,□)(Ca,Na)₂ThSi₈O₂₀·nH₂O

447
448

449

- 450 451
- 452

453

454

455

456

457

458 459

⁴⁴³

Table 3. Crystal data and summary of parameters describing data collection and refinement

462 for ichnusaite.

X-ray formula Crystal size (mm³)Th(MOQ,b;3H ₂ O 0.06 x 0.06 x 0.05Cell setting, space group a (Å) b (Å) c (Å) c (Å) g (°)0.20 x 0.06 x 0.05a (Å) b (Å) c (Å) g (°)9.6797(12) 9.03771(13) c (Å) g 9.3782(12) 9.3782(12) g (°)b (Å) c (Å) g (°)0.3771(13) 9.3782(12) g (°)b (Å) c (Å) g (Å)9.3782(12) 9.3782(12) g (°)b (Å) c (Å) g (Å)9.3782(12) 9.3782(12) g (°)b (Å) c (Å) g (Å)9.3782(12) 9.3782(12) g (°)b (Å) c (Å) g (Å)9.3782(12) 9.3782(12) g (°)c (Å) g (Å) g (Å)9.3782(12) 9.3782(12) g (Å)d (Å) g (Å) g (Å)9.3782(12) 9.3782(12) g (Å)d (Å) g (Å) g (Å)9.3782(12) 9.3782(12) g (Å)d (Å) g (Å) g (Å) g (Å)9.3782(12) 9.3782(12) g (Å) g (Å) g (Å)d (Å) g (Å) g (Å) g (Å) g (Å) g (Å) g (Å)Mo (Å) g (Å) g (Å) g (Å) g (Å) g (Å) g (Å) g (Å) g (Å)d (Å) g (Å) g (Å) g (Å) g (Å)Mo (Å) g (Å) g (Å) g (Å) g (Å) g (Å)d (Å) g (Å) g (Å) g (Å)Mo (Å) g (Å) g (Å) g (Å) g (Å)d (Å) g (Å) g (Å) g (Å)Mo (Å) g (Å) g (Å) g (Å)d (Å) g (Å) g (Å)Mo (Å) g (Å) g (Å)d (Å) g (Å) g (Å)<	l data	
Crystal size (mm*) $0.20 \times 0.06 \times 0.05$ Monoclinic, $P_{2,lc}$ $a (Å)0.3771(13)9.6797(12)b (Å)0.3771(13)9.3782(12)g (*)9.3782(12)9.42.0(2)ZData collection and refinementMo Ka, \lambda = 0.71073Temperature (K)29329_{max}Data collection and refinementMo Ka, \lambda = 0.71073Z = 4Radiation, wavelength (Å)Mo Ka, \lambda = 0.7107329_{max}Deta collection and refinementMo Ka, \lambda = 0.71073293220_{max}Reflections with F_0 > 40(F_0)2008R_{mt}Quadratic optimization of the state optimization optimi$	X-ray formula	Th(MoO₄)₂·3H₂O
Cell setting, space group a (Å)Monoclinic, $P2_i/c$ 9.6797(12)b (Å)10.3771(13)c (Å)9.3782(12) β (*)90.00(1) V (Å*)942.0(2)Z4Data collection and refinementRadiation, wavelength (Å)Temperature (K)293 $2\theta_{max}$ 59.65Measured reflections4073Unique reflections2208Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{nt} 0.0279 $R\sigma$ 0.0471-10 $\leq h \leq 13$,Range of h, k, l-14 $\leq k \leq 12$, -14 $\leq k \leq 12$, 0.0507 R (all data)0.0603wR (on F_0)0.0401minimum residual peak (e Å*)-3.17 (at 0.93 Å from Th)vote: the weighting scheme is defined as $w = 1/[C^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F$ $Aax(F_0^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	Crystal size (mm ³)	0.20 x 0.06 x 0.05
a (Å) 9.6737(12) b (Å) 10.3771(13) c (Å) 9.3782(12) β ([*]) 90.00(1) V (Å') 942.0(2) Z 4 Data collection and refinement Radiation, wavelength (Å) Mo Ka, $\lambda = 0.71073$ Temperature (K) 293 2 θ_{max} 59.65 Measured reflections 4073 Unique reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{nt} 0.0279 R_{of} 0.0471 $-10 \le h \le 13$, $-14 \le k \le 12$, $R[F_0 > 4\sigma(F_0)]$ 0.0507 R (all data) 0.0603 $wR (on F_0^-)$ 0.1461 Goof 1.128 Number of least-squares 124 maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å^3) -3.17 (at 0.93 Å from Th) vote: the weighting scheme is defined as $w = 1(0^{2}(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ hax(F_0^{-2} , 0)]/3. a and b values are 0.0699 and 53.6946.	setting, space group	Monoclinic, P2 ₁ /c
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a (Å)	9.6797(12)
