Revision 1 1 2 The role of water in generation of group II kimberlite magmas: constraints from multiple saturation experiments 3 4 Alexander G. Sokol^{1,2}*, Alexey N. Kruk¹ and Yury N. Palyanov^{1,2} 5 6 ¹ V.S. Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian 7 8 Branch, 3, Koptyug Ave., Novosibirsk, 630090, Russian Federation 9 ² Novosibirsk State University, 2, Pirogov str., Novosibirsk, 630090, Russian Federation 10 11 *Corresponding author. E-mail address: sokola@igm.nsc.ru 12 13 14 ABSTRACT 15 16 Multiple saturation experiments have been performed in a multicomponent system at 17 6.3 to 7.5 GPa and 1400-1670°C using a split-sphere multianvil apparatus to constrain the 18 conditions of kimberlite magma generation. The starting bulk compositions of samples 19 corresponded to the average group II kimberlite (orangeite), with water contents varying 20 from 5 to 9 wt.% H₂O and the CO₂/(CO₂+H₂O) molar ratio from 0.37 to 0.24. The charges 21 were placed inside graphite liners sealed in Pt capsules to avoid Fe loss. Oxygen fugacity 22 (fO_2) during the experiment was buffered by the equilibrium between graphite and a hydrous 23 carbonate-silicate melt about EMOG/D. As water in the starting kimberlite increased from 5 24 to 9 wt.%, the temperature of its complete melting became ~100°C lower (relative to 1670°

5/28

25	C), both in the 6.3 GPa and 7.5 GPa runs. Orthopyroxene was stable just below the liquidus
26	at all pressures and H_2O concentrations applied in the experiments. An olivine + garnet +
27	orthopyroxene assemblage was present at $\leq 100^{\circ}$ C below the liquidus when H ₂ O was 5 wt.%.
28	At 7 and 9 wt.% H_2O , the same assemblage appeared at 100-150°C and >200°C below the
29	liquidus, respectively. In no experiment was clinopyroxene observed as a run product.
30	Olivine, garnet, and orthopyroxene stable in the multiply saturated melt were
31	compositionally similar to mantle peridotite minerals found as xenoliths in kimberlites
32	worldwide. Thus we infer that generation of group II kimberlite magma may occur by partial
33	melting of carbonated (metasomatized) garnet harzburgite at pressures from 6.3 to 7.5 GPa,
34	temperatures about 1500-1600°C, and no more than 5 wt.% H_2O in the melt. Water, in the
35	amounts required to produce this magma, may come from interaction of K-Ca-rich
36	carbonatite melt, infiltrating from a deeper mantle source, with a peridotite protolith
37	containing H ₂ O in nominally anhydrous minerals and, possibly, also in phlogopite.
38	
39	Keywords: experiment, mantle, kimberlite, magma, water, fluid
40	
41	INTRODUCTION
42	
43	Group II (micaceous) kimberlite is an ultrabasic rock rich in potassium and volatiles,
44	with macrocrysts and phenocrysts of phlogopite in the groundmass (Smith et al. 1985;
45	Mitchell 1986). Its geochemistry indicates an origin from lithospheric mantle source regions
46	metasomatized by melts or fluids associated with ancient subduction events (Becker and Le
47	Roex 2006). However, the specific conditions of magma generation, and especially the role

48	of volatiles, remain a subject of discussions (Ulmer and Sweeney 2002; Brey et al. 2008;
49	2009; Foley et al. 2009; Kamenetsky et al. 2009; Girnis et al., 2011; Sokol et al. 2013a,b).
50	According to experimental evidence, kimberlite magma can be produced by small-degree
51	partial melting of carbonated peridotite in lower lithospheric or asthenospheric sources
52	(Canil and Scarfe 1990; Gudfinnsson and Presnall 2000; Ulmer and Sweeney 2002; Brey et
53	al. 2008; 2009; Foley et al. 2009). Strongly fractionated REE patterns of kimberlites, with
54	high LREE enrichment, imply partial melting in the presence of residual garnet (Mitchell
55	1986; Ringwood et al. 1992). Thus, olivine, garnet and pyroxene should be present at or near
56	the liquidus in kimberlite magmas in the P, T, fH_2O and fCO_2 conditions in which they
57	separated from their source lithology (Ringwood et al. 1992).
58	The pressures and temperatures at which magma becomes saturated in near-liquidus
59	multiphase residue can be found experimentally by the so-called multiple saturation
60	technique. It is applicable if (1) the starting material represents a primary magma
61	composition; (2) equilibrium is achieved between the melt phase and the residue at a
62	specific pressure and temperature (Ulmer and Sweeney 2002; Funk and Luth 2012).
63	Saturation of group II kimberlite melt with olivine, orthopyroxene and garnet (garnet
64	harzburgite residue) was studied (Ulmer and Sweeney 2002) at pressures from 4 to 10 GPa
65	and at temperatures in a broad range. Note that the cited experiments at the pressures 6.0 and
66	7.5 GPa, the most important for group II kimberlite generation, were run at temperatures
67	within 1480°C and 1450°C, respectively, and the liquidus was not encountered. The authors
68	suggested two explanations of their results: either (i) the used kimberlite compositions did
69	not represent the primary compositions being enriched in olivine, orthopyroxene, or garnet
70	components by incorporation of harzburgitic xenoliths, or (ii) the group II kimberlite

71 compositions represented a liquid, which most likely was in equilibrium with a garnet

harzburgite residue (Ulmer and Sweeney 2002).

73 A later detailed geochemical study of hypabyssal group II kimberlites from South 74 Africa (Becker and Le Roex 2006) allowed estimating the average close-to-primary 75 kimberlite magma composition (the one least affected by alteration, crustal contamination 76 and fractional crystallization, and corrected for macrocryst entrainment) (Table 1). 77 Compared with the close-to-primary kimberlite magma composition from (Becker and Le 78 Roex 2006), the average composition of group II kimberlites used in (Ulmer and Sweeney 79 2002) contains similar amounts of SiO₂, the latter being slightly more enriched in MgO 80 (29.1 against 23.1 wt.%, respectively) and depleted in CaO (5.9 and 10.0 wt.%, 81 respectively). However, the difference appears to be not very significant taking into account 82 the uncertainty in the estimates of average close-to-primary kimberlite magma composition 83 (Becker and Le Roex 2006). It is more important that the $X_{CO2}=CO_2/(CO_2+H_2O)$ molar ratio 84 (0.19) in this composition (Becker and Le Roex 2006) is much below the 0.37 value in the 85 kimberlite used for the multiple saturation experiments of Ulmer and Sweeney (2002). The composition and amounts of fluids were shown earlier (Girnis et al. 1995) to 86 87 strongly affect near-liquidus phase relations in group I kimberlites, and magnesite instead of 88 olivine to become stable close to the liquidus at 5.5 GPa and X_{CO2}>0.7. Later we (Sokol et 89 al. 2013a) encounter near-liquidus Ol+Grt+Cpx saturation of the Udachnaya group I 90 kimberlite melt at 6.3 and 7.5 GPa and $X_{CO2}=0.26-0.38$. At the same time, only Ol+Grt 91 appeared near the liquidus in 6.5 GPa experiments with a low-H₂O composition of the 92 Udachnaya kimberlite at X_{CO2} about 0.8 (Sharygin et al. 2013). Note that simultaneous

93	saturation of kimberlite melts of other compositions is possible at a broad range of X_{CO2}
94	conditions (Eggler and Wendlandt 1979; Girnis et al. 2011).
95	Below we report a detailed multiple saturation experimental study of group II
96	kimberlite at the pressures 6.3 and 7.5 GPa corresponding to its generation depths in
97	subcratonic lithospheric mantle. We have constrained the liquidus temperatures for the
98	average composition of group II kimberlites used in (Ulmer and Sweeney 2002) and studied
99	the near-liquidus phase relations in the system at 5 to 9 wt.% bulk H ₂ O and X_{CO2} =0.24-0.37.
100	The reported results have implications for the potential temperatures of magma generation in
101	subcratonic lithosphere, as well as for the source composition and role of volatiles in the
102	primary magma.
103	
104	EXPERIMENTAL AND ANALYTICAL PROCEDURES
105	
106	Starting materials
107	
108	The starting bulk kimberlite composition (Table 1) selected to study the P-T conditions
109	and the role of water in magma generation corresponded closely to the average group II
110	kimberlite (Smith et al. 1985) but with slightly higher (0.93 wt.%) Na ₂ O, as reported in
111	(Ulmer and Sweeney 2002). The composition B_1 we used was identical to A (Table 1), and
112	the compositions B_2 , B_3 , and B_4 differed from A in the amount of water only. The basic
113	composition was prepared following the procedure from (Ulmer and Sweeney 2002):
114	
117	synthesized from reagent-grade chemicals, previously dried at 1100°C (SiO ₂ , TiO ₂ , Cr ₂ O ₃ ,
115	synthesized from reagent-grade chemicals, previously dried at 1100°C (SiO ₂ , TiO ₂ , Cr ₂ O ₃ , Al ₂ O ₃ , MgO, MnO, NiO), weighed, homogenized in an agate mortar under alcohol, and

