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ABSTRACT

Steinhardtite is a new mineral from the Khatyrka meteorite; it is a new allotropic form of
aluminum. It occurs as rare crystals up to ~10 pum across in meteoritic fragments that contain
evidence of a heterogeneous distribution of pressures and temperatures during impact shock, in
which some portions of the meteorite reached at least 5 GPa and 1200 °C. The meteorite fragments
contain the high-pressure phases ahrensite, coesite, stishovite, and an unnamed spinelloid with
composition Fes..Si,O4 (x = 0.4). Other minerals include trevorite, Ni-Al-Mg-Fe spinels, magnetite,
diopside, forsterite, clinoenstatite, nepheline, pentlandite, Cu-bearing ftroilite, icosahedrite,
khatyrkite, cupalite, taenite and Al-bearing taenite. Given the exceedingly small size of
steinhardtite, it was not possible to determine most of the physical properties for the mineral.

A mean of 9 electron microprobe analyses (obtained from two different fragments) gave the
formula Alp3sNig32Fep 0, on the basis of 1 atom. A combined TEM and single-crystal X-ray
diffraction study revealed steinhardtite to be cubic, space group Im3m, witha = 3.0214(8) A,and V
=27.58(2) A’, Z = 2. In the crystal structure [R; = 0.0254], the three elements are disordered at the
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origin of the unit cell in a body-centered-cubic packing (a-Fe structure type). The five strongest
powder-diffraction lines [d in A (//Iy) (hkD)] are: 2.1355 (100) (110); 1.5100 (15) (200); 1.2329 (25)
(211); 0.9550 (10) (310); 0.8071 (30) (321).

The new mineral has been approved by the IMA-NMNC Commission (2014-036) and named
in honor of Paul J. Steinhardt, Professor at the Department of Physics of Princeton University, for
his extraordinary and enthusiastic dedication to the study of the mineralogy of the Khatyrka
meteorite, a unique CV3 carbonaceous chondrite containing the first natural quasicrystalline phase
icosahedrite.

The recovery of the polymorph of Al described here that contains essential amounts of Ni and
Fe suggests that Al could be a contributing candidate for the anomalously low density of the Earth’s

presumed Fe-Ni core.
Keywords: aluminum, chemical composition, TEM, X-ray diffraction, new mineral, steinhardtite.

INTRODUCTION

In the course of a detailed investigation of fragments belonging to the Khatyrka meteorite
(Steinhardt and Bindi 2012; MacPherson et al. 2013; Bindi and Steinhardt 2014), we found a
metallic AINiFe mineral (Hollister et al. 2014) which turned out to have the characteristics of a new
mineral species.

Here we report the structural and chemical study leading to the description of this new
mineral, which was named steinhardtite after Paul J. Steinhardt, Professor at the Department of
Physics of Princeton University and Director of the Princeton Center for Theoretical Science, for
his extraordinary and enthusiastic dedication to the study of the mineralogy of the Khatyrka
meteorite, a unique CV3 carbonaceous chondrite hosting the first natural quasicrystal icosahedrite
(Bindi et al. 2009, 2011, 2012). Moreover, decagonal quasicrystalline alloys have been described in
the Al-Ni-Fe system (e.g., Lemmerz et al. 1994; Parshin et al. 2009), thus representing an added
reason for the dedication: Steinhardt’s pioneering contribution to the theoretical development of
quasiperiodic structures (e.g., Levine and Steinhardt 1984).

The mineral and its name have been approved by the Commission on New Minerals,
Nomenclature and Classification, IMA (2014-036). The holotype material is deposited in the
mineralogical collections of the Museo di Storia Naturale, Universita di Firenze (Italy), under

catalogue number 3142/1.
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OCCURRENCE

Steinhardtite was found in one of the meteoritic fragments (labeled number 126; see
Hollister et al. 2014 for more details) recovered from an expedition to the Koryak Mountains in far
eastern Russia in 2011 (Steinhardt and Bindi 2012; Bindi and Steinhardt 2014) as a result of a
search for material that would provide information on the origin of the quasicrystal mineral
icosahedrite (Bindi et al. 2009, 2011, 2012; Hollister et al. 2014). The recovered fragments have
meteoritic (CV3-like) oxygen isotopic compositions (MacPherson et al. 2013; Hollister et al. 2014).
In the meteoritic fragments, which present a range of evidence indicating that an impact shock
generated a heterogeneous distribution of pressures and temperatures in which some portions of the
meteorite reached at least 5 GPa and 1200 °C, steinhardtite occurs as small grains, one of which is
surrounded by trevorite (Fig. la). The grains of steinhardtite are generally anhedral and do not
contain inclusions or intergrowths of other minerals. The maximum grain size of steinhardtite
identified so far is about 10 um. Given the exceedingly small size, it was not possible to determine
properties like color, streak, luster, hardness, cleavage, parting, fracture or density. The calculated
density (for Z = 2), using the empirical formula and the unit-cell volume from single-crystal data
(see below), is 5.52 g/em’. Other minerals identified in the meteorite fragments include trevorite,
diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing
troilite, icosahedrite, khatyrkite, cupalite, taenite, Al-bearing taenite, Ni-Al-Mg-Fe spinels,