$c(A)$ $9.3782(12)$ $\beta(Y)$ $90.00(1)$ $V(A^3)$ $942.0(2)$ Z 4 Radiation, wavelength (A) Relaction, wavelength (A) Mo Ka, $\lambda = 0.71073$ Temperature (K) 293 $2\theta_{max}$ 59.65 Measured reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 0.0279 R_{nt} 0.0471 $-10 \le h \le 13$, $-14 \le h \le 12$, $Rig 0.0471 Rig 0.0471 Rig 0.0507 Rig 0.0507 Rig 0.1461 Goof 1.128 Number of least-squares 124 maximum and 6.91 (at 0.85 A from Th) minimum residual peak (e A^3) -3.17 (at 0.93 A from Th) Vote: the weighting scheme is defined as w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP], with P = [2F Aax(F_0^2, 0)]/3. a and b values are 0.0699 and 53.6946. $	b (Å)	10.3771(13)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c (Å)	9.3782(12)
$V(A^3)$ $942.0(2)$ Data collection and refinement Radiation, wavelength (A)Mo Ka, $h = 0.71073$ Radiation, wavelength (A) 293 20_{max} 59.65 Measured reflections 4073 Unique reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{mt} 0.0279 Ro 0.0471 $-10 \le h \le 13$,Range of h, k, l $-12 \le l \le 5$ $R[F_0 > 4\sigma(F_0)]$ 0.0507 R (all data) 0.0603 wR (on F_0^2) 0.1461 Goof 1.128 Number of least-squares 124 Maximum and 6.91 (at 0.85 Å from Th)minimum residual peak ($e A^3$) -3.17 (at 0.93 Å from Th)Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F$ $Aax(F_0^2, 0)/3. a$ and b values are 0.0699 and 53.6946 .	β(°)	90.00(1)
Z4Data collection and refinementRadiation, wavelength (Å) Temperature (K) 293 26_{max} Mo Ka, $k = 0.71073$ 293 293 865 Measured reflections Unique reflections4073 2223 Reflections with $F_0 > 4\sigma(F_0)$ R_{of} 2008 0.04711 $-10 \le h \le 13$, $-10 \le h \le 13$, $-11 \le h \le 12$, $-12 \le I \le 5$ $R [H_0 > 4\sigma(F_0)]$ $R (all data)$ $WR (on F_0^-7)$ $R (all data)$ $Wark (or F_0^-7)$ $Rarmeters0.06030.1461Goof1.128Number of least-squaresparametersMaximum andMax(F_0^-2,0)/3. a and b values are 0.0699 and 53.6946.144 = 2262.0123$	$V(\dot{A}^3)$	942 0(2)
Data collection and refinementRadiation, wavelength (Å) Temperature (K)Mo Ka, $\lambda = 0.71073$ 29320max 20max59.65Measured reflections4073 Unique reflectionsReflections with $F_0 > 4\sigma(F_0)$ Ro2008 RimeRime Ro0.0279 RoRange of h, k, l-10 ≤ h ≤ 13, -12 ≤ l ≤ 5R[$F_0 > 4\sigma(F_0)$] Goof0.0507 1.128Number of least-squares parameters124 6.91 (at 0.85 Å from Th) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F Max(F_0^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	7	4
Radiation, wavelength (Å) Temperature (K) 29_{max} Mo Kα, $\lambda = 0.71073$ 293 29_{max} 90_{max} 59.65 Measured reflectionsWindue reflections4073 2023 RReflections with $F_0 > 4\sigma(F_0)$ R_0 2008 0.0279 R_0 Range of h, k, l $-10 \le h \le 13$, $-10 \le h \le 13$, $1.12 \le l \le 5$ $R [all data)$ $Maximum and$ minimum residual peak (e Å^3)Number of least-squares parameters124 -3.17 (at 0.93 Å from Th) -3.16946 .Note: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F]$ $Max(F_0^{-2}, 0)]/3$. a and b values are 0.0699 and 53.6946.	ollection and refinement	I
Temperature (K) 293 20_{max} 59.65 Measured reflections 4073 Unique reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{int} 0.0279 R_{o} -10 ≤ h ≤ 13, Range of h, k, l -14 ≤ k ≤ 12, $R[F_0 > 4\sigma(F_0)]$ 0.0603 $W(n \cap F_0^-)$ 0.1461 Goof 1.128 Number of least-squares 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å^3) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^-2) + (aP)^2 + bP]$, with $P = [2F$ $Aax(F_0^-2,0)]/3$. a and b values are 0.0699 and 53.6946.	iation, wavelength (Å)	Μο <i>Κ</i> α, λ = 0.71073
$2\theta_{max}$ 59.65 Measured reflections 4073 Unique reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{int} 0.0279 $R\sigma$ 0.0471 Ror 0.0507 $R(all data)$ 0.0507 $Number of least-squares 1.128 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å-3) -3.17 (at 0.93 Å from Th) vote: the weighting scheme is defined as w = 11/0^2(F_0^2) + (aP)^2 + bP], with P = [2F] Max(F_0^2, 0)]/3. a and b values are 0.0699 and 53.6946. $	Temperature (K)	293
