This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4728

8/29

1 Revision 2

2	Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the
3	layered anorogenic granite in the Brno Batholith, Czech Republic
4	
5	Sven Hönig ¹ , Renata Čopjaková ¹ , Radek Škoda ¹ , Milan Novák ¹ , David Dolejš ² , Jaromír
6	Leichmann ¹ , and Michaela Vašinová Galiová ^{3,4}
7	¹ Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech
8	Republic
9	² Institute of Petrology and Structural Geology, Charles University, Albertov 6, 128 43 Praha 2,
10	Czech Republic
11	³ Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno,
12	Czech Republic
13	⁴ Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00
14	Brno, Czech Republic
15	
16	
17	Abstract
18	Garnet and other rock-forming minerals from A-type granite dykes in the Pre-Variscan Brno
19	Batholith were analysed to determine relative contributions of individual minerals to whole rock
20	Y and REE budget and to assess incorporation mechanisms of these elements in garnet. Minor to
21	accessory garnet (< 2 vol%) is the essential reservoir for Y+REE in the Hlína granite accounting
22	~84 % Y and 61 % REE of the total whole rock budget. Zircon is another important carrier of

23	REE with ~13 % Y and ~11 % REE. At least ~21 % REE and 1 % Y were probably hosted by
24	Th- and U-rich monazite that has been completely altered to a mixture of secondary REE-bearing
25	phases. The contribution of major rock-forming minerals (quartz and feldspars) is low (~1 % Y;
26	10 % LREE; ~1 % HREE) excluding Eu, which is hosted predominantly by feldspars (~90 %).
27	Minor to accessory muscovite and magnetite incorporate ~1 % Y and ~2 % REE of the whole
28	rock budget. Magmatic garnet Sps ₄₁₋₄₆ Alm ₂₈₋₄₄ And ₀₋₁₃ Grs ₆₋₁₂ Prp ₀₋₁ is Y- and HREE-rich (up
29	1.54 wt% Y; up ~1 wt% Σ REE), and the Y+REE enter the garnet structure via the menzerite-(Y)
30	substitution. The Y and REE show complex zoning patterns and represent sensitive indicator of
31	garnet evolution, in contrast to a rather homogeneous distribution of major divalent cations.
32	General outward decrease of Y+REE is a common feature due to the strong partitioning of
33	Y+HREE in the garnet relative to the other phases. REE underwent significant fractionation
34	during growth of early garnet I; the Yb_N/Nd_N ratio generally decreases from the core to rim of
35	garnet I. Higher Mn and Al, lower Ca, and Y+REE contents, as well as higher Yb_N/Nd_N ratio and
36	more negative Eu anomaly in garnet II overgrowths indicate its crystallization from a more
37	evolved melt. Application of zircon saturation geothermometry provides upper temperature limit
38	of 734 ± 14 °C for the closed-system crystallization. Mineral equilibria reveal that crystallization
39	started at QFM + 1.2, and prefential sequesteration of Fe^{3+} into garnet and magnetite was
40	responsible for progressively reducing conditions. Equilibrium between magnetite, garnet, quartz
41	and plagioclase, representing the final crystallization stage of the granitic magma, occurred at
42	658-663 °C and QFM 0 to + 0.8, hence at undercooling of ~75 °C.
43	

Key words: garnet; EMP; LA-ICP-MS; Y+REE mass-balance calculations; A-type granite; Brno
Batholith

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4728

46

47

INTRODUCTION

48	Magmatic garnet (almandine-spessartine) occurs mainly in granitic pegmatites, aplites and felsic
49	peraluminous S-type granitoids (e.g. Allan and Clarke 1981; Miller and Stoddard 1981; Černý
50	and Hawthorne 1982; Deer et al. 1982; Du Bray 1988; Harrison 1988; Dahlquist et al. 2007;
51	London 2008; Sheibi et al. 2010; Müller et al. 2012); it is rare in A-type (Zhang et al. 2009, 2012)
52	or I-type (Wu et al. 2004) granites. Garnet is a useful indicator of changing magmatic conditions
53	during its crystallization and peritectic reactions (e.g. Dahlquist 2001; Wang et al. 2003a;
54	Dahlquist et al. 2007; Erdmann et al. 2009; Lackey et al. 2012). It has also been identified as an
55	important carrier of Y+HREE (Jaffe 1951; Dudykina 1959; Vorma et al. 1966; Wakita et al.
56	1969; Grew et al. 2010; Marsh et al. 2012) with up to ~3 wt% Y+HREE in magmatic garnets
57	(Wang et al. 2003a), and with up to ~13 wt% Y in metamorphic garnets (Grew et al. 2010; Marsh
58	et al. 2012). The compositional zoning of Y+REE as a sensitive indicator of garnet growth and
59	crystallization history has been recently discussed particularly in metamorphic rocks (e.g.
60	Hickmott and Shimizu 1990; Lanzirotti 1995; de Lima et al. 1995; Spear and Kohn 1996; Bea et
61	al. 1997; Holten et al. 1997; Kotková and Harley 1999; Pyle and Spear 1999; Hermann and
62	Rubatto 2003; Kohn 2004; Čopjaková et al. 2005; Borghi et al. 2006; Buick et al. 2006; Røhr et
63	al. 2007; Spry et al. 2007; Marsh et al. 2012). By contrast, there are only a few studies dealing
64	with Y+REE zoning texture in magmatic garnets (Sevigny 1993; Whitworth and Freely 1994;
65	Wang et al. 2003a; Dorais and Tubrett 2012; Müller et al. 2012) and evolution of
66	Y+HREE/LREE ratios during garnet growth (Sevigny 1993; Dorais and Tubrett 2012).
67	We describe complexly zoned garnet with Y+REE-enrichment from microgranite portions of
68	subaluminous A-type Hlína granite in order to better understand: (i) the distribution of Y and

REE in garnet, (ii) the substitution mechanisms of these elements, and (iii) the role of garnet in

70	controlling Y+REE content in this magmatic rock in particular. Moreover, contributions of the
71	individual minerals to the Y+REE budget in the granite were calculated and discussed.
72	
73	GEOLOGICAL SETTING
74	The large Cadomian (Pan-African, 650-550 Ma) Brunovistulian microcontinent is a portion of the
75	Precambrian lithosphere that is located at the eastern margin of the Bohemian Massif and
76	occupies parts of Czech, Austrian and Polish territories (Fig. 1). It consists of three major N-S
77	trending tectonic units of distinct character: (i) an ophiolite belt that crops out in the central part
78	and it divides the Brunovistulicum into (ii) the Slavkov terrane in the NE and (iii) the Thaya
79	terrane in the SW (Finger et al. 2000). The most critical and best exposed portion of the
80	Precambrian basement in central Europe is the Brno Batholith (Finger et al. 2000; Leichmann and
81	Höck 2008). Steep geological, tectonic and geophysical boundaries divide the Brno Batholith into
82	three different N-S oriented units mirroring the zoned structure of the whole Brunovistulicum
83	(Fig. 1). These units are (from west to east): the Western Granitoid Complex (WGC, as part of
84	the Thaya Terrane), the Central Ophiolite Belt (COB) and the Eastern Granitoid Complex (EGC,
85	as part of the Slavkov Terrane). The Central Ophiolite Belt (COB; dated at 725 ± 15 Ma by
86	Finger et al. 2000) originated in supra-subduction environment (Finger et al. 2000; Kalvoda et al.
87	2008; Leichmann and Höck 2008), but was subsequently intruded by younger (600-580 Ma)
88	granitoids (WGC and EGC).
89	Three granitic suites were distinguished within the WGC by Leichmann and Höck (2008): (i) the
90	Tetčice (S-type) suite, (ii) the Réna (I-type) suite, both represent evolved rocks of an active

- 91 continental margin, and (iii) the examined Hlína (A-type) suite (Fig. 1). The Tetčice suite consists
 - 4

92	of biotite granite with frequent xenoliths of biotite-amphibole diorites and of metasedimentary
93	rocks. Zircon morphology and alumina saturation index (ASI) = 1.14-1.20 suggest S-type granite
94	affinity (Leichmann and Höck 2008). The Réna suite consists of felsic (SiO ₂ > 69 wt%, ASI <
95	1.1), I-type amphibole-biotite granodiorites to biotite granites interpreted as volcanic-arc
96	products (Leichmann and Höck 2008). Numerous small (tens to hundred meters) and irregular
97	bodies and dykes of the Hlína suite intruded I-type granites of the Réna suite and, less frequently,
98	S-type granites of the Tetčice suite (Fig. 1). Recent mapping (Hönig et al. 2012) confirmed their
99	frequent occurrence in the SW part of the Brno Batholith and within the NE part of the Thaya
100	Batholith (Fig. 1), where the Hlína suite spreads out more than 80 km in north-south direction.
101	The strike of the bodies is generally parallel to the NW-SE trending regional fault zone. Both
102	hanging wall and foot wall contacts of the Hlína granite bodies with the host granodiorite are
103	sharp. The Hlína suite consists of felsic, garnet-bearing leucogranite with anorogenic, post-
104	collisional affinity, and often showing complex internal structure (Hönig et al. 2010).
105	
106	ANALYTICAL METHODS
107	Sampling and modal counting
108	Samples of the A-type Hlína granite for whole-rock chemical analysis and EMP study were
109	collected at 4 localities (A to D in Fig. 1). The detailed EMP and LA-ICP-MS study combined
110	with Y+REE mass balance calculations were performed using the samples of microgranitic units
111	from the granite dyke at the locality A (Moravské Bránice; Fig. 1). Twenty thin sections from this
112	locality were studied in detail using conventional petrographic methods including modal
113	counting.

115 **EMP**

116	Garnet and other rock-forming and accessory minerals from the A-type Hlína granite were
117	analysed with a Cameca SX100 electron microprobe at the Joint Laboratory of Electron
118	Microscopy and Microanalysis, Department of Geological Sciences, Masaryk University, Brno
119	and Czech Geological Survey. Operating conditions for analyses were as follows: wavelength
120	dispersive mode, an accelerating voltage of 15 kV, a beam current of 40 nA for garnet, 20 nA for
121	magnetite and other accessory minerals and 10 nA for muscovite and feldspars; a beam diameter
122	of 2 μm for garnet and accessory minerals, and 5 μm for muscovite and feldspars. The Y+REE in
123	the zircon were analyzed at 150 nA. The P and Sr in feldspars were analyzed at 100nA. The
124	element concentrations in silicate minerals were analysed using the following standards and X-
125	ray lines: K_{α} lines - sanidine (Si, Al, K), albite (Na), pyrope (Mg), and radite (Ca, Fe), spessartine
126	(Mn), titanite (Ti), chromite (Cr), fluorapatite (P), topaz (F), L_{α} lines - YAG (Y), Yb (YbPO ₄), Er
127	(ErPO ₄), SrSO ₄ (Sr), baryt (Ba). For magnetite the following standards and X-ray lines were
128	used: K_{α} lines - MgAl ₂ O ₄ (Mg, Al), hematite (Fe), chromite (Cr), titanite (Ca, Ti), Ni ₂ SiO ₄ (Ni),
129	ScVO ₄ (V), sanidine (Si), Mn ₂ SiO ₄ (Mn); L_{α} line - gahnite (Zn). The peak counting time was 10
130	seconds for major elements and 20-80 seconds for minor to trace elements. Average detection
131	limits in garnet are: for Y (340 ppm), Er and Yb (970 and 790 ppm, respectively). The calculated
132	relative errors (2 σ error) are about <3 % at the >10 wt% level, <5 % at the ~5 wt% level and <15
133	% at the \sim 1 wt% level. Analytical conditions and standards used for zircon and REE-bearing
134	phases were similar to those described by Breiter et al. (2009) and Čopjaková et al. (2011).
135	Chemical analyses of garnet were recalculated to the formula ${}^{XII}X_3{}^{VI}Y_2{}^{IV}T_3O_{12}$ on the basis of Σ
136	cations = 8 and the Fe^{3+}/Fe^{2+} ratios were calculated by charge balance.

138 **LA-ICP-MS**

- 139 Trace element contents in major (plagioclase, K-feldspar, quartz) and minor to accessory
- 140 minerals with a grain-size greater than 25 µm (garnet, magnetite, muscovite, epidote) were
- 141 investigated by LA-ICP-MS (CEITEC and Department of Chemistry, Faculty of Science,
- 142 Masaryk University, Brno) using an Agilent 7500ce (Agilent Technologies) quadrupole ICP-MS
- 143 with an attached UP 213 laser ablation system (New Wave Research). The samples were ablated
- 144 using a commercial Q-switched Nd:YAG laser operated at a wavelength of 213 nm (pulse
- 145 duration of 4.2 ns). Ablated material was transported from the sample chamber using helium
- 146 carrier gas (1 L/min) and mixed with argon (0.6 L/min) prior to the torch. Optimization of LA-

147 ICP-MS parameters (gas flow rates, sampling depth, voltage of ion optics) was performed using

148 glass reference material NIST SRM 612 to maximize the S/N ratio and minimum oxide formation

- 149 (ThO⁺/Th⁺ counts ratio 0.2 %) and U⁺/Th⁺ counts ratio 1.1 %. Potential polyatomic interferences
- 150 were minimized by collision reaction cell in He mode (2.5 mL/min).
- 151 The contents of major and trace elements in garnet, magnetite, muscovite, epidote, plagioclase
- 152 and K-feldspar were determined after laser ablation of individual spots with various diameter
- 153 (garnet 55 μm; magnetite 80 μm; muscovite 40 μm; epidote 25 μm; plagioclase and K-
- feldspar 110 μ m) and fluence of laser beam (garnet, magnetite and plagioclase 5 J.cm⁻²;

155 muscovite, epidote and K-feldspar - 3 J.cm⁻²) depending on the size of analyzed grains. Analyses

- 156 of mineral samples were carried out at frequency of 10 Hz and each spot was ablated for 60 s.
- 157 The element content in quartz sample was traced by line scanning mode at the diameter of $65 \,\mu m$
- and 5 μ m.s⁻¹ scan speed. The fluence of laser beam was set to 20 J.cm⁻² and the analysis was
- 159 carried out at frequency of 5 Hz. The contents of elements of interest were estimated using SRM
 - 7

8/29

NIST 610 and 612 and internal reference element (Si – silicates, Fe – magnetite). The calculation
was performed after baseline correction and integration of peak area.