116	fired again at 1100°C. Fe was added as presynthesized fayalite, and carbonate was added as
117	CaCO ₃ , K ₂ CO ₃ , Na ₂ CO ₃ , and MgCO ₃ . Water was added as Mg(OH) ₂ to charges of a
118	standard composition with 5 wt.% H_2O ; the compositions were homogenized, dried, and
119	stored at 90°C. In the case of 7-9 wt.% H_2O compositions, it was distilled water added by a
120	micro-syringe (\pm 0.2 mg accuracy), immediately before the final capsule assembly.
121	The choice of capsule material in long-run high-temperature experiments with
122	volatiles is a challenge because of Fe loss, which typically results from Fe alloying with Pt.
123	Ulmer and Sweeney (2002) used simple Pt capsules without liners at 6.0 to 7.5 GPa and
124	T>1350°C, i.e., in the pressure and temperature ranges of special interest to study the phase
125	composition of group II kimberlite. In those experiments, they reduced the Fe loss to
126	minimum by keeping the run times short (0.1 to 0.5 hour). Inasmuch as Fe loss is known
127	(Brey et al. 2011) to increase fO_2 in samples to about the FMQ buffer, Ulmer and Sweeney
128	(2002) may have studied the high-temperature phase composition of group II kimberlite at
129	fO_2 slightly above the CCO buffer. An alternative way is to use graphite liners sealed in the
130	Pt capsules (Girnis et al. 1995; Ulmer and Sweeney 2002) which minimizes the Fe loss to Pt
131	capsules and, at the same time, buffers fO_2 . That was the approach Ulmer and Sweeney
132	(2002) applied in their 8.0-9.5 GPa experiments and the one we chose for our study.
133	The chosen Pt capsules (6.0 mm OD, 5.5 mm ID, 3.2 mm long) allowed us to
134	perform experiments at T>1400°C, i.e., near the kimberlite liquidus. The graphite liners
135	(with 0.5 mm thick walls) welded into the Pt capsules isolated them from interacting with
136	the kimberlite melt and minimized Fe loss. Buffering by the graphite liners provided a
137	realistic oxygen fugacity in the samples: fO_2 close to or slightly below the EMOG/D buffer

138 (Stagno and Frost 2010) corresponding to equilibrium between graphite and a carbon-

139 bearing carbonate-silicate melt.

140	After water addition and final assembling, the Pt capsules were placed inside a vessel
141	filled with liquid nitrogen and welded shut (weight losses after sealing were <0.3 mg). The
142	total error on addition of extra amounts of water was ± 0.3 wt.%, as estimated on weighing
143	the sealed capsules. After welding, the capsules were compressed to 0.5 GPa for 2 min using
144	a die mold for the waterproof test to ensure its impermeability. The capsules that failed the
145	waterproof test, judging by moisture appeared on its surface, were discarded. For the 6.3
146	GPa runs, the Pt capsules were additionally pressed into CsCl. Weighing the recovered Pt
147	capsules before and after piercing clearly demonstrated the presence of fluid in the sample
148	after quenching.
140	

- 149
- 150 High pressure apparatus
- 151

152 Two series of experiments at 6.3 and 7.5 GPa have been carried out in a split-sphere 153 multianvil high-pressure apparatus (Palyanov et al. 2010). The multianvil sphere of 8/6 type 154 consists of two anvils with square faces on top and bottom and four side anvils with 155 rectangular faces placed in an octahedral cavity formed by truncating the vertices of eight 156 steel anvils. The sizes of the high-pressure cell were $21.1 \times 21.1 \times 25.4$ mm and $19 \times 19 \times 22$ 157 mm, respectively, in the 6.3 GPa and 7.5 GPa runs; the graphite heaters in the two pressure 158 runs had the inner diameters of 12 mm and 9 mm and the heights 18.8 mm and 14.8 mm 159 respectively. Pressure was calibrated by recording the change in the resistance of Bi at 2.55 160 GPa and of PbSe at 4.0 and 6.8 GPa at room temperature and by bracketing the graphite-

5/28

161	diamond equilibrium at high temperatures (Kennedy and Kennedy 1976). Temperature was
162	monitored in each experiment with a PtRh ₆ /PtRh ₃₀ thermocouple calibrated at 6.3 GPa and
163	7.5 GPa using the melting points of Ag, Ni and Pt. For details of the pressure and
164	temperature calibration see (Sokol et al. 2007; Palyanov et al. 2010). The pressure and
165	temperature were measured to the accuracy ± 0.1 GPa and $\pm 20^{\circ}$ C.
166	
167	Analytical technique
168	
169	The recovered Pt capsules were cleaned from CsCl, dried, weighed, and then sawed
170	longitudinally into halves producing a full top-to-bottom section. One half was embedded in
171	low-viscosity epoxy resin by vacuum impregnation and polished, without the use of water.
172	Samples were studied using optical and scanning electron (Tescan MYRA 3 LMU)
173	microscopy. Electron microprobe analyses (EMPA) were performed at 20 kV accelerating
174	voltage and a 20 nA beam current on a Cameca Camebax and a Jeol JXA-8100
175	microanalyzers; the beam diameters for silicate and carbonate phases were 1 to 2 μ m. The
176	standards used were: pyrope for Si, Al, and Fe; diopside for Mg and Ca; albite for Na;
177	orthoclase for K; ilmenite for Ti; and spinel for Ni. The uncertainty of the measurements
178	was within 2 relative percent for all components.
179	In spite of fast cooling rates (150-200°/s), the synthesized melts were not quenched to
180	glass but rather formed aggregates of feather-like phases consisting of 50 to 500 μ m
181	dendritic silicate and carbonate crystals (Fig.1). The quenched melts were analyzed by a
182	defocused beam with a scanning area of 100×100 μ m at 20 kV accelerating voltage and a 40
183	nA beam current on a Cameca Camebax and a Jeol JXA-8100 microprobes. However, it was

184	virtually impossible to constrain the exact composition of quenched liquids even with this
185	approach, as it was noted in many publications (e.g., Ulmer and Sweeney 2002). The
186	analyses of bulk melt compositions turned out to have quite large standard deviations,
187	especially in alkalis. For this reason, the EMPA data on alkali concentrations in melts were
188	corrected on the basis of mass-balance constraints.
189	
190	RESULTS
191	
192	Approach to equilibrium
193	
194	The role of water in the generation of group II kimberlite magma was studied in two
195	series of experiments at pressures 6.3 and 7.5 GPa, with water contents in kimberlite from 5
196	to 9 wt.%. Most of the runs at subliquidus temperatures lasted 40 hours and only four
197	experiments at the liquidus were as short as 1-2 hours. The melt pools and the residual
198	phases apparently arrived at equilibrium at long experimental times, as we may infer from
199	earlier time series experiments in a dry peridotite – CO ₂ system conducted under similar P-T
200	conditions (Brey et al. 2008), in which the compositions of both melt and peridotite minerals
201	became time-invariant already after the first few hours at 1500°C. Generally, the low
202	viscosity of H ₂ O-rich carbonate-silicate melts, high temperatures and long experimental
203	times should be favorable for equilibration. The attainment of equilibrium was judged by the
204	observed homogeneity of melt and crystalline phases. Furthermore the phases crystallized at
205	the boundary with the melt pool had the same composition as those located at some distance
206	off this boundary. Complete melting of kimberlite was achieved in almost all 1-2-hour runs.

207	Minor amounts of Opx in equilibrium with the liquid were observed only in a single 2-hour
208	run, and almost all Opx grains contacted the liquid, which was expected to provide
209	equilibrium, given that the temperature was as high as 1600°C. Note also that Fe loss from
210	the samples was basically minor and caused no influence on the results due to fO_2 buffering
211	by the graphite.
212	
213	Phase equlibria
214	
215	The weight proportions of phases in the experiment products were determined by least-
216	squares mass balance calculation for a restricted number of components in the system: SiO_2 ,
217	TiO ₂ , Al ₂ O ₃ , MgO, and CaO. The calculations were made using the starting kimberlite and
218	chemical compositions of phases, and were accurate to about the sum of squared residuals
219	\leq 1. The results are summarized in Tables 2 and 3, and in Figures 1, 2 and 3.
220	In the 6.3 GPa experiment runs, complete melting was observed at 1670°C for the 5
221	wt.% H_2O starting composition (Table 2; Fig. 2a) and at 1570°C for that with 9 wt.% H_2O .
222	Judging by the melt fraction trends and the experimental superliquidus temperatures, the
223	liquidus of kimberlite with 5 wt.% H ₂ O and 9 wt.% H ₂ O may be expected at ~1650°C and
224	~1540°C, respectively. For the entire range of H ₂ O contents, Opx was the first phase
225	crystallized below the liquidus. At 5 wt.% H ₂ O, crystallization of olivine and garnet initiated
226	in a narrow temperature interval (Fig. 2a), namely, the temperature gap between the liquidus
227	and the appearance of the olivine+garnet+orthopyroxene assemblage in equilibrium with the
228	liquid was below 100°C (Fig. 1). However, at 7 and 9 wt.% H ₂ O, the same assemblage
229	appeared at 100-150°C and >200°C below the liquidus, respectively. The assemblage