Measured reflections 4073 Unique reflections 2223 Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{nt} 0.0279 $R\sigma$ 0.0471 $-10 \le h \le 13$, $-14 \le k \le 12$, $R[F_0 > 4\sigma(F_0)]$ 0.0507 R (all data) 0.0603 wR (on F_0^{-2}) 0.1461 Goof 1.128 Number of least-squares 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak ($e A^{-3}$) -3.17 ($a 0.93 Å$ from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ $Max(F_0^{-2}, 0)]/3$. a and b values are 0.0699 and 53.6946.	$2\theta_{max}$	59.65
Unique reflections2223Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{int} 0.0279 $R\sigma$ 0.0471Range of h, k, l $-10 \le h \le 13$, $Rige of h, k, l$ $-12 \le l \le 5$ $R[F_0 > 4\sigma(F_0)]$ 0.0603 wR (on F_0^{-2})0.1461Goof1.128Number of least-squares124minimum residual peak (e Å^3) -3.17 (at 0.93 Å from Th)Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ $Aax(F_0^{-2}, 0)]/3$. a and b values are 0.0699 and 53.6946.	easured reflections	4073
Reflections with $F_0 > 4\sigma(F_0)$ 2008 R_{int} 0.0279 $R\sigma$ 0.0471 Range of h, k, l -10 ≤ h ≤ 13, Range of h, k, l -14 ≤ k ≤ 12, $R[F_0 > 4\sigma(F_0)]$ 0.0507 R (all data) 0.0603 wR (on F_0^-) 0.1461 Goof 1.128 Number of least-squares 124 maximum and 6.91 (at 0.85 Å from Th) -3.17 (at 0.93 Å from Th) -3.17 (at 0.93 Å from Th) vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^-) + (aP)^2 + bP]$, with $P = [2F$ $Aax(F_0^-, 0)]/3$. a and b values are 0.0699 and 53.6946.		2223
Rint 0.0279 R_{0} 0.0471 Range of h, k, l -10 ≤ h ≤ 13, Range of h, k, l -14 ≤ k ≤ 12, $R[F_0 > 4\sigma(F_0)]$ 0.0507 R (all data) 0.0603 wR (on F_0^{-2}) 0.1461 Goof 1.128 Number of least-squares 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å^3) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F$ Max(F_0^{-2} , 0)]/3. a and b values are 0.0699 and 53.6946.	octions with $E > 4\sigma(E)$	2008
Nint 0.02471 $R\sigma$ -10 ≤ h ≤ 13, Range of h, k, l -14 ≤ k ≤ 12, $R[F_0 > 4\sigma(F_0)]$ 0.0603 WR (on F_0^{-2}) 0.1461 Goof 1.128 Number of least-squares 124 maximum and 6.91 (at 0.85 Å from Th) minimum residual peak ($e Å^{-3}$) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ Max(F_0^2 , 0)]/3. a and b values are 0.0699 and 53.6946.	$D = D^{-1}$	0.0270
Ro -10 $\le h \le 13$, Range of h, k, l -14 $\le k \le 12$, R [F_o > 4\sigma(F_o)] 0.0507 R (all data) 0.0603 wR (on F_o^2) 0.1461 Goof 1.128 Number of least-squares parameters 124 Maximum and 6.91 (at 0.85 Å from Th) work: the weighting scheme is defined as $w = 11[\sigma^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ Max($F_o^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	∧ _{int}	0.0279
Range of h, k, l $-10 \le h \le 13$, $-14 \le k \le 12$, $-12 \le l \le 5$ R [F_0 > 4 σ (F_0)] 0.0507 R (all data) 0.0603 wR (on F_0^2) 0.1461 Goof 1.128 Number of least-squares parameters 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak ($e Å^{-3}$) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ Max($F_0^{-2}, 0$)]/3. a and b values are 0.0699 and 53.6946.	RU	0.0471
Range of h, k, l $-14 \le k \le 12,$ R [F_o > 4 σ (F_o)] 0.0507 R (all data) 0.0603 WR (on F_o^2) 0.1461 Goof 1.128 Number of least-squares 124 parameters 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å ⁻³) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F$ $Aax(F_o^2, 0)]/3. a$ and b values are 0.0699 and 53.6946.		$-10 \le h \le 13,$
