This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

1

REVISION 2

2	Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-
3	crystal reflectance spectra
4	Jessica A. Arnold ¹ , Timothy D. Glotch ¹ and Anna M. Plonka ¹
5	¹ Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, U.S.A.

6 Abstract

We have determined the mid-IR optical constants of one alkali feldspar and four pyroxene 7 compositions in the range of 250–4000 cm⁻¹. Measured reflectance spectra of oriented single crystals 8 were iteratively fit to modeled spectra derived from classical dispersion analysis. We present the real 9 and imaginary indices of refraction (n and k) along with the oscillator parameters with which they were 10 modeled. While materials of orthorhombic symmetry and higher are well-covered by the current 11 literature, optical constants have been derived for only a handful of geologically relevant monoclinic 12 materials, including gypsum and orthoclase. Two input parameters that go into radiative transfer 13 models, the scattering phase function and the single scattering albedo, are functions of a material's 14 optical constants. Pyroxene is a common rock-forming mineral group in terrestrial bodies as well 15 16 meteorites and is also detected in cosmic dust. Hence, having a set of pyroxene optical constants will provide additional details about the composition of solar system bodies and circumstellar materials. We 17 follow the method of Mayerhofer et al. (2010), which is based on the Berreman 4x4 matrix 18 formulation. This approach provides a consistent way to calculate the reflectance coefficients in low-19 symmetry cases. Additionally, while many models assume normal incidence to simplify the dispersion 20 relations, this more general model applies to reflectance spectra collected at non-normal incidence. 21

22 1. Introduction

4/30

23 Pyroxenes are common rock-forming minerals in terrestrial planets and asteroids. They are also abundant in meteorites and interplanetary and cosmic dust particles. The pyroxene crystal structure 24 allows for a variety of cations to occupy its M1 and M2 sites, with ordering and preference between the 25 two sites being controlled by temperature, pressure, and cooling rate. As a result, pyroxene composition 26 is a good indicator of the thermal history of the source magma (Kilma et al. 2008) and can be used to 27 28 compare the evolution of different planetary bodies (Karner et al. 2006). Pyroxene is readily detected in the near-infrared (NIR) via two strong Fe². crystal field absorption bands near 1 and 2 µm whose 29 positions and strengths are functions of composition. As the mid-IR (MIR, around 3-15 µm, though 30 definitions vary) is sensitive to Si-O vibrational modes (Salisbury 1972), it can be used to provide 31 32 additional details about composition as well as to estimate abundance relative to more felsic

components (Ramsey and Christensen 1998).

The wavelength-dependent complex index of refraction ($\tilde{n}=n+ik$), where *n* and *k* are the optical 34 constants, is an essential input into scattering models of planetary surfaces. Commonly used radiative 35 transfer models of airless bodies include Lumme and Bowell (1981), Hapke (1993a, 2012), Shkuratov 36 37 et al. (1999) and Mishchenko et al. (1999). Hapke's theory uses optical constants to calculate the single scattering albedo and the phase function. In Skhuratov's model of lunar regolith scattering, the 38 reflectance of the surface (A) is dependent on only four parameters A(n,k,S,q), where n and k are the 39 optical constants, S is the scattering path-length and q is the packing density (Skhuratov et al. 1999). 40 Hence, accurate determination of optical constants for a variety of minerals is necessary for using 41 remote sensing data to make quantitative estimates of mineralogical composition. At MIR wavelengths, 42 materials of orthorhombic symmetry and higher are well-covered by the current literature; these 43 include quartz, calcite, olivine, orthopyroxene, kaolinite, serpentine, palagonite, and iron oxides 44 45 (Spitzer and Kleinman 1961; Wenrich and Christensen 1996; Lucy 1998; Lane 1999; Suto et al. 2002; Glotch et al. 2006; Sogawa et al. 2006; Dyar et al. 2009; Roush et al. 1991; Glotch and Rossman 2009). 46

47 Monoclinic and triclinic minerals have largely been ignored in optical constant research, although in some cases orientation-averaged effective optical constants have been calculated and 48 49 presented (e.g., Roush et al. 1991; Glotch et al. 2007). This is due to the additional complexity of obtaining values for low-symmetry materials, despite the fact that these crystal systems contain 50 important rock-forming mineral groups such as clinopyroxene and feldspar. In this work, we use 51 52 dispersion analysis to calculate the optical constants of four distinct clinopyroxene compositions in the range of 250–4000 cm⁻¹, following the method of Mayerhofer et al. (2010) and present a procedure that 53 can be applied to derive the optical constants of monoclinic single crystals. We also calculate the 54 optical constants of orthoclase and compare to the previously computed optical constants of Aronson 55 56 (1986) as a test of our model.

57 2. Background

58 2.1 The Moon

The Clementine mission provided a global lunar map of pyroxene abundance, broadly 59 highlighting that it is a major component of the mare basalts and less prevalent in highlands. Modeled 60 clinopyroxene concentrations are especially high in fresh mare craters due the short exposure ages of 61 these surfaces (Shkuratov et al. 2004). While pyroxene is only a minor component in the lunar 62 highlands it is found in the following highlands rock types: ferroan anorthosites (FAN's), alkali- and 63 64 Mg-suite rocks (Tompkins and Pieters 1999). Attempting to put these in a global context, Klima et al. (2011) used NIR data from the Moon Mineralogy Mapper (M^3) to detail the distribution of high- vs. 65 66 low-Ca pyroxene and estimate Mg #. Low-Ca pyroxene is limited to regional exposures within the 67 South Pole-Aitken Basin and in the highlands north and south of Mare Frigoris, approximately half of which have Mg # (Mg/(Mg+Fe) commensurate with FAN rocks (~Mg # 55–75). 68 MIR emission data from the Diviner Lunar Radiometer Experiment complements visible near-69

70 IR (VNIR) measurements from Clementine and M^3 , as they are able to detect Fe-poor lithologies in the

4/30

71 presence of mafic materials such as pyroxene and olivine. Three of Diviner's channels are centered near the silicate Christiansen feature (CF) (Paige et al. 2010), which is an emissivity maximum whose 72 position moves to shorter wavelengths with increasing SiO₂ polymerization (Conel 1969; Logan et al. 73 1973; Salisbury and Walter 1989), allowing Diviner to be used to map silicate compositions across the 74 Moon (Greenhagen et al. 2010; Glotch et al. 2010, 2011; Song et al. 2013; Allen et al. 2011; Arnold et 75 76 al. 2013). A global map of CF position clearly demonstrates the difference between the relatively 77 pyroxene-rich mare and feldspar-rich highlands (Greenhagen et al. 2010). Although Diviner has only three spectral bands in the 8 µm range, laboratory measurements in a simulated lunar environment 78 show the estimated CF position combined with spectral shape is adequate to distinguish pyroxene from 79 a mixture of plagioclase and olivine (Donaldson Hanna et al. 2012). 80

81 *2.2 Mars*

The low-albedo regions of Mars were initially categorized into two surface compositions based 82 on Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, where Surface Type 1 83 was determined to be basalt containing ~25% clinopyroxene (Bandfield et al 2000, Hamilton et al. 84 2001). Rogers et al. (2007) defined 4 distinct spectral types within low-albedo terrains. Subsequently, 85 86 Rogers and Christensen (2007) determined the mineralogy of these four groups, with clinopyroxene abundance being one of the major distinguishing features. While low-Ca pyroxenes were mostly 87 detected in Noachian terrain, high-Ca pyroxene was found in a wider age-range of units. Some of the 88 89 mineralogical differences between the four groups, especially high silica phases, are the result of weathering. However, the differences in pyroxene abundance likely represent differences in the magma 90 from which the crust was derived. These differences were also identified with data from the OMEGA 91 92 (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) NIR imaging spectrometer. Using this instrument, Ody et al. (2012) presented global maps of anhydrous minerals, including pyroxene. 93 94 The highest pyroxene concentration occurs in the Syrtis Major volcanic province, which is coincident with Group 2 of Rogers and Christensen (2007). Glotch and Rogers (2013) suggested that the unusually 95

high concentration of high-Ca pyroxene at this site was the result of subsurface interactions of basaltic
magma and a Ca-carbonate-bearing layer.

98 *2.3 Asteroids*

99 Pyroxene has been identified in several S-type asteroid families (Chapman et al. 1975). 100 Sunshine et al. (2004) applied the Modified Gaussian Model (MGM) to VNIR asteroid spectra 101 collected by the NASA Infrared Telescope Facility (IRTF), to determine the relative amounts of low-102 and high calcium pyroxene. They determined that the Vestoids and well as the S-type asteroid families 103 Merxia and Agnia have a high ratio of high calcium pyroxene to total pyroxene, indicating that they are 104 derived from differentiated bodies.

Pyroxene absorptions are the most common VNIR spectral feature on the surface of the asteroid 105 Vesta, which was first linked to the HED (howardite-eucrite-diogenite) meteorites due to the similarity 106 of their 0.9 µm band in VNIR spectra (McCord et al. 1970). The findings of Dawn's Visible InfraRed 107 (VIR) mapping spectrometer support this connection. Much of the surface shows a howardite-like 108 spectrum intermixed with smaller-scale regions resembling eucrites and diogenites. The south polar 109 region (Rheasilvia), a large impact basin, is consistent with more Mg-rich pyroxene characteristic of 110 diogenites (De Sanctis et al. 2012). These spectral variations are indicative of a differentiated crust 111 112 where the deeper diogenitic materials have been exposed through impact.