163	Whole rock chemical analyses
164	Whole rock chemical analyses (8 samples) were determined at the Acme Chemical Laboratories
165	Ltd, Vancouver, Canada. Major elements were determined by using ICP-OES after fusion with
166	lithium borate flux. Trace elements, including the REE, were analyzed by ICP-MS with
167	additional lithium tetraborate fusion.
168	
169	PETROGRAPHIC DESCRIPTION AND GEOCHEMISTRY OF THE HLÍNA GRANITES
170	Internal structure and petrography
171	The Hlína granite bodies show relatively complex internal fabric. The intrusions are
172	predominantly built by fine-grained leucocratic microgranite with layering defined by large
173	proportion of garnet trains parallel to the contacts (Fig. 2; the train texture is used to characterize
174	garnets arranged into the subparallel strips, where individual garnet crystals are almost in a direct
175	contact with each other; e.g. Bogoch et al. 1997; Macleod 1992). The garnet trains are up to
176	several millimeters thick layers or layer sequences within the microgranite portion of the body. In
177	some cases the microgranite is interlayered with comb-shaped large crystals of K-feldspar,
178	plagioclase and quartz (more than 10 centimeters large) designated as unidirectional solidification
179	textures, UST (Shannon et al. 1982; for more detail see Hönig et al. 2010). The USTs are
180	developed mostly in marginal and apical parts of the intrusions and are parallel to the intrusive
	8

- 181 contacts (Fig. 2a). Alternations of the garnet-bearing microgranite and garnet-free UST layers
- 182 extend over several meters within some of the Hlína bodies.
- 183 The fine- to medium-grained (0.5 to 2 mm) microgranite is composed of plagioclase An_{8-15} (35-
- 184 45 vol%), K-feldspar (23-30 vol%) and quartz (20-32 vol%). The common minor to accessory
- 185 minerals are muscovite (3-5 vol%), garnet and magnetite (<2 vol%). Other accessory minerals:
- 186 epidote > zircon > ilmenite > secondary REE-bearing phases >>> titanite > Nb-Ta oxides >
- 187 xenotime-(Y) are rare to extremely rare. The grain size of the UST zones varies from 1 to 10 cm.
- 188 The mineral assemblage is represented by K-feldspar, plagioclase (An₁₀₋₁₅) and quartz with minor
- 189 muscovite; accessory minerals are extremely rare or absent.
- 190

191 Garnet

- 192 Garnet is present in two distinct morphological types: (i) the most abundant euhedral garnet (<0.5
- 193 mm) is arranged in long trains (from several dm to several m long; Fig. 2). These trains locally
- 194 alternate with similar but less abundant zones of individual magnetite grains. Euhedral garnet is
- 195 commonly inclusions-free (Fig. 3a-c); but it rarely encloses magnetite or minute zircon grains;
- 196 (ii) rather rare glomerophyric garnet (enclosing K-feldspar, quartz, plagioclase) forms isolated
- 197 phenocrysts (0.5-4 mm) with no apparent spatial relation to the garnet trains (Fig. 3d).
- 198 The euhedral garnet exhibits complex zoning patterns in BSE images characterized by core with
- 199 pronounced sector zoning usually overgrown by zones with sharply-defined fine oscillation –
- 200 garnet I (Fig. 3a-c). Both texturally distinct domains of garnet I, that is, volumetrically minor
- 201 sector zoned cores and volumetrically dominant domain with oscillatory zoning, show similar
- 202 chemical composition with gradual changes in major and trace elements. The euhedral garnet I

203	corresponds to Sps ₄₅₋₄₆ Alm ₂₇₋₃₈ And ₄₋₁₃ Grs ₀₋₁₂ Mzr ₂₋₅ Prp ₀₋₁ (Fig. 4a; Table 1). Major cations
204	$(1.27-1.36 \text{ apfu Mn}, 1.13-1.27 \text{ apfu Fe}, \text{ molar Mn}/(\text{Fe}_{tot}+\text{Mn}) \text{ ratio} = 0.50-0.52)$ are rather
205	constant and display negligible variations across garnet I grains (Fig. 4b). Garnet I shows low Al
206	(1.63-1.84 apfu), but it is enriched in Fe^{3+} (0.09-0.26 apfu) and particularly in Ca (0.49-0.70
207	apfu). The contents of Al and Fe^{2+} (0.90-1.18 apfu) gradually increase, whereas Fe^{3+} decreases
208	from the core outwards with no discontinuity during transition from sector to oscillatory zoned
209	domain (Fig. 4b). The content of Ca is constant through the central part of the garnet and depleted
210	in its outer part. The content of Mg (0.03-0.06 apfu) decreases slightly from the core outwards.
211	Along with Y (0.03-0.09 apfu; 0.61-1.96 wt% Y_2O_3), other HREE were detected by EMPA
212	(Er ₂ O ₃ \leq 0.30 wt%, Yb ₂ O ₃ \leq 0.57 wt%). The contents of Y+HREE generally decrease from the
213	core outwards (Fig. 4b), but in detail their values finely oscillate and correlate well with the
214	zoning observed in the BSE images (Fig. 4c). The content of Ti is rather high (≤ 0.44 wt% TiO ₂)
215	and it is negatively correlated with Al. The content of Na ₂ O does not exceed 0.16 wt%.
216	Recalculation of the end-members in euhedral garnet shows rather constant spessartine, increase
217	of almandine and decrease of andradite from the core outwards. The content of the grossular end-
218	member increases generally from the core outwards and the Y+HREE content display the
219	opposite behavior (Fig. 4b).
220	In some of the garnet-bearing granite samples, the outermost parts of some garnet I crystals were
221	locally overgrown or replaced by later garnet II (Fig. 3b,c). The replacement irregularly
222	propagates from the rim inwards and the boundary between garnet I and garnet II is texturally
223	and chemically sharp. The later garnet II is slightly enriched in Mn, Al and Fe ²⁺ and depleted in
224	Ca, Y+HREE, Fe ³⁺ and Ti compared with the garnet I (Fig. 4; Table 1).

The rare glomerophyric garnet is only slightly enriched in andradite and spessartine and depleted

226	in almandine and grossular (Sps_{44-46}Alm_{28-38}And_{6-15}Grs_{6-10}Mzr_{0-4}Prp_{0-1}) when compared to the
227	euhedral garnet (Fig. 4a; Table 1). The contents of Y (0.01-0.07 apfu; 0.19-1.59 wt% Y_2O_3) and
228	HREE ($Er_2O_3 \le 0.30$ wt%, Yb ₂ O ₃ ≤ 0.45 wt%) in the glomerophyric garnet are similar to those in
229	the euhedral garnet. The compositional profile through glomerophyric garnet shows similar
230	chemical zoning as the euhedral garnet.
231	
232	Other rock-forming and accessory minerals
233	Pink subhedral crystals of K-feldspar ($Or_{81}Ab_{17}An_{0.5}$) show two or more crosscutting perthitic
234	systems. Plagioclase (An_{8-15}) is simply zoned with typical magmatic zoning trend with more
235	calcic core and a myrmekitic texture commonly developed along the contacts with K-feldspar.
236	Both K-feldspar and plagioclase have low concentrations of P ($\leq 0.01 \text{ wt\% P}_2O_5$); low Sr
237	abundances (≤0.08 wt% SrO) in plagioclase are typical.
238	Muscovite forms rather anhedral small flakes. It is Fe-rich (Fe _{tot} up to 0.45 apfu) with Si up to
239	3.23 apfu, and Al ~2.3 apfu. Low contents of Na (≤ 0.03 apfu), Mg (≤ 0.04 apfu) and F (≤ 0.04
240	apfu) are typical. Muscovite is partly replaced by chlorite (chamosite with $Fe/(Fe+Mg) = 0.70$ -
241	0.97). Wormy epidote (0.71-0.88 apfu Fe^{3+}) intergrowing with quartz usually overgrows
242	muscovite or magnetite. Euhedral crystals of magnetite (20-300 μ m) are close to the ideal
243	composition with only trace amounts of Ti, Al and Si.
244	Euhedral to subhedral crystals of zircon (5-50 μ m) are remarkably altered (Fig. 3e). Relics of
245	relatively "fresh" zircon (Zr/Hf = ~19) are very rare and contain only low concentrations of P (\leq
246	0.33 wt% P_2O_5), (Y,REE) ₂ O ₃ (up 1.4 wt%), U (0.12-1. 50 wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% UO ₂), and Th (0.05-0.30 wt% VC) wt% VC) wt% VC) wt% VC) wt% VC) wt% VC), wt% VC)

11

247	ThO ₂). On the other hand, altered domains (Table 2) are depleted in SiO ₂ (17.11-27.27) and ZrO_2
248	(38.21-52.08 wt%) and enriched in P ₂ O ₅ (1.59- 6.77 wt%), Nb ₂ O ₅ (0.08 - 3.57 wt%), CaO (0.24-
249	1.67 wt%), ThO ₂ (0.21 - 28.19 wt%), UO ₂ (0.23 - 2.39 wt%), FeO (0.76 - 3.93 wt%), Al ₂ O ₃
250	$(0.75-3.76 \text{ wt\%})$ and $(Y,REE)_2O_3$ (2.94 - 9.72 wt%). The low sum of oxides (83-93 wt%) and the
251	presence of non-essential elements (Fe, Ca, Al, Nb, F) suggests amorphous and hydrated nature
252	of the altered parts of zircon. Incorporation of these elements into the amorphous zircon during
253	interaction with hydrothermal fluids was documented, for instance, by Geisler et al. (2003, 2007).
254	The chondrite-normalized REE pattern of the zircon is HREE-enriched; nevertheless, in the
255	altered parts it is rather flat (Yb _N /Nd _N = 10-15) with a weak positive Ce anomaly (Fig. 5a).
256	Aggregates of secondary REE-bearing phases and clay minerals (10-70 μ m large) occur
257	sporadically in thin sections, they follow primary grain boundaries or radiation damage haloes
258	(Fig. 3g,h). Needle-like REE-bearing secondary phase corresponds to Th-rich rhabdophane-(Nd)
259	(0.06-0.23 apfu Th) with variable negative Ce anomaly (Ce/Ce* = 0.1-0.6; Fig. 5a), and with
260	0.07-0.12 apfu Y (Table 2). Another secondary phase is uranium-rich (up 6.5 % UO ₂ ; Fig. 3g,h)
261	and it show very low REE contents close to the detection limit of EMP excluding Ce, yielding
262	significant positive Ce anomaly (Ce/Ce* ~4; Fig. 5a). Xenotime-(Y) forms sporadically
263	pyramidal overgrowths on the zircon crystals. Other accessory minerals (fersmite, columbite-
264	(Fe), plumbopyrochlore and titanite) are extremely rare, with the contents of Y+REE below the
265	detection limit of EMP.

267 Whole rock chemistry

268 The felsic character of all samples (SiO₂ 74.61-75.86 wt%, K_2O 4.11-4.94 wt%, Na_2O 3.82-4.94

269 wt%) is consistent with the high-K calc-alkaline and a metaluminous to slightly peraluminous

270	nature (ASI = $0.98-1.08$). Moderate concentrations of CaO ($0.61-1.20$ wt%), and low
271	concentrations of Fe ₂ O _{3tot} (0.62-0.93 wt%), MgO (0.02-0.03 wt%), TiO ₂ (0.03-0.04 wt%) and
272	P ₂ O ₅ (0.01-0.05 wt%) indicate a generally evolved character of these rocks (Table 3). Rather high
273	concentrations of MnO (0.04-0.90 wt%), Rb (156-311 ppm) and Nb (11-51 ppm) are typical for
274	garnet-enriched rocks and positively correlate with high contents of Y (14-116 ppm) and HREE
275	(Yb 4-15 ppm, Er 2-11 ppm). Compared to the granites of the Réna and Tetčice suites
276	(Leichmann and Höck 2008), the contents of Zr (66-107 ppm), Sr (13-30 ppm), and Ba (4-46
277	ppm) are low. Low K/Rb (110-241), fairly low mg# 4-7 (defined as molar ratio of 100
278	MgO/(FeOt+MgO)), strong negative Eu anomaly $(Eu/(Sm \times Gd)^{1/2} = 0.15-0.36)$ and very high
279	K/Ba (742-2544) indicate a high degree of fractionation. The rock is depleted in LREE (only ~ 10
280	times enriched over chondritic abundances) relative to HREE (70-90 times enrichment relative to
281	chondrite), the La_N/Yb_N ratios vary from 0.53 in garnet-free rocks to 0.13 in garnet-rich zones
282	(Fig. 5f). The Hlína suite falls mostly into the field of within-plate granites (Fig. 6a,b) and,
283	according to the Ga/Al ratio (Fig. 6c), the rocks plot into the field of A-type granites. Based on
284	the concentrations of Y, Nb and Ga*3 (Fig. 6d) the Hlína granites are classified as the rocks with
285	a post-collision, post-orogenic and anorogenic affinity.
286	
287	LA-ICP-MS DATA
288	Garnet
289	Yttrium and REE were measured across 10 crystals of euhedral garnet, 3 to 11 analyses were
290	obtained along each analytical profile (total 72 analytical points). Yttrium contents vary from
291	2630 to 15530 ppm. Total rare earth element concentrations vary from 1710 to 9990 ppm and

- 292 positively correlate with Y contents (Table 4). The concentrations of the Y, Yb and Er obtained
 - 13

293 by LA-ICP-MS are in good agreement with the results of EMPA. All analyses show enrichment 294 in HREE (Yb_N/Sm_N = 17-441) and significant Eu anomaly (Eu/Eu* = 0.01-0.05; Fig. 5b; Table 295 4). The Yb_N/Sm_N ratio decreases smoothly with decreasing Σ Y+REE contents from core towards 296 the rim of the garnet I (Fig. 7a) with no disruption during transition between domains with sector 297 and oscillatory zoning. By contrast, garnet II shows significantly higher Yb_N/Sm_N compared with 298 the outer zones of garnet I (Fig. 7a,b). Moreover, garnet II has more negative Eu anomaly 299 compared with garnet I (Fig. 7c,d). 300 301 Other rock-forming and accessory minerals 302 The Y+REE contents in magnetite are relatively high (90-256 ppm; Table 4). Chondrite-303 normalized REE patterns (Fig. 5c) are nearly flat ($La_N/Yb_N = 0.4-2.7$) with a significant negative Eu anomaly (Eu/Eu*=0.10-0.15) and a negative Ce anomaly (Ce/Ce* = 0.47-0.77). The Y+REE 304 305 concentrations in primary muscovite are rather low (8-95 ppm; Table 4). The chondrite 306 normalized REE patterns (Fig. 5d) are flat to slightly LREE-enriched ($La_N/Yb_N=0.5-5.3$), with a 307 negative Eu anomaly (Eu/Eu*=0.22-0.77) and a positive Ce anomaly (Ce/Ce*=0.93-4.94). The 308 highest Y+REE contents (26 ppm) in muscovite correlate with increased contents of Nb and 309 Ta and could indicate presence of submicroscopic inclusions of Y+HREE-rich Nb- and Ta-310 containing phases. The Y+REE in plagioclase range from 1.0 to 6.7 ppm; the LREE (0.6-4.0 311 ppm) predominate over HREE (0.08-1.4 ppm), and there is a distinct positive Eu anomaly

312 $(Eu/Eu^* = 1.9-10.5; Fig. 5e; Table 4)$. K-feldspar (Y+REE = 0.6-3 ppm) has only the LREE

313 significantly above the detection limit and positive Eu anomaly. The HREE are close to or below

314 the detection limit (Fig. 5e; Table 4). The Y+REE contents in quartz are low and close to the

315 chondritic values (Y+REE = 3-11 ppm), with flat Ce_N/Yb_N ratio close to 1 (Table 4). and.

