1	Thermal conductivity of molten and glassy NaAlSi ₃ O ₈ ,
2	CaMgSi ₂ O ₆ and Mg ₂ SiO ₄ by Non Equilibrium Molecular
3	Dynamics at elevated Temperature and Pressure: Part 1-
4	Methods and Results
5	
6	
7	
8	Dane Tikunoff ¹ and Frank J. Spera ^{1*}
9	¹ Department of Earth Science, University of California-Santa Barbara,
10	*E-mail: spera@geol.ucsb.edu
11	
12	
13	

14 Abstract

15	Non Equilibrium Molecular Dynamics (NEMD) simulations are used to compute the
16	phonon thermal conductivity (k) for liquids and glasses of composition Mg_2SiO_4 ,
17	$CaMgSi_2O_6$ and $NaAlSi_3O_8$ at 2000-4500 K and 0-30 GPa based on classical potentials.
18	These compositions span the range of melt polymerization states in natural systems at
19	ambient pressure. The NEMD results compare well with available laboratory
20	measurements on molten $NaAlSi_3O_8$ and $CaMgSi_2O_6$ at 1-bar. Thermal conductivities
21	decrease with increasing temperature (T), increase with increasing pressure (P) and, at
22	low pressure, increase slightly as the mean coordination number of Si and Al around
23	oxygen increases, in the sequence Mg_2SiO_4 , $CaMgSi_2O_6$ and $NaAlSi_3O_8$. At 3500 K, the
24	thermal conductivity of $CaMgSi_2O_6$ at 0, 10, 20 and 30 GPa is 1.1, 2.1, 2.5 and 3 W/m K,
25	respectively. At ambient pressure (0.2 ± 0.15 GPa), k=1.2 and 0.5 W/m K at 2500 K and
26	4500 K, respectively for CaMgSi ₂ O ₆ . For NaAlSi ₃ O ₈ composition, k varies from 1.7 W/m
27	K to 2.7 W/m K at 3050 K for pressures of 6 and 30 GPa, respectively. Mg_2SiO_4 liquid at
28	ambient pressure (0.07 ± 0.16 GPa) is found to have thermal conductivities of 1.36 and
29	0.7 W/m K at 2500 K and 4500 K, respectively. Tables giving computed k values for all
30	compositions are included for state points studied. The trade-off between T and P implies
31	that the phonon thermal conductivity of silicate liquids at mantle depths increases
32	substantially (factor of 2-3) along isentropes.

34	INTRODUCTION
35	Knowledge of the phonon thermal conductivity of amorphous silicates (melts and
36	glasses) over the range of composition (X), P and T of the Earth's crust and mantle is
37	essential for analysis of many geophysical and geochemical problems. For example, heat
38	transfer during nucleation and dissolution or growth of a crystal from a melt is a
39	significant factor governing rock texture. Similarly, heat exchange between magma and
40	its surroundings is relevant to rates of magma crystallization, mechanisms of volatile-
41	saturation and the thermodynamics of partial melting. Heat transport from the Earth's
42	core to mantle, possibly modulated by a transient molten or partially molten ultra-low
43	velocity zone (ULVZ), is relevant to the long-term thermal history of Earth, the thickness
44	of thermal boundary layers along the core-mantle boundary and the strength and
45	evolution of the Earth's magnetic field (Wen and Helmberger, 1998; Hernlund and
46	Jellinek, 2010; Idehara, 2011; Anzellini et al, 2013; Olsen, 2013). Accurate values of the
47	thermal diffusivity, $\kappa = k/\rho C_p$, where ρ is the density, C_p is the isobaric specific heat
48	capacity, and k is the phonon thermal conductivity, are needed to calculate transient
49	geotherms and predict conditions for crustal anatexis and metamorphism in orogenic
50	regions (e.g., Whittington et al., 2009). Finally, in ceramic and composite materials
51	processing, knowledge of thermal conductivity is required (Kang and Morita, 2006). Of
52	special concern is the lack of any estimates of the effects of pressure on phonon
53	conduction in silicate liquids. In this study, attention is mainly focused upon equilibrium
54	silicate liquids of petrological significance although a few results relevant to glasses are
55	included. The term amorphous is used here to refer to either glass or liquid when the
56	distinction is not essential.

57	There are few reliable measurements of the thermal conductivity of molten
58	silicates as a function of X and T at ambient P. We are aware of no experimental
59	measurements describing the effect of pressure on k for silicate liquids. Although there
60	are measurements and theory related to the effects of pressure on thermal conductivity in
61	crystalline silicates and oxides, liquids are structurally distinct with essentially no long
62	range structure beyond ~ 0.5 nm (Kittel, 1949). Hence, one might expect some
63	differences in modes of phonon excitation in liquids relative to ordered solids because,
64	unlike solids, liquids undergo gradual changes in structure as P increases. One of the
65	goals of this study is to provide quantitative constraints on the pressure-dependence of
66	the thermal conductivity of silicate liquids at elevated temperature. Very limited
67	experimental data at 1-bar on molten silicates of varying atomic-level structure suggest
68	that at fixed T and P, the more polymerized the melt (e.g., the lower the NBO/T ratio),
69	the higher the thermal conductivity (Kang and Morita, 2006). A second goal of this work
70	is to therefore examine, at fixed temperature and pressure, the correlation of thermal
71	conductivity with NBO/T ratio. Finally, although for crystalline solids at constant
72	pressure, thermal conductivity varies according to 1/T (e.g., see summary in Stackhouse
73	and Stixrude, 2010) the validity of this scaling of conductivity with temperature, $k \propto 1/T$,
74	has not been experimentally or numerically studied for molten silicates in the range 2000-
75	5000 K. The high-T scaling of k at fixed P is therefore also investigated here. In short,
76	current knowledge of the thermal conductivity of silicate liquids is meager. In this study,
77	we study of the effects of P, T and melt composition on the phonon thermal conductivity.
78	Obtaining accurate values for the phonon thermal conductivity proves difficult in
79	the laboratory (e.g., Tritt and Weston, 2004). Many measurements are of restricted value

80	because: (1) they are contaminated by unwanted radiative (photon) transport, (2) include
81	unwanted interfacial contact effects or (3) are affected by convective heat transport. For
82	example, measurements reported by McBirney and Murase (1973) using the hot-wire
83	method are dominated by radiative effects that act to conceal the smaller phonon
84	contribution. Additionally, in hot-wire and hot-layer methods, thermal losses at contacts
85	introduce significant errors difficult to eliminate without complex deconvolution (Healy
86	et al, 1976; Lee and Hasselman, 1985, Hammerschmidt and Sabuga, 2000). Hofmeister
87	and co-workers (Pertermann and Hofmeister, 2006; Hofmeister, 2007; Hofmeister et al,
88	2009; Pertermann et al, 2008) present measurements of thermal conductivity at ambient
89	pressure for a number of compounds. They note that recent advances in contact-free,
90	laser-flash analysis and better data reduction methods (Degiovanni et al., 1994; Mehling
91	et al., 1998) enable removal of direct radiative transfer effects and losses to the container
92	and hence provide accurate phonon conductivities at ambient P and temperatures just
93	above 1-bar melting points. Unfortunately, these measurements are limited to 1-bar $(10^{-4}$
94	GPa) pressure. Although these data indicate that k decreases weakly with increasing T in
95	the range \sim 1300-1600 K for silicate liquids, the behavior at higher temperature has not
96	been studied and there are no data on the effects of pressure. Data on alkali halides and
97	metal liquids (e.g., Beck et al, 2007; Galamba et al, 2004; de Koker et al, 2012) suggests
98	that conductivity increases with pressure along an isotherm but for silicate liquids the
99	effects of pressure are unknown. Consequently, the trade-off between variations in T and
100	P is unknown for liquid silicates. Finally, although studies on CaO-Al ₂ O ₃ -SiO ₂ liquids
101	(Kang and Morita, 2006), as well as molten diopside and molten albite (Hofmeister et al.,
102	2009) suggest that that polymerized or strong 'network' liquids exhibit higher k at similar