113 *2.4 Interplanetary and Interstellar Dust*

The presence of crystalline silicates in interplanetary dust particles (IDPs) was established through micrometeorite samples collected from Earth's stratosphere (Bradley et al. 1983, Mackinnon and Rietmeijer 1987). Additionally, ground-based MIR spectra from three different instruments provided evidence for crystalline silicates in comets (Hanner et al. 1994). Prior to the Infrared Space Observatory (ISO), whose instruments covered a range of ~2.5 – 240 μ m, silicates in cosmic dust were thought to be primarily amorphous (Roush et al. 1991; Molster and Kemper 2004). This assumption 120 guided most previous laboratory studies of pyroxene optical constants (Jäger et al. 1994; Dorschner et al. 1995; Henning and Mutschke 1997). Using ISO, crystalline pyroxene was detected in dust produced 121 by evolved stars (Molster et al. 2002), the circumstellar disks of young stellar objects (YSO's) 122 (Bouwman et al. 2001) and planetary nebula (Beintema 1997). As a result of the detection of crystalline 123 124 pyroxene around planetary nebula, Jäger et al. (1998) estimated the MIR optical constants for a natural enstatite (low-Ca orthopyroxene) sample along the crystallographic axes using Kramers-Kronig 125 analysis. Better characterization of the materials in circumstellar environments would improve our 126 127 understanding of dust formation and processing and enable comparison to our own solar system.

128 **3. Methods**

129 3.1 Sample description and preparation

All samples are large single crystals (roughly 0.5-1 cm on a side) and their chemical 130 131 compositions are summarized in Table 1. The major element abundances were determined by scanning electron microscope energy dispersive x-ray spectroscopy (SEM-EDS). To produce the chemical 132 133 formulas in Table 1, atomic abundances of oxygen were assumed by stoichiometry to be O₆, which may introduce error if any non-pyroxene phases are present in the samples. We prepared thin sections 134 of each sample in order to optically examine the samples for exsolution and twinning. One augite 135 (Aug1) sample was loaned from the Stony Brook Geosciences Department mineral collection and 136 originates from Indian Well, AZ. This sample does not show signs of exsolution or twinning. The 137 138 diopside (Diop1) sample was purchased from Kelly's Rocks and is from Magog, QC, Canada. While twinning is present over $\sim 30-40\%$ of a section perpendicular to the *a*-*c* plane in the diopside sample, 139 the IR spectra match previously published oriented reflectance spectra (Johnson et al. 2002). The 140 hedenbergite (Hed1) and second augite (Aug2) sample were provided by D. Lindsley at Stony Brook 141 142 University. The hedenbergite sample does not exhibit exsolution or twinning, while Aug2 appears to contain lamellae that remain dark under crossed polar illumination at all orientations. Micro-FTIR 143

spectra of these lamellae are quite noisy compared to the rest of the augite sample, and show a broad 144 reflectance peak at around 3900 cm⁻¹ and a peak at 1015cm⁻¹. These spectral features indicate some 145 type of clay, however the exact composition is difficult to discern. The FITR spectrum of the whole 146 sample does not show a 3900 cm⁻¹ peak, indicating this is a relatively minor component. The diopside, 147 148 hedenbergite, and augite compositions are shown on the ternary diagram in Figure 1. We cut each sample with a diamond saw blade so that one surface is parallel to the *a*-*c* plane (010) and the other 149 perpendicular to it -- planes (001) or (100). We polished these surfaces to 0.25 µm surface roughness, 150 and confirmed the orientations of the cut surfaces by single crystal XRD. XRD analysis involved 151 152 collection of the preliminary set of frames (pre-experiment) for the determination of unit cell and the 153 orientation matrix. Using this information, we indexed the faces of the crystal with the CrysAlisPRO 154 software. We collected reflections for determination of the orientation matrix using a four-circle kappa Oxford Gemini diffractometer equipped with an Atlas detector ($\lambda = 0.71073$ Å). 155

156 *3.2 Collection of mid and far-IR reflectance spectra*

157 We acquired specular reflectance spectra on the Stony Brook University Vibrational Spectroscopy Laboratory's Nicolet 6700 Fourier Transform Infrared (FTIR) spectrometer using a 158 FT-30 specular reflectance accessory with incidence and reflection angles of 30 degrees at a spectral 159 sampling of 2 cm⁻¹. An InfraSpecs wire grid IR polarizer was placed in the beam path for collection of 160 polarized reflectance spectra. For each sample, we measured reflectance spectra for four orientations of 161 162 the crystal with respect to the incident polarized beam. Depending on whether the a- or c-axis was more readily identifiable, these orientations were 0°, 45°, 90° and 110° from the identified 163 crystallographic axis. MIR spectra were collected over a range of 400–4000 cm⁻¹ using a KBr 164 beamsplitter and DTGS detector with a CsI window. Each spectrum is an average of 256 scans. Far-IR 165 (FIR) spectra were acquired from 250–600 cm⁻¹ using a Nicolet Solid Substrate beamsplitter and a 166 DTGS detector with a polyethylene window. Each of these spectra is an average of 512 scans. The two 167

wavelength ranges are joined at 600 cm⁻¹ using the overlapping region (600 cm⁻¹ – 400 cm⁻¹) to scale 168 the spectral contrast of the FIR spectra. MIR and FIR spectral contrast varies by up to 10% due to slight 169 differences in measurement conditions and/or a few degree error in crystal orientation. Samples were 170 171 placed on a holder that acts as a mask, controlling the spot size. We chose the largest spot size that can be completely covered by the polished surface of the sample. The bottom of the sample holders is 172 coated with paraffin soot to reduce stray reflectance off of the holder into the sample chamber. For the 173 smaller spot-sizes (<0.5 cm diameter) we subtracted a spectrum of the sample holder without a sample 174 or standard placed on top. While the sample holder does not affect the mid-IR reflectance, there is a 175 steep upward slope starting at around 400 cm⁻¹ which rapidly increases from 0.01 to several percent 176 reflectance at $\sim 100 \text{ cm}^{-1}$. 177

178 *3.3 Modeling of optical constants*

The optical constants (n,k) are related to the wavelength-dependent dielectric function $(\varepsilon(\lambda))$ of the material $(\tilde{n} = \varepsilon^{1/2})$. Electron states in non-conducting materials can be modeled as damped harmonic oscillators, which exhibit spring-like behavior (Griffiths 1999). The E-field of the incoming beam acts as a driving force on the oscillators, which have resonant frequencies v_j (cm⁻¹). The parameters s_j (cm⁻¹) 2), γ_j (cm⁻¹) and ε_{∞} are the oscillator strength, damping coefficient (proportional to the oscillator velocity) and infinite frequency dielectric constant respectively. These parameters are explained in more detail in section 5.1.

For minerals of orthorhombic and higher symmetry, we can assume that these oscillations occur parallel to the crystallographic axes. In this case, optical constants can be determined using the approach of Spitzer and Kleinman (1961). Reflectance spectra are acquired for each principal axis with the polarization parallel to each axis. Each spectrum is iteratively fit with estimated values of the oscillator parameters as input. This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

4/30

When a mineral is biaxial and the axes are not orthogonal, the oscillators cannot be assumed to 191 be parallel to the crystallographic axes (Belousov and Pavinich 1978). In a monoclinic material, optical 192 193 constants with E parallel to the *b*-axis (where the oscillators are parallel to the axis) can be determined in the same manner as the orthorhombic case. In the a-c plane, oscillators are coplanar with, but not 194 parallel to the crystallographic axes. To determine the two remaining principle refractive indices, it is 195 necessary to make measurements at three different angles (Ω) with respect to the crystallographic axes 196 197 in the *a*-*c* plane (Aronson et al. 1983), with measurements at more angles providing more robust fits. 198 This results in an additional oscillator parameters θ_i and φ_i . A useful diagram of such an experimental 199 setup is given in Fig. 1 of Ivanovski et al. (2007). The principle complex indices of refraction are the eigenvalues of the complex dielectric-permittivity tensor, which can be calculated as follows, where N 200 is the number of oscillators: 201

202
$$E = (n + ik)^{2} = \begin{pmatrix} \varepsilon_{\infty xx} & \varepsilon_{\infty yy} & \varepsilon_{\infty xz} \\ \varepsilon_{\infty yx} & \varepsilon_{\infty yy} & \varepsilon_{\infty yz} \\ \varepsilon_{\infty zx} & \varepsilon_{\infty zy} & \varepsilon_{\infty zz} \end{pmatrix} + \sum_{j=1}^{N} \frac{s_{j}}{v_{j}^{2} \cdot i\gamma_{j}v \cdot v^{2}} \times \\ 203 \begin{pmatrix} \sin^{2}\theta_{j}\cos^{2}\varphi_{j} & \sin^{2}\theta_{j}\sin\varphi_{j}\cos\varphi_{j} & \sin\theta_{j}\cos\theta_{j}\cos\varphi_{j} \\ \sin^{2}\theta_{j}\sin\varphi_{j}\cos\varphi_{j} & \sin^{2}\theta_{j}\sin^{2}\varphi_{j} & \sin\theta_{j}\cos\theta_{j}\sin\varphi_{j} \\ \sin\theta_{j}\cos\theta_{j}\cos\varphi_{j} & \sin\theta_{j}\cos\theta_{j}\sin\varphi_{j} & \cos^{2}\theta_{j} \end{pmatrix}$$
(1)

204

205 The reflectance spectra for all Ω are fit simultaneously. Fixing the *b*-axis as the *z*-axis of the 206 dielectric tensor, ε needs to be rotated with Ω , according to:

207

$$\varepsilon = \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{xy} & \varepsilon_{zz} \end{pmatrix} \begin{pmatrix} \cos\Omega & -\sin\Omega \\ \sin\Omega & \cos\Omega \end{pmatrix}$$
(2)

208

Because of the additional complexity in measurement and calculation, optical constants have been derived from single crystal samples for only a few monoclinic materials, including gypsum and orthoclase (Long et al.1992; Aronson et al. 1983, Aronson 1986). A similar method for triclinic materials is outlined by Aronson et al. (1985). However, substitution of the relevant variables in their equations for the reflection coefficients results in a singularity for the monoclinic case (Mayerhofer et symmetry cases (Mayerhofer and Popp 2007).