Epidote has low contents of LREE (Σ LREE ~10-30 ppm) with a steep LREE-rich chondrite
normalized pattern (HREE are below the detection limit) and a weak negative Ce anomally (Fig.
5d; Table 4).

- 319
- 320

MINERAL MASS BALANCE FOR Y+REE

321 Mineral mass calculation

322 The Y+REE mineral mass-balance calculations for three granite samples (MB1-1, MB1-52 and 323 MB1-55; Fig. 5f; Table 3) were carried out in order to assess the relative contribution of garnet 324 and other rock-forming minerals to the whole-rock Y+REE budget. These calculations ignore 325 rare small accessory minerals ($<10 \,\mu$ m) with Y+REE contents below the detection limit of EMP 326 (ilmenite, titanite, Nb-Ta oxides) and extremely rare xenotime (one 5 by 10 µm-large xenotime-327 (Y) grain per thin section contributes less than 0.05 % of the total Y+REE in granite). The 328 proportional contents of quartz, K-feldspar, plagioclase, muscovite and garnet were calculated by 329 mass balance using average EMP data and whole rock chemical compositions. The garnet 330 fraction was calculated from the MnO content in the whole rock lowered by the MnO content 331 retained in muscovite, magnetite and ilmenite. The magnetite, ilmenite and epidote fractions were 332 calculated using BSE image analysis. The fraction of zircon was calculated from the Zr content in 333 the rock lowered by the total Zr content located in other rock-forming minerals. The Y+REE 334 mass-balance calculations were performed as arithmetic mean of the Y+REE in individual 335 minerals (excluding garnet) and their modal content in the rock. Average Y+REE contents for 336 garnet could not have been calculated from the rim-core-rim profiles of the LA-ICP-MS analyses 337 as arithmetic mean because this approach would provide significantly higher Y+REE budget (in 338 this case 1.24 times higher than spherical layer model) due to significant core-rim zoning in

Y+REE. Thus, the average Y+REE content of the garnet was calculated by the spherical layer
model (see Fig. 3f). The calculated Y+REE budgets are presented in Tables 5 and 6 and
graphically in Fig. 8.

342

343 Distribution of Y+REE among rock-forming minerals

The mineral mode and average Y+REE contents in individual primary minerals (garnet, zircon,
muscovite, magnetite, quartz, plagioclase, K-feldspar, epidote) were used to calculate the

346 theoretical Y+REE pattern of the whole rock (model A). The calculated Y+REE pattern of the

347 model A is in a good agreement with the pattern obtained from the whole-rock analysis (Fig. 8a)

348 excluding LREE from La-Sm. Due to the strongly heterogeneous chemical composition of

349 aggregates of secondary REE-bearing phases their modal amount was difficult to determine.

350 Therefore, the fraction of secondary REE-bearing phases was calculated according to the

unbalanced La-Sm content between the model A and the whole rock chemical analysis and

352 average chemical composition of the secondary REE-bearing phases. The mode of secondary

353 phases corresponds to 10 grains, \sim 50 μ m in size, per thin section, which seems to be consistent

354 with the observations of secondary REE-bearing phases in our samples. Model B (Fig. 8a)

355 expresses a theoretical Y+REE pattern obtained by addition of the secondary REE-bearing phases

to the model A. The difference between these two models suggests that ~ 63 % of the whole rock

- 357 LREE budget is hosted by secondary REE-bearing phases, which also contribute 1 % to the
- 358 whole rock Y and 21 % to the whole rock REE.

359 The results shown in Table 5 demonstrate that ~84 % of the Y and ~61 % of the REE are hosted

in garnet. The garnet contribution to the HREE is ~86 % and it systematically increases from Gd

to Yb (Fig. 8b; Table 6). Zircon, the second important carrier of Y+REE in the rock (Fig. 8b;

362	Table 5), contains \sim 13 % of whole rock Y and \sim 11 % REE (11 % LREE and 11 % HREE). The
363	fraction of Y+REE residing in the major rock-forming minerals (plagioclase, K-feldspar, quartz),
364	is with the exception of Eu rather low \sim 1 % Y and 4 % REE (of 10 % LREE and 1 % HREE)
365	despite the predominance of these minerals (94 vol%) in the rock. Approximately 89 % of Eu is
366	contained in feldspars (Fig. 8b; Table 6). Surprisingly, a relatively high content of Y+REE in
367	magnetite makes it a relatively important reservoir of Y (1 %) and REE (2 % of the total REE and
368	4 % of the total LREE), despite its low modal amount (Table 5). Moreover, ~1 % Y and 2 % REE
369	(4 % LREE>0.5 % HREE) reside in muscovite (Table 5). The contribution of epidote to the
370	Y+REE whole rock budget is only negligible (0.3 % of the total LREE; Table 5).
371	
272	
372	DISCUSSION
373	Crystallization temperature
374	We have used the zircon saturation thermometry to evaluate the liquidus temperature of the Hlína
375	A-type granite. Application of the zircon solubility model in silicate melts (Harrison and Watson
376	1983) yields temperature range between 711-751 °C, that is, 734 ± 14 °C. The zircon saturation
377	thermometry is applicable provided that Zr remained immobile on the sample scale during
378	postmagmatic alteration of zircon. Several lines of evidence suggest its generally conservative
379	behavior: (i) the Zr concentrations in six whole rocks neither correlate with the degree of zircon
380	alteration nor they show irregular fluctuations, (ii) the estimated temperatures are not scattered
381	but form a rather narrow range, and (iii) if portion of Zr was removed by aqueous fluids, the
382	original crystallization (saturation) temperature would have to be higher than \sim 730 °C, which is
383	unexpected for highly evolved granitic magmas (e.g., Anderson et al. 2008; Huang and Audétat

384	2012; London 2014). We thus interpret results of the zircon saturation thermometry as maximum
385	liquidus temperature, and subsequent crystallization must have proceeded in a closed system.
386	The minimum temperature limit of granite crystallization was estimated by two-feldspar solvus
387	geothermometry using non-ideal asymmetric mixing model of Holland and Powell (2003). K-
388	feldspar composition exhibits slight systematic decrease in Na concentrations from core to rim
389	$(Ab_{14-09} \text{ to } Ab_{05-04})$. Plagioclase composition shows minor but systematic decrease from An_{15} to
390	An ₁₄₋₁₂ (core to rim), with Or_{00-01} . Cores of corresponding plagioclase and K-feldspar grains
391	indicate equilibrium temperatures from 441 ± 14 to 418 ± 18 °C at 1 kbar. By contrast, rims of
392	plagioclase and K-feldspar grains yield variable, poorly constrained temperatures from 413 ± 97
393	to 294 ± 15 °C at 1 kbar. We interpret the range of 441-418 °C as a minimum temperature limit
394	for granite crystallization, possibly under undercooled conditions, whereas the latter datum of
395	294 ± 15 °C is appears to indicate closure of the Na-K exchange <i>via</i> grain boundary diffusion.
396	Layered textures (alternating garnet-bearing aplite and garnet-free coarse-grained comb-like UST
397	layers) observed in the Hlína granite together with hour-glass sector cathodoluminiscence-zoning
398	of K-feldspar and sector zoning in central parts of the garnets indicate a crystallization from non-
399	equilibrium supersaturated undercooled melt (cf. Webber et al. 1999; London 2009, 2014; Hönig
400	et al. 2010), broadly bracketed by 734 and 441-418 °C.

402 **Igneous origin of garnet**

The origin of garnet in granitic magmas (magmatic phenocrysts, xenocrysts, restite or secondary
reaction products) is still intensively debated (e.g. Miller and Stoddard 1981; Kontak and Corey

405 1988; Hogan 1996; Dahlquist et al. 2007; Erdmann et al. 2009; Dorais and Tubrett 2012; Lackey

406 et al. 2012). The chemical composition and zoning, euhedral morphology (Figs. 3a-c, 4) and

407	textural relations of garnet from the Hlína granite are consistent with its igneous origin. Garnet I
408	crystallized early from the felsic magma that was highly evolved, metaluminous to weakly
409	peraluminous (ASI = 0.98-1.08; Table 3) and rich in Y+HREE, Mn and poor in Mg, P, and Eu.
410	By contrast, formation of garnet in response to a biotite-consuming reaction, which would have
411	reflected an increase in the melt peraluminosity due to the progressive crystallization (Hogan
412	1996), appears to be unlikely. Interstitial, rather anhedral primary muscovite and wormy epidote
413	crystallized later, when H ₂ O concentration in the residual melt increased slightly, and this is
414	consistent with mineral sequences observed in A-type magmas crystallizing under initially low
415	H ₂ O fugacities (e.g. Bonin 2007).
416	The excess of Al in the melt is usually considered to be a prerequisite for garnet stability (du
417	Bray 1988). This is in agreement with common occurrence of accessory garnet of almandine-
418	spessartine composition with low contents of Mg and Ca (<2 wt% CaO) in the S-type (ASI
419	1.1) granites. Commonly, such garnets are Al-rich (1.95-2.00 apfu Al; Miller and Stoddard 1981;
420	du Bray 1988; Sevigny 1993; Dahlquist et al. 2007; Sheibi et al. 2010). By contrast, magmatic
421	garnet in the A-type Hlína granites shows lower Al concentrations (~1.6 apfu in garnet cores),
422	which are compensated by $Fe^{3+} \pm Ti$ in the octahedral site (Fig. 4b; Table 2). The decreased Al
423	and elevated Ca, Fe ³⁺ and Ti concentrations in garnet enable garnet crystallization from weakly
424	peraluminous melt (with ASI \sim 1). The garnet I composition resembles those described from
425	highly fractionated metaluminous to weakly peraluminous (ASI = $0.96-1.05$) A-type granites at
426	Erlangmiao (Zhang et al. 2012).
427	Chemical composition (both major and trace elements) indicates that the transition from sector
428	zoned cores of garnet I to oscillatory zoned garnet I domains reflects continuous garnet
429	crystallization with no disruption in garnet growth (Fig. 4b, 7). Sector-zoned cores of garnet I

430	crystallized rapidly from undercooled melt far from equilibrium with coexisting minerals.			
431	Moreover, rim of oscillatory zoned garnet I crystallized close to equilibrium with coexisting			
432	minerals. Flat Mn and Fetot profiles (Fig. 4b) for garnet I could reflect rapid self-diffusion of			
433	these elements, which is characteristic for garnets that have crystallized at high temperatures	~		
434	700 °C (Yardley 1977; Manning 1983; Harrison 1988; Dahlquist et al. 2007). This observation	n		
435	agrees well with the results of the zircon saturation geothermometry and confirms that garnet	I is		
436	an early, high-temperature liquidus phase in A-type granitic magmas (Bonin 2007).			
437				
438	Redox conditions during crystallization			
439	We used the composition of garnet I (from a sample with no other garnet varieties present), in	1		
440	combination with that of other coexisting minerals, to reconstruct the redox conditions during	r >		
441	magma crystallization (Fig. 9). The following mineral equilibria are applicable to garnet- and			
442	magnetite-bearing leucogranites:			
443				
444	3 skiagite + 1 O_2 = 5 magnetite + 9 quartz	(1)		
445	9 grossular + 4 magnetite + 9 quartz + 1 $O_2 = 6$ and radite + 9 anorthite	(2)		
446				
447	We used the internally self-consistent thermodynamic dataset of Holland and Powell (1998),	as		
448	updated in 2004, the compensated Redlich-Kwong equation of state for H ₂ O (Holland and Powell			
449	1991, 1998) and the asymmetric non-ideal mixing models for plagioclase (Holland and Powe	11		
450	2003) and garnet (White et al. 2007, as revised by Diener et al. 2008 and incorporating ideal	Fe-		
451	Mn mixing in the sense of White et al. 2005) to evaluate redox conditions of these equilibria	with		
	20			