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4893 5/28
230	remained stable in the presence of liquid from 1400°C to 1570°C at 5 wt.% H_2O in
231	kimberlite. Therefore, near-liquidus multiple saturation was achieved at 5 wt.% $\rm H_2O$ but was
232	absent in the case of more hydrous compositions of kimberlite.
233	At 7.5 GPa and water contents of 5 and 9 wt.%, complete melting of kimberlite was
234	detected at 1670°C and 1600°C, respectively. Analysis of the trends (Table 2, Fig. 2b) and
235	conditions of superliquidus experiments suggests that the liquidus for kimberlite with 5
236	wt.% H ₂ O and 9 wt.% H ₂ O should correspond to ~1680°C and ~1580°C, respectively.
237	Orthopyroxene remained the only near-liquidus solid phase. The estimated temperatures of
238	the onset of crystallization for olivine and garnet are given in Fig. 2b. The olivine+garnet+
239	orthopyroxene assemblage in equilibrium with the melt likewise appeared below a gap of
240	$<100^{\circ}$ C at 5 wt.% H ₂ O and remained stable within the temperature range from 1500 to
241	1570°C. However, the high temperature limit of the assemblage stability decreased
242	dramatically at water contents above 5 wt.%. Thus, the near-liquidus multiple saturation was
243	restricted to the composition with 5 wt.% H_2O .
244	In two experiment runs (# 1350, at 6.3 and 1570 °C and # 1621-1, at 7.5 GPa and
245	1570°C), we observed graphite-to-diamond conversion in graphite liners with samples
246	bearing 5 wt.% H_2O . This led to underestimation of the melt fractions because some liquid
247	became consumed on percolation between the newly formed diamond aggregates.
248	Investigating these processes, including diamond formation, is however beyond the scope of
249	this paper and is expected to be a subject of a special further study.
250	
251	Compositions of liquid and solid phases
252	

253	The composition of quench liquids depends on the melting degree, which, in turn, is a
254	function of temperature and water content in the system. At 1400-1470°C and 5 wt.% $\rm H_2O$,
255	the melting degree was under 50 wt.%, and the melt formed a separate pool, slightly more
256	than one third of the sample, in the high-temperature region of the capsule (Table 2). The
257	melt had a carbonate-silicate composition (SiO ₂ 15-25 wt.%) and was rich in alkalis (4.2
258	wt.% K ₂ O), with CaO# from 0.22 to 0.33 (Table 3; Fig. 3a, b, e). As the temperature
259	increased, the main compositional trends of the liquid were to increase in SiO_2 and MgO and
260	to decrease in CaO (Fig. 3). SiO ₂ approached 30 wt.% only at >1600°C at 5 wt.% H ₂ O, both
261	in the 6.3 and 7.5 GPa runs. The melt contained more silica in the case of 7-9 wt.% $\rm H_2O$ in
262	kimberlite than with that of 5 wt.% H_2O , at the same temperatures, due to a greater melting
263	degree of the more hydrous samples. The Ca number in the melt of kimberlite with 5 wt.%
264	H_2O decreased from 0.3 to approximately 0.12 as the temperature changed from 1400°C to
265	1610°C (Fig. 3e), which generally corresponds to the trend in the melts of dry carbonated
266	peridotite (Brey et al. 2009; Stagno and Frost 2010). However, in the case of ≥ 6 wt.% H ₂ O,
267	Ca# of the melts became <0.2 already at 1450°C, this being consistent with low Ca# of
268	melts derived from hydrous carbonated peridotite reported by Foley et al. (2009). Note that
269	Al_2O_3 in the melt was close to 3 wt.% and depended neither on temperature nor on water
270	content in the charge (Fig. 3c, d). The obtained kimberlite liquids had the ratios of Al and
271	divalent cations similar to those in the primary magma of group II kimberlite (Fig. 3f)
272	(Becker and Le Roex 2006).
273	The graphite-to-diamond conversion in the graphite liner during the long high-
274	temperature runs # 1350 and # 1621-1 affected the kimberlite melt fraction and even melt

275 composition. To check the effect of diamond synthesis in the graphite liners on the

276	composition of melt forming immediately below the liquidus, another experimental run was
277	performed at 6.3 GPa and 1610°C (#1667). It was 1.5 hours long, i.e., far shorter than the
278	induction time required for diamond nucleation (Palyanov and Sokol, 2009). Indeed, SiO_2
279	and MgO in the melt decreased while CaO increased as a result of diamond synthesis (point
280	"G-D" in Fig. 3).
281	Neither sample produced in this study showed fluid phase bubbles. Thus, no free fluid
282	segregation occurred within the studied range of water concentrations, the water solubility in
283	the kimberlite melt exceeded 9 wt.%, and the melt remained unsaturated with respect to
284	water.
285	Olivine occurred as subhedral, sometimes prismatic, crystals from 30 μ m at low
286	temperatures up to 500 μ m at 1500-1570°C. The small crystals were colorless while the
287	large ones had a greenish hue (Fig. 1). Olivine in the samples with 5 wt.% H_2O became
288	more forsteritic (from Fo_{89} to Fo_{92}) as the temperature rose from 1400°C to 1570°C at 6.3
289	GPa; at 7.5 GPa it changed from Fo ₉₂ to Fo ₉₅ (Table 3; Fig. 4a). In the greatest part of the
290	samples with 5 wt.% H_2O , the melt-olivine partition coefficient K_D (Fe/Mg) systematically
291	increased with temperature, while the Fe number in olivine became lower (Fig. 4 b). This
292	behavior agrees with trends observed previously in peridotite-CO ₂ and peridotite-CO ₂ -H ₂ O
293	systems (Brey et al. 2008; Foley et al. 2009; Stagno and Frost 2010). However, K_D deviated
294	notably from those trends toward lower values for the same Fe# of olivine in two water-rich
295	samples. Thus, the FeO content in olivine depended on the temperature and amount of water
296	in the system.
297	Garnet formed as a subliquidus phase within narrow ranges of temperatures and water

Garnet formed as a subliquidus phase within narrow ranges of temperatures and water
 contents in some of the experiment runs. It occurred as isometric crystals up to 20 μm in size

299	at temperatures 1400°C and from 100 to 300 μm at 1570°C. The crystals were
300	compositionally uniform and showed no zonation. Small crystals were colorless while large
301	garnets varied in color from pink to mauve. Garnets crystallized in equilibrium with the
302	kimberlite melt had high percentages of pyrope and low percentages of grossular
303	components (Table 3). As the temperature rose, Mg# in garnet also increased systematically
304	(Fig. 4c). The temperature dependence of Mg# in garnet and olivine equilibrated with H_2O -
305	bearing melt agrees well with the calibration model by O'Neill and Wood (1979). The
306	contents of Cr_2O_3 varied from 2.2 to 4.7 wt.% and CaO was from 3.4 to 5.2 wt.% (Table 3).
307	The garnets synthesized in the experiments were compositionally close to mantle garnets
308	transitional between harzburgite and lherzolite suites (Sobolev et al. 1977; Schulze 2003).
309	On the other hand, low concentrations of Cr_2O_3 and high TiO_2 make them similar to garnet
310	megacrysts in kimberlite (Schulze 2003). The microprobe data recalculated following the
311	method from (Finger 1972) show garnet compositions almost free from Fe ³⁺ . None of the
312	garnets that formed at pressures 6.3 and 7.5 GPa showed significant Si excess over 3 apfu
313	indicating the absence of solid solutions with majorite.
314	Orthopyroxene was present as a solid phase at all pressures and temperatures in the
315	experiments. Most of the orthopyroxenes were subhedral prismatic colorless crystals, 30-
316	100 μ m in lower-temperature runs and up to 300 μ m at higher temperatures. It is worth of
317	note that Al ₂ O ₃ , Cr ₂ O ₃ , MgO, FeO, CaO and Na ₂ O in the obtained orthopyroxene (Table 3,
318	Fig. 4d, e, f) were very similar to those in its counterpart from mantle xenoliths in kimberlite
319	(Sobolev 1977; Dawson 1980). Al ₂ O ₃ in orthopyroxene increased from 0.4-0.6 to $1.1-1.4$
320	wt.% with the temperature rise from 1400°C to 1570-1600°C (Table. 3; Fig. 4f). Note that
321	neither pressure nor water content caused any significant influence on the concentration of

5/28

322	Al_2O_3 in kimberlite melt (Fig. 3c). Calcium was constant (from 0.8 to 1.0 wt.%) with
323	temperature rise, while in more hydrous compositions CaO decreased to 0.6 wt.% at
324	relatively low temperatures (Fig. 4e).
325	Note that mass-balance calculations indicated apparently greater Fe loss at higher
326	temperatures and water contents in kimberlite samples (Tables 2, 3). Thus, Fe concentrations
327	in the phases and the Fe and Mg solid-liquid partitioning in samples with Fe loss more than
328	0.01 (Table 2) must be slightly erroneous.
329	
330	DISCUSSION
331	
332	Magma generation conditions
333	
334	Inasmuch as the used bulk composition of group II kimberlite (Ulmer and Sweeney
335	2002) is basically similar to the potential primary magma (Becker and Le Roex 2006), the
336	reported multiple saturation data may place constraints on the temperatures of magma
337	generation and on the fluid regime in the peridotite source region.
338	The data we obtained indicate that samples at 100°C below the liquidus have "near-
339	liquidus" phase relations (Table 2, Fig. 3). The melting degree of samples at 100°C below
340	the liquidus apparently reached \geq 70%. Judging by the revealed trends, the formed melt was
341	compositionally similar to that resulting from complete melting of the samples, as well as to
342	the average composition of close-to-primary magma for group II kimberlite (Becker and Le
343	Roex 2006; Table 1).