218 Mayerhofer and Popp (2007) define a matrix \widetilde{M} that can be used to calculate the reflection 219 coefficients as a function of incidence angle (α):

220
$$\widetilde{M} = D_{\psi}^{-1}(0)D_{\psi}(1)$$
 (3)

221
$$r_{xx} = \frac{\tilde{M}_{21}\tilde{M}_{33} - \tilde{M}_{23}\tilde{M}_{31}}{\tilde{M}_{11}\tilde{M}_{33} - \tilde{M}_{13}\tilde{M}_{31}}$$
(4a)

222
$$r_{xy} = \frac{\tilde{M}_{41}\tilde{M}_{33} - \tilde{M}_{43}\tilde{M}_{31}}{\tilde{M}_{11}\tilde{M}_{33} - \tilde{M}_{13}\tilde{M}_{31}}$$
(4b)

223 $D\Psi(0)$ and $D\Psi(1)$ are the dynamical matrices of the incident and refracted waves (Yeh 1979):

224
$$D_{\Psi}^{-1}(0) = \frac{1}{2} \begin{pmatrix} 1 & 1/n\cos\alpha & 0 & 0\\ 1 & -1/n\cos\alpha & 0 & 0\\ 0 & 0 & 1/\cos\alpha & 1/n\\ 0 & 0 & -1/\cos\alpha & 1/n \end{pmatrix}$$
(5)

225

$$226 D_{\Psi}(1) = \begin{pmatrix} \epsilon_{xy}(1 - \frac{k_y^2}{\epsilon_{zz}}) & 0 & \epsilon_{xy}(1 - \frac{k_y^2}{\epsilon_{zz}}) & 0 \\ \frac{a_{xy}(1 - \frac{k_y^2}{\epsilon_{zz}})\gamma_1 & 0 & \epsilon_{xy}(1 - \frac{k_y^2}{\epsilon_{zz}})\gamma_3 & 0 \\ \left(1 - \frac{k_y^2}{\epsilon_{zz}}\right)[\gamma_1^2 - (\epsilon_{xx} - k_y^2)] & 0 & \left(1 - \frac{k_y^2}{\epsilon_{zz}}\right)[\gamma_3^2 - (\epsilon_{xx} - k_y^2)] & 0 \\ [\gamma_1^2 - (\epsilon_{xx} - k_y^2)]\gamma_1 & 0 & [\gamma_3^2 - (\epsilon_{xx} - k_y^2)]\gamma_3 & 0 \end{pmatrix}$$
(6)

where n is the index of refraction of the incident medium, k_y is the y-component of the wave-vector (the magnitude and direction of the incoming beam), and

229
$$\gamma_1 = \sqrt{-\frac{1}{2\epsilon_{zz}}(K_1 + \sqrt{K_1^2 + K_2})}$$
 (7a)

230
$$\gamma_3 = \sqrt{\frac{1}{\epsilon_{zz}}(-K_1 + \sqrt{K_1^2 + K_2})}$$
 (7b)

231
$$K_1 = -\varepsilon_{zz}(\varepsilon_{xx} + \varepsilon_{yy}) + k_y^2(\varepsilon_{yy} + \varepsilon_{zz})$$
(8a)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

4/30

232
$$K_2 = -4 \left[\epsilon_{xy}^2 + \epsilon_{yy} \left(k_y^2 - \epsilon_{xx} \right) \right] (k_y^2 - \epsilon_{zz}) \epsilon_{zz}.$$
(8b)

To perform the required calculations, we use the Matlab non-linear fitting routine lsqcurvefit, which allows us to set lower and upper bounds, ensuring that the final values for the oscillator parameters are positive. To produce the initial parameters for this model, we first fit the spectrum for each Ω as if it is orthorhombic and at normal incidence. The parameters v_j and γ_j can be estimated reasonably by visual inspection, while s_j is estimated as in Pavinich and Belousov (1978). Reflectance spectra for all orientations are then fit simultaneously, using the Ω where s_j is the largest for a given v_j as an initial guess for φ_j .

We attempt to fit the reflectance spectrum with the minimum number of oscillators necessary. Starting with the number of main peaks, modes are added until a reasonable fit is obtained for any overlapping peaks or shoulders (a difference between the measured and modeled reflectance of less than 10%). Sometimes modes can be at the same frequency or very close in frequency, with different θ_{j} . In this case, although there is only one peak, the fit will be poor without an additional oscillator.

245 *3.4 Oscillator parameter error estimates*

246 The model fit is commonly assessed using the standard error of the oscillator parameters. We 247 report the standard error ($\sigma(v)$, $\sigma(v)$ etc.) for each parameter in Tables 2-6. This does not reflect the impact of the initial guesses of the oscillator parameters on the final reflectance fit. Poor initial 248 249 estimates of starting values may result in slow convergence, non-convergence or convergence on a local rather than global minimum in our model. For each sample, we used five different sets of starting 250 251 values centered around those produced by the fit to the orthorhombic model to qualitatively evaluate 252 how much the final n and k values depended on the initial estimates. Those that gave the best reflectance fit were used to calculate the optical constants. As an additional test, we independently 253 varied the sets of v_i , γ_i , s_i , and ϕ_i parameters for a gem-quality orthoclase sample to determine which 254 had the largest impact on the final *n* and *k* values. Large (\pm 30 cm⁻¹ for v_i and \pm 50% for all others) 255 variations in the other parameters do not appear to have a major effect on the fit (see Figures 2-5). 256

Figure 6 shows the final fits when all parameters are varied by these amounts (top) as well the 95% confidence bounds based of the standard error of the parameters (bottom). The two measures of uncertainty appear to diverge from the calculated optical constants at different wavenumbers.

260

261 **4. Results**

For each sample we present the measured and modeled reflectance and the plots of *n* and *k* as a 262 function of wavelength derived from the reflectance fit. The measured and modeled spectra, as well as 263 the derived optical oscillator available 264 constants and parameters are at http://aram.ess.sunysb.edu/tglotch/optical constants.html. 265

266 *4.1 Augite 1*

Measured reflectance and model are shown in Figure 7, with incident E-field polarization parallel to the *a-c* plane (top three) and parallel to b (bottom). Derived values of *n* and *k* are shown in Figure 8. In Figure 8 n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis. Oscillator parameters for this sample are given in Table 2.

272 *4.2 Augite 2*

Measured reflectance and model are shown in Figure 9, with incident E-field polarization parallel to the *a-c* plane (top three) and parallel to b (bottom). Derived values of *n* and *k* are given in Figure 10. In Figure 10 n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis. Oscillator parameters for this sample are given in Table 3.

278 *4.3 Diopside*

Measured reflectance and model are shown in Figure 11, with incident E-field polarization parallel to the *a-c* plane (top three) and parallel to b (bottom). Derived values of *n* and *k* are shown in Figure 12. In Figure 12 n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis. Oscillator parameters for this sample are given in Table 4.

284 *4.4 Hedenbergite*

Measured reflectance and model are shown in Figure 13, with incident E-field polarization parallel to the *a*-*c* plane (top three) and parallel to b (bottom). Derived values of *n* and *k* are shown in Figure 14. In Figure 14 n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the *a*-*c* plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis.Oscillator parameters for this sample are given in Table 5. *4.5 Orthoclase*

Measured reflectance and model are shown in Figure 15, with incident E-field polarization parallel to the *a-c* plane (top three) and parallel to b (bottom). Derived values of *n* and *k* are shown in Figure 16 as well as those from Aronson et al. (1986). In Figure 16 n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the a-c plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis. Oscillator parameters for this sample are given in Table 6.

297

298 **5. Discussion**

299 5.1 Interpretation of dispersion parameters

The optical constants n and k are related to the polarizability (α), the dependence of the 300 magnitude of the dipole moment on an applied electric field, and conductivity (σ), the ability of a 301 302 material to carry a current, which are both properties of the material. The dependence of the 303 polarizability and conductivity and hence the optical constants on wavelength are given by dispersion relations. To derive these dispersion relations, Lorentz postulated that insulating materials contain 304 305 electrons that are bound to atoms or molecules by Hooke's law forces (Seitz 1940), so that the binding 306 force is proportional to the charge displacement. The motion of the bound electron is described as a harmonic oscillator subject to a periodic electric field ($\mathbf{E}=\mathbf{E}_{0}e^{-2_{mv}t}$) and damped by a force proportional 307 to the electron's velocity ($m_e\gamma$ (*note to editor the following should be in line*) 308 dx dt

309) giving: (*end line*)
310
$$\frac{d^2x}{d^2t} + 2\pi\gamma \frac{dx}{dt} + 4\pi^2 v_0^2 x = \frac{-q_e}{m_e} E_0 e^{2\pi i v t}$$

311 $x = \frac{q_e}{4\pi^2 m_e} \frac{E_0 e^{-2\pi i v t}}{v_0^2 \cdot v^2 \cdot i \gamma v}$
(9)

The resonant frequency of the oscillator is v_0 and the damping constant is $2\pi m_e \gamma$. As v passes through the value v_0 , there is a peak in the absorption coefficient with a half-width of roughly γ . The order of magnitude of γ can be estimated by the following (Seitz 1940): $\gamma \sim \frac{4\pi v^2 q_e^2}{3m_e c}$ (11) Where q_e is in stateoulombs, v is in wavenumbers, m_e is in grams and c is in cm/s. Looking at Eq (10)

and assuming the dipole moment has a linear response to the electric field (
$$\mathbf{p} = \varepsilon_0 \alpha \mathbf{E}$$
), results in:

$$\alpha = \frac{q_e^2}{4\pi^2 m_e \varepsilon_0} \frac{1}{\nu_0^2 \cdot \nu^2 \cdot i\gamma \nu}$$
(12)

319 Using a form of the Clausius-Mosotti relation $\varepsilon = \varepsilon_{\infty} + 4\pi\chi = \varepsilon_{\infty} + 4\pi N\alpha$ (Spitzer et al. 1959) gives the 320 dispersion relation for a single resonance.