8/29

452	respect to fayalite or anthophyllite-magnetite-quartz and magnetite-hematite oxygen-fugacity
453	buffers. Thermodynamic data for the skiagite end-member ($Fe_3Fe_2Si_3O_{12}$) were calibrated by
454	Malaspina et al. (2009), however, their exploratory application indicated equilibrium redox
455	conditions in excess of the magnetite-hematite buffer, in a strong disagreement with the observed
456	mineral assemblage and outside the range of common igneous rocks (e.g., Carmichael 1991,
457	Frost and Lindsley 1992). We prefer to estimate the thermodynamic data for the skiagite end-
458	member from the reciprocal composition space of the garnet solid solution in a self-consistent
459	manner with non-ideal excess mixing contributions (Diener et al. 2007).
460	Eq. (1) applied to the composition of garnet I core (sector zoned domain of the garnet I) yielded
461	$\log fO_2 = -14.9$ bar (Fig. 9), which corresponds to QFM + 1.2 at 734 °C (zircon saturation
462	temperature). Progressive crystallization of Fe^{3+} -bearing garnet I decreases the Fe^{3+}/Fe^{2+} ratio of
463	the residual melt, thus effectively shifting the evolving system towards more reducing conditions.
464	The equilibrium between garnet I rim (homogeneous rim of oscillatory zoned domain of the
465	garnet I), magnetite and quartz yielded $\log fO_2 = -16.2$ bar at 718 °C, which is the liquidus
466	temperature for the crystallization of garnet and magnetite, as opposed to stability of garnet and
467	fayalite at lower temperatures. The equilibrium between quartz, magnetite, plagioclase and rim of
468	garnet I was reached at 657 $^{\circ}$ C as indicated by the intersection of Eq. (2) with the QFM buffer,
469	whereas the equilibrium between the same phase but garnet II occurred under similar conditions,
470	at 663 $^{\circ}$ C and QFM + 0.8 (Fig. 9). The location and course of the garnet-magnetite equilibrium
471	(Eq. 1; Fig. 9) indicate that the garnet I core composition will change only little if the
472	crystallization has occurred metastably during undercooling below \sim 730 °C. Following the
473	crystallization of garnet I, compositional changes of the residual melt caused its temporary
474	instability, it was partly dissolved and overgrown by Ca,Y+REE-poor and Mn,Al-rich garnet II

(Figs. 3b,c, 4b, 7). Despite these compositional fluctuations the compositions of both garnet types
yield consistent crystallization conditions, 657-663 °C and QFM 0 to + 0.8 at 1 kbar, which
represent an undercooling of ~75 °C below the zircon saturation temperature. The estimated
redox conditions (QFM 0 to +1.2) indicate that the Hlína suite belongs to moderately oxidized Atype granites (Frost et al. 1999), but are consistent with oxygen fugacity recorded by magnetite,
titanite and ilmenite assemblages (Wones 1989), which are all observed in our samples.

482 **Y+REE substitutions in garnet**

483 Four substitution mechanisms controlling incorporation of Y+HREE into the garnet structure have been proposed previously: (i) YAG substitution, $[^{X}(Y,REE)^{3+}_{1}]^{T}(Al^{3+},Fe^{3+})_{1}X(R^{2+})_{1}Si_{1}]$, is 484 485 considered to be common in spessartine-rich garnets from pegmatites (e.g., Jaffe 1951) and it has 486 been confirmed in metamorphic garnet as well (Røhr et al. 2007); (ii) coupled substitution linked to the incorporation of Na into the X-site $[Na_{1}^{+}(Y,REE)^{3+}(R^{2+})_{2}]$ described by Enami et al. 487 488 (1995) from metamorphic garnet in orthogneisses; (iii) menzerite-(Y) substitution $^{X}(Y,REE)^{3+}_{1}R^{2+}_{1}R^{2+}_{1}R^{2+}_{1}(Al,Fe)^{3+}_{1}$ has been described from metamorphic garnets in felsic 489 granulites only (Grew et al. 2010; Marsh et al. 2012); (iv) $(Y,REE)^{3+}Al^{3+}$, homovalent 490 491 substitution for the garnet from the Xihuashan granitic complex (Wang et al. 2003b), although 492 the same trend may be explained by the menzerite substitution (Grew et al. 2010). The absence of Al in the T-site and negative correlation of Y vs. ^YAl in garnet from the Hlína 493 494 granites (Fig. 10a) implies the absence of the YAG substitution. Owing to the low Na contents 495 (0.026 apfu) and the lack of correlation with the Y+REE contents (Fig. 10b), only minor contribution from the substitution $^{X}Na^{X}Y^{X}R^{2+}$ is expected. Yttrium concentrations negatively 496 correlate with ${}^{X}R^{2+}$ (Fig. 9c), and positively correlate with ${}^{Y}R^{2+}$ (Fig. 10d). These observations 497

suggest participation of the "ferro-menzerite"-(Y) substitution in garnet from the Hlína granite.

499	Positive correlations of Y and ^{X}Ca and $^{Y}Fe^{3+}$ (Figs. 10e f) further demonstrated that incorporation
5 00	
500	of Y into the garnet structure is promoted by the andradite component. Menzerite (or "ferro-
501	menzerite") substitution operates in low-pressure magmatic spessartine-rich garnet (this study)
502	along with high-grade metamorphic rocks (Grew et al. 2010; Marsh et al. 2012).
503	
504	Garnet and further carriers of Y+REE in the rock
505	The whole-rock budget of Y+REE elements is principally controlled by accessory minerals and
506	their assemblage reflects the ASI and activity of P ₂ O ₅ , F and other volatiles (e.g. Bea 1996;
507	Dahlquist 2001; Trumbull et al. 2010). Nevertheless, mineral mass-balance calculations for
508	Y+REE are rather scarce (Ward et al. 1992; Bea et al. 1994; Bea 1996; Dahlquist 2001; Förster
509	and Rhede 2006; Trumbull et al. 2010). In peraluminous granites more than 90 wt% of the
510	whole-rock Y+REE budget reside in the Y+REE-bearing phosphates (monazite, apatite,
511	xenotime) and zircon. The presence of REE-bearing phosphates reflects high phosphorus
512	solubility in peraluminous melts (Ward et al. 1992; Bea et al. 1994; Bea 1996). In metaluminous
513	to weakly peraluminous I-type granites zircon, allanite, titanite with amphibole are the main
514	carriers of Y+REE (Bea 1996; Dahlquist 2001; Trumbull et al. 2010). The sporadic mineral
515	mass-balance calculations for A-type granites indicate that REE-carbonates, allanite, niobo-
516	tantalates and zircon are the main carriers of Y+REE together with minor titanite, xenotime and
517	monazite (Bea 1996).
518	Garnet in peraluminous S-type granites contains only low Y (45-700 pmm) and Σ REE
519	concentrations (40-600 ppm; du Bray 1988; Sevigny 1993; Bea 1996) and therefore hosts only

- 520 subordinate amounts of the whole-rock Y+HREE budget (Bea 1996). On the contrary, it seems
 - 23

521	that high Y (≤ 1.32 wt% Y- Harrison 1988; ≤ 1.89 wt% Y- Wang et al. 2003b; ≤ 1.54 wt% Y- this
522	study) and ΣREE contents ($\leq 0.50 \text{ wt\%}$ - du Bray 1988; $\leq 1.00 \text{ wt\%}$ - this study) are common in
523	magmatic garnet found in fractionated SiO ₂ -rich and P-poor A-type and I-type granites. Low
524	contents of P in the melt prevented precipitation of REE-bearing phosphates in the Hlína granite
525	and the Y+REE remained incompatible in the melt until the saturation in garnet was reached.
526	Garnet is a major carrier of Y and REE in the A-type Hlína granite and accounts for about 84 $\%$
527	of the Y and 61 % of the REE whole-rock budget (Fig. 8b, Table 5,6). Despite rather low ASI in
528	the A-type Hlína granites (Table 3), the allanite is absent and titanite is very rare. This is
529	consistent with its absence in the most siliceous granites elsewhere due to their low Ca contents
530	(Frost et al. 2000). The negligible contribution of epidote to the LREE whole rock budget in the
531	Hlína granite (Fig. 8b) is in contrast to observations from metaluminous granites and mafic
532	metamorphic rocks, where epidote-group minerals can host 50-95 % of LREE regardless of the
533	species (allanite, epidote, zoisite; Bea 1996; Spandler et al. 2003). Epidote in the Hlína granite
534	formed as a late mineral from REE-depleted melt. Spandler et al. (2003) confirmed that garnet
535	represents the dominant host for Y+HREE in metamorphosed pelitic and mafic rocks under
536	epidote blueschist to eclogite facies conditions as well. The REE pattern of zircon is relatively
537	flat, LREE-rich (Fig. 5a) when compared to typical REE patterns in zircon from granitic rocks
538	(cf. Hoskin and Schaltegger 2003). This unusual chemical composition makes zircon an
539	important carrier not only of Y and HREE (13 % Y and 11 % HREE of the whole-rock budget)
540	but also of LREE (11 % of the whole-rock budget; Fig. 8b). This LREE enrichment is probably a
541	result of interaction of amorphous and hydrated zircon-breakdown products with LREE-bearing
542	hydrothermal fluids.

543	Secondary REE-phases (Figs. 3g,h) represent alteration products after a primary REE-bearing
544	mineral enriched in U and Th, probably Th- and U-rich monazite or cheralite. This primary REE
545	mineral hosted 21 % of REE and 1 % of Y (assuming that REE remained immobile during
546	hydrothermal alteration), and represented important carrier of LREE (63 %) mainly from La to
547	Nd (Fig. 8b; Table 5,6). Trivalent cerium from primary phosphate was probably partly oxidized
548	to Ce ⁴⁺ during the phosphate alteration and the released REE were redistributed between Ce-
549	depleted rhabdophane-(Nd) accommodating REE^{3+} and a $Ce^{4+}+U$ -enriched phase (Fig. 5a).
550	Only a few attempts have been made to investigate the Y+REE contents of magnetite from
551	granites. Magnetite in the Hlína granite has similar Y+REE content and pattern (Fig. 5c) to the
552	magnetite from the Rostberget granite (Öhlander et al. 1989) excluding the presence of negative

554 zircon and muscovite suggesting that Ce^{3+} was partly oxidized to Ce^{4+} and behaved distinctly

Ce anomaly. The negative Ce anomaly in magnetite is accompanied by positive Ce anomaly in

555 from the other REE.

556

553

557 Processes controlling Y+REE variations in garnet

558 Bulk diffusivities for many trivalent trace elements (including Y+REE) in garnet are slower than

those for major divalent (Mg, Fe, Mn) cations or for other octahedrally or tetrahedrally cations

560 (Lyasevich et al. 1977; Yardley 1977; Loomis et al. 1985; Chakraborty and Ganguly 1992;

561 Cherniak 1998; Carlson 2006, 2012).

562 General outward decrease of Y and REE is a common feature of garnet from the A-type Hlína

563 granite (Figs. 4b,c,7), and it is common in garnet from some highly fractionated I-type granites

564 (Wang et al. 2003a) and granitic pegmatites (Smeds 1994; Whitworth and Freely 1994; Müller et

565 al. 2012) as well as from biotite granodiorites (Dorais and Tubrett 2012). In contrast, garnet from 566 peraluminous S-type granites shows increasing Y+REE contents from the core towards the rim or 567 zoning is absent (Sevigny 1993; Bea 1996). The Y+REE contents in garnet from the Hlína 568 granite correspond well with zoning patterns observed in the BSE images (Fig. 4c) and they seem 569 to be a sensitive indicator of magmatic garnet evolution even though the self-diffusion of the 570 major divalent cations (Mn, Fe) was sufficiently rapid to eliminate any original compositional 571 zoning. Rapid growth of the garnet from undercooled melt, indicated by the sector zoning in the 572 core (Fig. 3a,b; Shelley 1992), consumed a large part of Y+HREE from the residual melt. The 573 observed Y+REE oscillatory zoning in the Hlína garnet (Fig. 3a,b) could have been produced 574 during the alternating changes in the growth and diffusion rates near the crystal-melt interface, as 575 modelled by Allègre et al. (1981) or Tsune and Toramaru (2007). Garnet/melt partition 576 coefficients for REE generally increase with increasing atomic number (Irving and Frey 1978; 577 Fujimaki et al. 1984; Green et al. 2000). Hence, the HREE are preferentially incorporated into the 578 garnet structure, residual melt is continuously impoverished during the growth of garnet I and the 579 outer part of garnet I does not reach such high Y+REE contents and the REE pattern is flatter 580 relative to the core (Fig. 7a). The outward decreasing Yb_N/Nd_N ratio during crystallization of the 581 garnet I (Fig. 7a) indicates that growth of magmatic garnet is capable of fractionating REE in the 582 melt towards the HREE-poorer pattern as shown for high-grade metamorphic garnet as well 583 (Otamendi et al. 2002). Opposite compositional Y+REE trends in garnet from peraluminous S-584 type granites (core-rim increasing Yb_N/Nd_N ratios) reflect the growth and fractionation of 585 monazite, which depleted the liquid in LREE simultaneously with the garnet growth (Sevigny 586 1993).