344	Therefore, near-liquidus multiple saturation of group II kimberlite at 6.3 and 7.5 GPa
345	is possible only if it contains no more than 5 wt.% H_2O . The phase composition of group II
346	kimberlite with 5 wt.% H_2O we have observed at 1400-1500°C perfectly agrees with that
347	reported by Ulmer and Sweeney (2002). Note that olivine, garnet, and orthopyroxene
348	crystallized near the liquidus of group II kimberlite are very similar to those in the
349	counterparts from mantle xenoliths in kimberlite. As kimberlite becomes more hydrous, the
350	gap between the liquidus and the appearance of the Ol+Grt+Opx residue in equilibrium with
351	the melt increases from $<100^{\circ}$ C at 5 wt.% H ₂ O to $\sim200^{\circ}$ C at 9 wt.% H ₂ O, both at 6.3 and
352	7.5 GPa. Garnet is the first phase that becomes unstable at higher water concentrations,
353	while it is its very presence in the source that is required to provide high LREE enrichment
354	of magma (Mitchell 1986; Ringwood et al. 1992). The absence of multiple saturation near
355	the liquidus in the case of more hydrous (>5 wt.% H_2O) compositions with X_{CO2} <0.37
356	indicates the lack of equilibrium between the magma and garnet harzburgite. Therefore,
357	carbonated garnet harzburgite sources can generate magmas close to the average group II
358	kimberlite only at water contents within 5 wt.%. Note that this result disagrees with the
359	water contents in group II kimberlites from South Africa (7.3 wt.% H_2O at one-sigma error
360	2.4) reported in (Becker and Le Roex 2006).
361	Relatively high temperatures of liquidus and multiple saturation of kimberlite
362	suggest that generation of magma with \sim 5 wt.% H ₂ O was impossible under an ordinary
363	undisturbed subcontinental thermal regime, at T≤1400°C (Mather et al. 2011). Brey et al.
364	(2009) arrived at a similar conclusion earlier when they studied the influence of water on
365	melting of carbonated peridotite at 6 and 10 GPa. Heat, and possibly also fluid, required to

366 initiate melting and generate kimberlite magmas at 1500-1600°C may have come from

367	upwelling plumes (Becker and Le Roex 2006; Brey et al. 2009). From the lower liquidus
368	temperatures obtained with group II kimberlite samples containing more than 5 wt.% H_2O_1
308	temperatures obtained with group it kindernite samples containing more than 5 wt. /6 11 ₂ O,
369	we expect that hydrous multiply saturated kimberlite magma may form already at ~1400-
370	1500°C. For instance, at these temperatures we achieved saturation of the hydrous
371	Udachnaya kimberlite melt with respect to garnet wehrlite residue in 6.3 and 7.5 GPa
372	experiments (Sokol et al. 2013a). Specifically, near-liquidus multiple saturation of this melt
373	was observed at 6.3 GPa when $\rm H_2O$ increased from 6 to 10 wt.% and $\rm X_{\rm CO2}$ decreased from
374	0.38 to 0.26, while the liquidus became ~200°C lower: 1470°C instead of 1670°C. However,
375	as shown by our experiments, generation of group II kimberlite magma by melting of
376	carbonated harzburgite requires H_2O to be within 5 wt.% (see above).
377	Generally, our results support the inference of Girnis et al. (1995) that the
378	composition and amount of fluids can strongly affect phase relations near the liquidus of
379	group I kimberlite. Earlier the lack of multiple saturation was noted to be associated with
380	CO ₂ increase in the melt. As Girnis et al. (1995) showed, magnesite instead of olivine
381	became stable near the liquidus of group I kimberlite at 5.5 GPa and the molar ratio
382	$CO_2/(CO_2+H_2O) \ge 0.7$. In the experiments with low-H ₂ O samples of the Udachnaya (group I)
383	kimberlite (Sharygin et al. 2013) at 6.5 GPa and $X_{CO2}=0.8$, only Ol+Grt appeared near the
384	liquidus (see above). We have shown, for the first time in this study, that multiple saturation
385	of group II kimberlite magma, with low-degree silica undersaturation, is absent also at high
386	water concentrations and molar ratios $CO_2/(CO_2+H_2O) \le 0.37$.
387	There have been different models suggested for specific conditions of kimberlite
388	magma generation. The K-enriched nature of group II kimberlite was attributed to

389 metasomatism by MARID (mica-amphibole-rutile-ilmenite-diopside suite of mantle

390	xenoliths) like melts in earlier publications (Jones et al. 1989; Mitchell 1995; Konzett et al.
391	1998). The model of McCandless (1999), which is based on ages of kimberlite magmatism
392	combined with seismic images and thermal models of subducted slabs, related magma
393	generation with subduction. Judging by their geochemistry, group II kimberlites must be
394	derived from lithospheric mantle source regions metasomatized by melts or fluids associated
395	with ancient subduction events (Becker and Le Roex 2006). The trace-element
396	characteristics of these kimberlites obtained by Coe et al. (2008) imply an affinity to
397	subduction-related calc-alkaline fluids or melts. Tappe et al. (2009) suggested that group II
398	kimberlite magma resulted from melting of metasomatized peridotite that hosted several
399	generations of contrasting vein assemblages (older MARID-type and younger CO ₂ - and
400	potassic-rich carbonatite vein networks) at the lithospheric base beneath cratons.
401	The formation mechanism of ultrapotassic rocks in the model of Foley (1992) was
402	associated with melting of metasomatic enriched veined lithosphere, the resulting magmas
403	being hybrids of vein and wall-rock components. Ulmer and Sweeney (2002) later explained
404	the carbonate and potassic character of group II kimberlite magma as being produced by a
405	process in which either a carbonate-bearing protolith was invaded by a potassic melt or fluid
406	(probably supercritical), or a potassic protolith (after metasomatism) had been invaded by a
407	carbonatite melt.
400	

The generation of highly mobile potassic-rich carbonatite may result from melting of
carbonated pelite in the upper part of the slab column (Hammouda and Laporte 2000).
Recent experiments (Grassi and Schmidt 2011) have shown that melting of carbonated

411 pelites at depths to 400 km is feasible at extremely hot subduction conditions or when

412 subduction slows down and thermal relaxation sets in. By investigating the solidus of

413 subducting alkaline carbonatite, Litasov et al. (2013) concluded that their melting may occur 414 in a mantle transition zone. Calcium-rich carbonatite magma can also form on interaction between strongly reduced Fe⁰-bearing mantle and subducting carbonate (Palvanov et al. 415 416 2013). At adiabatic temperatures, alkali-rich carbonatite will rise into the overlying mantle either by upward percolation (Grassi and Schmidt 2011) or by forming mobile melt diapirs 417 418 (Litasov et al. 2013). 419 Oxygen fugacity in the potential source regions of group II kimberlite magma may vary in a broad range. Generally, subcratonic peridotite at the depths of magma generation is 420 421 strongly reduced, with fO_2 about the Fe-FeO (IW) buffer +1 log unit (Woodland and Koch 2003; McCammon and Kopylova 2004; Yaxley et al. 2012) due to pressure effects on Fe^{2+} -422 Fe^{3+} equilibria in garnet. It is diamond, rather than carbonate minerals, that is stable in the 423 424 peridotite mantle at this oxygen fugacity (Luth 2004; Stagno et al. 2013). On the other hand,

425 the redox conditions in the peridotite source regions are subject to local changes as a result

426 of multiple metasomatic events. MARID-type xenolith minerals have high Fe³⁺ enrichment,

427 as Dawson (1980) reported long ago. More recently, MARID assemblages have been

428 inferred to form at oxygen fugacities outside the diamond stability field, and even above the

429 FMQ (fayalite-magnetite-quartz) buffer (Woodland and Koch 2003; Creighton et al. 2009).

430 Infiltration of metasomatic fluids/melts into the subcratonic diamondiferous lithospheric

431 mantle can convert reduced anhydrous harzburgite into variably oxidized phlogopite-bearing

432 lherzolite, which was predicted, for example, for the Kaapvaal craton (Creighton et al.

433 2009). Carbonatite melts, rich in incompatible elements, potassium, and calcium, can

434 percolate into the peridotite source region and cause its oxidation (Frost and McCammon

435 2008; Rohrbach and Schmidt 2011) and increase the clinopyroxene/orthopyroxene ratio

436 (Thibault et al. 1992).