$\begin{array}{c c} -12 \le l \le 5 \\ R \left[F_{0} > 4\sigma(F_{0}) \right] \\ R (all data) \\ wR (on F_{0}^{-2}) \\ Goof \\ Number of least-squares \\ parameters \\ Maximum and \\ minimum residual peak (e Å^{-3}) \\ vote: the weighting scheme is defined as w = 1/[\sigma^{2}(F_{0}^{-2}) + (aP)^{2} + bP], with P = [2F] Aax(F_{0}^{-2}, 0)]/3. a and b values are 0.0699 and 53.6946.$	Range of <i>h</i> , <i>k</i> , <i>I</i>	<i>−</i> 14 ≤ <i>k</i> ≤ 12,
$R[F_o > 4\sigma(F_o)]$ 0.0507 R (all data) 0.0603 wR (on F_o^2) 0.1461 Goof 1.128 Number of least-squares 124 parameters 6.91 (at 0.85 Å from Th) minimum residual peak ($e Å^3$) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[o^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ Max(F_o^2 , 0)]/3. a and b values are 0.0699 and 53.6946.		–12 ≤ / ≤ 5
\hat{R} (all data)0.0603 WR (on F_0^2)0.1461Goof1.128Number of least-squares parameters124Maximum and6.91 (at 0.85 Å from Th)minimum residual peak (e Å ⁻³)-3.17 (at 0.93 Å from Th)Note: the weighting scheme is defined as $w = 1/[o^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F]$ Max(F_0^2 ,0)]/3. a and b values are 0.0699 and 53.6946.	$R[F_{o} > 4\sigma(F_{o})]$	0.0507
$w\dot{R}$ (on F_0^2) Goof0.1461 1.128Number of least-squares parameters Maximum and minimum residual peak ($e\dot{A}^{-3}$)1240.91 (at 0.85 Å from Th) -3.17 (at 0.93 Å from Th)Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^{-2}) + (aP)^2 + bP]$, with $P = [2F]$ Max $(F_0^{-2}, 0)]/3$. a and b values are 0.0699 and 53.6946.	R (all data)	0.0603
Goof1.128Number of least-squares parameters124Maximum and6.91 (at 0.85 Å from Th)minimum residual peak ($e Å^{-3}$)-3.17 (at 0.93 Å from Th)Vote: the weighting scheme is defined as $w = 1/[o^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ Max $(F_o^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	wR (on E_{0}^{2})	0.1461
Number of least-squares parameters 124 Maximum and 6.91 (at 0.85 Å from Th) minimum residual peak (e Å ⁻³) -3.17 (at 0.93 Å from Th) Vote: the weighting scheme is defined as $w = 1/[o^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ Max(F_o^2 ,0)]/3. a and b values are 0.0699 and 53.6946.	Goof	1 128
Item parameters124Maximum and6.91 (at 0.85 Å from Th)minimum residual peak (e Å ⁻³)-3.17 (at 0.93 Å from Th)Vote: the weighting scheme is defined as $w = 1/[0^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F]$ Max $(F_0^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	nber of least-squares	
Maximum and minimum residual peak $(e A^{-3})$ Note: the weighting scheme is defined as $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ Max $(F_o^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	narameters	124
minimum residual peak ($e \ A^{-3}$) $3.17 (at 0.93 \ A from Th)$ Vote: the weighting scheme is defined as $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$, with $P = [2F]$ $Max(F_o^2, 0)]/3$. <i>a</i> and <i>b</i> values are 0.0699 and 53.6946.	Maximum and	6 01 (at 0 85 Å from Th)
Note: the weighting scheme is defined as $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, with $P = [2F] Aax(F_0^2, 0)]/3$. <i>a</i> and <i>b</i> values are 0.0699 and 53.6946.	μ m residuel peak (αh^{-3})	2.17 (at 0.03 A from Th)
Vote: the weighting scheme is defined as $W = 1/[G(F_0) + (aF) + bF]$, with $P = [2F]$ Max $(F_0^2, 0)]/3$. a and b values are 0.0699 and 53.6946.	uni residual peak (eA)	-3.17 (at 0.95 A from 11)
	2 0)1/3 a and b values are ($\begin{array}{l} \text{Ineu as } w = 1/[0 (F_0) + (aP) + bP], \text{ with } P = [2F_c + 0.0600 \text{ and } 53.6046 \end{array}$
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4844