587 The replacement textures observed at the outer rims of euhedral garnet (Fig. 3b,c) were 588 interpreted as products of magmatic corrosion. Higher Mn and Al, lower Ca, Y+REE content, as 589 well as higher Yb_N/Nd_N ratio and more pronounced negative Eu anomaly in the garnet II (Fig. 590 4b,7) indicate its crystallization from the more evolved melt (London 2008; Müller et al. 2012). 591 Garnet has the highest Yb_N/Nd_N ratio from the studied mineral assemblage (Fig. 5, Table 4). 592 Crystallization of other phases (with lower Yb_N/Nd_N ratio relative to garnet) during the time gap 593 between the crystallization of garnet I and garnet II increased the Yb_N/Nd_N ratio in the melt. 594 Crystallization of feldspars consuming Eu yielded more pronounced negative anomaly in the 595 more evolved melt. Consequently, garnet II shows lower ΣY +REE abundance, higher Yb_N/Nd_N 596 ratio and more negative Eu anomaly when compared to garnet I (Fig. 7). Alternatively, the lower 597 ΣY +REE and higher Yb_N/Nd_N ratio in garnet II can be attributed to the crystallization from the 598 melt relatively enriched in the volatile constituents (H₂O, B₂O₃, F) at lower temperature. Higher 599 B contents in garnet II (up to 250 ppm in garnet II and 25-67 ppm B in garnet I; Table 4) support 600 the progressive volatile enrichment. Distribution coefficients D_{Grt/melt} for Y+REE in garnet 601 decrease with increasing H₂O content in the melt (Green et al. 2000) and decreasing temperature 602 in the experiments, hence hydrous magma tends to increase fractionation of HREE from LREE 603 into garnet (steeper pattern) compared to anhydrous conditions (Green et al. 2000). According to 604 Wang et al. (2003a) and Müller et al. (2012), the formation of Y-poor garnet margins 605 overgrowing the Y-rich cores indicates crystallization from volatile-enriched residual melt. 606

607 **IMPLICATIONS**

We documented early magmatic garnet from A-type, metaluminous to weakly peraluminous
 granites. This garnet (<2 vol.%) is a major carrier of the Y and REE, and it incorporates 84 % Y

610	and 61 % REE of the whole-rock budget of these constituents. Detail mineral mass-balance of Y
611	and REE also revealed minor contributions of zircon and monazite. This is in contrast with the
612	majority of medium- to high-P granitic rocks where phosphates (e.g., monazite, xenotime) and
613	zircon are the major Y+REE carriers.
614	Our mass-balance calculations indiciate that a spherical layer model or a more sophisticated
615	computation for determination of the average content of major to trace elements in minerals with
616	pronounced core-rim zonation is required to obtain meaningful results. By contrast, conventional
617	arithmetic mean can provide significantly higher (in case of enriched core and depleted rim) or
618	lower (in case of depleted core and enriched rim) values.
619	Our observations indicate menzerite (and "fero-menzerite") substitution to be the main
620	incorporation mechanism of Y+REE into the Hlína garnet. It demonstrates that this substitution is
621	viable not only in higher-grade metamorphic rocks but also in low-pressure magmatic rocks.
622	Elucidation of the substitution vector introducing higher Y+REE content into the garnet is crucial
623	for proper mineral-formula calculation, including Fe^{2+}/Fe^{3+} ratio and determination of garnet
624	end-members proportions.
625	Participation of the menzerite molecule, as well as incorporation of Ca, Ti ⁴⁺ , along with high Fe ³⁺
626	content, all promote crystallization of garnet from metaluminous to weakly peraluminous melts.
627	Crystallization of the initially Ca-rich garnet effectively eliminated Ca from the residual melt,
628	which indirectly led to an increase in ASI. This magmatic garnet is an additional example of the
629	mineral typical for peraluminous granitic rocks stabilized in weakly metaluminous granitic rock
630	by elevated contents of Ca, Fe ³⁺ and Ti ⁴⁺ . By analogy, tourmaline (schorl-dravite), another
631	characteristic mineral of strongly peraluminous granites (London 2008), is stabilized by elevated
632	contents of Ca, Fe ³⁺ and Ti ⁴⁺ in metaluminous NYF pegmatites (Novák et al. 2011; Čopjaková et
633	al. 2013) and even in alkaline pegmatite (Filip et al. 2012).

63	4
----	---

636

ACKNOWLEDGEMENTS

The authors are very grateful to J. S. Lackey and D. Rubatto for constructive criticism that

637 significantly improved the manuscript and to D. London for careful handling of the manuscript. 638 Financial support of the specific research programme of the Masaryk University (Nr.1344) is greatly 639 acknowledged. MVG acknowledges the European Regional Development Fund project "CEITEC" -640 Central European Institute of Technology (CZ.1.05/1.1.00/02.0068). DD wishes to acknowledge 641 support by the Czech Science Foundation Project Nr. P210/12/0986. 642 643 REFERENCES 644 Allan, B.D., and Clarke D.B. (1981) Occurrence and origin of garnet in the South Mountain 645 batholith, Nova Scotia. Canadian Mineralogist, 19, 19-24.

- Allègre, C.J., Provost, A., and Jaupart, C. (1981) Oscillatory zoning: a pathological case of
 crystal growth. Nature, 294, 223-228.
- Anderson, J. L., Barth, A. P., Wooden, J.L., Mazdab, F. (2008) Thermometers and
 thermobarometers in granitic systems. Reviews in Mineralogy and Geochemistry, 69,
 121-142.
- Bea, F., Pereira, M.D., Corretge, L.G., Fershutcr, G.B. (1994) Differentiation of strongly
 peraluminous, perphosphorous granite. The Pedrobernardo pluton, central Spain.
 Geochimica et Cosmochimica Acta 58, 2609-2628.
- Bea, E. (1996) Residence of REE, Y, Th and U in Granites and Crustal Protholiths; Implications
 for the Chemistry of Crustal Melts. Journal of Petrology, 37, 521-552.

- 656 Bea, F., Montero, P., Garuti, G., and Zacharini, F. (1997) Pressure dependence of rare earth
- element distribution in amphibolite and granulite-grade garnets. A LA-ICP-MS study.
 Geostandards Newsletter, 21, 253-270.
- Bogoch, R., Bourne, J., Shirav, M., and Harnois, L. (1997) Petrochemistry of a Late Precambrian
 garnetiferous granite, pegmatite and aplite, southern Israel. Mineralogical Magazine, 61,
 111-122.
- Bonin, B. (2007) A-type granites and related rocks: Evolution of a concept, problems and
 prospects, Lithos, 97, 1–29.
- Borghi, A., Compagnoni, R., Cossio, R., Giuntini, L., Massi, M., Olmi, F., Santo, A.P., and
 Vaggelli, G. (2006) Yttrium geothermometry applied to garnets from different
 metamorphic grades analyzed by EPMA and m-PIXE techniques. Microchimica Acta,
 155, 105-112.
- du Bray, E.A. (1988) Garnet compositions and their use as indicators of peraluminous granitoid
 paragenesis southern Arabian Shield. Contributions to Mineralogy and Petrology, 100,
 205-212.
- Breiter, K., Čopjaková, R., and Škoda, R. (2009) The involvement of F, CO₂, and As in the
 alteration of Zr–Th–REE-bearing accessory minerals in the Hora Svaté Kateřiny A-type
 granite, Czech Republic. Canadian Mineralogist, 47, 6, 1375-1398.
- Buick, I.S., Hermann, J., Williams, I.S., Gibson, R.L., and Rubatto, D. (2006) A SHRIMP U-Pb
 and LA-ICPMS trace element study of the petrogenesis of garnet-cordieriteorthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa.
 Lithos, 88, 150-172.
- 678 Carlson, W.D. (2006) Rates of Fe, Mg, Mn, and Ca diffusion in garnet. American Mineralogist,
 679 91, 1-11.
 - 30

- 680 Carlson, W.D. (2012) Rates and mechanism of Y,REE, and Cr diffusion in garnet. American
- 681 Mineralogist, 97, 1598-1618.
- 682 Carmichael, I.S.E. (1991) The redox states of basic and silicic magmas: a reflection of their
 683 source regions? Contributions to Mineralogy and Petrology 106, 129-141.
- 684 Cherniak, D.J. (1998) Rare earth element and gallium diffusion in yttrium aluminum garnet.
 685 Physics and Chemistry of Minerals, 26, 156-163.
- Černý, P., and Hawthorne, F.C. (1982) Selected peraluminous minerals. In P. Černý, P.,Ed,
 Granitic Pegmatites in Science and Industry. Mineralogical Association of Canada, Short
 Course Hand-book, 8, 163-186.
- Chakraborty, S., and Ganguly, J. (1992) Cation diffusion in aluminosilicate garnets:
 Experimental determination in spessartine-almandine diffusion couples, evaluation of
 effective binary diffusion coefficients, and applications. Contributions to Mineralogy and
 Petrology, 111, 74-86.
- Čopjaková, R., Sulovský, P., and Paterson, B.A. (2005) Major and trace elements in pyrope–
 almandine garnets as sediment provenance indicators of the Lower Carboniferous Culm
 sediments, Drahany Uplands, Bohemian Massif. Lithos, 82, 51-70.
- Čopjaková, R., Novák, M., and Franců, E. (2011) Formation of authigenic monazite-(Ce) to
 monazite-(Nd) from Upper Carboniferous graywackes of the Drahany Upland: Roles of
 the chemical composition of host rock and burial temperature. Lithos, 127, 373-385.
- Čopjaková, R., Škoda, R., Vašinová Galiová, M., and Novák, M. (2013) Distributions of Y +
 REE and Sc in tourmaline and their implications for the melt evolution; examples from
 NYF pegmatites of the Třebíč Pluton, Moldanubian Zone, Czech Republic. Journal of
 Geosciences, 58, 113-131.
 - 31

- 703 Dahlquist, J.A. (2001) REE fractionation by accessory minerals in epidote-bearing mataluminous
- granitoids from the Sierras Pameanas, Argentina. Mineralogical Magazine, 65, 463-475.
- 705 Dahlquist, J., Galindo, C., Pankhurst, R., Rapela, C.W., Alasino, P.H., Saavedra, J., and Fanning,
- C.M. (2007) Magmatic evolution of the Penon Rosado granite: Petrogenesis of garnetbearing granitoids. Lithos, 95, 177-207.
- Deer, W.A., Howie, R.A., and Zussman, J. (1982) Rock-Forming Minerals, Vol. 1A
 Orthosilicates. Longman, New York. 919 pgs.
- 710 Diener, J.F.A., Powell, R., White, R.W., and Holland, T.J.B. (2007) A new thermodynamic
- 711 model for clino- and orthoamphiboles in the system Na₂O-CaO-FeO-MgO-Al₂O₃-SiO₂-
- 712 H_2O-O . Journal of Metamorphic Geology, 25, 631-656.
- Diener, J.F.A., White, R.W., and Powell, R. (2008): Granulite facies metamorphism and
 subsolidus fluid-absent reworking, Strangways Range, Arunta Block, central Australia.
 Journal of Metamorphic Geology, 26, 603-622.
- Dorais, M.J., and Tubrett, M. (2012) Detecting Peritectic Garnet in the Peraluminous Cardigan
 Pluton, New Hampshire. Journal of Petrology, 53, 299-324.
- 718 Dudykina, A.S. (1959) Paragenetic association of trace elements in garnets of different origin.
- 719 Trudy Instituta Geologii Rudnych Mestoroždenij, Petrografii Mineralogii i Geochimii, 28,
 720 90-110 (in Russian).
- Eby, G.N. (1990) The A-type granitoids: A review of their occurrence and chemical
 characteristics and speculations on their petrogenesis. Lithos, 26, 115-134.
- Enami, M., Cong, B., Yoshida, T., and Kawabe, I. (1995) A mechanism for Na incorporation in
 garnet. An example from garnet in orthogneiss from the Su-Lu Terrane, Eastern China.
 American Mineralogist, 80, 475-482.
 - 32

- Erdmann, S., Jamieson, R.A., and MacDonald, M. (2009) Evaluating the origin of garnet,
 cordierite, and biotite in granitic rocks: A case study from the South Mountain Batholith.
 Journal of Petrology, 50, 1477-1503.
- Journal of Feurology, 30, 1477-1303.
- Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J., and Manfred, W. (2012) Iron redox
- 730 reactions in the tourmaline structure: High-temperature treatment of Fe^{3+} -rich schorl. 731 Geochimica et Cosmochimica Acta, 86, 239-256.
- Finger, F., Hanžl, P., Pin, C., Quadt, A., and Steyrer, H.P. (2000) The Brunovistulicum:
 Avalonian Precambrian at the eastern end of the Variscides. In W. Franke, R. Altherr, W.
 Haak, O Oncken, and D Tanner, Eds., Orogenic Processes: Quantification and Modelling
 in the Variscan Belt of Central Europe, 179, p 103-112. Geological Society London
- 736 Special Publication, London, UK.
- Förster, H.J., and Rhede, D. (2006) The Be–Ta-rich granite of Seiffen (eastern
 Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of
 a late-Variscan Li–F granite of A-type affinity. Neues Jahrbuch für Mineralogie, 182,
 307-321.
- Frost, B.R., and Lindsley, D. H. (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and
 quartz: Part II. Application. American Mineralogist, 77, 1004-1020.
- Frost, C.D., Frost, B.R., Chamberlain, K.R., and Edwards, B. R. (1999) Petrogenesis of the 1.43
 Ga Sherman Batholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite.
- 745 Journal of Petrology, 40, 1771-1802.
- Frost, B.R., Chamberlain, K.R., and Schumacher, J.C. (2000) Sphene (titanite): phase relations
 and role as a geochronometer. Chemical Geology, 172, 131-148.