103	T and P compared to less polymerized 'fragile' liquids (Martinez and Angell, 2001), the
104	role of composition and its correlative melt polymerization is not well quantified.
105	Because melt structural states correlate with changes in second order thermodynamic
106	property differences between liquid and glass (e.g., isothermal expansivity, isothermal
107	compressibility, isobaric heat capacity), (Giordano and Dingwell, 2003) one might expect
108	a correlation at fixed T and P between melt composition and phonon conductivity such
109	that more fragile melts possess lower conductivities compared to the network (strong)
110	melts. This conjecture can be addressed using liquid structural states, encapsulated in
111	radial distribution analysis and coordination statistics derived from MD simulations (e.g.,
112	Ghiorso and Spera, 2009; Spera et al, 2009). The compositions chosen in this study span
113	the spectrum of polymerization states relevant to natural magmas (Mysen and Richet,
114	2005; Hendersen et al, 2006; Hofmeister et al, 2009). That is, in forsterite liquid the
115	canonical fraction of bridging oxygen at low pressure, X_{BO} (=N _{BO} /(N _{BO} +N _{NBO}),
116	approaches zero whereas albite liquid is fully polymerized with each oxygen being shared
117	between two distinct Si-Al tetrahedra (i.e., $X_{BO}=1$). Diopside liquid is intermediate in the
118	stoichiometric sense with X_{BO} =1/3 at 1-bar pressure. One of the most significant
119	connections between structure and properties observed in all liquid silicates both
120	experimentally and in Molecular Dynamics simulations is the increasing coordination of
121	cations around oxygen (and of oxygen with itself) as pressure increases (e.g., Daniel et al,
122	1996; Allwardt et al, 2007; Spera et al, 2011). This effect dominates a smaller but
123	opposing temperature effect of lengthening bond distances. As shown below, the higher
124	mean coordination number of metals around oxygen gives rise to an increase in the
125	thermal conductivity as pressure increases along an isotherm for all of the compositions

ncrease with depth. At crustal pressures \sim 0-2 GPa, composition effects will dominate.
important result of this study explored more fully in part II is that at the same
perature and crustal pressure, the thermal conductivity of silicic melt (e. g., a rhyolite)
arger by 25-100 % compared to basaltic melt. In summary, the effects of composition,
perature and pressure on thermal conductivity in silicate liquids are largely unknown
r the range of states relevant to the Earth. The main purpose of this study is to address
e issues.
METHODS
ssical Molecular Dynamics
The calculations in this study are based on classical Molecular Dynamics (MD)
ulations. In classical MD, an empirical relation describing the potential energy
ween atom pairs is used to compute forces between atoms. This pairwise additive,
ally symmetric potential is derived a priori and is not part of the MD simulation.
ed on these forces, particles are moved to new positions following the dictates of
wton's second law of motion for several million femtosecond (10^{-15} s) time steps.
m the locations and velocities of the particles, various thermodynamic and transport
perties are computed using the formalism of macroscopic thermodynamics and
istical mechanics. The potential of Matsui (1998) for the system Na ₂ O-CaO-MgO-
2-Al2O3 was utilized in this study. This potential incorporates Coulombic, Born and
der Waals energies and fractional charges on the atoms. The Matsui potential has
n used in previous studies to determine the equation of state, tracer diffusivity and
ar viscosity for CaAl ₂ Si ₂ O ₈ , CaMgSi ₂ O ₆ , MgSiO ₃ , Mg ₂ SiO ₄ , and 1-bar eutectic

169

151	composition (system CaMgSi ₂ O ₆ -CaAl ₂ Si ₂ O ₈) liquid (Creamer, 2012; Martin et al., 2012;
152	Spera et al., 2011; Ghiorso and Spera, 2009; Spera et al., 2009; Nevins et al., 2009;
153	Martin et al., 2009). The Matsui potential provides a reasonable representation of these
154	liquids up to circa 30 GPa based on comparisons with laboratory data and results from
155	first-principles MD simulations on similar compositions (e.g., Sun et al, 2011; Karki et al,
156	2011; Stixrude et al, 2009). Technical details of the basic MD methodology are described
157	in Spera et al. (2009, 2011) and follow standard MD protocols. The time step used in all
158	simulations is 1 femtosecond (1 fs). All NEMD calculations for the thermal conductivity
159	start from a thermally equilibrated initial state following the methods described in Spera
160	et al. (2011).
161	
162	Distinguishing Equilibrium Liquid from Non-equilibrium Glass
163	The pressure-temperature range of state points studied for both $NaAlSi_3O_8$ and
164	$CaMgSi_2O_6$ spans the transition from an equilibrium liquid to a non-equilibrium glass on
165	the timescale of the MD simulation. The simulations for Mg_2SiO_4 composition pertain
166	wholly to the liquid. It is important to make the distinction between glass and liquid
167	(melt) because the properties of a glass depend on its history unlike that of an equilibrium
168	or metastable liquid (Donth, 2001). When temperature is decreased rapidly on a liquid

170 the liquid falls out of equilibrium and undergoes a kinetic transition to a glass. The glass

and its intrinsic relaxation time exceeds the laboratory or simulation quenching timescale,

- 171 transition temperature (T_g) for a given composition depends on both quench rate and
- 172 pressure (Passaglia and Martin, 1964). The glass transition is not a transition in the
- 173 thermodynamic sense, but instead a kinetic phenomenon, where the amorphous solid with

174	crystal-like vibrational properties is dynamically arrested and hence preserves the
175	disorder of the liquid (Roland et al, 2005; Langer, 2014). At typical laboratory cooling
176	rates of ~0.1-1 K/s, the glass transition temperature (T $_g$) for NaAlSi_3O_8 and CaMgSi_2O_6 $$
177	liquids are 1036 K and 1023 K, respectively, at 1 bar (Arndt and Häberle, 1973, Reinsch
178	et al, 2008). Because the effective quench rates used in MD simulations are vastly
179	greater, of order $\sim 10^2$ K/ps (10^{14} K/s), the computer glass transition temperature is
180	significantly higher. For example, the computer T_g of $CaAl_2Si_2O_8$ defined by analysis of
181	the mean square displacement versus time (see below) is approximately 2800 K for a
182	quench rate of 70- 200 K/ps (Morgan and Spera, 2001). This is significantly higher than
183	the laboratory value of $T_g = 1025$ K (Arndt and Häberle, 1973).
184	The transition from liquid to glass can be detected in MD simulations by two
185	means. For ergodic liquids an excellent correlation exists between the potential energy
186	(E_{POT}) and $T^{3/5}$ at constant density (Spera et al, 2009; Ghiorso and Spera, 2009; Martin et
187	al, 2012; Creamer, 2012). This scaling relationship, proposed by Rosenfeld and Tarazona
188	(1998), is called RT-scaling. Glasses exhibit imperfect RT scaling; on plots of E_{POT} vs
189	$T^{3/5}$ deviations from linearity along isochores occur around $T_{g}and$ become more
190	pronounced as T decreases. A dynamical method for detection of the glass transition is
191	based on the mobility of atoms (tracer diffusivity) in Euclidean space. In an ergodic
192	liquid, the mean square displacement (MSD) of an atom is a linear function of time; a
193	plot of MSD vs. t in logarithmic coordinates exhibits a slope of unity after a short (< 100
194	fs) ballistic interval (Morgan and Spera, 2001). In contrast, glassy materials exhibit the
195	phenomena of sub-diffusion; a diffusion process with a non-linear relationship to time, in
196	contrast to a normal diffusion process in which the mean squared displacement (MSD) of