495	Table 4. Atom	ic positions and	l displacement	parameters (in $Å^2$) for ichnusaite.
-----	---------------	------------------	----------------	--------------	----------	-------------------

496

Site	x	у	Z	U _{eq}	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Th	0.6781(1)	0.4625(1)	0.2364(1)	0.0127(2)	0.0251(3)	0.0035(2)	0.0095(3)	-0.0003(2)	-0.003(3)	-0.0002(2)
Mo1	0.5770(2)	0.7657(1)	-0.0092(2)	0.0142(3)	0.0278(8)	0.0034(7)	0.0112(7)	-0.0005(5)	0.0021(8)	-0.0010(6)
Mo2	0.7140(2)	0.4051(2)	-0.2074(2)	0.0155(4)	0.0282(9)	0.0057(6)	0.0125(8)	-0.0008(5)	0.0001(7)	-0.0008(6)
01	0.546(1)	0.428(1)	-0.271(2)	0.021(3)	0.015(6)	0.016(6)	0.031(9)	-0.001(7)	0.004(7)	0.003(5)
02	0.828(2)	0.519(1)	-0.282(2)	0.023(3)	0.031(8)	0.014(7)	0.025(8)	0.004(5)	-0.014(9)	0.002(6)
O3	0.699(2)	0.871(1)	-0.085(2)	0.019(3)	0.025(9)	0.019(7)	0.015(6)	0.008(5)	-0.002(7)	0.007(6)
O4	0.720(2)	0.420(1)	-0.020(2)	0.022(3)	0.041(10)	0.022(7)	0.005(6)	-0.002(5)	0.008(7)	-0.008(7)
O5	0.777(1)	0.250(1)	-0.264(2)	0.013(2)	0.011(5)	0.013(5)	0.017(6)	0.002(5)	0.011(6)	-0.002(5)
Ow6	0.863(2)	0.428(2)	0.430(2)	0.031(4)	0.055(13)	0.020(8)	0.019(8)	0.000(6)	-0.004(8)	0.008(8)
07	0.442(2)	0.846(2)	0.076(2)	0.021(3)						
08	0.510(2)	0.658(1)	-0.135(2)	0.021(3)	0.030(9)	0.017(7)	0.014(7)	-0.004(6)	-0.006(7)	0.002(7)
O9	0.668(2)	0.670(1)	0.111(2)	0.031(4)	0.065(13)	0.012(7)	0.015(7)	0.004(5)	0.006(9)	0.002(9)
Ow10	0.916(2)	0.539(2)	0.175(2)	0.033(4)	0.013(8)	0.049(12)	0.039(11)	0.016(8)	0.007(8)	0.000(8)
Ow11	0.030(2)	0.231(2)	0.536(2)	0.042(5)	0.048(12)	0.029(10)	0.049(13)	0.006(9)	-0.003(11)	-0.006(9)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4844