- Fujimaki, H., Tatsumoto, M., and Aoki, K.I. (1984) Partition coefficients of Hf, Zr, and REE
 between phenocrysts and groundmasses. Journal of Geophysical Research, 89,
 Supplement, B662-B672.
- Geisler, T., Rashwan, A. A., Rahn, M. K. W., Poller, U., Zwingmann, H., Pidgeon, R. T.,
 Schleicher, H., and Tomaschek, F. (2003) Low-temperature hydrothermal alteration of
 natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67,
 485-508.
- Geisler, T., Schaltegger, U., and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous
 fluids and melts. Elements, 3, 43-50.
- Green, T.H., Blundy, J.D., and Adam, J. (2000) SIMS determination of trace element partition
 coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and
 1080-1200°C. Lithos, 53, 165-187.
- 760Grew, E.S., Marsh, J.H., and Yates M.G. (2010) Menzerite-(Y), a new species,761 $\{(Y,REE)(Ca,Fe^{2+})_2\}[(Mg,Fe^{2+})(Fe^{3+},Al)](Si_3)O_{12}$, From a felsic granulite, Parry Sound,762Ontario, and a new garnet end-member, $\{Y_2Ca\}[Mg_2](Si_3)O_{12}$. Canadian Mineralogist, 48,7631171-1193.
- Harrison, T.N. (1988) Magmatic garnets in the Cairngorm granite, Scotland. Mineralogical
 Magazine, 52, 659-667.
- Hermann, J., and Rubatto, D. (2003) Relating zircon and monazite domains to garnet growth
 zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust.
 Journal of metamorphic Geology, 21, 833-852.
- Hickmott, D.D., and Shimizu, N. (1990) Trace element zoning in garnet from the Kwoiek Area,
 British Columbia: disequilibrium partitioning during garnet growth? Contribution to
 Mineralogy and Petrology, 104, 619-630.
 - 34

- Hogan, J.P. (1996) Insights from igneous reaction space: a holistic approach to granite
 crystallization. Transactions of the Royal Society of Edinburgh Earth Sciences, 87, 1,
 147-158.
- Holland, T., and Powell, R. (1991) A Compensated-Redlich-Kwong (CORK) equation for
 volumes and fugacities of CO₂ and H₂O in the range 1 bar to 50 kbar and 100-1600 °C.
 Contributions to Mineralogy and Petrology, 109, 265-273.
- Holland, T.J.B., and Powell, R. (1998) An internally consistent thermodynamic data set for
 phases of petrological interest. Journal of Metamorphic Geology, 16, 309-343.
- Holland, T., and Powell, R. (2003) Activity-composition relations for phases in petrological
 calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy
 and Petrology, 145, 492-501.
- Holten, T., Jamtveit, B., Meakin, P., Cortini, M., Blundy, J., and Austrheim, H. (1997) Statistical
 characteristics and origin of oscillatory zoning in crystals. American Mineralogist, 82,
 596-606.
- Hönig, S., Leichmann, J., and Novák, M. (2010) Unidirectional solidification textures and garnet
 layering in Y-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith,
 Czech Republic. Journal of Geosciences, 55, 113-129.
- Hönig, S., Leichmann, J., and Novosád, T. (2012) Garnet-bearing layered anorogenous granites
 and pegmatites of Hlína suite inside Brunovistulicum, structures and field occurrences.
 Geologické výzkumy Moravy a Slezska, 153-156 (in Czech).
- Hoskin, P.W.O., and Schaltegger, U. (2003) The Composition of Zircon and Igneous and
 Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62.
- Huang, R., Audétat, A. (2012) The titanium-in-quartz (TitaniQ) thermobarometer: A critical
 examination and re-calibration. Geochimica et Cosmochimica Acta, 84, 75-89.
 - 35

- 796 Irving, A.J., and Frey, F.A. (1978) Distribution of trace elements between garnet megacrysts and
- host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et
 Cosmochimica Acta, 42, 771-787.
- Jaffe, H.W. (1951) The role of yttrium and other minor elements in the garnet group. American
 Mineralogist, 36, 133-155.
- Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R., Nehyba, S., and Špaček, P. (2008)
- 802 Brunovistulian Terrane (Bohemian Massif, Central Europe) from late Proterozoic to late 803 Paleozoic: an overview. International Journal of Earth Sciences, 97, 497-518.
- Kohn, M.J. (2004) Oscillatory- and sector-zoned garnets record cyclic (?) rapid thrusting in
 central Nepal. Geochemistry, Geophysics, Geosystems, 5, 12, Q12014, 1-9.
- Kontak, D.J., and Corey, M. (1988) Metasomatic origin of spessartine-rich garnet in the South
 Mountain Batholith, Nova Scotia. Canadian Mineralogist, 26, 315-334.
- 808 Kotková, J., and Harley, S.L. (1999) Formation and evolution of high pressure leucogranulites:
- 809 experimental constraints and unresolved issues. Physics and Chemistry of the Earth, Part
- A: Solid Earth and Geodesy, 24, 299-304.
- 811 Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277-279."
- Lackey, J.S., Romero, G.A., Bouvier, A.-S., and Valley, J.W. (2012) Dynamic growth of garnet
 in granitic magmas. Geology, 40, 171-174.
- Lanzirotti, A. (1995) Yttrium zonning in metamorphic garnets. Geochimica et Cosmochimica
 Acta, 59, 4105-4110.
- Leichmann, J., and Höck, V. (2008) The Brno Batholith: an insight into the magmatic and metamorphic evolution of the Cadomian Brunovistulian Unit, eastern margin of the Bohemian Massif. Journal of Geosciences, 53, 218-305.
 - 36

- de Lima, S.E., Vannucci, R., Bottazzi, P., and Ottolini, L. (1995) Reconnaissance study of trace
- 820 element zonning in garnet from the Central Structural Domain, Northeastern Brazil: an
- 821 example of polymetamorphic growth. Journal of South American Earth Sciences, 8, 315-822 324.
- 823 London, D. (2008) Pegmatites. Canadian Mineralogist Special Publication, 10, 1-347.
- London, D. (2009) The origin of primary textures in granitic pegmatites. The Canadian
 Mineralogist, 47, 697-724.
- London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos,
 184-187, 74-104.
- Loomis, T.P., Ganguly, J., and Elphick, S.C. (1985) Experimental determination of cation
 diffusivities in aluminosilicate garnets. II. Multicomponent simulation and tracer diffusion
 coeficients. Contributions to Mineralogy and Petrology, 90, 45-51.
- 831 Lyasevich, A.S, Shimanovich, N.E., Kononyuk, I.F., and Kosmyma, M.B. (1977) Fe₅Y₃O₁₂,

832 FeYO₃: diffusion of Y. Diffusion and Defect Data, 17, 124.

- Macleod, G. (1992) Zoned manganiferous garnets of magmatic origin from the Southern Uplands
 of Scotland. Mineralogical Magazine, 56, 115-116.
- Malaspina, N., Poli, S., and Fumagalli, P. (2009) The oxidation state of metasomatized mantle
 wedge: insights from C-O-H-bearing garnet peridotite. Journal of Petrology, 50, 15331552.
- Manning, D.A. (1983) Chemical variation in garnets from aplites and pegmatites, peninsular
 Thailand. Mineralogical Magazine, 47, 353-358.
- 840 Marsh, J.H., Grew, E.S., Gerbi, Ch.C., Yates, M.G., and Culshaw, N.G. (2012) The petrogenesis
- 841 of the garnet menzerite-(Y) in granulite facies rocks of the Parry Sound Domain,
 842 Grenville Province, Ontario. Canadian Mineralogist, 50, 73-99.
 - 37

- Miller, C.F., and Stoddard, E.F. (1981) The role of manganese in the paragenesis of magmatic
 garnet: an example from the Old Woman-Puite range, California. Journal of Geology, 89,
 233-246.
- Müller, A., Kaersley, A., Spratt, J., and Seltmann, R. (2012) Petrogenetic implications of magmatic
 garnet in granitic pegmatites from southern Norway. Canadian Mineralogist, 50, 1095-1115.
- 848 Novák, M., Škoda, R., Filip, J., Macek, I., and Vaculovič, T. (2011) Compositional trends in
- tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic: an
 electron microprobe, Mössbauer and LA–ICP–MS study. Canadian Mineralogist, 49, 359380.
- Öhlander, B., Billström, K., and Hålenius, E. (1989) Geochemistry of the Proterozoic wolframitebearing greisen veins and the associated granite at Rostberget, northern Sweden.
 Chemical Geology, 78, 135-150.
- Otamendi, J.E., de la Rosa, J.D., Patino Douce, A.E., and Castro, A. (2002) Rayleigh
 fractionation of heavy rare earths and yttrium during metamorphic garnet growth.
 Geology, 30, 159-162.
- Pearce, J.A., Harris, N.B.W., and Tindle, A.G. (1984) Trace element discrimination diagrams for
 the tectonic interpretation of the granitic rocks. Journal of Petrology, 25, 956-983.
- Pyle, J.M., and Spear, F.S. (1999) Yttrium zoning in garnet: Coupling of major and accessory phases
 during metamorphic reactions. Geological Materials Research, 1, 1-49.
- Røhr, T.S., Austrheim, H., and Erambert, M. (2007) Stress-induced redistribution of yttrium and
 heavy rare-earth elements (HREE) in garnet during high-grade polymetamorphism.
 American mineralogist, 92, 1276-1287.
- Sevigny, J.H. (1993) Monazite controlled Sm/Nd fractionation in leucogranites: An Ion
 microprobe study of garnet phenocrysts. Geochimica Cosmochimica Acta, 57, 4095-4102.
 - 38

- Shannon, J.R., Walker, B.M., Carten, R.B., and Geraghty, E.P. (1982) Unidirectional
 solidification textures and their significance in determining relative ages of intrusions at
 the Henderson Mine, Colorado. Geology, 10, 293–297.
- 870 Sheibi, M., Esmaeily, D., Nedelec, A., Bouchez, J.L., and Kananian, A. (2010) Geochemistry and
- petrology of garnet-bearing S-type Shir–Kuh Granite, southwest Yazd, Central Iran.
 Island Arc, 19, 292-312.
- Shelley, D. (1992) Igneous and Metamorphic Rocks under the Microscope. Classification,
 Textures, Microstructures and Mineral Preferred Orientation, 211-244 p. Chapman and
 Hall, London, U.K.
- 876 Smeds, S.A. (1994) Zoning and fractionation trends of a peraluminous NYF granitic pegmatite
- field at Falun, south-central Sweden. GFF, 116, 3, 175-184.
- Spandler, C., Hermann, J., Arculus, R., and Mavrogenes, J. (2003) Redistribution of trace
 elements during prograde metamorphism from lawsonite blueschist to eclogite facies;
 implications for deep subduction-zone processes. Contributions to Mineralogy and
 Petrology, 146, 205-222.
- Spear, F.S., and Kohn, M.J. (1996) Trace element zoning in garnet as a monitor of crustal
 melting. Geology, 24, 1099-1102.
- Spry, P.G., Heimann, A., Messerly, J.D., and Houk, R.S. (2007) Discrimination of metamorphic
 and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia; Rare earth
 element signature of garnet-rich rocks. Economic Geology, 102, 471-496.
- Taylor, S.R., and McLennan, S.M. (1985) The continental crust: Its composition and evolution,
 321p. Blackwell Scientific Publications, Palo Alto, California, USA..
- Trumbull, R., Förster, H.J., and Rhede, D. (2010) REE-Y-Th-U-bearing accessory minerals and
 their contribution to the lanthanide and actinide trace-element budget in an anorogenic
 - 39

- granite from the Erongo Complex, NW Namibia. Zeitschrift für geologische
 Wissenschaften, 38, 145-165.
- Tsune, A., and Toramaru, A. (2007) A simple model of oscillatory zoning in magmatic
 plagioclase: Development of an isothermal undercooling model. American Mineralogist,
 92, 1071-1079.
- Vorma, A., Ojanperä, P., Hoffrén, V., Siivola, J., and Lofgren, A. (1966) On the rare earth
 minerals from the Pyörönmaa pegmatite in Kangasala, SW-Finland. Comptes Rendus de
 la Société Géologique de Finlande, 38, 241-274.
- Wakita, H., Shibao, K., and Nagashima, K. (1969) Yttrian spessartine from Suishoyama,
 Fukushima prefecture, Japan. American Mineralogist, 54, 1678-1683.
- Wang, R.C., Fontan, F., Chen X.M., Hu, H., Liu, C.S., Xu, S.J., and de Parseval, P. (2003a)
 Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: a
 record of magmatic and hydrothermal stages of evolution. Canadian Mineralogist,
 41, 727-748.
- Wang, R.C., Hu, H., Zhang, A., Xu, S., and Wang, D. (2003b) Yttrium zoning in garnet from the
 Xihuashan granitic complex and its petrologic implications. Chinese Science Bulletine,
 48, 1611-1615.
- Ward, C.D., McArthur, J.M., and Walsh, J.N. (1992) Rare earth element behaviour during
 evolution and alteration of the Dartmoor granite, SW England. Journal of Petrology, 33,
 785-815.
- Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and
 composition effects in a variety of crustal magma types. Earth and Planetary Science
 Letters, 64, 295-304.

- 914 Webber, K.L., Simmons, W.B., Falster, A.U., and Foord, E.E. (1999) Cooling rates and
- 915 crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County,
- 916 California. American Mineralogist, 84, 5, 708-717.
- Whalen, J.B., Currie, K.L., and Chappell, B.W. (1987) A-type granites: geochemical
 characteristics, discrimination and petrogenesis. Contributions to Mineralogy and
 Petrology, 95, 407-419.
- 920 White, R. W., Pomroy, N. E., and Powell, R. (2005) An in-situ metatexite-diatexite transition in
- 921 upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic922 Geology, 23, 579-602.
- White, R. W., Powell, R., and Holland, T. J. B. (2007) Progress relating to calculation of partial
 melting equilibria for metapelites. Journal of Metamorphic Geology, 25, 511-527.
- Whitworth, M.P., and Feely, M. (1994) The compositional range of magmatic Mn-garnets in Galway
 Granite, Connemara, Ireland. Mineralogical Magazine, 58, 163-168.
- Wones, D. R. (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks.
 American Mineralogist, 74, 744-749.
- 929 Wu, F.Y., Sun, D.Y., Jahn, B.M., and Wilde, S.A., (2004) A Jurassic garnet-bearing granitic
- pluton from NE China showing tetrad REE patterns. Journal of Asian Earth Sciences,23, 731-744.
- Yardley, B.W.D. (1977) An empirical study of diffusion in garnet. American Mineralogist, 62,
 793-800.
- Zhang, J., Ma, Ch., and She, Z. (2012) An Early Cretaceous garnet-bearing metaluminous A-type
 granite intrusion in the East Qinling Orogen, central China: Petrological, mineralogical
 and geochemical constraints. Geoscience Frontiers, 3, 635-646.
 - 41

937	Zhang, L., Zhong, Z., Zhang, H., Sun, W., and Xiang, H. (2009) The formation of foliated
938	(garnet-bearing) granites in the Tongbai-Dabie orogenic belt: partial melting of subducted
939	continental crust during exhumation. Journal of Metamorphic Geology, 27, 789-803.
940	

941 Figure captions

942 Fig. 1. Up left corner – Geological map of the Brunovistulicum, AF - Alpine Front, MSFZ – 943 Moravo-Silesian Fault Zone, HKFZ – Hamburg-Krakow Fault Zone, PPFZ – Peri-Pieninian Fault 944 Zone, TESZ – Transeuropean Suture Zone ; Center – simplified regional geological map of the 945 Brno and Thaya batholiths highlighting numerous of Hlína A-type granite bodies and dykes. 946 Down right corner – detail geological map of the Hlína A-type granite. Latters refer to the 947 individual localities: A. Moravské Bránice; B. U stavení; C. Pod amfiteatrem; D. Jihlava river 948 bank. The size of the Hlína bodies is slightly enlarged compared to its real volume to better 949 display. Projection – JSTK Krovak.