437	Magma generated as a result of redox reactions must be rich in volatiles and
438	supersaturated with respect to carbon, which is an effective environment for diamond and
439	graphite formation (Pal'yanov et al. 1999; Palyanov et al. 2007; Sokol and Palyanov 2008;
440	Palyanov and Sokol 2009). Note that some of group II kimberlites are actually diamond-
441	bearing. Therefore, the final stage of the formation and separation of carbonated magma
442	should proceed at fO_2 about the EMOD buffer (Stagno et al. 2013), this being exactly the
443	oxygen fugacity we have reproduced in our multiple saturation experiments with group II
444	kimberlite.
445	

446 Water sources

447

448	The interaction of the percolating carbonatite with the potential peridotite source of
449	group II kimberlite can produce water. Water may reside in pre-existing hydrous minerals
450	formed by metasomatism during reaction with MARID-like melts (Mitchell 1995).
451	Phlogopite is stable in the presence of carbonate melt in the peridotite source at the 180–200
452	km depths under subcontinental thermal conditions (Grassi and Schmidt 2011). However,
453	supersolidus temperatures may initiate a peritectic reaction (Ulmer and Sweeney 2002)
454	2 phlogopite + MgCO ₂ \rightarrow 2 opx + olivine + garnet + K ₂ CO ₃ (L) + 2 H ₂ O (L), (1)
455	which provides water extraction from a phlogopite-bearing source region. As Ulmer and
456	Sweeney (2002) noted, the absence of phlogopite (or K-richterite) in equilibrium with a
457	garnet harzburgite residue close to the liquidus is not a proof of its absence in the mantle

458	protolith. This mechanism, however, is poorly applicable to magmas rich in H ₂ O. Melting of
459	carbonated phlogopite lherzolite in experiments reported by (Thibault et al. 1992) yielded 4
460	wt.% of alkaline dolomitic melt at 3.0 GPa and 1100°C, with only ~2.7 wt.% H ₂ O, which is
461	much lower than the estimates for the primary magma of group II kimberlite from (Becker
462	and Le Roex 2006).
463	Nominally anhydrous minerals (NAMs) of the mantle protolith, which contain water as
464	hydrated defects (Hirschmann et al. 2005; 2009; Green et al. 2010; Peslier et al. 2010; Ardia
465	et al. 2012), are a potential additional water source. Extraction from NAMs becomes
466	possible if they have very low water partition coefficient between NAMs and carbonatite
467	melt (Sokol et al. 2013b). The efficiency of this mechanism depends on H_2O concentration
468	in the protolith and on $CO_2/(CO_2+SiO_2)$ molar ratios in the melt. The capacity of this water
469	source can be evaluated taking into account that the potential peridotite source region
470	beneath the Kaapvaal craton stores 80-100 ppm of water (Peslier et al. 2010) and that group
471	II kimberlites, in turn, are relatively depleted in CO ₂ and enriched in SiO ₂ . The
472	experimentally determined partition coefficient between olivine and harzburgite saturated
473	kimberlite melt ($D^{ol/melt}_{H2O}$) is ~0.003 (Sokol et al. 2013b). If we assume, in the first
474	approximation, that $D^{\text{per/melt}}_{\text{H2O}} \approx D^{\text{ol/melt}}_{\text{H2O}}$ (for olivine-rich peridotite), generation of magma
475	with 5-7 wt.% H_2O would require either greater water contents in the source region or
476	somewhat lower $D_{H20}^{\text{per/melt}}$ partitioning. The latter would be possible with a primary magma
477	slightly more carbonated than it is commonly presumed (Becker and Le Roex 2006), given
478	that $D_{H2O}^{ol/melt}$ depends on the CO ₂ /(CO ₂ +SiO ₂) molar ratios in the melt (Sokol et al. 2013b).
479	Acting jointly, these factors could maintain generation of a hydrous kimberlite magma.
480	Furthermore, the equilibrium in reaction (1) may shift left as the water concentration in the

K-rich carbonate-silicate melt rises above some critical level. As a result, new portions of
hydrous phases (phlogopite and/or K-richterite) may form in the source mantle and provide
buffering of K and H₂O contents in the magma.

- 484
- 485 486

IMPLICATIONS

487 Kimberlite genesis attracts attention of geoscientists as its mechanisms have 488 implications for the global evolution of subcratonic lithosphere and asthenosphere. It is 489 especially important in this respect to constrain the potential temperature and fluid 490 conditions of kimberlite magma generation. The relatively high temperatures of liquidus and 491 multiple saturation of group II kimberlite we have revealed suggest that generation of group 492 II kimberlite magma may occur by partial melting of carbonated (metasomatized) garnet 493 harzburgite at pressures from 6.3 to 7.5 GPa, temperatures about 1500-1600°C, and no more 494 than 5 wt.% H₂O in the melt. The absence of multiple saturation near the liquidus in the case 495 of more hydrous (>5 wt.% H_2O) compositions with X_{CO2} <0.37 indicates the lack of 496 equilibrium between the magma and garnet harzburgite. Thus, the ordinary undisturbed 497 subcontinental thermal regime cannot have maintained generation of group II kimberlite 498 magma. The heat (and fluids) required to initiate melting and generate kimberlite magmas 499 may have come from upwelling plumes (Becker and Le Roex 2006; Brey et al. 2009). 500 Interaction of K-Ca-rich carbonatite melt, infiltrating from a deeper mantle source, with a 501 peridotite protolith containing H₂O in nominally anhydrous minerals and, possibly, also in 502 phlogopite, produced water in the necessary amounts.

- 503
- 504 ACKNOWLEDGEMENTS

- 505 The authors thank Yury Borzdov and Alexander Khokhryakov for their assistance
- 506 throughout the study. We are indebted to Elena Nigmatulina (IGM SB RAS) for assistance
- 507 with microprobe analysis. We thank Greg Yaxley and Gerhard Brey for their in-depth
- 508 reviews and helpful comments. This research was supported by grants of the Siberian
- 509 Branch of the Russian Academy of Sciences (No. 31 and 67.3.1).
- 510

511 REFERENCES 512 513 Ardia, P., Hirschmann, M.M., Withers, A.C. and Tenner, T.J. (2012) H₂O storage capacity 514 of olivine at 5-8 GPa and consequences for dehydration partial melting of the upper 515 mantle. Earth and Planetary Science Letters, 345, 104-116. 516 Becker, M. and Le Roex, A.P. (2006) Geochemistry of South African on- and off-craton, 517 Group I and Group II kimberlites: Petrogenesis and source region evolution. Journal 518 of Petrology, 47, 673-703. 519 Brey, G.P., Bulatov, V.K., Girnis, A.V. and Lahaye, Y. (2008) Experimental melting of 520 carbonated peridotite at 610 GPa. Journal of Petrology, 49, 797-821. 521 Brey, G.P., Bulatov, V.K. and Girnis, A.V. (2009) Influence of water and fluorine on 522 melting of carbonated peridotite at 6 and 10 GPa. Lithos, 112, 249-259. 523 Brey, G.P., Bulatov, V.K. and Girnis, A.V. (2011) Melting of K-rich carbonated peridotite at 524 6-10 GPa and the stability of K-phases in the upper mantle. Chemical Geology, 281, 525 333-342. Canil, D. and Scarfe, C.M. (1990) Phase-relations in peridotite + CO₂ systems to 12 GPa -526 527 implications for the origin of kimberlite and carbonate stability in the earths upper 528 mantle. Journal of Geophysical Research-Solid Earth and Planets, 95(B10), 15805-529 15816. 530 Coe, N., Le Roex, A., Gurney, J., Pearson, D.G. and Nowell, G. (2008) Petrogenesis of the 531 Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints 532 from whole rock geochemistry. Contributions to Mineralogy and Petrology, 156, 533 627-652.

- 534 Creighton, S., Stachel, T., Matveev, S., Hofer, H., McCammon, C. and Luth, R.W. (2009)
- 535 Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism.
- 536 Contributions to Mineralogy and Petrology, 157, 491-504.
- 537 Dawson, J.B. (1980) Kimberlites and their xenoliths, 252 p. Springer, Berlin,
- 538 Eggler, D.H. and Wendlandt, R.F. (1979) Experimental studies on the relationships between
- 539 kimberlite magma and partial melting of peridotite. In F.R. Boyd and H.O.A. Meyer,
- 540 Eds., Kimberlites, Diatremes and Diamonds: Their Geology, Petrology, and
- 541 Geochemistry 1, p. 331–378. American Geophysical Union, Washington.
- 542 Finger, L.W. (1972) The uncertainty in the calculated ferric iron content of a microprobe

analysis, p. 600–603.Carnegie Institution of Washington Year Book 1971.

- Foley, S. (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin
 of potassic alkaline magmas. Lithos, 28, 435-453.
- 546 Foley, S.F., Yaxley, G.M., Rosenthal, A., Buhre, S., Kiseeva, E.S., Rapp, R.P. and Jacob,
- 547 D.E. (2009) The composition of near-solidus melts of peridotite in the presence of 548 CO₂ and H₂O between 40 and 60 kbar. Lithos, 112, 274-283.
- Frost, D.J. and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Review
 of Earth and Planetary Sciences, 36, 389-420.
- Funk, S.P. and Luth, R.W. (2012) An experimental study of a minette from the Milk River
 area, southern Alberta, Canada. Contributions to Mineralogy and Petrology, 164
 999-1009.
- 554 Girnis, A.V., Brey, G.P. and Ryabchikov, I.D. (1995) Origin of Group 1A kimberlites:
- Fluid-saturated melting experiments at 45-55 kbar. Earth and Planetary Science
 Letters, 134, 283-296.