197	a particle is a linear function of time (Wang et al, 2012). In particular, in the non-ergodic
198	region where sub-diffusion holds, the MSD exhibits power-law behavior with $\text{MSD} \sim t^{\delta}$
199	following a short ballistic interval. The exponent δ in a thermally arrested liquid (i.e., a
200	glass) is characterized by $\delta < 1$ (Metzler and Klafter, 2004; Weeks and Weitz, 2002). Sub-
201	diffusion arises when a system possesses memory, the hallmark of a non-equilibrium
202	material such as glass. For $CaMgSi_2O_6$ the computer glass transition in our simulations
203	occurs at ~ 2630 \pm 50 K at 1 bar. For NaAlSi ₃ O ₈ composition, T _g is approximately 2800
204	K based on the RT scaling and MSD criteria. The glass transition temperature depends on
205	pressure in addition to quench rate. The variation of the computer glass transitions with
206	pressure for $CaMgSi_2O_6$ and $NaAlSi_3O_8$ found here empirically lies in the range 10-30
207	K/GPa. In the Tables below for thermal conductivity, glasses are distinguished from
208	liquids based on the RT and MSD analysis outlined above for compositions $NaAlSi_3O_8$
209	and CaMgSi ₂ O ₆ . The emphasis in this study is on equilibrium ergodic liquids, although
210	some glass results are included.
211	Non-Equilibrium Molecular Dynamics
212 213	Calculations of thermal conductivity from MD simulations can be performed in
214	two ways: Equilibrium MD (EMD) or NEMD. The Green-Kubo method, an EMD
215	approach, uses heat current fluctuations to compute the thermal conductivity via the
216	Kubo relations (Kubo, 1966). The microscopic definition of the heat flux for EMD
217	involves interparticle dynamic correlations requiring evaluation of pair velocities and
218	particle energies that are computationally expensive to evaluate and subject to large
219	fluctuations (Rapaport, 1995). Convergence of the current-current correlation function
220	can be slow. Here we employ a Non Equilibrium Molecular Dynamics (NEMD) method,

221 which is relatively easy to implement, and has proved to be reliable (e.g., Müller-Plathe, 222 1997; Müller-Plathe and Bordat, 2004). In particular, the NEMD method has been 223 successfully applied to liquids giving excellent results in comparison with laboratory 224 measurements (Cao, 2008; Bedrov et al., 2000; Terao et al., 2007) and Green-Kubo 225 (EMD) calculations (Vogelsang et al., 1987). 226 The essential idea of the NEMD method used to obtain k is to impose a known 227 heat flux on the system by exchange of particle kinetic energies and then determine the 228 resulting steady-state temperature gradient in the direction parallel to the heat flux. The 229 thermal conductivity can then be expressed

230
$$k = \frac{\left\langle \int_{0}^{t_{\rm D}} q_z(t) dt \right\rangle}{2At_{\rm D}(dT/dz)}$$
(1)

231 where the integral is the cumulative heat flow imposed during a simulation of duration t_D 232 in the z direction, A is the cross-sectional area of the plane orthogonal to the z-axis, and 233 the temperature derivative is the observed linear temperature gradient once a stationary 234 thermal profile is achieved in the system. In order to impose a heat flux and compute the 235 temperature profile, the simulation box is divided into N slabs perpendicular to the z 236 direction. In the present work N lies between 20-50; all layers are of identical volume. 237 The heat flux is created by exchanging the barycentric velocities of identical type atoms 238 (e.g., O for O, Ca for Ca, etc) between what becomes a cold layer located in the middle of 239 the simulation box and what becomes a hot layer adjacent to one of the domain 240 boundaries. In particular, the velocity exchange is accomplished by switching an atom 241 with the largest kinetic energy (i.e., the hottest) from the cold slab with an atom of the 242 same type with the lowest kinetic energy (coldest) in the hot layer. Serial application of

243 this procedure induces a temperature gradient for a known quantity of heat exchange 244 based on the kinetic energies of the exchanged atoms. The instantaneous local kinetic 245 temperature $\langle T_k \rangle$ in the kth slab is given by

246
$$T_{k} = \frac{1}{3k_{B}n_{k}} \sum_{i=1}^{n_{k}} m_{i}v_{i}^{2}$$
(2)

247 where the sum extends over all n_k atoms of each type of mass m_i and velocity $\mathbf{v_i}$ in the k^{th}

slab. This exchange mechanism produces an energy transfer computed from

249
$$\left\langle \int_{0}^{t_{\rm D}} q_z(t) dt \right\rangle = \sum_{\text{transfers}} (v_{\rm c}^2 - v_{\rm h}^2)$$
 (3)

250 The heat transfer leads to a temperature difference between the designated layers and 251 gives rise to a steady-state temperature gradient across each half of the system. This 252 temperature gradient is the desired quantity of the NEMD simulation. Exchanging the 253 velocities of two atoms of equal mass (e.g., an O for an O, a Ca for a Ca, etc) leaves the 254 total linear momentum, total kinetic energy, melt composition and the internal energy 255 unchanged. After reaching the thermal steady state, the energy transfer imposed by the 256 velocity exchange is exactly balanced by the heat flux in the opposite direction effected 257 by the phonon thermal conductivity of the liquid. The thermal conductivity is then 258 computed from the expression

259
$$k = \frac{\sum_{\text{transfers}} (v_c^2 - v_h^2)}{2t_D L_x L_y (dT / dz)}$$
(4)

The sum is taken over all transfers over the duration t_D of the NEMD simulation starting from an equilibrated initial state. All quantities in Eq. (4) are known exactly except the temperature gradient that is obtained from Eq. (2) applied to each layer. The simulation is terminated after a linear or nearly linear temperature gradient is established.

264	Representative thermal profiles are given in Tikunoff (2013). Attainment of a linear T
265	profile typically requires simulations of 1-5 ns duration. In this study, tetragonal periodic
266	primary MD 'boxes' with $L_z > L_x = L_y$, as well as cubic boxes are used. When cubic boxes
267	are used, uncertainty in k is smaller, because more atoms are being simulated and
268	uncertainty of state point conditions scales according to $N_T^{-1/2}$ where N_T is the total
269	number of atoms used in the simulation. At each state point studied, simulations are
270	performed for several different simulation cell sizes to take account of finite-size effects
271	(see below). Because of the mirror plane at $z=L_z/2$, each simulation provides 2N
272	temperatures over distance L_z . The thermal gradient is determined by linear regression of
273	these 2N values each at a specific value of z corresponding to the mid-point of the layer.
274	The uncertainty of the thermal conductivity (σ_k) is found by propagation of error of the
275	temperature gradient found by regression of T against z. The value of k computed from
276	Eq (4) corresponds to the thermal conductivity at the mean temperature and pressure of
277	the simulation. Typically, with systems of 8000 atoms the uncertainty in T and P are \pm 30
278	K and \pm 0.25 GPa, respectively. These uncertainties can be made smaller by using more
279	particles since σ_T and σ_P scale according to N ^{-1/2} . For example, with N=24,000 particles,
280	1σ fluctuations in T and P are $\sigma_T\approx 18$ K and $\sigma_P\approx 0.15$ GPa, respectively. In this study N_T
281	varied from 2500 to 350,000 and weighted regression has been used in all cases to find
282	the best statistical fits.
283	

284 Critical NEMD parameters

285 There are two critical parameters in an NEMD simulation used to compute k: the 286 duration between particle swaps (Ω) or its reciprocal, the swap frequency, and the longest