950

Fig. 2. Photographs of the Hlína rocks: a) Contact of laminated Hlína microgranite with hosted Réna I-type granite bordered by marginal UST zone. b) Garnet-bearing Hlína microgranite with sharp contacts to the hosted I-type Réna granite. c) Garnet trains parallel to the lamination of the Hlína laminated microgranite body. d) Detail of microgranite with garnet trains alternating with unidirectional Pl, Qtz and Kfs crystals (UST).

956

957 Fig. 3. BSE images of minerals; a) euhedral garnet I with sector zoning in central part and

958 oscillatory zoning in outer part; b,c) euhedral garnet with sector and oscillatory zoning; garnet I

959 (brighter) is partially replaced and overgrown by garnet II (darker); d) glomerophyric garnet 960 enclosing K-feldspar, quartz and plagioclase; e) "altered" zircon with small relics of relatively 961 "fresh" zircon; f) euhedral garnet after LA-ICP-MS measurment with marked spherical layers 962 used for calculation of average Y+REE content. The garnet crystals are considered as spheres that 963 are divided in to *n*-1 concentric spherical layers and the central sphere. The *n* vary from 4 to 7 964 and depends on the number of LA-ICP-MS analyses in the individual garnet crystal. The amounts 965 of Y+REE in specific spherical layers and for the central sphere were calculated as a function of 966 the volume and the Y+REE content; g) aggregate of secondary REE-bearing phases; needle-like 967 rhabdophane-(Nd) (Ph I = phase I) predominates over U-rich secondary phase (Ph II = phase II) 968 and clay minerals after unknown primary REE-bearing mineral; h) aggregate of secondary REE-969 bearing phases; U-rich secondary phase (Ph II) predominates over needle-like rhabdophane-(Nd) 970 (Ph I) and clay minerals respecting boundary of radiation damage halo around primary accessory 971 mineral. Primary accessory mineral is almost exclusively replaced by clay minerals.

972

Fig. 4. Electron microprobe results of garnet. a) Ternary plots of garnet; upper: almandinespessartine-Ca-garnet (Ca-garnet=andradite+grossular+menzerite-(Y)); lower: grossularandradite-menzerite-(Y). b) The profiles through euhedral garnet I replaced by garnet II. The upper plot shows variation of major and minor elements, the lower plot shows variation in the end-members. c) Correlation between zonation in BSE image and Y content in the garnet; upper: garnet I - not corroded rim; lower: garnet I partially replaced by garnet II.

979

980 Fig. 5. The REE patterns of individual minerals based on EMP data (a) and LA-ICP-MS data (b-

981 e) and the A-type Hlína granite (f). The REE data are normalized by chondrite (Taylor and

McLennan 1985). a) Zircon, rhabdophane-(Nd), U-rich phase, b) euhedral garnet, c) magnetite,
43

8/29

d) muscovite and epidote, e) plagioclase and K-feldspar. Arithmetic mean for Y+REE contents or
 compositional range for individual minerals are ploted depending on the REE data heterogeneity.

985

- 986 Fig. 6. Intrusive setting of the Hlína A-type granite shown in various tectonic discrimination plots
- 987 after Pearce et al. (1984), Whalen et al. (1987) and Eby (1990); a) (Y+Nb) vs. Rb plot; b) Y vs.
- 988 Nb plot; c) (10000*Ga/Al) vs. Zr plot; d) ternary 3*Ga-Nb-Y diagram. Abbreviations: WPG -
- 989 Within Plate Granites; ORG Ocean Ridge Granites, VAG Volcanic Arc Granites, syn-COLG -
- 990 Syn Collisional Granites; A1 A-type granite field associated with hotspots, mantle plumes
- and/or continental rift zones; A2 A-type granite field with post-collision, post-orogenic andanorogenic affinity.

993

Fig. 7. The 2D plots for Y+REE in garnet with simplified garnet crystallization scheme; Yb_N/Sm_N ratio vs. Y+REE content for a) all garnet analysis and b) average values for garnet grains; Yb_N/Sm_N ratio vs. Eu/Eu* for c) all garnet analysis and d) average values for garnet grains. The dotted lines in b) and d) join average values of garnet I and garnet II within each garnet grain.

999

Fig. 8. a) The chondrite normalized REE+Y pattern of the whole rock (WR - blue symbols; average of the MB1-1, MB1-52 and MB1-55 samples) and patterns calculated according to models A and B. Dashed red line and open symbols - model A - calculated from primary mineral mass fractions and their average Y+REE content (Grt, Zrn, Ms, Mag, Qtz, Pl, Kfs and Ep; used abbreviations after Kretz 1983). Solid red symbols and line - model B – including REE-bearing secondary phases in addition to the primary minerals involved in the model A.

b) Contribution of the rock-forming minerals (Grt, Zrn, Ms, Mag, Qtz, Pl, Kfs, Ep and secondary
REE-bearing phases) to the budget of individual REE+Y. The height of the bar is normalized to
100 % (scale on the left side Y axis). For the comparison, chondrite normalized REE+Y content
is drawn as the gray underlying field (scale on the right side Y axis).

1010

Fig. 9. The temperature-log oxygen fugacity diagram at P = 1 kbar and H₂O saturation 1011 1012 illustrating the location of common fO_2 buffers as well as equilibria relevant to the garnet- and magnetite-bearing granites in the present study. The zircon saturation temperature $(734 \pm 14 \text{ }^{\circ}\text{C})$ 1013 1014 constrains the maximum temperature limit for closed-system crystallization. At these conditions, 1015 composition of garnet I and the absence of fayalite restrict the plaussible redox conditions up to 1016 1.2 log units above the QFM buffer. Intercepts of multiple equilibria between magnetite, garnet, 1017 quartz and plagioclase at 657-663 °C (for garnet I rim and garnet II overwgrowths) are interpreted 1018 as being close to the final solidification temperature. The course of the skiagite-magnetite-quartz 1019 equilibrium is nearly parallel to the QFM buffer, therefore, the crystallization could have commenced metastably below ~730 °C and/or isothermally near 660 °C. Mineral and end-1020 1021 member abbreviations: an - anorthite, and - and radite, ant - anthophyllite, fa - fayalite, gr -1022 grossular, hm – hematite, mt – magnetite, q – quartz, ski – skiagite.

1023

Fig. 10. Binary plots showing major substitution trends involving Y in euhedral garnet. Full
circles - garnet I, open circles - garnet II.

1026

1027 Table caption

Table 1. Electron microprobe analysis of the euhedral and glomerophyric garnet and calculationof proportional end-members content (in mol. %).

8/29

1	0	3	0

1031 Table 2. Electron microprobe analysis of fresh and altered zircon (Zrn) and rhabdophane-(Nd) 1032 (Rhb). Mineral formulae of both phases were calculated using normalization on 4 anions. 1033 Table 3. Whole rock analyses of the A-type Hlína granite. 1034 1035 1036 Table 4. Trace element analyses (LA-ICP-MS data) of rock forming minerals from the Hlína 1037 granite: Grt I-primary garnet, Grt II-secondary garnet, (c-core, r-rim), Ms-muscovite, Mag-1038 magnetite, Pl-plagioclase, Kfs-K-feldspar, Qtz-quartz (average of 15 analyses), Ep-epidote 1039 (average of 7 analyses) All data are in wt. ppm. na-not analysed. 1040 1041 Table 5. Mineral fractions in the Hlína granite calculated expressed in vol. % and proportional 1042 fraction of Y, ΣREE , $\Sigma LREE$ and $\Sigma HREE$ in individual minerals. 1043 Table 6. Average Y+REE content calculated from MB1-1, MB1-52 and MB1-55 samples and 1044 1045 calculated proportional Y and REE content of individual minerals. LREE phs-secondary LREE-1046 bearing phases, other abbreviations are the same as in table 4. 1047 1048

	euhedral garnet					glomerophyric garnet			
	Grt I	Grt I	Grt I	Grt I	Grt I	Grt II	Grt II	Grt I	Grt I
	core	core	core	rim	rim			core	rim
SiO ₂	35.73	35.99	35.81	36.43	36.35	36.76	36.52	36.17	36.94
TiO ₂	0.40	0.43	0.44	0.20	0.20	0.04	0.04	0.52	0.30
AI_2O_3	16.78	16.93	16.96	18.25	18.45	20.22	19.85	16.70	18.40
Fe_2O_3	3.40	2.70	3.40	1.81	1.62	0.00	1.42	3.87	2.99
Y_2O_3	1.83	1.66	1.67	0.91	0.95	0.34	0.36	1.59	0.54
Er_2O_3	0.22	0.24	0.23	0.17	0.10	0.08	0.06	0.45	0.08
Yb ₂ O ₃	0.50	0.51	0.51	0.22	0.22	0.13	0.13	0.30	0.04
MgO	0.38	0.34	0.37	0.36	0.41	0.35	0.36	0.38	0.33
CaO	7.64	7.33	7.40	6.02	5.69	4.04	4.25	8.05	6.64
FeO	13.40	13.80	13.17	16.31	16.58	18.64	17.28	13.17	15.34
MnO	18.65	18.87	18.92	18.38	18.35	18.88	19.85	18.90	19.48
Na ₂ O	0.07	0.11	0.16	0.10	0.10	0.05	0.05	0.09	0.06
Σ oxides	99.00	98.91	99.04	99.16	99.01	99.53	100.17	100.19	101.14
1+									
Si	2.995	3.015	2.996	3.022	3.017	3.018	2.990	2.995	3.001
Ti ⁴⁺	0.025	0.027	0.028	0.012	0.012	0.002	0.002	0.032	0.018
Al ³⁺	1.657	1.671	1.672	1.784	1.805	1.956	1.915	1.630	1.762
Fe ³⁺	0.214	0.170	0.214	0.113	0.101	0.000	0.088	0.241	0.183
Y ³⁺	0.082	0.074	0.074	0.040	0.042	0.015	0.016	0.070	0.023
Er ³⁺	0.006	0.006	0.006	0.004	0.003	0.002	0.002	0.011	0.002
Yb ³⁺	0.013	0.013	0.013	0.006	0.006	0.003	0.003	0.008	0.001
Mg ²⁺	0.047	0.042	0.046	0.045	0.051	0.043	0.044	0.047	0.040
Ca ²⁺	0.686	0.658	0.663	0.535	0.506	0.355	0.373	0.714	0.578
Fe ²⁺	0.940	0.967	0.921	1.131	1.151	1.280	1.183	0.912	1.042
Mn ²⁺	1.324	1.339	1.341	1.291	1.290	1.313	1.376	1.325	1.340
Na⁺	0.011	0.018	0.026	0.016	0.016	0.008	0.008	0.014	0.009
Σ cations	8.000	8.000	8.000	7.999	8.000	7.995	8.000	8.000	8.000
0	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000	12.000

pyrope	0.0	0.0	0.0	0.4	0.5	1.0	1.0	0.0	0.8
spessartine	44.1	44.6	44.7	43.0	43.0	43.8	45.9	44.2	44.7
Na-Y garnet	0.7	1.2	1.7	1.1	1.1	0.5	0.5	0.9	0.6
morimotoite	2.5	2.7	2.8	1.2	1.2	0.2	0.2	3.2	1.8
menzerite	4.5	3.8	3.4	1.7	1.8	0.6	0.7	3.8	0.9
almandine	29.1	30.2	29.1	37.3	38.0	42.6	39.4	28.4	34.1
andradite	10.7	8.5	10.7	5.7	5.1	0.0	4.4	12.1	9.2
grossular	8.2	9.5	7.5	10.4	10.0	11.4	7.6	7.3	8.0

	"fresh"	"altered"				"fresh"	"altered"		
	Zrn	Zrn	Rhb	Rhb		Zrn	Zrn	Rhb	Rhb
SO ₃	0.02	0.18	0.29	0.00	S ⁶⁺	0.001	0.005	0.009	0.000
P_2O_5	bdl	6.77	20.76	19.49	P ⁵⁺	0.000	0.208	0.703	0.695
Nb_2O_5	bdl	1.00	bdl	bdl	Si ⁴⁺	0.951	0.678	0.307	0.294
SiO ₂	28.53	18.71	7.68	6.98	subtotal	0.952	0.891	1.019	0.989
TiO ₂	na	na	bdl	0.05	Nb ⁵⁺	0.000	0.016	0.000	0.000
ZrO ₂	57.54	41.04	1.48	0.39	Ti ⁴⁺	na	na	0.000	0.001
HfO ₂	7.82	1.77	bdl	bdl	Zr ⁴⁺	0.935	0.725	0.029	0.008
ThO ₂	0.30	1.28	7.53	24.49	Hf^{4+}	0.074	0.018	0.000	0.000
UO ₂	1.53	0.63	0.25	0.96	Th ⁴⁺	0.002	0.011	0.069	0.235
AIO ₃	0.08	3.76	na	na	U ⁴⁺	0.011	0.005	0.002	0.009
Sc_2O_3	0.02	0.07	na	na	Al ³⁺	0.003	0.161	na	na
As_2O_3	0.12	0.08	bdl	bdl	Sc ³⁺	0.001	0.002	na	na
Y_2O_3	0.62	5.88	3.36	5.44	As ³⁺	0.002	0.002	0.000	0.000
La_2O_3	bdl	0.04	6.86	4.88	Y ³⁺	0.011	0.113	0.071	0.122
Ce_2O_3	bdl	0.28	11.18	1.97	La ³⁺	0.000	0.001	0.101	0.076
Pr_2O_3	bdl	0.05	3.04	1.69	Ce ³⁺	0.000	0.004	0.164	0.030
Nd_2O_3	bdl	0.21	12.93	8.24	Pr ³⁺	0.000	0.001	0.044	0.026
Sm_2O_3	0.01	0.23	5.04	3.12	Nd ³⁺	0.000	0.003	0.185	0.124
Eu_2O_3	bdl	bdl	bdl	bdl	Sm ³⁺	0.000	0.003	0.069	0.045
Gd_2O_3	0.02	0.52	3.67	2.98	Eu ³⁺	0.000	0.000	0.000	0.000
Tb_2O_3	bdl	0.09	na	na	Gd ³⁺	0.000	0.006	0.049	0.042
Dy_2O_3	0.04	0.92	1.22	1.27	Tb ³⁺	0.000	0.001	na	na
Ho_2O_3	0.02	0.17	na	na	Dy ³⁺	0.000	0.011	0.016	0.017
Er_2O_3	0.11	0.54	0.33	0.32	Ho ³⁺	0.000	0.002	na	na
Yb_2O_3	0.17	0.61	na	na	Er ³⁺	0.001	0.006	0.004	0.004
Lu_2O_3	0.35	0.24	na	na	Yb ³⁺	0.002	0.007	na	na
CaO	0.09	0.30	5.54	7.62	Lu ³⁺	0.004	0.003	na	na
SrO	na	na	0.33	0.25	Ca ²⁺	0.003	0.012	0.237	0.344
FeO	0.33	1.08	2.06	1.92	Sr ²⁺	na	na	0.008	0.006