Of course, for a given material, there will not be just one resonant frequency, but several v_j each with a different damping constant γ_j . The quantum mechanical approach to this problem deals with this and also gives one additional parameter oscillator "strength" (f_j), a weighting for each oscillator that relates to the absorption or transition probability (Seitz 1940; Spitzer and Kleinman 1961; Born and Wolf 1970). The parameter s_j used in Eq (1) can be defined in terms of f_j as shown in Spitzer and Kleinman (1961).

327
$$s_j = 4\pi \rho_j v_j^2 = \frac{Nq_e^2}{\pi m_e} f_j$$
 (13)

While educated guesses can be made, the oscillator parameters (v_j , γ_j , and s_j) are difficult to derive exactly from first principles, which is why an iterative technique is normally used. The infinite frequency dielectric constant ε_{∞} can be estimated from the square of the visible-wavelength index of refraction (Roush et al. 1991).

332 5.2 Comparison with previously derived Orthoclase optical constants

Optical constants for orthoclase have been derived from oriented single crystal reflectance spectra by previous workers (Aronson et al. 1986). Figure 16 shows the values found in this study along with those from Aronson et al. (1986). The optical constants for the E-field polarization parallel to b orientation (nb and kb) are very similar, while the optical constants (n1,n2 and k1,k2) for the Efield parallel to the *a-c* plane have slight differences. Variations between the two data sets may be due to either compositional differences in the samples or uncertainties in orientation. Our orthoclase sample had a small amount of Fe³⁺ substituting for Al³⁺ (see Table 1). However, without any compositional information on the sample used in the Aronson et al. (1986) study, it is difficult to make inferencesabout specific bands.

342 5.3 Dependence of optical constants on crystal structure and chemistry

Isometric minerals will have one set of optical constants for each wavelength. Because most 343 344 minerals are anisotropic, the polarizability and conductivity will be directionally as well as wavelength dependent and therefore so will the optical constants. Dispersion in uniaxial and biaxial minerals is 345 described by a dielectric tensor rather than just a dielectric constant. The number of oscillator 346 347 parameters necessary to fit the reflectance spectrum generally increases with decreasing crystal symmetry. Figure 17 shows averaged optical constants in the MIR for several minerals that belong to 348 different crystal systems. It is also important to measure optical constants for several different chemical 349 compositions within the same mineral group. As shown in this work, optical constants vary 350 considerably with chemistry. Simply using one composition of olivine, for example, may produce poor 351 fits for mineralogical abundance as shown in Liu (2012) at VNIR wavelengths. 352

For silicates, there is a steep absorption edge in the UV-range after which k-values drop by 353 354 orders of magnitude and remain low through the VNIR. As a result, after the UV-edge, dispersion is 355 low until the MIR, where the fundamental vibrational bands occur. There is a steep rise in k between 8 and 10 μ m (1250cm⁻¹-1000cm⁻¹), with the maximum k occurring where n=1 or slightly lower than 1. 356 This is known as the Christiansen feature and is associated with a minimum in reflectance and a 357 358 maximum in emission. This feature is the means by which Diviner data are used to identify lunar 359 silicates (Greenhagen et al. 2010). Following the Christiansen feature, there is a steep drop-off in k and rise in n, causing a drop-off in emission followed by Reststrahlen features. For pyroxenes, spectral 360 features in the ~8-22 µm (~1250cm⁻¹-450cm⁻¹) range are mainly due to Si-O stretching, Si-O-Si 361 bending and modes of the cation- O_6 octahedra. The positions of absorptions at these wavelengths vary 362 with Mg # (defined as Mg/(Mg+Fe)) (Jäger et al. 1998; Hamilton 2000; Bowey et al. 2007; Lane et al. 363 364 2011), likely due to the effect of the substitution on the octahedral layer, which in turn alters the Si-O vibrations (Hamilton 2000; Klima 2007). To demonstrate these effects, Figure 18 shows the reflectance 365 and optical constants for olivine (from Zeidler et al. 2011) ranging from the UV through the MIR, with 366

the major spectroscopic features labeled. This figure also demonstrates that n and k values of silicates vary considerably in the mid-IR as compared with other wavelengths.

369 Amorphous pyroxenes produced by vapor phase condensation and synthetic glasses of pyroxene composition will lack many of the spectroscopic features of a crystalline pyroxene. As a result, the 370 371 optical constants of these materials will have broader and fewer peaks than crystalline pyroxene. To date, little work has been done on oriented crystalline samples (Jäger et al. 1998), and none has been 372 done to date on clinopyroxene. Figure 19 demonstrates the difference between optical constants of 373 crystalline vs. amorphous phases. Additionally, oriented single crystal spectra are preferable to 374 375 orientation-averaged data acquired from pellets pressed from powders, as the lower maxima of the 376 specular reflectance peaks of pellets results in lower maxima of derived optical constants when 377 compared to orientation-averaged single crystal optical constants (Roush 1991).

378

6. Implications

380 Radiative transfer models of planetary surfaces require optical constants for each component 381 that may be present. Applying these models is difficult in the MIR due to the absence of optical constants for many important minerals in the monoclinic and triclinic crystal systems. We have applied 382 the Berreman 4x4 matrix method to derive the MIR optical constants of 5 different pyroxenes for 383 384 which oriented single-crystal data were not previously reported in the literature. Four spectra with a polarized incident beam at different orientations were acquired for each sample, resulting in three sets 385 386 of optical constants that can be used to estimate n and k for a randomly oriented powdered sample. These data are necessary to improve compositional estimates of planetary regolith based on radiative 387 388 transfer models.

The data presented here, in conjunction with a coupled optical-thermal model, such as that of Milan et al. (2011), can be used to model MIR emissivity spectra in a vacuum environment relevant to airless solar system bodies. Modeled emission spectra can be compared to emissivity of the lunar surface derived from Diviner Lunar Radiometer data. These optical constants are also applicable to any MIR data from Mars or any airless solar system objects including: existing spectra of asteroids from ISO, Spitzer and any future data from James Webb Space Telescope (JWST) or the OSIRIS-REx mission. Future work will include expanding the current version of the code to include the triclinic case. This code for triclinic minerals will be applied to obtain feldspar optical constants. The Matlab scripts developed for this work will be made publicly available to other researchers at http://aram.ess.sunysb.edu/tglotch/

399

400 Acknowledgements

401 We thank D. Lindsley for providing two of the samples used in this work. This work was supported by

402 NSF award # AST-1150652 made to T. D. G. XRD analysis including face-indexation was supported

403 by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under contract

404 DE-FG02-09ER46650. Diffraction data were collected on Stony Brook University Single-Crystal

- 405 Diffractometer, obtained through the support of NSF (CHE-0840483).
- 406
- 407

408 **References**

409

413

Arnold, J.A., Glotch, T.D., Greenhagen, B.T., Thomas, I.R., and Bowles, N.E. (2013), Enhanced
 compositional analysis of the Moon using Diviner's long wavelength channels, European Planetary
 Science Conference, abstract 686.

417

Aronson, J.R., Emslie, A.G., Miseo, E.V., Smith, E.M., Strong, P.F. (1983) Optical constants of
monoclinic anisotropic crystals: gypsum. Applied Optics, 22, 24, 4093–4098.

- Aronson, J.R., Emslie, A.G., Strong, P.F. (1985) Optical constants of triclinic anisotropic crystals: blue
 vitriol. Applied Optics, 24, 8, 1200–1203.
- 423
 424 Aronson, J.R. (1986) Optical constants of monoclinic anisotropic crystals: Orthoclase. Spectrochimica
 425 Acta Part A: Molecular Spectroscopy, 42, 2–3, 187–190.
- 426

Bandfield, J.L., Hamilton, V.E., and Christensen, P.R. (2000) A Global View of Martian Surface
Compositions from MGS-TES. Science, 287, 5458, 1626–1630.

Beintema, D.A. (1997) PAH's and crystalline silicates in planetary nebula. Astrophysics and Space
Science, 225, 1-2, 507–512.

Allen, C.C., Greenhagen, B.T., Donaldson Hanna, K.L. and Paige, D.A. (2011) Analysis of lunar
 pyroclastic deposit FeO abundances by LRO Diviner. Journal of Geophysical Research: Planets, 117,
 E12.

Belousov, M.V. and Pavinich, V.F. (1978) Infrared reflection spectra of monoclinic crystals. Optics

432	
433	

and Spectroscopy, 45, 5, 771-774. 434 435 Berreman, D.W. (1972) Optics in Stratified and Anisotropic Media: 4×4 -Matrix Formulation. 436 Journal of the Optical Society of America, 62, 4, 502-510. 437 438 439 Bouwman, J., Meeus, G., de Koter, A., Hony, S., Dominik, C., Waters, L.B.F.M. (2001) Processing of silicate dust grains in Herbig Ae/Be systems. Astronomy and Astrophysics, 375, 950–962. 440 441 Born, M. and Wolf, E. (1999) Principles of Optics, p. 840, Cambridge University Press, UK. 442 443 Bowey, J.E., Morlock, A., Kohler, M. and Grady, M. (2007) 2-16 um spectroscopy of micron-sized 444 enstatite (Mg,Fe)₂Si₂O₆ silicates from primitive chondritic meteorites, Monthly Notices of the Royal 445 Astronomical Society, 376, 3, 1367-1374. 446 447 Braatz, A., Ott, U., Henning, Th., Jäger, C. and Jeschke, G. (2000) Infrared, ultraviolet, and electron 448 paramagnetic resonance measurements on presolar diamonds: Implications for optical features and 449 origin. Meteoritics & Planetary Science, 35, 1, 75-84. 450 451 Bradley, J. P., Brownlee, D. E., and Veblen, D. R. (1983) Pyroxene whiskers and platelets in 452 interplanetary dust - Evidence of vapour phase growth. Nature, 301, 473-477. 453 454 Chapman, C.R., Morrison, D., and Zellner, B. (1975) Surface properties of asteroids: A synthesis of 455 polarimetry, radiometry, and spectrophotometry. Icarus, 25, 1, 104–130. 456 457 Conel, J.E. (1969) Infrared emissivities of silicates: Experimental results and a cloudy atmosphere 458 459 model of Spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74, 6, 1614-1634 460 461 De Sanctis, M.C., Ammannito, E. Capria, M.T., Tosi, F., Capaccioni, F., Zambon, F., Carraro, F., 462 Fonte, S., Frigeri, A., Jaumann, R., Magni, G., Marchi, S., McCord, T.B., McFadden, L.A., McSween, 463 H.Y., Mittlefehldt, D.W., Nathues, A., Palomba, E., Pieters, C.M., Raymond, C.A., Russell, C.T., 464 Toplis, M.J., and Turrini, D. (2012) Spectroscopic Characterization of Mineralogy and Its Diversity 465 Across Vesta. Science, 336, 6082, 697-700. 466 467 Donaldson Hanna, K.L., Thomas, I.R., Bowles, N.E., Greenhagen, B.T., Pieters, C.M., Mustard, J.F., 468 Jackson, C.R.M. and Wyatt, M.B. (2012) Laboratory emissivity measurements of the plagioclase solid 469 470 solution series under varying environmental conditions. Journal of Geophysical Research, 117, E11004, 7pp. 471 472 Dorschner, J., Begemann, B., Henning, T., Jaeger, C., and Mutschke, H. (1995) Steps toward 473 interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astronomy 474 and Astrophysics, 300, 503-520. 475 476 Dyar, M. D., Sklute, E. C., Menzies, O. N., Bland, P. A., Lindsley, D., Glotch, T., Lane, M. D., 477 Schaefer, M. W., Wopenka, B., Klima, R., Bishop, J. L., Hiroi, T., Pieters, C., and Sunshine, J. (2009) 478

Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique 479 approach. American Mineralogist, 94, 7, 883-898. 480 481 Fabian, D., Henning, T., Jäger, C., Mutschke, H., Dorschner, J., Wehrhan, O. (2001) Steps toward 482 interstellar silicate mineralogy. Astronomy & Astrophysics, 378, 1, 228–238. 483 484 Glotch, T. D. and Rossman, G. R. (2009) Mid-infrared reflectance spectra and optical constants of six 485 iron oxide/oxyhydroxide phases. Icarus, 204, 2, 663-671. 486 487 Glotch, T.D. and Rogers, A.D. (2013) Evidence for magma-carbonate interaction beneath Syrtis Major, 488 Mars. Journal of Geophysical Research: Planets, 118, 126–137. 489 490 Glotch, T. D., Christensen, P. R., and Sharp, T. G. (2006) Fresnel modeling of hematite crystal surfaces 491 and application to martian hematite spherules. Icarus, 181, 408–418. 492 493 Glotch, T.D., Rossman, G.R., and Aharonson, O. (2007), Mid-infrared (5-100 µm) reflectance spectra 494 and optical constants of 10 phyllosilicate minerals. Icarus, 192, 605-62. 495 496 Glotch, T.D., Lucey, P.G., Bandfield, J.L., Greenhagen, B.T., Thomas, I.R., Elphic, R.C., Bowles, 497 N.E., Wyatt, M.B., Allen, C.C., Donaldson Hanna, K.L., and Paige, D.A. (2010) Highly Silicic 498 Compositions on the Moon. Science, 329, 5998, 1510–1513. 499 500 Glotch, T. D., Hagerty, J. J. Lucey, P. G., Hawke, B. R. Giguere, T. A., Arnold, J. A., Williams, J.-P. 501 Jolliff, B. L., and Paige, D. A. (2011), The Mairan Domes: Silicic volcanic constructs on the Moon. 502 503 Geophys. Res. Lett., 38, L21204, doi:10.1029/2011GL049548. 504 Greenhagen, B.T., Lucey, P.G., Wyatt, M.B., Glotch, T.D., Allen, C.C., Arnold, J.A., Bandfield, J.L., 505 Bowles, N.E., Hanna, K.L.D., Hayne, P.O., Song, E., Thomas, I.R., and Paige, D.A. (2010) Global 506 Silicate Mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 329, 5998, 1507–1509. 507 508 Griffiths, D.J. (1999) Introduction to Electrodynamics, 3rd ed., 576p. Prentice Hall, Upper Saddle 509 510 River, New Jersey. 511 Hamilton, V.E. (2000) Thermal infrared emission spectroscopy of the pyroxene mineral series, Journal 512 of Geophysical Reasearch, 105, E4, 9701-9716. 513 514 Hamilton, V.E., Christensen, P.R., McSween, H.Y., and Bandfield, J.L. (2001) Searching for the source 515 regions of martian meteorites using MGS TES: Integrating martian meteorites into the global 516 distribution of igneous materials on Mars. Meteoritics & Planetary Science, 38, 6, 871-885. 517 518 Hanner, M.S., Lynch, D.K., and Russel, R.W. (1994) The 8-13 micron spectra of comets and the 519 composition of silicate grains. Astrophysical Journal, Part I, 425, 1, 274–285. 520 521 522 Hapke, B. (1993a) Theory of Reflectance and Emittance Spectroscopy, 472 p. Cambridge University Press, Cambridge, U.K. 523 524 Hapke, B. (2012) Theory of Reflectance and Emittance Spectroscopy, 528 p. Cambridge University 525 Pres, Cambridge, U.K. 2nd edition. 526

530

534

- Henning, T. and Mutschke, H. (1997) Low-temperature infrared properties of cosmic dust analogues.
 Astronomy and Astrophysics, 327, 743–754.
- Jäger, C., Molster, F.J., Dorschner, J., Henning, Th., Mutschke, H., and Waters, L.B.F.M. (1994) Steps
 toward interstellar silicate mineralogy. IV. The crystalline revolution. Astronomy and Astrophysics,
 339, 904–916.
- Jäger, C., Mutschke, H., Begemann, B., Dorschner, J., and Henning, T. (1998) Steps toward interstellar
 silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition. Astronomy
 and Astrophysics, 292, 2. 641–655.
- 538

542

546

550

554

558

- Jäger, C., Dorschner, J., Mutschke, H., Posch, T., and Henning, T. (2003) Steps toward interstellar
 silicate mineralogy. VII. Spectral properties and crystallization behaviour [sic] of magnesium silicates
 produced by the sol-gel method. Astronomy and Astrophysics, 408, 193-204.
- Johnson, E.A., Rossman, G.R., Dyar, M.D., and Valley J.W. (2002) Correlation between OH concentration and oxygen isotope diffusion rate in diopsides from the Adirondack Mountains, New York. American Mineralogist, 87, 7, 899–908.
- Karner, J., Papike, J.J. and Shearer, C.K. (2006) Comparative planetary mineralogy: Pyroxene majorand minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary
 basalts. American Mineralogist, 91, 10, 1574–1582.
- Klima, R. L., Pieters, C. M., and Dyar, M. D. (2007) Spectroscopy of synthetic Mg-Fe pyroxenes I:
 spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared. Meteoritics &
 Planetary Science, 42, 2, 235-253.
- Kilma, R.L., Pieters, C.M., and Dyar, M.D. (2008) Characterization of the 1.2 μm M1 pyroxene band:
 Extracting cooling history from near-IR spectra of pyroxenes and pyroxene-dominated rocks.
 Meteoritics & Planetary Science, 43, 10, 1591–1604.
- 559 Klima, R.L., Pieters, C.M., Boardman, J.W., Green, R.O., Head, J.W. III, Isaacson, P.J., Mustard, J.F.,
- 560 Nettles, J.W., Petro, N.E., Staid, M.I., Sunshine, J.M., Taylor, L.A., Tompkins, S. (2011) New insights
- 561 into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as
- observed by the Moon Mineralogy Mapper (M3). Journal of Geophysical Research, 116, E00G06, 13
 pp.
- Lane, M.D. (1999) Midinfrared optical constants of calcite and their relationship to particle size effects
 in thermal emission spectra of granular calcite. Journal of Geophysical Research—Planets, 104,
 14099–14108.
- 567
- Liu, D. (2012) An improved radiative transfer model for estimating mineral abundance of immature and mature lunar soils, LPSC XLIII.
- 570
- Logan, L.M., Hunt, G.R., Salisbury, J.W., and Balsamo, S.R. (1973) Compositional implications of Christiansen frequency maximums for infrared remote sensing applications. Journal of Geophysical

573 Research, 78, 23, 4983-5003.

574 Long, L. L., Querry, M. R., Bell, R. J., and Alexander, R. W. (1992) Optical propertied of calcite and 575 gypsum in crystalline and powedered form in the infrared and far-infrared. Infrared Physics, 34, 2, 576 191-201. 577 578 579 Lucy, P.G. (1998) Model near-infrared optical constants of olivine and pyroxene as a function of iron content. Journal of Geophysical Research: Planets, 103, E1, 1703–1713. 580 Lumme, K. and Bowell, E. (1981) Radiative transfer in the surfaces of atmosphereless bodies. I. 581 Theory. The Astronomical Journal, 86, 11, 1694–1721. 582 583 Mackinnon, I.D.R. and Rietmeijer, F.J.M. (1987) Mineralogy of chondritic interplanetary dust 584 particles. Review of Geophysics, 25, 7, 1527-1553. 585 586 Mayerhofer and Popp (2007) Employing spectra of polycrystalline materials for the verification of 587 optical constants obtained from corresponding low-symmetry single crystals. Applied Optics, 46, 3, 588 327-334. 589 590 591 Mayerhofer, T.G., Weber, S., and Popp, J. (2010) Simplified formulas for non-normal reflection from monoclinic crystals. Optics Communications, 284, 3, 719-723. 592 McCord, T.B., Adams, J.B., Johnson, T.V. (1970) Asteroid vesta: spectral reflectivity and 593 594 compositional implications. Science, 168, 3938, 1445-1447. 595 Milan, L., Thomas, I., Bowles, N. (2011) Lunar regolith thermal gradients and emission spectra: 596 Modeling and validation. Journal of Geophysical Research, 116, E12. 597 598 Mishchenko, M.I., Dlugach, J.M., Yanovitskij, E.G. and Zakharova, N.T. (1999) Bidirectional 599 reflectance of flat, opticallt thick particulate layers; an efficient radiative transfer solution and 600 applications to snow and soil surfaces. Joural of quantitative spectroscopy and radiative transfer, 63, 2-601 6, 409–432. 602 603 Molster, F. and Kemper, C. (2004) Crystalline Silicates. Space Science Reviews, 119, 1–4, 3–28. 604 Molster, F.J., Waters, L.B.F.M., Tielens, A.G.G.M., Barlow, M.J. (2002) Crystalline silicate dust 605 606 around evolved stars. Astronomy and Astrophysics, 382, 184-221. 607 Mustard, J.F., Poulet, F., Gendrin, A., Bibring, J.P., Langevin, Y., Gondet, B., Mangold, N., Bellucci, 608 G., and Altieri, F. (2005) Olivine and Pyroxene Diversity in the Crust of Mars. Science, 307,5715, 609 1594-1597. 610 611 Mutschke, H., Andersen, A.C., Jäger, C., Henning, T., and Braatz, A. (2004) Optical data of meteoritic 612 nano-diamonds from far-ultraviolet to far-infrared wavelengths. Astronomy and Astrophysics, 423, 613 983-993. 614 615 Ody, A., Poulet, F., Langevin, Y., Bibring, J.P., Bellucci, G., Altieri, F., Gondet, B., Vincendon, M., 616 617 Carter, J., and Manaud, N. (2012) Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. Journal of Geophysical Research: Planets, 117, E11. 618