287	dimension of the MD rectangular domain (L_z). Tuning of these parameters insures good
288	precision in k and efficient use of computational resources. In order to find the trade-off,
289	a number of simulations for molten diopside at ambient pressure and high T at various $\boldsymbol{\Omega}$
290	and L_z were conducted. Comparison with the laboratory measurements from Hofmeister
291	et al. (2009) at identical (within uncertainty) state points for $CaMgSi_2O_6$ affords an
292	objective evaluation of the quality of the NEMD simulations (see below). Additional
293	NEMD simulations were run on crystalline and supercritical argon, a benchmark material
294	in MD studies, in an earlier phase of this research; these results are presented elsewhere
295	(Tikunoff, 2013) where additional technical details may be found.
296	Role of swap period (Ω)
297	The swap period (Ω) is the period, in units of femtoseconds (fs), between particle
298	velocity swaps during the NEMD calculation. The calculated conductivity of amorphous
299	$CaMgSi_2O_6$ at ambient pressure (10 ⁻⁴ GPa) and 1700 K in a box of fixed L _z with its one-
300	sigma error (σ_k) is plotted against Ω in Figure 1. For the limiting value of $\Omega=1$ (not
301	shown on Figure 1), or one swap per 1 fs time step, the system does not have sufficient
302	time between velocity exchanges for thermal relaxation and relatively large statistical
303	fluctuations for the thermal gradient occur that obfuscate determination of the
304	conductivity. In contrast, for low swap periods (Ω =100 or one exchange every 100 fs)
305	long simulation times are required for the system to achieve a steady-state temperature
306	profile since relatively little heat is transferred per swap. In this case, for fixed simulation
307	duration t_D , the uncertainty σ_k is relatively large, roughly 10-15 %, relative due to slow
308	convergence. Values of Ω between 20-40 give σ_k errors in the 2-6 % range, relative. In
309	light of the trade-off between computational burden and desired precision, values for Ω in

this range appear optimal and have been used here. Similar results were found for argon

Revision 2

310

311 fluid (Tikunoff, 2013). For Ω in this range, k can be found with statistical uncertainty of 312 several percent, approximately equal to or less than experimental uncertainties in k for 313 silicate liquids of ~5% relative (Pertermann et al., 2008). 314 *Role of Simulation Cell Length* (L_7) 315 The thermal conductivity k exhibits a dependence on the size of the simulation 316 cell in the direction of the heat flux L_z when the size of the simulation volume is of the 317 same order as the longest phonon path length. This variation is explained by the increase 318 in the number of active phonon modes available as the system size increases as well as 319 the result of scattering that occurs at the interfaces of the heat source and sink in the 320 NEMD system. The interface scattering effect is well known in MD studies and methods 321 have been developed to account for it and hence obtain values of k appropriate for 322 macroscopic systems (Chantrenne and Barrat, 2004; Varshney et al. 2009; Stackhouse 323 and Stixrude, 2010). Finite-size effects are especially apparent in crystalline materials 324 because the long-range order intrinsic to crystals gives rise to long mean free phonon path 325 lengths that can exceed the size of the MD domain. In liquid and glassy materials, this is 326 less of a problem because phonon mean free path lengths (Λ) are of the same order as the 327 scale of short range order, approximately 0.3-0.6 nm for typical silicate liquids and 328 glasses without a great deal of variation (Kittel, 1949). Since the scale of short range 329 order is considerably less than the size of a typical MD simulation box filled with $\sim 10^4$ 330 atoms of ~5-10 nm in our simulations, finite-system-size effects are less pronounced 331 compared to crystals. However, for good precision it is still desirable to account for finite-system-size effects since variations in L_z constrain the magnitudes of L_x and L_y , 332

333 necessarily, when tetragonal NEMD domains are utilized. The critical issue is the phonon 334 mean free path length in an infinite (macroscopic) system (Λ_{∞}) relative to the z-335 dimension of the MD simulation box of length L_z . If the distance between the layers 336 undergoing velocity exchange ($L_z/2$) is comparable to Λ_{∞} , an effective mean free path Λ_{eff} 337 can be defined (Schelling et al., 2002; Yoon et al., 2004) according to: $\frac{1}{\Lambda_{\text{eff}}} = \frac{1}{\Lambda} + \frac{1}{L_{\text{eff}}}$ 338 (5) 339 From kinetic theory, the phonon mean free path (MFP) is related to the sonic speed and 340 specific isochoric heat capacity of the material by (Bridgman, 1914; Kittel and Kroemer, 341 1980) 342 $k = \frac{1}{3}\rho C_{\rm v} c \Lambda_{\rm eff}$ (6) where ρ is the melt density (kg/m³), C_V is the isochoric specific heat capacity (J/ kg K) 343 344 and c is the sonic velocity (m/s). Substituting Eq. (5) into Eq. (6) gives a relation between 345 k and L_z: $\frac{1}{k} = A\left(\frac{1}{\Lambda} + \frac{1}{L}\right)$ 346 (7)

347

where $A = 3(\rho C_v c)^{-1}$ is constant at any given state point and composition. Eq. (7) is of the form $1/k = C_1 + C_2/L_z$ where C_1 and C_2 are constants. To account for finite-systemsize effects, NEMD conductivities from simulations performed in different sized boxes are plotted in $1/k-1/L_z$ coordinates. Extrapolation as $1/L_z \rightarrow 0$ gives the desired value of k applicable to a macroscopic system. All of the thermal conductivity values reported below for Mg₂SiO₄, CaMgSi₂O₈ and NaAlSi₃O₈ have been analyzed as a function of

354 simulation cell length as outlined above to obtain the desired macroscopic k from Eq. (7)355 using an optimal swap rates of $\Omega \sim 20-40$ fs. Additional details on the NEMD method and statistical treatment of data may be found in Tikunoff (2013). 356 357 RESULTS 358 359 360 Values of the thermal conductivity at all state points for all compositions 361 including the fluctuations in T and P and the 1σ uncertainties in k are collected in Tables 362 1, 2 and 3 for CaMgSi₂O₆, NaAlSi₃O₈ and Mg₂SiO₄, respectively. Figure 2 illustrates the 363 calculation of finite-size effects, where the inverse of the thermal conductivity as a 364 function of simulation cell length is plotted for CaMgSi₂O₆ at fixed P and T. 365 Extrapolation of the regression line to an infinite size system gives the phonon thermal 366 conductivity k=1.143 \pm 0.004 (1 σ) W/m K. This compares to the laboratory value at 2000 K and ambient pressure of 1.159 ± 0.058 from Hofmeister et al. (2009) quite well. 367 368 As another example, the NEMD value of k for diopside composition at 1763 K and 1-bar 369 of 1.186 ±0.019 W/m K, in this case uncorrected for a small finite-size effect, is within 1 370 % of the laboratory value of 1.178 ± 0.06 W/m K also from Hofmeister et al. (2009). 371 Finally, extrapolation of the 1800 K (1-bar) laboratory measurement for molten albite 372 from Hofmeister et al (2009) gives a value of 1.55 W/m K that can be compared to the 373 NEMD value at 2091 K and 1-bar (Table 2) of 1.498 W/m K. In conclusion, values 374 computed for NaAlSi₃O₈ and CaMgSi₂O₆ compositions from NEMD compare well with laboratory results at ambient pressure. Evidently, the Matsui potential can recover 375 376 accurate thermal conductivities at ambient pressure for these compositions. NEMD 377 simulations for glassy materials, based on the criteria given earlier, are identified

explicitly in the Tables. All others are for equilibrium or metastable liquids. Here wesummarize the effects of T, P and composition on the thermal conductivity.

 $380 \quad CaMgSi_2O_6$

381	All calculated k values for CaMgSi ₂ O ₆ composition (both liquids and glass) are
382	plotted on Figure 3. As T increases, k decreases, at all pressures although the effect is
383	diminished as P increases. Figure 4 illustrates that a T increase from 3000 K to 4500 K
384	decreases k by ~ 25 % from 1.02 W/m K to 0.72 in diopside liquid at ambient pressure.
385	At higher pressure (~10 GPa), the T-dependence of k is substantially weaker. At ~ 20
386	GPa, k depends weakly on temperature and assumes a value of ~2.4 W/m K (Table 1). In
387	diopside liquid at 3500 K, a pressure increase from ambient to ~ 20 GPa increases k from
388	~1.15 W/m K to 2.5 W/m K, an increase of more than 100%. The increase in k with
389	increasing P along an isotherm only slightly depends upon T. For example, at ~4500 K, k
390	increases from 0.73 W/m K at ambient pressure to 2.28 W/m K at ~20 GPa, an increase
391	by a factor greater than 3 which is comparable to the increase with pressure at lower T.
392	In summary, for $CaMgSi_2O_6$ k decreases with increasing temperature along an
393	isobar. The effect of increasing pressure on k along an isotherm is rather significant: a
394	factor of ~ 2-3 as pressure increases from ambient to ~30 GPa. The trade-off between the
395	opposing effects of increasing T and P on thermal conductivity for molten diopside can
396	be evaluated by computing the change in k along the diopside liquid 2000 K isentrope.
397	Temperature along the isentrope is given by $T = T_o \exp(\alpha P / \rho C_P)$, where α is the
398	isobaric expansivity, ρ is the melt density and C_P is the isobaric specific heat capacity.
399	Adopting MD-derived mean values of density, heat capacity and expansivity along the

400 isentrope for liquid diopside from Creamer (2012), one finds that k increases by a factor

401 of 2.2 as pressure increases to 30 GPa along the 2000 K isentrope.