- 557 Girnis, A.V., Bulatov, V.K. and Brey, G.P. (2011) Formation of primary kimberlite melts -
- Constraints from experiments at 6-12 GPa and variable CO₂/H₂O. Lithos, 127, 401413.
- Grassi, D. and Schmidt, M.W. (2011) The Melting of Carbonated Pelites from 70 to 700 km
 Depth. Journal of Petrology, 52, 765-789.
- Green, D.H., Hibberson, W.O., Kovacs, I. and Rosenthal, A. (2010) Water and its influence
 on the lithosphere-asthenosphere boundary. Nature, 467, 448-451.
- 564 Gudfinnsson, G.H. and Presnall, D.C. (2000) Melting behaviour of model lherzolite in the
- system CaO-MgO-Al₂O₃-SiO₂-FeO at 0.7-2.8 GPa. Journal of Petrology, 41, 1241 1269.
- 567 Hammouda, T. and Laporte, D. (2000) Ultrafast mantle impregnation by carbonatite melts.
 568 Geology, 28, 283-285.
- 569 Hirschmann, M.M., Aubaud, C. and Withers, A.C. (2005) Storage capacity of H₂O in

570 nominally anhydrous minerals in the upper mantle. Earth and Planetary Science

- 571 Letters, 236, 167-181.
- 572 Hirschmann, M.M., Tenner, T., Aubaud, C. and Withers, A.C. (2009) Dehydration melting
- of nominally anhydrous mantle: The primacy of partitioning. Physics of the Earthand Planetary Interiors, 176, 54-68.
- 575 Jones, A.P. (1989) Upper mantle enrichment by kimberlitic or carbonatitic magmatism. In
- 576 K. Bell, Ed., Carbonatites: Genesis and evolution, p. 448–463. Unwin Hyman.
- 577 Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., Navon, O., Nielsen, T.F.D. and Mernagh,
- 578 T.P. (2009) How unique is the Udachnaya-East kimberlite? Comparison with

- 5/28
- kimberlites from the Slave Craton (Canada) and SW Greenland. Lithos, 112, 334-346.
- Kennedy, C.S. and Kennedy, G. (1976) The equilibrium boundary between graphite and
 diamond. Journal of Geophysical Research, 81, 2467–2470
- Litasov, K.D., Shatskiy, A., Ohtani, E. and Yaxley, G.M. (2013) The Solidus of Alkaline
 Carbonatite in the Deep Mantle. Geology, 41, 79-82.
- 585 Luth, RW. (2004) Mantle volatiles distribution and consequences. In H.D. Holland and
- 586 K.K. Turekian, Eds., Treatise on Geochemistry, vol. 2, p. 319–361. Elsevier.
- 587 Mather, K.A., Pearson, D.G., McKenzie, D., Kjarsgaard, B.A. and Priestley, K. (2011)
- 588 Constraints on the depth and thermal history of cratonic lithosphere from peridotite 589 xenoliths, xenocrysts and seismology. Lithos, 125, 729-742.
- 590 McCammon, C. and Kopylova, M.G. (2004) A redox profile of the Slave mantle and oxygen
- 591 fugacity control in the cratonic mantle. Contributions to Mineralogy and Petrology,592 148, 55-68.
- 593 McCandless, T.E. (1999) Kimberlites: mantle expressions of deepseated subduction. In J.J.
- Gurney, J.L. Gurney, M.D. Pascoe and S.H. Richardson, Eds., Proceedings of the 7th
 international kimberlite conference, vol 2., p. 545–549. Red Roof Publishers, Cape
 Town.
- 597 Mitchell, R.H. (1986) Kimberlites: mineralogy, geochemistry and petrology, 441 p. Plenum
 598 Press, New York.
- 599 Mitchell, R.H. (1995) Kimberlites, orangeites, and related rocks, 410 p. Plenum Press.

- 600 O'Neill, H.C. and Wood, B.J. (1979) An experimental study of Fe-Mg partitioning between
- 601 garnet and olivine and its calibration as a geothermometer. Contributions to
- 602 Mineralogy and Petrology, 70, 59–70.
- 603 Pal'yanov, Y.N., Sokol, A.G., Borzdov, Y.M., Khokhryakov, A.F. and Sobolev, N.V. (1999)
- Diamond formation from mantle carbonate fluids. Nature, 400, 417-418.
- 605 Palyanov, Y.N., Shatsky, V.S., Sobolev, N.V. and Sokol, A.G. (2007) The role of mantle
- 606 ultrapotassic fluids in diamond formation. Proceedings of the National Academy of
 607 Sciences of the United States of America, 104, 9122-9127.
- Palyanov, Y.N. and Sokol, A.G. (2009) The effect of composition of mantle fluids/melts on
 diamond formation processes. Lithos, 112, 690-700.
- 610 Palyanov, Y.N., Borzdov, Y.M., Khokhryakov, A.F., Kupriyanov, I.N. and Sokol, A.G.
- 611 (2010) Effect of Nitrogen Impurity on Diamond Crystal Growth Processes. Crystal
 612 Growth & Design, 10, 3169-3175.
- 613 Palyanov, Y.N., Bataleva, Y.V., Sokol, A.G., Borzdov, Y.M., Kupriyanov, I.N., Reutsky,
- 614 V.N. and Sobolev, N.V. (2013) Mantle-slab interaction and redox mechanism of
- 615 diamond formation. Proceedings of the National Academy of Sciences of the United616 States of America, 110, 20408-20413.
- 617 Peslier, A.H., Woodland, A.B., Bell, D.R. and Lazarov, M. (2010) Olivine water contents in
- 618 the continental lithosphere and the longevity of cratons. Nature, 467, 78-U108.
- Ringwood, A.E., Kesson, S.E., Hibberson, W. and Ware, N. (1992) Origin of kimberlites
 and related magmas. Earth and Planetary Science Letters, 113, 521-538.
- 621 Rohrbach, A. and Schmidt, M.W. (2011) Redox freezing and melting in the Earth's deep
- 622 mantle resulting from carbon-iron redox coupling. Nature, 472, 209-212.

- 623 Schulze, D.J. (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool
- for investigating the mantle and exploring for diamonds. Lithos, 71, 195-213.
- 625 Sharygin, I.S., Litasov, K.D., Shatskiy, A.F., Golovin, A.V., Ohtani, E. and Pokhilenko,
- 626 N.P. (2013) Melting of kimberlite of the Udachnaya-East pipe: Experimental study at
- 627 3-6.5 GPa and 900-1500 degrees C. Doklady Earth Sciences, 448, 200-205.
- 628 Smith, C.B., Gurney, J.J., Barton, E.S. and Bristow, J.W. (1985) Geochemical character of
- 629 southern African kimberlites: A new approach based on isotopic constraints. Trans.
- 630 Geol. Soc. South Africa, 88, 267–280.
- 631 Sobolev, N.V. (1977) The Deep-Seated Inclusions in Kimberlites and the Problem of the
- 632 Composition of the Upper Mantle, 304 p. American Geophysics Union, Washington.
- 633 Sokol, A.G., Palyanov, Y.N. and Surovtsev, N.V. (2007) Incongruent melting of gallium

634 nitride at 7.5 GPa. Diamond and Related Materials, 16, 431-434.

- 635 Sokol, A.G. and Pal'yanov, Yu.N. (2008) Diamond formation in the system MgO–SiO₂–
- H₂O–C at 7.5 GPa and 1600°C. Contribution to Mineralogy and Petrology, 155, 33–
 43.
- 638 Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., Kruk, A.N. and Sobolev, N.V. (2013a)
- 639 Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: implications for
- 640 the role of H₂O in magma generation and formation of hydrous olivine. Geochimica
- 641 Et Cosmochimica Acta, 101, 133-155.
- 642 Sokol A.G., Kupriyanov, I.N. and Palyanov, Yu.N. (2013b) Partitioning of H2O between
- 643 olivine and carbonate–silicate melts at 6.3 GPa and 1400°C: Implications for
- 644 kimberlite formation. Earth and Planetary Science Letters, 383, 58–67.

- 645 Stagno, V. and Frost, D.J. (2010) Carbon speciation in the asthenosphere: Experimental
 646 measurements of the redox conditions at which carbonate-bearing melts coexist with
- 647 graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters,648 300, 72-84.
- 649 Stagno, V., Ojwang, D.O., McCammon, C.A. and Frost, D.J. (2013) The oxidation state of
- the mantle and the extraction of carbon from Earth's interior. Nature, 493, 84-88.
- Tappe, S., Steenfelt, A., Heaman, L.M. and Simonetti, A. (2009) The newly discovered
- Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some
 remarks on carbonatite-kimberlite relationships. Lithos, 112, 385-399.
- Thibault, Y., Edgar, A.D. and Lloyd, F.E. (1992) Experimental investigation of melts from a
- 655 carbonated phlogopite lherzolite implications for metasomatism in the continental
 656 lithospheric mantle. American Mineralogist, 77, 784-794.
- 657 Ulmer, P. and Sweeney, R.J. (2002) Generation and differentiation of group II kimberlites:
- 658 Constraints from a high-pressure experimental study to 10 GPa. Geochimica Et
- 659 Cosmochimica Acta, 66, 2139-2153.
- 660 Woodland, A.B. and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper
- mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary ScienceLetters, 214, 295-310.
- 663 Yaxley, G.M., Berry, A.J., Kamenetsky, V.S., Woodland, A.B. and Golovin, A.V. (2012)

An oxygen fugacity profile through the Siberian Craton - Fe K-edge XANES

- 665 determinations of $Fe^{3+}/\Sigma Fe$ in garnets in peridotite xenoliths from the Udachnaya
- East kimberlite. Lithos, 140, 142-151.
- 667