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PbO	0.11	0.13	0.49	0.56	Fe ²⁺	0.009	0.033	0.069	0.067
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na ₂ O	na	na	0.21	0.08	Pb ²	0.001	0.001	0.005	0.006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F	bdl	0.37	0.31	0.18	Na⁺	na	na	0.017	0.007
$ \sum \text{ oxides } 97.83 86.79 94.41 92.77 \qquad \sum \text{ cations } 2.013 2.035 2.158 2.158 \\ F^{-} \qquad 0.000 0.042 0.039 0.024 \\ O^{2-} \qquad 4.000 3.958 3.961 3.976 \\ \sum \text{ anions } 4.000 4.000 4.000 4.000 \ \end{array} $	O=F		-0.16	-0.12	-0.08	subtotal	1.059	1.147	1.139	1.169
F^- 0.0000.0420.0390.024 O^{2-} 4.0003.9583.9613.976 Σ anions4.0004.0004.0004.000	∑ oxides	97.83	86.79	94.41	92.77	∑ cations	2.013	2.035	2.158	2.158
O ²⁻ 4.000 3.958 3.961 3.976 ∑ anions 4.000 4.000 4.000 4.000						F	0.000	0.042	0.039	0.024
∑ anions 4.000 4.000 4.000 4.000						O ²⁻	4.000	3.958	3.961	3.976
						∑ anions	4.000	4.000	4.000	4.000

Locality	А	A	А	В	В	С	D
Sample	MB1-1	MB1-52	MB1-55	J/21b	J/21c	J Re	J Iv
SiO ₂	75.72	74.90	74.61	75.79	75.86	74.92	75.46
TiO ₂	0.03	0.03	0.03	0.03	0.04	0.04	0.04
Al_2O_3	13.60	14.90	13.83	13.64	16.60	13.48	13.27
Fe ₂ O ₃ ^{tot}	0.62	0.71	0.93	0.90	0.71	0.79	0.84
MnO	0.12	0.13	0.32	0.10	0.09	0.04	0.90
MgO	0.02	0.02	0.03	0.03	0.03	0.03	0.02
CaO	0.94	1.11	1.10	0.96	1.20	1.16	0.61
Na ₂ O	4.30	4.21	3.82	3.85	3.85	3.93	4.18
K ₂ O	4.69	4.61	4.94	4.21	4.29	4.15	4.11
P_2O_5	0.02	0.04	0.05	0.02	0.01	0.01	0.01
LOI	0.4	0.3	0.5	0.3	0.3	0.7	0.5
\sum oxides	100.25	100.22	100.27	99.71	99.8	99.25	99.13
Ba	17	4	31	18	14	17	46
Cs	3.9	3.1	2.9	na	na	na	na
Hf	4.5	6.3	6.8	na	na	na	na
Rb	182	180	170	174	156	174	311
Sr	13	13	22	22	21	30	16
Та	4	2	2.1	na	na	na	na
Zr	66	101	107	79	74	76	72
Y	45	64	116	56	47	23	14
Ga	18	19	18	24	21	20	19
U	7	6	8	12	17	7	16
Th	13	15	18	12	17	7	16
Nb	28	11	13	51	46	19	23
La	2.30	2.30	3.00	2.00	3.00	3.50	1.90
Ce	5.70	5.90	8.50	5.00	6.10	6.70	5.20
Pr	0.75	0.92	1.25	0.87	1.16	1.25	0.53
Nd	3.40	4.90	5.90	4.30	5.00	5.10	2.40
Sm	1.85	2.15	2.93	2.20	2.80	2.30	1.40
Eu	0.14	0.17	0.18	0.21	0.19	0.27	0.10
Gd	2.91	3.58	5.62	3.44	3.26	2.34	2.97
Tb	0.76	0.94	1.66	0.74	0.71	0.44	0.79
Dy	5.79	7.56	12.97	6.51	5.53	2.94	6.48
Ho	1.35	1.90	3.14	1.64	1.45	0.81	1.80
Er	4.91	7.34	11.32	6.30	5.80	2.58	6.26

Tm	1.20	1.47	2.24	1.23	1.20	0.46	1.90
Yb	7.30	10.40	15.90	9.18	7.80	4.43	10.30
Lu	1.25	1.95	2.75	1.75	1.44	0.76	1.74
ASI	0.98	1.07	1.01	1.08	1.03	1.03	1.07
K/Rb	214	212	241	201	228	198	110
K/Ba	2304	1034	1327	1941	2544	2026	742
mg#	5	5	5	6	7	6	4
La _N /Yb _N	0.21	0.15	0.13	0.15	0.29	0.53	0.13
Eu/Eu*	0.18	0.19	0.14	0.23	0.19	0.36	0.15

	garnet	garnet	garnet	garnet	garnet	garnet	garnet	garnet	garnet	garnet	garnet
	grain 8	grain 8	grain 5	grain 5	grain 5	grain 10	grain 10	grain 10	grain 9	grain 9	grain 9
	Grt I-c	Grt I-r	Grt I-c	Grt I-r	Grt II	Grt I-c	Grt I-r	Grt II	Grt I-c	Grt I-r	Grt II
В	bdl	67	na	na	na	66	25	93	47	bdl	250
Ti	2513	1165	na	na	na	1625	1106	151	1690	809	198
Zr	25.7	4.8	22.7	4.9	8.5	4.6	2.7	0.5	4.9	3.4	0.6
Nb	6.7	0.7	na	na	na	2.0	0.8	bdl	2.8	1.0	0.1
Та	1.9	1.0	na	na	na	0.5	0.4	bdl	1.1	0.5	0.1
Nb/Ta	3.55	0.72				3.64	1.91		2.65	2.19	0.84
Y	15534	3756	14447	6780	3151	10090	5951	2973	11069	9438	4704
La	0.08	0.02	0.02	0.03	0.01	0.01	bdl	bdl	bdl	bdl	0.01
Ce	0.31	0.08	0.24	0.48	0.10	0.08	0.04	0.01	0.05	bdl	bdl
Pr	0.18	0.06	0.05	0.12	0.03	0.07	0.05	0.00	0.06	0.04	0.01
Nd	3.67	1.55	3.27	2.71	0.65	2.66	1.89	0.24	2.98	2.17	0.43
Sm	35.06	17.94	23.22	26.93	4.74	26.12	18.67	3.09	28.67	23.02	5.62
Eu	1.48	0.64	0.88	0.84	0.09	1.09	0.58	0.06	1.24	0.88	0.20
Gd	305.4	153.8	191.2	197.9	43.2	228.2	176.5	47.0	276.4	222.5	63.4
Tb	131.7	57.7	89.2	76.0	21.0	106.4	72.5	23.2	123.7	98.5	30.7
Dy	1738	532	1134	683	250	1125	673	302	1481	1084	378
Ho	548	112	391	157	93	327	168	120	488	372	160
Er	2043	291	1636	444	440	1101	532	578	1927	1345	685
Tm	399	72	366	72	103	205	107	141	406	268	183
Yb	4157	720	3288	528	1058	1808	943	1388	3526	2466	1811
Lu	629	91	613	78	211	271	145	260	566	391	346
ΣREE	9992	2049	7735	2267	2224	5202	2838	2863	8829	6273	3663
Yb _N /Sm _N	105	36	126	17	198	61	45	398	109	95	285
Eu/Eu*	0.044	0.038	0.041	0.035	0.020	0.044	0.031	0.016	0.043	0.038	0.032
	Ms	Ms		Mag	Mag	PI	PI	Kfs	Kfs	Qtz avg	Ep avg
В	7343	2829	Mn	6413	1153						
Ti	754	1190	Ti	19209	3690						
Zr	17.2	49.5	Zr	373	477	0.81	1.51	0.78	0.52		
Y	4.07	38.41	Y	58.7	73.5	1.14	0.40	0.12	1.08	1.72	10.25
La	2.03	7.71	La	17.5	13.1	0.56	0.40	0.06	0.15	0.32	13.07
Ce	11.77	24.76	Ce	23.6	19.5	0.54	0.84	0.08	0.31	0.73	10.01
Pr	0.34	1.47	Pr	4.3	3.8	0.11	0.12	0.04	0.03	0.13	1.82
Nd	1.19	6.01	Nd	18.9	16.9	0.30	0.34	bdl	0.15	0.87	5.80
Sm	0.30	2.22	Sm	8.7	8.9	0.10	0.05	bdl	0.08	0.22	1.80
Eu	0.12	0.41	Eu	0.34	0.38	0.23	0.32	0.23	0.22	0.01	0.00

Gd	1.41	2.53	Gd	9.7	12.3	0.13	0.16	0.21	0.12	0.17	na
Tb	0.32	0.76	Tb	1.75	2.45	0.04	0.02	0.03	0.12	0.05	na
Dy	1.57	4.14	Dy	11.5	16.4	0.15	0.11	bdl	0.18	0.09	na
Ho	0.33	0.79	Ho	2.35	3.32	0.02	bdl	bdl	0.09	0.26	na
Er	1.16	2.25	Er	6.15	9.67	0.02	0.05	0.05	0.11	0.25	na
Tm	0.19	0.33	Tm	0.85	1.38	bdl	bdl	bdl	bdl	0.12	na
Yb	1.15	2.67	Yb	5.95	10.47	0.03	bdl	bdl	0.11	0.13	na
Lu	0.21	0.56	Lu	0.91	1.79	bdl	bdl	bdl	bdl	0.18	na
ΣREE	22	57	ΣREE	112	120	3.29	2.82	0.81	2.48	5.26	42.75
La _N /Yb _N	1.14	1.87	La _N /Yb _N	1.90	0.81						
Eu/Eu*	0.56	0.53	Eu/Eu*	0.11	0.11	6.6	10.5		6.9		
Ce/Ce*	3.14	1.64	Ce/Ce*	0.61	0.62						

	mineral fraction in	proportiona	I fraction in	individual min	erals
	the WR [%]	Y [%]	REE [%]	La-Gd [%]	Tb-Lu [%]
Garnet	0.9	83.6	61.0	8.8	85.8
Zircon	0.026	12.5	10.7	10.8	10.6
Muscovite	3.8	0.8	1.6	3.8	0.5
Magnetite	0.9	0.7	1.7	3.5	0.8
Plagioclase	36.7	0.3	1.8	4.9	0.4
K-feldspar	26.8	0.1	0.5	1.2	0.1
Quartz	30.8	0.8	1.8	3.9	0.8
Epidote	0.120	0.0	0.1	0.3	n.d.
LREE phs	0.003	1.1	20.9	62.8	1.0

LREE phs = secondary REE-bearing phases

	average Y+REE in		propo	ortional fra	ction of Y	and REE	of individua	al minerals	s [%]		
	the WR [ppm]	Grt	Zrn	Ms	Mag	PI	Kfs	Qtz	Ep	LREE phs	Total
La	7.45	0.0	2.9	4.4	5.7	8.1	1.2	4.4	0.9	72.4	100.0
Ce	7.36	0.0	7.0	6.5	2.7	4.4	0.8	3.4	0.2	75.0	100.0
Pr	8.04	0.1	4.3	2.9	3.8	4.1	0.9	4.4	0.3	79.2	100.0
Nd	7.40	0.4	7.4	2.3	3.7	4.8	1.0	6.5	0.2	73.8	100.0
Sm	11.85	8.1	18.3	1.9	3.8	3.1	1.2	3.4	0.1	60.1	100.0
Eu	2.24	3.8	0.0	3.1	2.1	53.4	35.3	2.3	0.0	0.0	100.0
Gd	15.53	42.7	23.6	1.3	2.9	2.4	0.6	1.5	0.0	25.0	100.0
Tb	23.83	73.6	19.2	1.3	2.1	1.5	0.8	1.6	0.0	0.0	100.0
Dy	29.24	79.2	14.2	0.8	1.4	0.8	0.1	0.3	0.0	3.3	100.0
Но	27.31	82.8	11.9	0.5	0.9	0.5	0.3	3.1	0.0	0.0	100.0
Er	39.28	85.8	10.9	0.5	0.7	0.2	0.1	0.9	0.0	0.9	100.0
Tm	49.27	87.2	9.5	0.4	0.6	0.2	0.1	2.0	0.0	0.0	100.0
Yb	50.94	90.6	8.0	0.3	0.6	0.2	0.0	0.3	0.0	0.0	100.0
Lu	59.31	87.8	9.1	0.3	0.5	0.1	0.0	2.2	0.0	0.0	100.0
Y	44.27	83.6	12.5	0.8	0.7	0.3	0.1	0.8	0.0	1.1	100.0

LREE phs = secondary REE-bearing phases