402 *Liquid albite*

403 Albite liquid exhibits k-P-T dependence that is qualitatively similar to molten

404 diopside; all values are listed in Table 2 and depicted in Figure 5. The thermal

405 conductivity decreases with increasing T along an isobar and strongly increases as

406 pressure increases along an isotherm. For example, at \sim 4000 K, k increases from 0.9 to

2.6 W/m K from near ambient pressure to $\sim 30 \text{ GPa}$ whereas at ambient P, in the T range

408 2100-4024 K, k decreases from 1.45 W/m K to 0.89 W/m K. Similarly, at ~30 GPa, as T

409 increases in the sequence 2060 K, 3068 K, 4034 K, thermal conductivity decreases in the

410 sequence 2.88 W/m K, 2.72 W/ m K, 2.60 W/m K, respectively. In general, thermal

411 conductivity for albite liquid exceeds that for liquid diopside when compared at identical

412 (or nearly so) T-P conditions, although differences become smaller as P increases.

413 *Liquid forsterite*

414 Liquid forsterite shows the strongest negative correlation of k with T at ambient

415 pressure of the three liquid compositions studied. The conductivity decreases from 1.37

416 W/ m K at 2560 K to 0.68 W/ m K at 4580 K (Figure 6). Similar to the other

417 compositions, along an isotherm, k increases substantially as pressure increases (Figure

418 7). For example, at ~3550 K, k increases from 0.90 W/ m K to 2.12 W/ m K as pressure

419 increases from ambient to from ambient to 11 GPa pressure, an increase by a factor of

420 2.4, similar to the behavior in diopside and albite melts.

421 Glass

422	For $CaMgSi_2O_6$ at 2076 K and 2551 K and for $NaAlSi_3O_8$ at 2070 K and 3056 K,
423	the temperature is below the computer glass transition at all pressures. For glassy
424	diopside at fixed pressure, there is a very slight T-dependence of k such that as T
425	increases, k decreases. In contrast, along an isotherm k increases appreciably as pressure
426	increases. For example, at T=2076 K, k increases from 1.14 W/m K at zero pressure to
427	2.89 W/ m K at ~30 GPa, an increase by a factor of ~ 2.5. Glassy albite exhibits similar
428	behavior: a weak, almost negligible, negative dependence of thermal conductivity with
429	temperature but a rather strong increase in k as pressure increases along an isotherm. The
430	weak isobaric thermal dependence of the thermal conductivity of albite and diopside
431	glass is consistent with the experimental findings of Hofmeister et al (2009) as is the
432	observation that glass k values are larger than values for corresponding liquids when
433	compared at temperatures around the glass transition. Because the properties of a glass
434	depend on its preparation (thermal) history, direct comparison between NEMD values
435	and laboratory results is not meaningful given the enormously different cooling rates
436	during preparation of computer versus laboratory glasses. Additional NEMD simulations
437	on the glasses are needed to quantify the effects of preparation history on glass thermal
438	conductivity. Diopsidic and albitic glasses have thermal conductivities of k=1.14 W/m K
439	and k=1.50 W/m K, respectively, at similar state points (e.g., T=2059 \pm 12 K, P=-0.04
440	± 0.14 GPa and T=2091 ± 20 K, P=0.20 ± 0.23 GPa, respectively). The more polymerized
441	NaAlSi ₃ O ₈ composition in which, to first order, each oxygen has two nearest neighbors
442	of Si and/or Al (at low pressure) is a better thermal conductor than the less polymerized
443	composition $CaMgSi_2O_6$ in which, to first order, two of the three oxygens of the
444	metasilicate (SiO ₃) backbone have one nearest neighbor of Si and the remaining oxygen

is bridging oxygen. The relationship between glass or melt atomic structure and phonon
conductivity is discussed more fully in Part II. Here we note that as pressure increases,
this effect becomes quantitatively muted since, at high pressures structures approximately
converge being dominated by high coordination numbers.

- 449
- 450

IMPLICATIONS

451 Although quantitative knowledge of the effects of temperature, pressure and 452 composition on the phonon conductivity of silicate liquids is critical for the analysis of 453 many geophysical and petrological problems, very few measurements exist due to 454 experimental difficulties. There are virtually no measurements on the effects of pressure 455 on thermal conductivity of silicate liquids that we are aware of. In this study, we have 456 implemented a Nonequilibrium Molecular Dynamics technique within the context of 457 classical Molecular Dynamics to study the phonon conductivities of amorphous (molten 458 and glassy) Mg₂SiO₄, CaMgSi₂O₆ and NaAlSi₃O₈ at elevated temperatures (2500-4500 459 K) and pressures (0-30 GPa) and provide estimates of this important geophysical 460 parameter in these liquids. The NEMD method takes account of finite-size effects and 461 faithfully captures experimental thermal conductivities for simple fluids such as Ar and 462 alkali halide liquids. The NEMD results compare very well with ambient pressure 463 experimental values for liquid CaMgSi₂O₆ and NaAlSi₃O₈ from Hofmeister et al (2009). 464 For example, experimental values at 1-bar for CaMgSi₂O₆ and NaAlSi₃O₈ at 2000 K of 465 1.15 W/m K and 1.55 W/m K compare well with the NEMD values at the same state 466 point of 1.14 W/m K and 1.45 W/m K, respectively. In the temperature range of this 467 study all compositions exhibit a negative dependence of k with temperature and a strong

468	positive dependence of k with pressure. There is also a discernable effect at low pressure
469	and identical temperatures such that the thermal conductivity increases as the extent of
470	polymerization increases. For example, molten albite, exhibits a greater thermal
471	conductivity than molten Mg_2SiO_4 when compared at comparable state points. As
472	pressure increases this polymerization effect is damped presumably because the effect of
473	pressure is to increase the coordination number of oxygen around a central Si and
474	likewise the coordination number of Si and other cations around a central oxygen. As
475	pressure increases, all compositions become closer in structure and hence the structural
476	control on thermal conductivity diminishes. In part II of this study, the MD-derived
477	thermal conductivities are related to macroscopic thermodynamic properties and melt
478	structures.
479	