664

669	FIGURE CAPTIONS
670	Fig. 1. Scanning electron micrographs of the recovered samples. a: run # 1350 (6.3 GPa,
671	1570°C, 5 wt.% H ₂ O); b : run # 1341 (6.3 GPa, 1470°C, 5 wt.% H ₂ O); c: run # 1497-1 (6.3
672	GPa, 1450°C, 7 wt.% H ₂ O); d: run # 1619-1 (6.3 GPa, 1570°C, 7 wt.% H ₂ O); e: run # 1621-
673	1 (7.5 GPa, 1570°C, 5 wt.% H ₂ O); f: run # 1495-2 (7.5 GPa, 1400°C, 9 wt.% H ₂ O).
674	Abbreviations stand for: Ol = olivine; Cpx = clinopyroxene; Grt = garnet; Pv = perovskite;
675	Liq = quenched liquid.
676	Fig. 2. Experimentally determined phase relations in group II kimberlite at 6.3 GPa (a)
677	and 7.5 GPa (b), at different H_2O contents. Dashed lines show phase boundaries (the first
678	occurrence of the phase labeled on the curve). Bold dashed lines indicate positions of
679	liquidi. Squares correspond to assemblages present in various regions of the phase diagram;
680	solid sectors = phase present; void sectors = phases absent from paragenesis. Ol = olivine;
681	Opx = orthopyroxene; Grt = garnet; L = quenched liquid.
682	Fig. 3. Liquid compositions as a function of experimental temperature (the analyses were
683	not normalized to 100 wt.% volatile-free compositions). a: SiO_2 and MgO concentrations in
684	the melt at 6.3 GPa; b: SiO_2 and MgO in the melt at 7.5 GPa; c: CaO and Al_2O_3
685	concentrations in the melt at 6.3 GPa; d: CaO and Al_2O_3 in the melt at 7.5 GPa; e: Ca# of the
686	melt at 6.3 and 7.5 GPa; f: Al/(Al+Si+Mg+Fe+Ca) vs. (Mg+Fe+Ca)/(Si+Mg+Fe+Ca) (at.)
687	diagram of the melt at 6.3 and 7.5 GPa; g: Mg# of the melt at 6.3 GPa; h: Mg# of the melt at
688	7.5 GPa. Data for 6.3 GPa and 1400°C are from (Sokol et al., 2013b). Numbers shown near
689	the symbols represent water concentration (wt.%) in the starting kimberlite. The symbol
690	sizes are proportional to H ₂ O concentrations. Dash lines connect data points for kimberlite

- 691 with 5 wt.% H₂O. G-D are compositions for runs # 1350 and # 1621-1, where graphite-to-
- 692 diamond conversion in graphite liners was observed.
- Fig. 4. Compositions of olivine, garnet and orthopyroxene. a: Mg# of olivine as a
- 694 function of temperature (Mg# is molar MgO/(MgO+FeO)); b: Fe–Mg partition coefficient
- 695 $(K_D = (X_{Fe(melt)} \cdot X_{Mg(olivine)})/(X_{Fe(olivine)} \cdot X_{Mg(melt)})$ between melt and olivine as a function of Fe#
- of olivine (Fe# is molar FeO/(MgO+FeO)); c: Mg# of garnet as a function of temperature
- 697 (Mg# is molar MgO/(MgO+FeO+CaO)); d: Mg# of orthopyroxene as a function of
- 698 temperature; e: CaO concentrations in orthopyroxene as a function of temperature; f: Al₂O₃
- 699 concentrations in orthopyroxene as a function of temperature. Data for 6.3 GPa and 1400°C
- are from (Sokol et al., 2013b). Numbers shown near the symbols represent water
- concentration (wt.%) in the starting kimberlite. The symbol sizes are proportional to H₂O
- concentrations. Dashed lines connect data points for kimberlite with 5 wt.% H₂O. G-D are
- compositions for runs # 1350 and # 1621-1, where graphite-to-diamond conversion in
- 704 graphite liners was observed.

	Smith et al., (1985)	Becker and Le F	Roex (2006)			_	_		_	
	average	average on-craton	close-to-primary magma	1 SD	- A	B ₁	B ₂	B ₃	B ₄	
SiO ₂	36.30	35.32	33.89	4.80	35.48	35.48	35.09	34.71	33.97	
TiO ₂	1.00	1.23	1.77	1.50	1.00	1.00	0.99	0.98	0.96	
Cr_2O_3	-	0.25	0.23	0.09	0.30	0.30	0.30	0.29	0.29	
AI_2O_3	3.20	2.71	3.76	2.00	3.16	3.16	3.13	3.09	3.03	
FeO	7.60	7.96 ^a	8.76 ^ª	0.60	8.22	8.22	8.13	8.04	7.87	
MnO	0.20	0.16	0.18	0.05	0.24	0.24	0.24	0.23	0.23	
MgO	29.70	29.00	23.15	4.20	29.10	29.10	28.78	28.47	27.86	
NiŎ	-	0.18	0.14	0.06	0.44	0.44	0.44	0.43	0.42	
CaO	6.00	6.98	9.96	2.00	5.88	5.88	5.81	5.75	5.63	
Na ₂ O	0.10	0.29	0.25	0.24	0.93	0.93	0.92	0.91	0.89	
K₂Ō	3.20	2.61	3.63	1.40	3.17	3.17	3.13	3.10	3.03	
P_2O_5	1.10	1.22	1.85	0.80	-	-	-	-	-	
CO ₂	3.60	4.65	4.21	2.80	7.13	7.13	7.05	6.98	6.83	
H₂Ō	6.80	6.02	7.33	2.40	4.97	4.97	6.00	7.01	9.01	
Total	98.80	90.63	90.35		100.02	100.02	100.00	100.00	100.00	
Mg #	0.87	0.78	0.85		0.86	0.86	0.86	0.86	0.86	
CŠ	0.10	0.136	0.12		0.20	0.20	0.20	0.20	0.20	
X _{CO2}	0.18	0.23	0.19		0.37	0.37	0.32	0.29	0.24	

Table 1. Bulk compositions of group II kimberlite from South Africa and initial compositions for multiple saturation experiments.

Notes: A - initial compositions for multiple saturation experiments used by Ulmer and Sweeney (2002); B₁-B₄ - initial compositions used in this study.

Mg# is molar MgO /(MgO+FeO) ratio; CS is CO₂/SiO₂ wt.%; X_{CO2} is molar ration of CO₂/(CO₂+H₂O);

1 SD - associated one standard deviations of close-to-primary magma.

^a given as Fe₂O₃.

Table 2. Conditions of experiments and phase compositions of run products.											
Run		C	Conditions	Weig	ht fract	Fe loss ^a					
Run	P (GPa)	T (°C)	Duration (h)	H ₂ O (wt.%)	OI	Орх	Grt	Liq			
1341	6.3	1470	40	5	0.22	0.25	0.1	0.43	<0.01		
1343	6.3	1520	40	5	0.17	0.2	0.06	0.57	<0.01		
1350	6.3	1570	40	5	0.21	0.25	0.1	0.44 ^b	<0.01		
1667	6.3	1610	1.5	5	0.05	0.15	-	0.80	<0.01		
1500	6.3	1670	1	5	-	-	-	1	<0.01		
1497-1	6.3	1450	40	7	0.05	0.2	-	0.75	0.03		
1619-1	6.3	1570	2	7	-	0.19	-	0.81	0.02		
1497-2	6.3	1450	40	9	-	0.23	-	0.77	0.03		
1619-2	6.3	1570	2	9	-	-	-	1	<0.01		
1489	7.5	1500	40	5	0.16	0.23	0.03	0.58	0.01		
1621-1	7.5	1570	40	5	0.09	0.23	0.01	0.67 ^b	0.02		
1501	7.5	1670	1	5	-	-	-	1	<0.01		
1621-2	7.5	1570	40	7	0.07	0.18	-	0.75	0.04		
1625-1	7.5	1600	2	7	-	0.17	-	0.83	0.01		
1495-2	7.5	1400	40	9	0.05	0.25	-	0.7	0.02		
1625-2	7.5	1600	2	9	-	-	-	1	<0.01		

Table 2 Conditions of experiments and phase compositions of run products

Notes: Phases: Liq – melt; OI – olivine; Opx – ortopyroxene; Grt – garnet; ^a - weight fractions of Fe⁰ loss from the system due to alloying with Pt capsule; ^b - graphite-to-diamond conversion in graphite containers.

Table 3. Average compositions (wt.%) of olivine (OI), garnet (Grt), ortopyroxene (Opx) and liquid (Liq) from melting experiments of this study.