magnetite, and an unnamed spinelloid with composition Fes.,Si,04 (x = 0.4).

EXPERIMENTAL METHODS

X-ray diffraction and structure refinement

A crystal of steinhardtite 8 x 9 x 10 pm across (Fig. Ic) was mounted on a 0.005 mm
diameter carbon fiber (which was, in turn, attached to a glass rod) and checked on a CCD-equipped
Oxford Diffraction Excalibur 3 single-crystal diffractometer. Despite the extremely small size of the
crystal (to the limit for conventional in-house experiments), the diffraction quality was satisfactory
and several reflections were collected. The refined unit-cell dimensions are: @ = 3.0214(8) A and V
= 27.58(2) A’. Intensity integration and standard Lorentz-polarization corrections were done with
the CrysAlis RED software package (Oxford Diffraction 2006). The program ABSPACK in
CrysAlis RED (Oxford Diffraction 2006) was used for the absorption correction.

The systematic absences indicated the space group Im3m and the structure was refined

starting from the atomic coordinates reported a-Fe (Wilburn and Bassett 1978) using the full-matrix
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least-squares program SHELXL-97 (Sheldrick 2008). The scattering curve for neutral Ni was taken
from the International Tables for X-ray Crystallography (Ibers and Hamilton 1974). The scattering
power was allowed to vary (Ni vs. structural vacancy) at the (0,0,0) position. The refined value
(21.8 ¢’) is in excellent agreement with the mean electron number calculated from the empirical
formula (21.7 7). Refinement of the anisotropic atomic displacement parameters led to an R, index
of 0.0208 [for 11 reflections with F, > 46(F,)] and 0.0254 (for all 12 independent reflections) with
3 refined parameters. Details on the data collection and refinement are given in Table 1 and in the
deposited CIF'.

Chemical analyses

The same crystal used for the structural study (Fig. Ic) together with another grain of
steinhardtite showing an almost tabular morphology (Fig. 1b) were analyzed by means of a JEOL
JXA-8600 electron microprobe analysis in wavelength dispersion mode at 15 kV, 20 nA beam
current, and 1 um beam diameter. Variable counting times were used: 30 s for Al, Ni and Fe, and 60
s for the minor elements Mg, Si, Cr, P, Co, Cu, Cl, Ca, Zn, and S. Replicate analyses of synthetic
AlssNigFes were used to check accuracy and precision. The crystal fragments were found to be
homogeneous within analytical error. The standards used were: metal-Al (Al), synthetic NizP (Ni,
P), synthetic FeS (Fe), metal-Mg (Mg), metal-Si (Si), metal-Cr (Cr), metal-Co (Co), metal-Cu (Cu),
synthetic CaCl, (Ca, Cl) and synthetic ZnS (Zn, S). Magnesium, Si, Cr, P, Co, Cu, Cl, Ca, Zn, and S
were found to be equal to or below the limit of detection (0.01 wt%).

Nine point analyses on different spots were performed on the two fragments. Table 2 reports
the chemical analyses (means and ranges in wt% of elements), standard deviations and atomic ratios
calculated on 1 atom per formula unit.

Transmission electron microscopy

Because of the small size of the grains, the single-crystal X-ray investigation was combined
with a structural study done by transmission electron microscopy. The instrument was a Philips
CM200-FEG TEM operating at 200 KeV with a vacuum pressure of ~ 2 x 107 Torr. The electron
beam size ranged from 30 nm to 0.2 pm. The sample was placed on an Au mesh TEM grid (300
mesh, 3mm in diameter) that was previously covered by a thin carbon layer (support film). Energy

Dispersive (EDS) data were obtained using Evex NanoAnalysis System IV attached to the Philips

"For a copy of the CIF, document item AMxxxxx, contact the Business Office of the Mineralogical Society of America
(see inside front cover of recent issue) for price information. Deposit items may also be available on the American
Mineralogist web site at http://www.minsocam.org.
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CM200-FEG TEM. A small probe diameter of 20-100 nm was used, with a count rate of 100-300
cps and an average collection time of 180 s. The quantitative analyses were taken at 200 kV and are
based on using pure elements and the NIST 2063a standard sample as a reference under the
identical TEM operating conditions.