619 620 621 622 623 624	Paige, D.A., Foote, M.C., Greenhagen, B.T., Schofield, J.T., Calcutt, S., Vasavada, A.R., Preston, D.J., Taylor, F.W., Allen, C.C., Snook, K.J., Jakosky, B.M., Murray, B.C., Soderblom, L.A., Jau, B., Loring, S., Bulharowski, J., Bowles, N.E., Thomas, I.R., Sullivan, M.T., Avis, C., Jong, E.M., Hartford, W., and McCleese, D.J. (2010) The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 150, 1-4, 125–160.
625 626 627	Pavinich, V.F. and Belousov, M.V. (1978) Dispersion analysis of reflection spectra of monoclinic crystals. Optics and Spectroscopy 45, 881. Translated from Opt. Spektrosk. 45, 1114.
628 629	Ramsey, M.S. and Christensen, P.R. (1998) Mineral abundance determination: Quantitative deconvolution of thermal emission spectra. Journal of Geophysical Research, 103, B1, 577–596.
630 631 632 633	Rogers, A.D. and Christensen, P.R. (2007) Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. Journal of Geophysical Research, 112, E01003.
634 635 636 637	Rogers, A.D., Bandfield, J.L., and Christensen, P.R (2007) Global spectral classification of Martian low-albedo regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data. Journal of Geophysical Research, 112, E02004.
637 638 639 640	Roush, T., Pollack, J., Orenberg, J. (1991) Derivation of midinfrared (5–25 µm) optical constants of some silicates and palagonite. Icarus, 94, 1, 191–208.
641 642 643	Salisbury, J.W. (1972) Spectroscopic remote sensing of lunar surface composition. Earth, Moon and Planets, 5, 3-3, 332–347.
644 645	Seitz, F. (1940) Modern theory of solids. McGraw-Hill, New York.
646 647	Shkuratov, Y., Starukhina, L., Hoffman, H. and Arnold, G. (1999) A model of spectral albedo of particulate surfaces: implications for optical properties of the moon. Icarus, 137, 2, 235–246.
648 649 650 651	Shkuratov, Y.G., Kaydash, V.G. and Pieters, C.M. (2004) Lunar Clinopyroxene and Plagioclase: Surface Distribution and Composition. Solar System Research, 39, 4, 255–266. Translated from Astronomicheskii Vestnik, 39, 4, 2005, 291–303 (in Russian).
652 653 654	Song, E., Bandfield, J.L., Lucey, P.G., Greenhagen, B.T., Paige, D.A. (2013) Bulk mineralogy of lunar crater central peaks via thermal infrared spectra from the Diviner Lunar Radiometer: A study of the Moon's crustal composition at depth. Journal of Geophysical Research: Planets, 118, 4, 689–707.
655 656 657	Sogawa, H., Koike, C., Chihara, H., Suto, H., Tachibaba, S., Tsuchiyama, A., and Kozasa, T. (2006) Infrared reflection specra of forsterite crystal. Astronomy & Astrophysics, 451, 357–361.
658 659 660	Spitzer, W.G., Kleinman, D.A. and Walsh, D. (1959) Infrared properties of hexagonal silicon carbide, Physical Review, 113, 1, 127–132.
661 662 663	Spitzer, W.G. and Kleinman, D.A. (1961) Infrared lattice bands of quartz. Physical Review, 121, 5, 1324–1335.

664 665	Sunshine, J.M., Bus, J., McCoy, T.J., Burbine, T.H., Corrigan, C.M., and Binzel, R.P. (2004) High-calcium pyroxene as an indicator of igneous differentiation in asteroids and meteorites.
666 667	Meteoritics & Planetary Science, 39, 8, 1343–1357.
668 669 670	Suto, H., Koike, C., Sogawa, H., Tsuchiyama, A., Chihara, H., and Mizutani, K. (2002) Infrared spectra of fayalite crystal. Astronomy & Astrophysics, 389, 568–571.
671 672	Tompkins, S., and Pieters, C.M. (1999) Mineralogy of the lunar crust: Results from Clementine. Meteroritics and Planetary Science, 34, 25–41.
673 674 675	Wenrich, M. L., and Christensen, P. R. (1996) Optical constants of minerals derived from emission spectroscopy: Application to quartz. Journal of Geophysical Research: Solid Earth, 101, 15921–15931.
676 677 678	Yeh, P. (1979) Optics of anisotropic layered media: A new 4×4 matrix algebra. Surface Science, 96, 1-3, 41–53.
679 680 681 682	Zeidler, S., Posch, T., Mutschke, H., Richter, H., and Wehrhan, O. (2011) Near-infrared absorption properties of oxygen-rich stardust analogs. The influence of coloring metal ions. Astronomy & Astrophysics, 526, 68.
683 684 685 686 687	Zeidler, S., Posch, T., and Mutschke, H. (2013) Optical constants of refractory oxides at high temperatures. Mid-infrared properties of corundum, spinel, and alpha-quartz, potential carriers of the 13 mum feature. Astronomy & Astrophysics, 553, 81.
688 689	Figure and Table Captions
690 691	Figure 1. Ternary of pyroxene compositions included in this study.
	- Saro II I ennary er pyrenene competitions menare an and stady.
692 693 694	Figure 2. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of v _j shifted by 30 cm ⁻¹ .
693 694 695 696	Figure 2. Changes in modeled optical constants (<i>n</i> , <i>k</i>) of orthoclase with initial estimates of v_j shifted by
693 694 695 696 697 698 699	Figure 2. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of v_j shifted by 30 cm ⁻¹ . Figure 3. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of γ_j shifted by
693 694 695 696 697 698 699 700 701 701	Figure 2. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of v_j shifted by 30 cm ⁻¹ . Figure 3. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of γ_j shifted by $\pm 50\%$. Figure 4. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of s_j shifted by
693 694 695 696 697 698 699 700 701	 Figure 2. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of v_j shifted by 30 cm⁻¹. Figure 3. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of γ_j shifted by ±50%. Figure 4. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of s_j shifted by ±50%. Figure 5. Changes in modeled optical constants (n, k) of orthoclase with initial estimates of φ_j shifted

Figure 8. Optical constants (n, k) of augite (Aug1). In this figure, n1, n2 and k1, k2 are the optical

constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical

710 711

constants for the rays with polarization direction along the b crystallographic axis. 712 713 714 Figure 9. Measured and modeled reflectance spectra of augite (Aug2) with incident E-field polarization parallel to *a*-*c* plane at different polarization angles ϕ (top three) and parallel to b (bottom). 715 716 Figure 10. Optical constants (n, k) of augite (Aug2). In this figure, n1, n2 and k1, k2 are the optical 717 constants for the rays whose polarization direction is parallel to the *a*-*c* plane, while nb and kb are the optical 718 constants for the rays with polarization direction along the b crystallographic axis. 719 720 721 Figure 11. Measured and modeled reflectance spectra of diopside (Diop1) with incident E-field 722 polarization parallel to *a*-*c* plane at different polarization angles ϕ (top three) and parallel to b (bottom). 723 724 725 Figure 12. Optical constants (n, k) of diopside (Diop1). In this figure, n1, n2 and k1, k2 are the optical 726 constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical constants for the rays with polarization direction along the b crystallographic axis. 727 728 729 Figure 13. Measured and modeled reflectance spectra of hedenbergite (Hed1) with incident E-field 730 polarization parallel to *a*-*c* plane at different polarization angles ϕ (top three) and parallel to b (bottom). 731 732 733 Figure 14. Optical constants (n, k) of hedenbergite (Hed1). In this figure, n1, n2 and k1, k2 are the optical constants for the rays whose polarization direction is parallel to the *a-c* plane, while nb and kb are the optical 734 constants for the rays with polarization direction along the b crystallographic axis. 735 736 737 738 Figure 15. Measured and modeled reflectance spectra of orthoclase (Orth1) with incident E-field polarization parallel to *a*-*c* plane at different polarization angles ϕ (top three) and parallel to b (bottom). 739 740 741 Figure 16. Optical constants (n, k) of orthoclase (Orth1) calculated in this work are in the solid lines (n1,k1,n2,k2,nb,kb), while the optical constants derived in Aronson et al. (1986) are in the dashed lines 742 (na1,ka1,na2,ka2,nab,kab). 743 744 745 Figure 17. Orientation-averaged optical constants in the MIR for several minerals that belong to various crystal systems. Nano-diamonds from a Murchison meteorite (cubic), quartz (hexagonal), 746 olivine (orthorhombic), and diopside (monoclinic). 747 748 Figure 18. Orientation-averaged optical constants (n,k) of high-Mg olivine $(Mg_{1.9}Fe_{0.1}SiO_4)$ from UV 749 to FIR wavelengths (Zeidler et al. 2011). Reflectance spectrum calculated from n, k values. Labels: 750 Christiansen feature (CF), Reststrahlen bands (RB), highlighted in grey. 751 752 753 Figure 19. A comparison of single-crystal (enstatite and diopside) vs. amorphous (enstatite and a glass of pyroxene composition) pyroxene optical constants. 754 755 756 Table 1. Information for pyroxenes and orthoclase included in this study. 757

763

Table 3. Oscillator parameters for Augite (Aug 2). The parameters v, γ , s, ϕ and θ are those described in section 5.1. The standard error, σ , is given for each parameter.