481 **References**

- 483 Allwardt, J.R., Stebbins, J., Terasaki, H., Du, Lin-Shu, Frost, D.J., Withers, A.C., Hirschmann, M.M., Suzuki, A., and Ohtani, E. (2007) Effect of structural transitions on 484 properties of high-pressure silicate melts; ²⁷Al NMR, glass densities, and melt viscosities. 485 American Mineralogist, 92, 1093-1104. 486 487 488 Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., and Morard, G. (2013) Melting of 489 Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction. Science, 340, 464-490 466. 491 492 Arndt, J., and Häberle, F. (1973) Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions. Contributions to Mineralogy and 493 494 Petrology, 39, 175-183. 495 496 Beck, P., Goncharov, A.F., Struzhkin, V., Militzer, B., Mao, H.-K., and Hemley, R.J. 497 (2007) Measurement of thermal diffusivity at high pressure using a transient heating 498 technique. Applied Physics Letters, 91, 181914-(1-3). 499 500 Bedrov, D., Smith, G.D., and Sewell, T.D. (2000) Thermal conductivity of liquid 501 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics 502 simulations. Chemical Physics Letters, 324, 64-68. 503 504 Bridgman, P.W. (1914) A complete collection of thermodynamic formulas. Physical Review, 3, 273-281. 505 506 507 Cao, B.Y. (2008) Nonequilibrium molecular dynamics calculation of the thermal 508 conductivity based on an improvised relaxation scheme. The Journal of Chemical 509 Physics, 129, 074106 1-8. 510 511 Chantrenne, P., and Barrat, J.-L. (2004) Finite size effects in determination of thermal 512 conductivities: comparing molecular dynamics results with simple models. Journal of 513 Heat Transfer, 126, 577-585. 514 515 Creamer, J. (2012) Modeling fluid-rock Interaction, melt-rock interaction, and silicate 516 melt properties at crustal to planetary interior conditions. PhD. thesis, University of 517 California, Santa Barbara, 117 p. 518 519 Daniel, I., Gillet, P., McMillan, P.F., and Poe, B.T. (1996) Raman spectroscopic study of 520 structural changes in calcium aluminate (CaAl₂O₄) glass at high pressure and high 521 temperature. Chemical Geology, 128, 5-15. 522 523 de Koker, N., Steinle-Neumann, G., and Vlcek, V. (2012) Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in the Earth's core. 524 525 Proceedings of the National Academy of Sciences, 109, 4070-4073.
- 526

527 Degiovanni A., Andre S., and Maillet D. (1994) Phonic conductivity measurement of a semi - transparent material. In: Tong TW (ed) Thermal conductivity 22. Technomic, 528 Lancaster, PN, pp 623-633. 529 530 531 Donth, E-J. (2001) Relaxation Dynamics in Liquids and Disordered Materials. Springer 532 Series in Materials Science, 48, 419. 533 Galamba, N., Nieto de Castro, C.A., and Ely, J.F. (2004) Thermal conductivity of molten 534 535 alkali halides from equilibrium molecular dynamics simulations. Journal of Chemical 536 Physics, 120, 8676-8682. 537 538 Ghiorso M., and Spera F. (2009) Large scale simulations. Reviews of Mineralogy and Geochemistry, 71, 437-463 (eds. R. Wentzcovitch and L. Stixrude). Mineralogical 539 540 Society of America. 541 542 Giordano, D., and Dingwell, D. B. (2003) The kinetic fragility of natural silicate melts. 543 Journal of Physics: Condensed Matter, 15, S945. 544 545 Hammerschmidt, U., and Sabuga, W. (2000) Transient Hot Wire Method (THW): Uncertainty Assessment. International Journal of Thermophysics, 21, 1255-78. 546 547 548 Healy, J.J, de Groot, J.J, and Kestin, J. (1976) The Theory of the Transient Hot-Wire 549 Method for Measuring Thermal Conductivity. Physica C, 82, 392-408. 550 551 Hernlund, J., and Jellinek, A. (2010) Dynamics and structure of a stirred partially molten ultralow-velocity zone. Earth and Planetary Science Letters, 296, 1-8. 552 553 554 Hofmeister, A. (2007) Pressure dependence of thermal transport properties. Proceedings 555 of the National Academy of Sciences, 104, 9192-7. 556 557 Hofmeister, A.M., Whittington, A.G., and Pertermann, M. (2009). Transport properties of 558 high albite crystals and near-end member feldspar and pyroxene glasses and melts to high 559 temperature. Contributions to Mineralogy and Petrology, 158, Pp. 381-400. 560 561 Idehara, K. (2011) Structural heterogeneity of an ultra-low-velocity zone beneath the Philippine Islands: Implications for core-mantle chemical interactions induced by 562 massive partial melting at the bottom of the mantle. Physics of the Earth and Planetary 563 564 Interiors, 184, 80-90. 565 566 Kang, Y., and Morita, K. (2006) Thermal Conductivity of the CaO-Al₂O₃-SiO₂ System. 567 Iron and Steel Institute of Japan International, 46, 420-426. 568 569 Karki, B. B., Bohara, B., and Stixrude, L. (2011) First-principles study of diffusion and 570 viscosity of anorthite (CaAl2Si2O8) liquid at high pressure. American Mineralogist, 96, 571 744-751.

573	Kittel, C. (1949) Interpretation of the thermal conductivity of glasses. Physical Review
574	Series II, 75, 972-974.
575	
576	Kittel, C., and Kroemer, H. (1980) Thermal Physics. W. H. Freeman and Company.
577	
578	Kubo, R. (1966) The fluctuation-dissipation theorem. Reports on Progress in Physics, 29,
579	255-284.
580	
581	Langer, J.S. (2014) Theories of glass formation and the glass transition. Reports on
582	Progress in Physics, 77, 042501.
583	
584	Lee, H. L., and Hasselman, D.P.H. (1985) Comparison of Data for Thermal Diffusivity
585	Obtained by Laser-Flash Method Using Thermocouple and Photodetector. Journal of the
586	American Ceramic Society, 68, C-12–C-13.
587	
588	Martin, B., Spera, F.J., Ghiorso, M., and Nevins, D. (2009) Structure, thermodynamic
589	and transport properties of molten Mg ₂ SiO ₄ : Molecular dynamics simulations and model
590	EOS. American Mineralogist, 94, 693-703.
591	
592	Martin G.B., Ghiorso, M., and Spera, F. (2012) Transport properties and equation of
593	1954state of 1-bar eutectic melt in the system CaAl ₂ Si ₂ O ₈ -CaMgSi ₂ O ₆ by molecular
594	dynamics simulation. American Mineralogist, 97, 1155-1164.
595	
596	Martinez, L.M., and Angell, C.A. (2001) A thermodynamic connection to the fragility of
597	glass-forming liquids. Nature, 410, 663-667.
598	
599	Matsui M. (1998) Computational modeling of crystals and liquids in the system Na2O–
600	CaO-MgO-Al2O3-SiO2. In Properties of Earth and Planetary Materials at High Pressure
601	and Temperature (eds. M. H. Manghnani and T. Yagi). AGU, Washington, DC, pp. 145-
602	148.
603	
604	McBirney, A., and Murase, T. (1973) Rheological Properties of Magma. Annual Review
605	of Earth and Planetary Sciences, 12, 337-357.
606	· / /
607	Mehling, H., Hautzinger, G., Nilsson, O., Fricke, J., Hofmann, R., and Hahn, O. (1998)
608	Thermal Diffusivity of Semitransparent Materials Determined by the Laser-Flash Method
609	Applying a New Analytical Model. International Journal of Thermophysics, 19, 941-949.
610	
611	Metzler, R., and Klafter, J. (2004) The restaurant at the end of the random walk: recent
612	developments in the description of anomalous transport by fractional dynamics. Journal
613	of Physics A: Mathematical and General, 37, R161-R208.
614	
615	Morgan, N. A., and Spera, F. J. (2001) A molecular dynamics study of the glass transition
616	in CaAl ₂ Si ₂ O ₈ : Thermodynamics and tracer diffusion. American Mineralogist, 86, 915-
617	926.