The measurement of the cubic unit-cell parameter from both the selected area diffraction
patterns (Fig. 2) and the diffraction rings (Fig. 3) is only about 1% different and led to a value of
3.02(1) A, in excellent agreement with the value measured by single-crystal X-ray diffraction

[3.0214(8) Al].

RESULTS AND DISCUSSION
Crystal structure considerations

In the crystal structure of steinhardtite, Al, Ni and Fe are disordered at the origin of the unit-
cell (0,0,0) in a body-centered-cubic (bcc) packing (a-Fe structure type). The metal-metal bond
distance observed is 2.6166(7) A (x8). Taking into account the site population and the unit-cell
parameters observed for the face-centered-cubic (fcc) polymorphs of pure Ni and Fe (Wyckoff
1963; Nishihara et al. 2012), and assuming the same F/atom ratio for fcc and bec structure for Ni,
Fe, and ideality, the following unit-cell value for the pure Al polymorph (Ni- and Fe-free
steinhardtite) can be derived: @ = 3.218 A. Such a value is in excellent agreement with that
predicted (a = 3.230 A) by Lechermann et al. (2005) for the bec allotropic form of Al under room
conditions.

Potential new natural quasicrystals?

Decagonal quasicrystalline alloys have been described in the AI-Ni-Fe system (e.g., Lemmerz
et al. 1994; Parshin et al. 2009). The decagonal phase is thermodynamically stable in a narrow
compositional range around Al;NiyFes. At a temperature of about 940 °C it transforms to
Alj3(Fe,Ni)s, Als(Ni,Fe); and the liquid phase, and between 800 and 850 °C to Aljs(Fe,Ni),
Alz(Ni,Fe) and Alz(Ni,Fe),. For comparison to the decagonal quasicrystal, based on 100 atoms the
composition of steinhardtite is AligNinFeso, quite far from the theoretical composition for a
decagonal quasicrystal; but it should be kept in mind that a large variation of the Al/(Ni+Fe) ratio
has been observed among the spinel phases of the Khatyrka fragments (see Hollister et al. 2014).

This implies that the decagonal quasicrystal may yet be found in the Khatyrka meteorite.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
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Steinhardtite in the Al-Ni-Fe system

The composition of steinhardtite within the Al-Ni-Fe system (Chumak et al. 2008) suggests
that it should exhibit the B2 structure (CsCl-type; space group ngm) and not the A2 structure
(space group Imgm) as observed for the new mineral. The B2 structure is typically observed for
stoichiometric composition, such as (Ni,Fe)Al. In this structure, Ni and Fe atoms share the
structural positions at the cell corners (0,0,0) and Al atoms are at the centers (2.2,2) (Rennhofer et
al. 2003; Lechermann et al. 2005; Zhang and Du 2007). On the other hand, in the A2 structure there
is a complete disorder of the three atoms (i.e., Al, Ni and Fe) at the origin (and, consequently, at
Va,5,% given the [ lattice) of the unit cell.

To the best of our knowledge, nothing is known about the effects of pressure on the Al-Ni-Fe
system. Recent investigations on high pressure torsion (HPT) processing of B2-ordered Fe-Al
(Gammer et al. 2011) and Ni-Al (Kléden et al. 2008) alloys showed that when a pressure of 4-6
GPa is applied during the process an incipient cation disorder in the original B2 structure toward the
formation of either nanosized domains with persistent B2 order (Gammer et al. 2011) or even of the
A2 structure is observed (Sergiy Divinski, personal communication). The structural disorder of
steinhardite (pointing to the A2 structure) may have been induced by shock. At ambient pressure the
B2 structure would be stable.

Origin

The incorporation of metallic Al in steinhardtite as well as in taenite has been tentatively
explained by Hollister et al. (2014) with one of the two possible scenarios: (i) the Al-bearing FeNi
phases might have been the initial source of the Al-bearing alloys khatyrkite, cupalite and
icosahedrite; or (i7) the Al-metals may have had a pre-accretion nebular origin and steinhardtite and
Al-bearing taenite observed in the sample formed by reaction of shock-produced Al-melt and pre-
existing taenite.