- Table 4. Oscillator parameters for Diopside (Diop 1). The parameters v, γ , s, ϕ and θ are those described in section 5.1. The standard error, σ , is given for each parameter.
- Table 5. Oscillator parameters for Hedenbergite (Hed 1). The parameters v, γ , s, ϕ and θ are those described in section 5.1. The standard error, σ , is given for each parameter.
- 769

766

Table 6. Oscillator parameters for Orthoclase (Orth 1). The parameters v, γ , s, ϕ and θ are those described in section 5.1. The standard error, σ , is given for each parameter.

772773 Tables

774 Table 1.

775

Sample	Source (location)	Chemical formula
augite(Aug1)	SBU (Indian Well, AZ)	$Na_{0.11}K_{0.10}Mg_{0.54}Fe_{0.46}Ti_{0.13}Ca_{0.46}Al_{0.48}Si_{1.79}O_6$
diopside(Diop1)	Kelly's Rocks (Magog, QC)	$Na_{0.04}Mg_{0.64}Fe_{0.18}Mn_{0.01}Ca_{0.92}Al_{0.03}Si_{2.09}O_6$
clinopyx(Aug2)	SBU	$Na_{0.02}Mg_{0.57}Fe_{0.40}Ti_{0.02}Ca_{0.69}Al_{0.13}Si_{2.06}O_{6}$
hedenbergite(Hed1)	SBU	$Na_{0.03}Mg_{0.29}Fe_{0.51}Mn_{0.07}Ca_{0.83}Al_{0.08}Si_{2.08}O_6$
orthoclase	GGGems (Itrongay, Madagascar)	$K_{0.96}Na_{0.04}Al_{0.96}Fe_{0.04}Si_{3}O_{8}$

776

777 Table 2.

j	ν _i	$\sigma(v_i)$	γ _i	σ(γ _i)	s _i	$\sigma(s_i)$	φ _i	$\sigma(\phi_i)$	θ
1	1106.3575	0.4039	13.6440	1.4160	4710.7187	519.6075	33.7390	2.2315	90
2	1082.0787	0.7336	22.4311	2.8987	8993.4843	1526.8844	57.9436	2.2866	90
3	1049.0371	0.1930	34.2430	0.6058	179324.6400	2855.2145	71.6003	0.2040	90
4	1010.1750	0.5134	20.6827	1.4914	15743.7790	1164,9098	33.9720	1.4204	90
5	973.9422	1.2439	39.3002	2.5816	61647,1074	7198.6643	100.6033	1.9936	90
6	952.8605	0.6238	33.8723	1.1586	115080.9250	3657.2602	76.5908	1.6294	90

				1		1	1	1	1 1
7	911.9700	1.9049	60.9354	5.4555	84647.1159	6815.1152	69.0827	1.9607	90
8	944.8770	0.6580	48.8271	2.4135	96156.4057	6739.0871	130.0419	2.5202	90
9	864.4122	0.4977	43.8169	1.0250	236251.8770	364.8184	1.5422	0.5618	90
10	855.2310	0.9153	31.8268	2.0963	73587.6460	1012.5941	148.5916	2.1071	90
11	768.1230	1.8893	89.4754	7.2442	55510.9508	4229.1492	106.3017	2.6079	90
12	628.8353	0.2212	18.0435	0.7495	33689.7859	1649.9417	101.0689	0.8103	90
13	558.8928	0.5426	20.5635	1.7036	3907.3075	383.2433	-1.2976	4.3107	90
14	527.2604	0.5724	24.0277	2.0407	10163.0101	1027.2230	2.9381	3.4734	90
15	511.0346	0.6194	42.7838	2.2268	48307.6346	3153.4361	113.9736	1.4942	90
16	588.4716	5.8446	86.0548	18.4170	24961.4935	5574.7554	89.6034	3.3377	90
17	487.9342	0.3804	27.1740	1.2809	59799.8695	3570.4805	-7.2227	0.8682	90
18	452.2373	0.2418	29.8619	0.7627	256324.4190	4869.1466	-7.2227	0.1871	90
19	378.5617	0.2780	36.6437	1.4695	53084.6470	8107.2438	84.8518	6.4041	90
20	380.5842	1.0044	53.7977	4.0509	72332.4613	6006.1467	25.3526	6.0986	90
21	316.6041	0.1706	22.8939	0.3635	121807.2190	1236.6558	76.0592	0.3385	90
22	285.8952	0.3018	26.1164	0.7252	78823.7304	1650.5374	141.5585	0.5527	90
23	1066.2639	0.1892	30.6764	0.2559	222090.2320	1434.7913	0		0
24	963.3500	0.2452	24.6545	0.6687	89492.5772	2397.4128	0		0
25	900.8600	0.5216	61.1955	1.6569	210326.1180	4518.3363	0		0
26	673.6817	1.2406	34.7883	3.7145	19978.7527	1653.7995	0		0
27	547.9000	0.4589	18.9619	1.7624	6433.4126	786.4962	0		0
28	503.9100	0.2723	37.6983	0.8500	148239.2660	4230.4820	0		0
29	473.3900	0.2018	18.3338	0.6366	104023.2710	2914.9693	0		0
30	408.0200	0.4402	21.1392	1.4232	26911.5056	1472.1208	0		0
31	367.1695	1.0108	22.6618	4.1379	12240.3510	2468.8277	0		0
32	333.8303	0.7396	37.0955	2.4841	44673.8703	2939.0821	0		0
ε _{xx} =	2.3418(0.0040	ϵ_{xy}	=0.0263(0.0	036)	$\epsilon_{yy} = 2.3934(0.0030)$ $\epsilon_{zz} = 2.6441(0.0030)$				

779 Table 3.

j	ν_{i}	$\sigma(v_i)$	γ _i	σ(γ _i)	s _i	$\sigma(s_i)$	φi	σ (φ _i)	θ
1	1061.3863	1.6775	16.7945	3.5355	24107.2736	9108.7181	109.9541	3.0586	90
2	1045.6266	1.0695	17.4601	4.5891	49146.8143	15451.7954	118.8724	1.4748	90
3	1021.4581	1.8514	25.7043	6.2705	46430.9850	12385.4430	125.3247	2.1043	90
4	992.3639	1.1743	36.2713	3.4181	26819.2312	2845.9399	4.0808	7.8728	90
5	950.6749	1.8544	56.3535	3.6006	350600.2530	198.6376	92.4733	1.0478	90
6	873.6918	3.5412	73.3247	7.0740	198501.9250	4841.0644	103.9087	5.7859	90
7	852.6279	0.9302	56.1304	2.4576	384449.5580	21164.2827	-0.0526	2.7969	90
8	768.7863	3.5090	100.1498	11.8050	351227.4630	80.4223	-35.0603	1.7465	90
9	600.0011	3.0444	103.2869	9.5882	345195.2700	27533.1404	-49.3688	1.6754	90
10	686.4430	3.5464	112.2921	13.4456	157635.0660	22704.7234	15.7006	3.6531	90
11	625.9819	1.2538	25.3481	4.3195	31759.5593	5445.8591	73.3052	5.5194	90
12	520.0000	1.4388	20.2592	3.8818	55527.2990	8895.0274	82.9539	8.5934	90
13	533.0903	2.2436	17.2663	6.5846	26237.0233	1283.3818	179.8287	8.5146	90
14	501.7328	1.5229	22.9771	4.8641	168521.7630	27.0692	8.2681	4.3965	90
15	479.9509	0.7686	16.6904	2.6651	294597.8250	25.7761	4.6831	2.0602	90
16	461.8681	0.8220	14.9005	1.5448	258672.0850	1733.0123	5.0887	1.8157	90
17	403.8875	1.6247	34.3784	4.1294	86703.4089	6799.8357	99.5010	4.3104	90
18	360.1886	6.2701	27.2829	19.1020	17351.0619	11466.8151	-7.5571	14.6287	90
19	332.0028	1.0169	21.7865	3.0345	38951.2369	4767.2072	72.8595	5.0749	90
20	281.8601	1.4334	41.1500	3.7859	226289.1590	41.8564	32.8478	1.1554	90
21	250.0777	4.5801	15.2753	5.7124	41555.6458	23085.6849	74.3621	10.3421	90
22	1077.2920	0.4198	22.8731	0.6367	149503.0950	2402.3553	0		0
23	964.0978	1.2006	48.8749	4.5997	138155.7890	15182.2000	0		0
24	899.9383	3.5474	106.4168	7.3552	286332.2180	24390.6181	0		0