20

4/2

Th	– O5	2.405(13)	Mo1	- 07	1.745(16)
	– O8	2.407(16)		- O9	1.746(18)
	– O3	2.412(14)		- O8	1.747(15)
	– O7	2.428(16)		- O3	1.765(16)
	– O9	2.450(15)			
	– O1	2.469(13)	Mo2	- 01	1.750(14)
	- O4	2.483(14)		- 04	1.760(14)
	– Ow10	2.505(17)		- O2	1.763(16)
	– Ow6	2.574(19)		- O5	1.800(13)

497 **Table 5**. Selected bond distances (in Å) for ichnusaite.

498

499

500

501	Table 6.	X-rav	powder	diffraction	data	for	ichnusaite.
201	A 460 A 0 0.	11 100 9	0000000	annaotion	aaca	101	ionnabarco.

502

I _{obs}	d _{obs} (Å)	I _{calc}	d _{calc} (Å)	hkl	I _{obs}	d _{obs} (Å)	$I_{\rm calc}$	d _{calc} (Å)	hkl
mw	9.7*	100	9.68	100	vw	2.500*	1	2.500	041
w	7.03*	7	7.08	110	w	2.415*	2	2.413	-232
m	5.66	18	5.649	-111		2.358	7	2.366	-322
m		15	5.649	111	IIIvv		8	2.344	004
mw	5.19*	10	5.189	020	mw	2.284*	6	2.286	411
w	4.82*	12	4.840	200	mw	2.252*	5	2.255	133
mw	4.69*	16	4.689	002			1	2.221	-2 4 1
vw	4.12*	2	4.110	121	vw	2.212	1	2.210	-142
		15	3.973	211			1	2.194	-313
m	3.930	13	3.909	-112		0 106	1	2.137	024
		11	3.909	112	VVV	2.130	1	2.136	421
S	3.479*	45	3.479	022	w	2.097 2.055	2	2.092	-233
	2 265	12	3.367	-2 2 1			4	2.092	233
TTW	3.305	14	3.367	221			3	2.060	323
		11	3.274	122	vv		2	2.055	-242
S	3.257	23	3.257	130	w	2.024*	3	2.029	151
		10	3.203	-212	mw	1.980			
m	3.074*	9	3.077	-131	w	1.937			
w	2.981*	4	2.993	013	mw	1.903			
w	2.866*	4	2.860	-113	m	1.861			
m	2.816*	13	2.814	230	w	1.813			
VW	2.741*	8	2.740	320	w	1.765			
mw	2.670*	4	2.675	-132	vw	1.733			
w	2.582*	1	2.581	123	w	1.700			
W	2.540*	6	2.546	213					

Notes: the $\overline{d_{hkl}}$ values were calculated on the basis of the unit cell refined by using single-crystal data. Intensities were calculated on the basis of the structural model using the software Powder Cell (Kraus and Nolze, 1996). Observed intensities were visually estimated. vs = very strong; s = strong; ms = medium-strong; m = medium; mw = medium-weak; w = weak; vw = very weak. Only reflections with $I_{calc} > 5$ are listed, if not observed. The strongest reflections are given in bold. Reflections used for the refinement of the unit-cell parameters are indicated by an asterisk.

- 509
- 510
- 511

4/2

513 **Table 7**. O···O distances (in Å) and corresponding bond-valence values (in valence units, *v.u.*)

calculated with parameters from Ferraris and Ivaldi (1988).

515

0…0	d (Å)	vu		
O2…Ow10	2.74(2)	0.21		
Ow6…Ow11	2.79(3)	0.19		
Ow10…Ow11	2.86(3)	0.16		
O2…Ow6	2.88(2)	0.16		

- 516
- 517
- 518

519

520

Table 8. Bond-valence values calculated with parameters from Brese & O'Keeffe (1991).