619 620	Müller-Plathe, F. (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. Journal of Chemical Physics, 106, 6082-85.
621	
622	Müller-Plathe, F., and Bordat, P. (2004) Novel Methods in Soft Matter Simulations,
623	edited by M. Karttunen, I. Vattulainen, and A. Lukkarinen, Lecture Notes in Physics Vol.
624	640. Springer, Heidelberg, Germany.
625	
626	Mysen, B.O., and Richet, P. (2005) Silicate Glasses and Melts, Properties and Structure.
627	Elsevier, Amsterdam, Pp. 544.
628	
629	Nevins, D., Spera, F.J., and Ghiorso, M. (2009) Shear Viscosity and diffusion in liquid
630	MgSiO ₃ : Transport properties and implications for terrestrial planet magma oceans.
631	American Mineralogist, 94, 975-980.
632	
633	Olsen P (2013) The geodynamo's unique longevity Physics Today 66 11 30
634	
635	Passaglia E and Martin G M (1964) Variation of glass temperature with pressure in
636	nolypronylene The Journal of Research of the National Institute of Standards and
637	Technology 68A 273
638	Teemology, 0011, 275.
630	Pertermann M and Hofmeister A (2006) Thermal diffusivity of Olivine-group
640	minerals at high temperature. A merican Mineralogist 01, 1747, 1760
640 641	minerals at high temperature. American Mineralogist, 91, 1747-1700.
642	Portermann M. Whittington A.C. Hofmaister A.M. Spare F. and Zavak I. (2008)
642	Transport properties of low seniding single existely, A.M., Speta, F., and Zayak, J. (2008)
643	tamparature Contributions to Minoralogy and Detrology 155 (80,702)
044 645	temperature. Contributions to Minerology and Petrology, 155, 689-702.
645	Dependent D. C. (1005) The Art of Melecular Dynamics Simulation Combridge
040 647	La L
04/	University Press.
648	
649	Reinsch, S., Nacimiento, M.L.F., Muller, R., and Zanotto, E.D. (2008) Crystal growth
650	kinetics in cordierite and diopside glasses in wide temperature ranges. Journal of Non-
651	Crystalline Solids, 354, 5386-5394.
652	
653	Roland, C.M., Hensel-Bielowka, S., Paluch, M., and Casalini, R. (2005) Supercooled
654	dynamics of glass-forming liquids and polymers under hydrostatic pressure. Reports on
655	Progress in Physics, 68, 140.
656	
657	Rosenfeld, Y., and Tarazona, P. (1998) Density functional theory and the asymptotic high
658	density expansion of the free energy of classical solids and fluids. Molecular Physics: An
659	International Journal at the Interface Between Chemistry and Physics, 95, 141-150.
660	
661	Schelling, P.K., Phillpot, S.R., and Keblinski, P. (2002) Comparison of atomic-level
662	simulation methods for computing thermal conductivity. Physical Review B, 65, 144306
663	1-12.
664	

005	
666 667	Spera, F.J., Nevins, D., Ghiorso, M.S., and Cutler, I. (2009) Structure, thermodynamics and transport properties of CaA1 ₂ Si ₂ O ₈ liquid. Part I: Molecular dynamics simulations.
668 669	Geochimica et Cosmochimica Acta, 73, 6918-6936.
670 671 672 673	Spera, F.J., Ghiorso, M. S., and Nevins, D. (2011) Structure, thermodynamic and transport properties of liquid MgSiO ₃ : Comparison of molecular models and laboratory results. Geochimica et Cosmochimica Acta, 75, 1272-1296.
674 675 676	Stackhouse, S and Stixrude, L. (2010) Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals. Reviews in Mineralogy & Geochemistry. 71, 253-269.
677 678 679 680 681	Stixrude, L., de Koker, N., Sun, N., Mookherjee, M., and Karki, B.B. (2009) Thermodynamics of silicate liquids in the deep Earth. Earth and Planetary Science Letters, 278, 226-232.
682 683 684 685	Sun, N., Stixrude, L., de Koker, N., and Karki, B.B. (2011) First principles molecular dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure. Geochimica et Cosmochimica Acta, 75, 3792-3802.
686 687 688 680	Terao, T., Lussetti, E., and Müller-Plathe F. (2007) Nonequilibrium molecular dynamics methods for computing the thermal conductivity: application to amorphous polymers. Physical Review E, 75.
690 691 692	Tikunoff, D. (2013) Composition, Temperature and Pressure Dependence of the Phonon (Thermal) Conductivity of Silicate Geoliquids. M.S. thesis, University of California, Santa Barbara, 73 p.
693 694 695 696 697	Tritt T.M., and Weston D. (2004) Measurement techniques and considerations for determining thermal conductivity of bulk materials. Tritt T.M., Thermal conductivity theory, properties, and applications, Kluwer Academic/Plenum Publishers, New York, 187–203.
698 699 700 701	Varshney, V., Patnaik, S., Roy, A., and Farmer, B. (2009) Heat Transport in Epoxy Networks: a Molecular Dynamics Study. Polymer, 50, 3378-3385.
702 703 704	Vogelsang, R., Hoheisel, C. and Ciccotti, G. (1987) Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations. The Journal of Chemical Physics, 86, 6371-6375.
705 706 707 708	Wang, B., Kuo, J., Bae, S., and Granick, S. (2012) When Brownian Diffusion is not Gaussian. Nature Materials, 11, 481.
709 710	Weeks, E. R., and Weitz D.A. (2002) Subdiffusion and the cage effect studied near the colloidal glass transition. Journal of Chemical Physics, 284, 361-367.

711

712	Wen, L.,	and Helmberger	: D.	(1998)) Ultra-Low	Velocity	Zones	Near the	Core-Mantle
/ 1 4	··· •···, E.,	, and mennioerger	·, •	(1))0) Olilia Dom	, 0100109	201100	i voui tiiv	

713 Boundary from Broadband PKP Precursors. Science, 279, 1701-1703.

714

- 715 Whittington, A., Hofmeister, A., and Nabelek, P. (2009) Temperature Dependent
- 716 Thermal Diffusivity of the Earth's Crust and Implications for Magmatism. Nature, 458,
- 717 319-321.

718

- Yoon, Y.G., Car, R., Srolovitz, D.J., and Scandolo, S. (2004) Thermal conductivity of
 crystalline quartz from classical simulations. Physical Review B, 70, 012302 1-4.
- 721
- 722
- 723
- 724

725

- 726
- 727

729 Figure Legends

701	F : 1 N (1) (1) (1) (1) (2) (2) (2) (3)
/31	Figure 1: Phonon thermal conductivity of CaMgSi ₂ O ₆ (ρ =2569 kg/m ³ at P=0.36 ±0.1/
732	GPa and $I=1/64 \pm 13$ K) versus particle swap time interval Ω in femtoseconds. Aspect
733	ratio of the NEMD box equals unity (i.e., k has not been corrected for finite-system-size
734	effects). For large values of Ω , the uncertainty in k is relatively large although its mean
735	value is not very different from the best estimate of 1.154 ± 0.02 W/m K at Ω =20. The
736	laboratory value from Hofmeister et al. (2009) at 1764 K and 1 bar is 1.17 ± 0.06 W/m K.
737	Applying a finite-system-size correction increases the value of k whereas the effect of
738	pressure is to increase k from its one-bar value. These effects approximately cancel in
739	this case. In the remainder of this work the duration between swap events is between 10
740	and 30 fs, and the total duration of NEMD simulation is 2 ns.
741	
742	Figure 2 : Inverse phonon thermal conductivity (k^{-1}) versus inverse system cell length L_z
743	for CaMgSi ₂ O ₆ at T=2060 ±15 K P= -0.04 ±0.15 GPa and ρ =2392 kg/m ³ Extrapolation
744	in the limit $I \rightarrow 0$ the intercept gives the value k=1 143 ±0 004 W/m K. This can be
745	compared to the laboratory value at 2000 K and ambient pressure of 1.159 ± 0.058 from
745	Hofmeister et al. (2000). The number of particles N used in the simulations for $L = 4.22$
740	r_z m 8.44 nm 12.66 nm and 16.88 nm are 5000 10000 15000 and 20000 respectively. In
747	init, 8.44 mil, 12.00 mil and 10.88 mil are 5000,10000,15000 and 20000, respectively. In all assess the swap time interval is $\Omega = 20$ fs and the total simulation duration $t = 2$ ns
740	an cases the swap time interval is $22-20$ is and the total simulation duration $t_D - 2$ its.
750	Figure 2. Thermal conductivity for amombous dispoids (close and liquid) years
750	Figure 5. Thermal conductivity for amorphous diopside (glass and figure) versus
/51	pressure along quasi-isotherms ~ 2000 K, 2500 K, 3500 K and 4500 K. Raw data is in
/52	Table 1. Data at the highest pressure are near the limits of the classical potential used in
/53	the simulations and are included for the purposes of completeness.
/54	
755	Figure 4: Variation of thermal conductivity at ambient conditions and at 10 GPa for
756	CaMgS1 ₂ O ₆ composition. The effect of T on k is muted as pressure increases.
757	
758	Figure 5: Thermal conductivity for amorphous albite (glass and liquid) versus pressure
759	along three quasi-isotherms at ~2000 K, 3000 K and 4000 K. Raw data can be found in
760	Table 2.
761	
762	Figure 5: Thermal conductivity for amorphous albite (glass and liquid) versus pressure
763	along three quasi-isotherms at ~2000 K, 3000 K and 4000 K. Raw data can be found in
764	Table 2.
765	
766	Figure 6: Thermal conductivity of molten Mg ₂ SiO ₄ at $P = 0.07 \pm 0.16GPa$ as a function
767	of temperature.
768	-
769	Figure7: Thermal conductivity of molten Mg ₂ SiO ₄ as a function of pressure along the
770	$T = 3548 \pm 18K$ isotherm.
771	
772	
773	
774	
775	
115	