25	684.1713	5.8182	108.5547	25.4532	66276.44	18 2	26720.9365	0		0
26	557.1254	1047.5670	15.2229	666.7554	3104.197	1	177321.3230	0		0
27	541.0487	3.4361	17.7469	31.3527	9273.8041		161727.1810	0		0
28	524.2434	1.6431	18.0151	10.7360	19617.99		16815.8158	0		0
29	507.6945	0.5276	18.0932	2.3374	67758.04		12997.2329	0		0
								-		
30	480.6085	0.8391	31.0358	2.9332	173741.2	.560	16787.0322	0		0
31	411.3853	5.8307	45.1586	20.6277	61591.74	84 4	47708.6593	0		0
32	370.1525	19.3001	44.4246	135.0416	23586.76	522 9	91495.5373	0		0
33	325.5302	12.2621	65.4127	22.8392	72943.97	47 5	51540.5930	0		0
34	257.0514	0.9801	12.4295	2.7168	16853.46	501 3	3824.3130	0		0
ε _{xx} =	$\epsilon_{xx} = 3.1888(0.0147)$ $\epsilon_{xy} = 0.0050(0.0168)$ $\epsilon_{yy} = 2.8116(0.0157)$ $\epsilon_{zz} = 2.6090(0.0109)$								109)	

781 Table 4.

j	ν _i	$\sigma(v_i)$	γi	σ(γ _i)	s _i	$\sigma(s_i)$	φ _i	σ (φ _i)	θ
1	1053.3492	0.2690	9.8041	0.5202	161807.4260	8449.4644	95.0619	0.5386	90
2	1038.6875	0.4434	11.9789	1.1319	102002.5840	8297.6460	81.8839	0.7175	90
3	987.1730	1.1344	22.0697	2.3375	43276.2855	8424.1418	-58.3177	1.7571	90
4	961.9418	0.5321	21.8740	1.4044	328246.2610	13426.1056	107.2574	0.4212	90
5	908.9778	1.2771	34.1717	3.7573	112024.9180	10847.7536	88.2555	1.2813	90
6	851.9349	0.7393	52.0897	1.8660	276075.0410	8603.7134	40.6706	1.1639	90
7	799.5717	2.9359	82.3099	8.5987	133499.1160	11910.3499	140.7057	2.6738	90
8	694.3785	2.9357	139.0056	9.4790	184063.9650	11455.4558	35.9865	1.6679	90
9	625.9676	0.6184	20.9614	1.1518	85562.6394	3066.4869	111.9229	0.8129	90
10	526.8297	1.7909	48.7469	3.7816	97271.7196	11572.2554	45.1962	1.4457	90
11	509.9354	0.7947	14.1122	2.1296	16820.8129	2318.7730	-38.9575	4.1582	90
12	488.7702	1.0874	25.2207	3.2101	102617.7860	14753.3418	51.9415	1.9863	90
13	462.0420	0.8680	37.2480	2.3266	302939.5670	16231.8191	21.2456	0.8955	90

				1	1	-						
14	379.4407	0.611	4	32.5722	1.2839	117538.4	980	4685.8259	112.10	053	0.9140	90
15	326.4878	0.975	3	26.4854	2.6635	108243.6	900	14930.1059	-66.88	301	1.1360	90
16	297.4023	1.436	1	27.9642	5.2131	98661.8029		17147.5147	-59.40)64	4.2180	90
17	293.0303	0.723	0	16.9140	1.9692	26130.57	43	3123.2116	20.933	35	12.1318	90
18	236.8182	2.628	0	14.3421	3.0202	49054.52	89	8115.4718	10.139	90	6.1075	90
19	1065.2649	61.49	40	50.5334	1.8536	136867.0	000	139.1562	0			0
20	954.2127	50.96	89	35.3480	3.5371	65646.00	01	54.6979	0			0
21	913.3331	114.3	238	31.7870	6.9236	42070.0001		24.6549	0			0
22	863.7441	367.8	407	126.8820	24.7606	195784.2	720	54551.0765	0			0
23	737.9597	2678.	3443	140.9497	56.2231	92809.17	45	52723.1287	0			0
24	636.0029	552.8		93.0399	9.7740	89888.90		17968.0509	0			0
25	504.2384	645.0		31.7429	1.4460	163435.8		13745.7938	0			0
26	472.0973	792.9		28.4750	1.9606	276342.9		15861.7259	0			0
27	413.8197	324.9		26.0624	3.2501	70136.72		7278.4287	0			0
28	249.2397	277.7		9.7763	1.2649	18139.7810		2824.9225	0			0
	=2.2120(0.009			.0084(0.010				2076(0.0107)		$\varepsilon_{zz} = 2$	2.3310(0.02	

783

784

785 Table 5.

j	vi	$\sigma(v_i)$	γ _i	σ(γ _i)	s _i	$\sigma(s_i)$	φ _i	σ(φ _i)	θ
1	1085.5086	1.0619	53.6032	2.0797	71057.9148	10.0624	77.0368	1.6560	90
2	1059.2960	0.5518	45.6650	1.1514	159377.0460	3792.4402	-48.5292	0.5769	90
3	993.1131	1.1689	26,9090	3.5555	9922.7969	2381.2746	38.0265	7.7690	90
4	967.4469	0.8350	45.8181	2.5602	95361.6473	4969.2601	84.6362	1.1185	90
5	904.4503	1.5764	39.7557	4.0140	17736.2350	2895.3918	9.7179	4.8795	90
6	854.4819	0.3215	34.8501	0.7845	359324.3050	3685.3273	8.2315	0.2746	90

		1						1		
7	627.1273	0.4077	18.5918	0.9474	22454.7292	809.0312	70.7968	1.0661	90	
8	554.0051	0.8223	20.0375	2.2529	11125.4731	935.6338	80.3744	1.5719	90	
9	498.4405	0.5100	36.7979	1.1952	47045.1989	1737.4115	31.5953	0.6441	90	
10	444.5136	0.2360	25.4438	0.5064	259681.5030	2531.5769	7.0115	0.1641	90	
11	365.7561	0.4065	40.0052	1.1436	115793.2740	2579.3708	-17.1310	0.3263	90	
12	316.5364	0.2868	17.5481	0.7074	79478.0308	2327.4479	146.8989	0.4168	90	
13	295.8607	0.2829	11.2035	0.8214	38037.8982	2341.3446	-10.7030	0.9746	90	
14	269.8787	0.2434	11.4372	0.5673	24979.2863	1003.2629	31.7790	0.9470	90	
15	1058.5000	0.1466	13.5591	0.1493	298081.4700	1586.6960	0		0	
16	954.2000	0.1756	15.9576	0.3435	155456.8690	2858.5771	0		0	
17	905.3000	0.3818	37.5829	1.0258	283403.9260	5357.2963	0		0	
18	661.1000	1.2062	61.1123	3.4700	68518.4267	3042.9618	0		0	
19	509.4000	0.2300	25.7632	0.3148	236134.3190	3062.6966	0		0	
20	471.8000	0.2540	14.0770	0.6940	81073.6183	2729.1871	0		0	
20	398.1000	0.3743	23.0772	1.0692	64178.4958	2420.5236	0		0	
22	363.7127	0.6361	14.3740	2.4526	17497.1025	3048.7496	0		0	
23	330.9739	1.4859	43.8902	5.1669	49615.4221	5331.1122	0		0	
24 277.0999 0.3965 9.3079 1.2061 11291.1774 1162.9514 0 0										
$ \left[\epsilon_{xx} = 2.323433(0.005738) \right] \left[\epsilon_{xy} = 0.011083(0.004933) \right] \left[\epsilon_{yy} = 1.811383(0.004054) \right] \left[\epsilon_{zz} = 3.476333(0.0063) \right] $										

787 Table 6.

j	ν _i	$\sigma(v_i)$	γ _i	σ(γ _i)	s _i	σ(s _i)	φ _i	σ (φ _i)	θ _i
1	1128.3686	0.3431	31.2995	0.7423	54556.3167	2123.2030	144.4339	1.2192	90
2	1108.8571	0.5588	31.1108	0.5308	212226.6890	3795.8550	24.3628	0.4137	90
3	1027.3708	0.3793	33.1247	0.6044	363554.0780	18.0570	96.9297	1.5021	90
4	1037.7416	0.5378	30.7390	1.3144	141912.7300	17.9877	4.6421	2.7087	90
5	1009.9518	0.4677	22.2564	1.0482	172752.3130	5177.9700	175.9980	1.8392	90

	1							r	
6	991.7254	0.5793	24.2304	2.0259	150428.1450	11517.6300	103.3195	1.8847	90
7	765.4734	3.4041	42.0367	10.9087	15482.5298	3241.5640	5.9023	6.1221	90
8	718.5118	1.2856	27.2765	3.9460	20263.4125	2306.1400	-51.0158	3.5496	90
9	638.1094	0.4900	17.9200	1.1941	28666.8966	1392.3170	145.0234	1.2033	90
10	578.8337	1.6291	24.5589	1.0170	42223.7579	9406.2510	43.3327	1.7890	90
11	570.6447	0.5394	11.6388	0.7779	73786.7114	488.4382	42.3799	1.2196	90
12	563.4729	0.7157	9.2861	1.9959	35232.0422	9229.9400	39.1535	2.2532	90
13	415.7642	0.5353	34.7887	0.7423	114579.3000	1911.6290	-41.7658	0.4592	90
14	1135.3801	0.8506	39.8303	2.1129	14854.1612	1579.1328	0		0
15	1102.8937	0.5060	42.5629	2.0172	32799.5356	2104.3277	0		0
16	1020.6898	0.5366	42.7108	0.7767	259002.7780	13008.0113	0		0
17	992.4225	0.2744	32.1287	0.8942	387229.1360	12639.2520	0		0
28		1.3876		4.0335	15639.1124				0
	774.4806		22.3337			4074.5787	0		
19	752.3726	1.4388	23.5478	7.5651	15823.7692	6397.6618	0		0
20	725.7595	1.3542	25.5395	3.9808	18424.9031	3558.0395	0		0
21	610.5486	0.5855	17.5118	1.7004	11599.0969	836.4948	0		0
22	543.0700	0.2560	16.9498	0.6631	31705.6149	1032.8273	0		0
$\epsilon_{xx}=2.0658(0.0111)$ $\epsilon_{xy}=0.0043(0.0085)$ $\epsilon_{yy}=2.0126(0.0107)$								2.4461(0.0	033)

4/30

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4828

4/30