In the first hypothesis, the shock features observed locally for grains 125 and 126 of the
Khatyrka meteorite (Hollister et al. 2014) would be generated by a strong increase of heat and
pressure sufficient to extract Al from the FeNi metals and to initiate the local melting of metals and
silicates. In the second hypothesis, the Al metals would form in some nebular process before the
impact, with the impact resulting in the remelting, rapid cooling (about 10% — 10° °C s™) and
solidification of the Al metals. In both scenarios, the sequence of events leading to the exchange of
metallic Al that formed steinhardtite and Al-taenite can only be plausibly imagined to occur in

space under low f0O» solar nebular conditions.
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IMPLICATIONS

Our investigation of the different fragments of the thus far unique and remarkable Khatyrka
carbonaceous chondrite (MacPherson et al. 2013) has revealed the heretofore unobserved metallic
Al bearing minerals (Hollister et al. 2014) for a carbonaceous chondrite: khatyrkite, cupalite,
icosahedrite, and steinhardite. These unique phases existed at the birth of our solar system 4.5
billion years ago. The fact that metallic Al can be incorporated in nebular FeNi to form new mineral
species like steinhardtite is a striking discovery.

It is currently accepted that the phase considered stable in the Earth’s core is a body-centered-
cubic structured alloy of Fe-Ni doped with lighter elements (e.g., Dubrovinsky et al. 2007; Luo et
al. 2010). Moreover, first-principle theoretical (Friedli and Ashcroft 1975; Moriarty and McMahan
1982; Boettger and Trickey 1996; Pickard and Needs 2010) and experimental studies (Roy and
Steward 1969; Akahama et al. 2006; Vailionis et al. 2011) have shown that pure Al converts from a
face-centered-cubic to a hexagonal-close-packed structure at multimegabar pressures, and, at 0.38
TPa, a pressure slightly above that found at the center of the Earth, to a body-centered-cubic
structure. Such a bee polymorph of Al, successfully synthesized with ultrafast explosions, also has
been found to be quenchable at room conditions (Vailionis et al. 2011).

These considerations, together with the presence of essential amounts of Ni and Fe in
steinhardtite might reveal an additional light element, Al (beside C, O, Si, and S; Allegre et al.
2001; Coté et al. 2008) to contribute to the anomalously low density of the Earth’s presumed Fe-Ni

core.
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FIGURE CAPTIONS
FIGURE 1. SEM-BSE images of three small steinhardtite grains. In (a) steinhardtite (STE) is
enclosed by trevorite (TRE); in (b) it is a separate grain exhibiting tabular morphology; in
(¢) it is a small grain attached to a carbon fiber that was used for the X-ray single-crystal

diffraction study.

FIGURE 2. TEM image of steinhardtite. Electron diffraction patterns (zone axes are indicated) were

obtained from a thin region of this granule (indicated with the white dotted circle).

FIGURE 3. TEM image of another granule of steinhardtite. On the right are the diffraction rings,
obtained from a thin region (indicated with the white dotted circle), which were indexed
according to a body-centered-cubic structure, space group Im3m, with a = 3.02(1) A

(indexing as 110, 200, 211, 220, 310, 222, 321).
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TABLE 1. Data and experimental details for the selected steinhardtite crystal

Crystal data

Formula

Crystal size (mm)
Form

Colour

Crystal system
Space group

a (Aj)

v (AY)

VA

Data collection

Instrument

Radiation type

Temperature (K)

Detector to sample distance (cm)
Number of frames
Measuring time (s)
Maximum covered 26 (°)
Absorption correction
Collected reflections
Unique reflections
Reflections with Fy> 46(F,)
Rim

Range of h, k, [

Refinement

Refinement
Final R, [F,> 406(F,)]
Final R, (all data)

Number of least squares parameters

Apmax (e A7)
APmin {E A_3)

Alg 3Nig 32Feq 30
0.008 x 0.009 x 0.010
block

black

cubic

Im3m (#229)
3.0214(8)

27.58(2)

2

Oxford Diffraction Xcalibur 3
MoKa (A= 0.71073)

298(3)

5

115

350

70.37

multi-scan (4ABSPACK; Oxford Diffraction 2006)
465

12

11

0.0285
0<h<4,0<k<4,0<1<4

Full-matrix least squares on F*
0.0209

0.0254

3

0.22

-0.38

Ry = (n/n=1)"|F} ~ F,(mean)* |3 F?

R =Y |F,|-IFI/Y|F,I



TABLE 2. Electron microprobe analyses (means, ranges and standard deviations in wt% of elements)
and atomic ratios (on the basis of one atom) for steinhardtite.

element wt % ranges o atom  atomic ratios
Al 2241 21.94 —-23.30 0.16 Al 0.38
Ni 40.90 40.01 —42.10 0.26 Ni 0.32
Fe 36.23 35.06 - 37.29 0.19 Fe 0.30

total 99.54 98.45-101.62
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