776 **TABLES**

Table 1: NEMD results for liquid and glassy CaMgSi₂O₆. Temperatures in bold are

averages used in the Figures. 1σ fluctuations are reported for T and P of the NEMD run.

 1σ errors for k are found by propagation of error of the computed T gradient and the

780 deviation from linearity in 1/k versus $1/L_z$.

Density	- 40	0.0			k (W/m	σ _k (W/m	State
(kg/m ³)	T (K)	σ _T (K)	P (GPa)	σ _P (GPa)	K)	K)	
2392.49	2059	12.31	-0.04	0.14	1.143	0.002	Glass
2936.33	2067	11.07	5.24	0.16	1.585	0.009	Glass
3199.44	2084	11.93	10.09	0.17	2.023	0.067	Glass
3593.14	2075	15.85	20.20	0.26	2.262	0.060	Glass
3882.94	2096	12.55	31.63	0.15	2.870	0.113	Glass
	2076						
2287.70	2519	30.38	0.13	0.33	1.194	0.040	Glass
2842.69	2554	18.21	5.27	0.21	1.611	0.087	Glass
3115.19	2559	18.47	10.07	0.27	1.914	0.057	Glass
3543.53	2561	18.11	21.51	0.27	2.400	0.099	Glass
3800.88	2561	22.28	31.30	0.35	2.265	0.067	Glass
	2551						
2250.00	2815	13.60	0.37	0.13	1.088	0.022	Liquid
3107.01	2812	17.00	10.80	0.25	1.990	0.004	Liquid
2130.00	3055	14.57	0.18	0.13	1.018	0.003	Liquid
3047.07	3060	19.88	10.39	0.23	1.942	0.022	Liquid
1990.00	3300	15.89	0.03	0.12	0.899	0.006	Liquid
3017.68	3295	21.26	10.51	0.25	1.930	0.002	Liquid
2043.78	3558	22.13	0.43	0.16	0.977	0.007	Liquid
2770.78	3562	12.01	6.82	0.12	1.903	0.005	Liquid
2931.74	3540	22.92	9.59	0.28	1.862	0.014	Liquid
3354.22	3516	31.20	20.24	0.38	2.495	0.099	Liquid
3618.39	3523	28.35	30.10	0.36	3.045	0.110	Liquid
	3540						
1570.00	3814	19.26	-0.13	0.10	0.675	0.012	Liquid
2950.00	3784	17.60	10.69	0.19	1.892	0.002	Liquid
1770.00	4053	20.00	0.23	0.12	0.801	0.001	Liquid
2910.00	4037	18.81	10.64	0.19	1.962	0.005	Liquid
							· · · ·
1730.00	4304	20.82	0.35	0.12	0.768	0.011	Liquid

2870.00	4313	21.92	10.64	0.21	1.850	0.041	Liquid
1625.79	4527	28.72	0.33	0.15	0.717	0.014	Liquid
2506.22	4521	36.77	5.40	0.30	1.437	0.024	Liquid
2824.53	4525	30.94	10.38	0.27	1.847	0.072	Liquid
3199.46	4525	38.37	19.71	0.41	2.280	0.145	Liquid
3494.87	4488	44.71	30.18	0.52	2.292	0.093	Liquid
	4517						

783

784

785

786

6/4

787

Table 2: NEMD results for liquid and glassy NaAlSi₃O₈. Temperatures in bold are

averages used in the Figures. 1σ fluctuations are reported for T and P of the NEMD run.

 1σ errors for k are found by propagation of error of the computed T gradient and the

791 deviation from linearity in 1/k versus $1/L_z$.

792 793

Density							State
(kg/m ³)	T (K)	σ _T (K)	P (GPa)	σ _P (GPa)	k (W/mK)	σ _k (W/mK)	
2313.68	2091	20.30	0.20	0.23	1.454	0.083	Glass
2786.85	2057	23.56	4.96	0.36	1.959	0.028	Glass
3072.49	2078	19.75	10.22	0.33	2.161	0.133	Glass
3487.10	2064	17.75	21.51	0.31	2.381	0.089	Glass
3698.19	2060	19.00	29.61	0.28	2.883	0.152	Glass
	2070						
2093.73	3062	19.90	0.04	0.19	0.989	0.036	Glass
2737.45	3057	23.72	6.05	0.29	1.768	0.093	Glass
2960.77	3047	24.97	10.31	0.30	2.548	0.135	Glass
3271.26	3046	23.22	18.65	0.34	2.294	0.059	Glass
3578.91	3068	19.05	30.55	0.30	2.716	0.142	Glass
	3056						
1841.85	4024	43.56	0.22	0.27	0.888	0.033	Liquid
2550.35	4013	37.82	5.11	0.37	1.652	0.098	Liquid
2803.67	3996	33.72	9.42	0.43	1.884	0.055	Liquid
3250.39	4016	36.07	21.88	0.48	2.417	0.022	Liquid
3464.66	4034	30.61	30.72	0.39	2.597	0.206	Liquid
	4017						

794

795

796

797

798

799

800

802

Table 3: NEMD results for liquid Mg_2SiO_4 thermal conductivity values. Temperatures

and Pressures in bold are averages used in the Figures. 1σ fluctuations are reported for T

and P of the NEMD run. 1σ errors for k are found by propagation of error of the

806 computed T gradient and the deviation from linearity in 1/k versus $1/L_z$.

807

8	0	8

Density (kg/m³)	Т (К)	σ _⊤ (K)	P (GPa)	σ₅ (GPa)	k (W/mK)	σ⊧ (W/mK)
2324.97	2549	12.51	0.02	0.14	1.364	0.009
2163.23	2723	27.75	-0.35	0.26	1.163	0.020
2163.23	3023	30.64	0.09	0.27	1.170	0.038
2031.11	3289	16.77	0.00	0.13	1.056	0.005
1825.22	3555	18.67	-0.16	0.12	0.896	0.002
1939.27	3805	18.60	0.36	0.13	1.043	0.004
1798.12	4062	19.39	0.26	0.12	0.933	0.001
1588.67	4581	30.48	0.34	0.11	0.681	0.001
			0.07			
1825.22	3555	18.67	-0.16	0.12	0.896	0.002
2306.17	3567	19.63	1.79	0.15	1.292	0.008
2503.73	3552	16.96	3.51	0.17	1.629	0.013
2724.53	3528	17.79	6.28	0.18	1.825	0.023
2844.71	3535	18.21	8.32	0.19	1.936	0.023
2972.07	3554	17.97	10.96	0.20	2.114	0.005
	3548					

809

- 811
- 812 FIGURES
- 813
- 814 **Figure 1**

Figure 2

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4918

Revision 2

828 Figure 3

830

833 **Figure 4**

834

837 **Figure 5**

839

842 **Figure 6**

843

845 **Figure 7**

846