522

Site	01	02	O3	O4	O5	Ow6	07	08	O9	Ow10	Ow11	Σ(X – Ο)
Th	0.44		0.52	0.43	0.53	0.33	0.49	0.52	0.47	0.40		4.13
Mo1			1.47				1.55	1.54	1.55			6.11
Mo2	1.53	1.48		1.49	1.34							5.84
$\Sigma(O-X)$	1.97	1.48	1.99	1.92	1.87	0.33	2.04	2.06	2.02	0.40	0.00	
Σ (O – X)*	1.97	1.85	1.99	1.92	1.87	-0.02 ¹ 0.36 ²	2.04	2.06	2.02	0.35 ¹ 0.03 ²	0.03 ¹ -0.03 ²	
Species	0	0	0	0	0	H_2O	0	0	0	H ₂ O	H ₂ O	
*after correction for OO hydrogen bonds. ¹ Ow6 as donor and Ow10 as acceptor in the												
Ow6…Ow11…Ow10 hydrogen bond; ² Ow6 as acceptor and Ow10 as donor in the												
Ow6…Ow11…Ow10 hydrogen bond.												

- 523
- 524
- 525

526

527 528

Table 9. Molybdate minerals containing the oxoanion $(MoO_4)^{2-}$.

				,					
Mineral	Chemical formula	a (Å)	b (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)	S.g.	Ref.
Cupromolybdite	Cu ₃ O(MoO ₄) ₂	7.664	6.867	14.555	90	90	90	Pnma	[1]
Ferrimolybdite	Fe ₂ (MoO ₄) ₃ · <i>n</i> H ₂ O	6.665	15.423	29.901	90	90	90	Pmmn Pm2.n	[2]
Ichnusaite	Th(MoO₄)·3H₂O	9.680	10.377	9.378	90	90	90	P2 ₁ /c	[3]
Lindgrenite	$Cu_3(MoO_4)_2(OH)_2$	5.61	14.03	5.40	90	98.4	90	P2₁/n	[4]
Markascherite	Cu ₃ (MoO ₄)(OH) ₄	9.990	5.993	5.526	90	97.4	90	P2 ₁ /m	[5]
Molybdofornacite	CuPb ₂ (MoO ₄)(AsO ₄)(OH)	8.100	5.946	17.65	90	109.2	90	P21/c	[6]
Nuragheite	Th(MoO₄)·H₂O	7.358	10.544	9.489	90	91.9	90	P21/c	[7]
Powellite	Ca(MoO ₄)	5.224	5.224	11.430	90	90	90	<i>I</i> 4₁/a	[8]
Szenicsite	Cu ₃ (MoO ₄)(OH) ₄	8.520	12.545	6.079	90	90	90	Pnnm	[9]
Tancaite-(Ce)	FeCe(MoO ₄) ₃ ·3H ₂ O	6.80	6.80	6.80	90	90	90	Pm3 m	[10]
Vergasovaite	Cu ₃ (SO ₄)(MoO ₄ ,SO ₄)O	7.421	6.754	13.624	90	90	90	Pnma	[11]
Wulfenite	Pb(MoO ₄)	5.433	5.433	12.098	90	90	90	<i>I</i> 4₁/a	[12]

529 [1]Zelenski et al., 2012; [2] Horn et al., 1995; [3] this work; [4] Calvert and Barnes, 1957; [5] Yang et

al., 2012; [6] Medenbach et al., 1983; [7] Orlandi et al., in preparation; [8] Aleksandrov et al., 1968; [9]

531 Burns, 1998; [10] Bonaccorsi and Orlandi, 2010; [11] Berlepsch et al., 1999; [12] Secco et al. 2008.

533 **Fig. 1**. Ichnusaite, tabular crystals on {100}.

- Fig. 2. Ichnusaite, crystal structure as seen down c (a) and a (b). Polyhedra: grey = Th-
- 537 centered polyhedra; dark grey = Mo1 tetrahedra; white = Mo2 tetrahedra. Circles = interlayer
- 538 H_2O groups. H_2O groups are not shown in (b).

- **Fig. 3**. Hydrogen bond system in ichnusaite as seen down **c**. Polyhedra: grey = Th-centered
- 543 polyhedra; dark grey = Mo1 tetrahedra; white = Mo2 tetrahedra. Circles: black = O2 site; dark
- 544 grey = H_2O groups bonded to Th^{4+} cations (Ow6 and Ow10 sites); light grey = interlayer
- 545 H₂O groups (Ow11 site).
- 546