Run	Phase (n)	SiO ₂	TiO ₂	Cr ₂ O ₃	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Total	Mg#	Ca#
1341	OI(22)	40.3 (3)	0.02 (1)	0.04 (2)	-	9.2 (2)	0.12 (2)	48.9 (4)	0.1 (5)	-	-	98.72	0.90	-
1341	Opx(14)	57.3 (2)	0.07 (5)	0.16 (7)	0.79 (3)	5.5 (2)	0.14 (3)	34.5 (4)	0.9 (3)	0.18 (4)	-	99.61	0.92	-
1341	Grt(14)	42.7 (2)	0.53 (1)	2.24 (5)	20.5 (1)	6.8 (3)	0.30 (4)	22.6 (4)	3.9 (1)	0.08 (4)	-	99.66	0.77	0.10
1341	Liq(8)	19 (1)	1.9 (4)	0.09 (1)	1.6 (3)	9.5 (8)	0.23 (1)	21 (1)	10 (1)	1.3 ^a	4.1 ^a	68.63	0.80	0.22
1343	OI(9)	41.0 (2)	0.02 (1)	0.05 (2)	-	8.0 (1)	0.12 (1)	50.5 (4)	0.11 (1)	-	-	99.69	0.92	-
1343	Opx(10)	57.7 (3)	0.06 (1)	0.22 (3)	1.1 (1)	4.8 (3)	0.13 (1)	35.0 (4)	0.9 (5)	0.19 (4)	-	100.13	0.93	-
1343	Grt(6)	43.5 (2)	0.37 (3)	2.39 (8)	21.1 (2)	5.6(1)	0.24 (2)	24.3 (2)	3.0 (2)	0.07 (3)	-	100.54	0.82	0.07
1343	Liq(5)	25 (2)	1.5 (4)	0.13□ (2)	2.8 (3)	10.0 (7)	0.27 (3)	23 (1)	9 (1)	0.9 ^a	3.3 ^a	76.23	0.80	0.19
1350	OI(10)	41.1 (1)	0.01 (1)	0.04 (1)	-	8.6 (1)	0.13 (1)	49.9 (3)	0.10 (1)	-	-	99.8	0.91	-
1350	Opx(11)	57.2 (7)	0.08 (3)	0.19 (3)	1.0 (1)	5.2 (4)	0.14 (3)	34.7 (3)	0.96 (1)	0.17 (2)	-	100.19	0.92	-
1350	Grt(13)	43.5 (3)	0.48 (4)	2.22 (1)	20.6 (1)	6.1 (2)	0.27 (3)	23.8 (4)	3.4 (2)	-	-	100.5	0.80	0.08
1350	Liq(6)	18 (2)	2.1 (4)	0.08 (2)	2.9 (6)	9.0 (9)	0.25 (4)	20 (2)	10 (2)	1.5 ^b	5.0 ^b	69.08	0.80	0.22
1667	OI(7)	41.4(3)	0.01(1)	0.08(1)	-	5.3(3)	0.10(2)	51.7(5)	0.07(3)	-	-	98.66	0.95	-
1667	Opx(5)	57.6(6)	0.06(2)	0.22(2)	1.3(2)	4.7(3)	0.13(2)	34.6(4)	0.9(1)	0.21(2)	-	99.72	0.93	0.12
1667	Liq(6)	29(3)	0.9(2)	0.24(4)	2.3(3)	7.8(4)	0.27(4)	25.(3)	5(2)	1.3 ^a	3.74 ^a	75.51	0.85	0.12
1500	Liq(7)	34 (2)	0.9 (3)	0.30 (5)	2.1 (4)	7.9 (4)	0.24 (3)	31 (4)	5 (2)	0.9 ^a	3.2 ^a	86.61	0.79	0.10
1497-1	l Ol(6)	41.7 (1)	0.03 (1)	0.11 (3)	-	4.9 (1)	0.16 (3)	52.5 (2)	0.10 (1)	-	-	99.67	0.95	-
1497-1	l Opx(5)	58.9 (2)	0.06 (1)	0.22 (1)	0.63 (2)	3.3 (1)	0.14 (1)	36.4 (1)	0.7 (2)	0.13 (1)	0.09 (5)	100.48	0.95	-
1497-1	I Liq(7)	27 (2)	1.1 (1)	0.28 (3)	3.6 (4)	5.3 (3)	0.20 (3)	25 (1)	6.1 (9)	1.2 ^a	3.8 ^a	73.41	0.89	0.14
1619-1	l Opx(5)	57.7 (4)	0.07 (1)	0.8 (1)	0.8 (2)	4.4 (2)	0.17 (1)	35.0 (2)	0.90 (3)	0.17 (1)	-	100.03	0.92	-
1619-1	I Liq(7)	29 (3)	0.7 (1)	0.24 (4)	2.1 (3)	2.6 (1)	0.19 (2)	25 (1)	5 (1)	0.9 ^a	3.4 ^a	69.54	0.94	0.12
1497-2	2 Opx(7)	58.4 (4)	0.06 (1)	0.23 (4)	0.6 (2)	2.9 (2)	0.15 (2)	36.8 (3)	0.60 (2)	0.15 (6)	-	99.96	0.96	-
1497-2	2 Liq(6)	26.2 (8)	1.1 (2)	0.24 (5)	2.9 (5)	4.4 (4)	0.21 (2)	24 (2)	6.5 (8)	1.1 ^a	3.7 ^a	70.54	0.91	0.15
1619-2	2 Liq(7)	36 (1)	0.8 (2)	0.37 (5)	2.7 (3)	7.8 (2)	0.27 (4)	25 (3)	6 (1)	0.9 ^a	3.0 ^a	81.68	0.85	0.14
1489	OI(8)	41.1 (2)	0.03 (1)	0.12 (3)	-	7.0 (3)	0.15 (3)	51.3 (5)	0.12 (1)	-	-	99.15	0.93	-
1489	Opx(5)	58.0 (3)	0.06 (1)	0.35 (4)	0.8 (3)	4.5 (1)	0.15 (2)	35.0 (5)	1.1 (1)	0.3 (1)	0.11 (6)	100.25	0.93	-
1489	Grt(6)	43.3 (4)	0.43 (4)	4.6 (2)	18.5 (2)	5.7 (2)	0.28 (2)	24.1 (3)	3.4 (3)	0.09 (2)	-	100.8	0.81	0.08
1489	Liq(8)	25 (2)	1.5 (3)	0.20 (3)	2.5 (4)	7.4 (3)	0.26 (4)	20 (1)	9 (2)	1.2 ^a ໌	3.9 ^a	70.47	0.83	0.20
1621-1		41.7 (2)	0.02 (1)	0.08 (1)	-	5.2 (1)	0.14 (2)	52.6 (6)	0.09 (1)	-	-	99.73	0.95	-
	~ /	. /	× /	. /		× /	. /	. /	. /					

Table 3. (continued)

	0. (00111110	400)												
Run	Phase (n)	SiO ₂	TiO ₂	Cr_2O_3	AI_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Total	Mg#	Ca#
1621-	1 Opx(5)	57.8 (2)	0.07 (1)	0.39 (15)	1.4 (2)	3.5 (1)	0.16 (2)	35.2 (2)	0.82 (5)	0.17 (1)	-	99.53	0.95	-
1621-	1 Grt(7)	44.2 (2)	0.7 (1)	3.4 (6)	19.7 (2)	4.7 (1)	0.35 (2)	23.3 (4)	3.4 (3)	0.05 (1)	-	99.74	0.82	0.09
1621-	1 Liq(6)	22 (2)	1.4 (3)	0.2 (1)	2.5 (5)	5.8 (6)	0.33 (2)	21 (2)	8.5 (5)	1.5 ^b	4.2 ^b	67.58	0.86	0.20
1501	Liq(5)	33 (2)	0.89 (8)	0.31 (4)	2.3 (6)	8.2 (8)	0.25 (6)	29 (5)	5 (2)	0.9 ^a	3.2 ^a	78.6	0.78	0.09
1621-2	2 OI(5)	40.7 (2)	0.03 (1)	0.09 (1)	-	6.0 (1)	0.13 (2)	52.7 (2)	0.13 (1)	-	-	99.67	0.95	-
1621-2	2 Opx(6)	57.7 (2)	0.07 (1)	0.40 (13)	1.5 (3)	3.5 (2)	0.18 (2)	35.1 (1)	0.8 (1)	0.17 (1)	-	99.42	0.95	-
1621-2	2 Liq(5)	29 (3)	0.8 (2)	0.23 (3)	2.0 (3)	2.7 (1)	0.18 (2)	24 (2)	5 (1)	0.9 ^a	3.5 ^a	68.7	0.97	0.12
1625-	1 Opx(5)	58.4 (4)	0.06 (1)	0.35 (9)	1.2 (1)	3.4 (2)	0.16 (1)	35.7 (2)	1.00 (5)	0.18 (1)	-	100.44	0.95	-
1625-	1 Liq(7)	31 (1)	0.9 (1)	0.4 (1)	2.4 (2)	7 (1)	0.27 (4)	27 (1)	6 (1)	0.9 ^a	3.2 ^a	78.81	0.87	0.11
1495-2	2 OI(7)	41.2 (3)	0.03 (1)	0.06 (2)	-	5.9 (1)	0.02 (1)	51.6 (5)	-	-	-	98.87	0.94	-
1495-2	2 Opx(7)	59.2 (5)	0.06 (1)	0.20 (5)	0.5 (5)	3.5 (8)	0.16 (1)	36.4 (4)	0.6 (2)	0.13 (4)	-	100.87	0.94	-
1495-2	2 Liq(7)	26 (1)	1.1 (2)	0.30 (3)	2.8 (2)	6.9 (4)	0.24 (3)	25 (1)	6.5 (7)	1.2 ^a	3.7 ^a	73.82	0.86	0.14
1625-2	2 Liq(6)	34 (2)	0.9 (2)	0.35 (9)	2.7 (1)	7.8 (6)	0.26 (2)	25 (1)	6.2 (1.1)	0.9 ^a	3.0 ^a	81.59	0.88	0.11

Notes: Numbers in parentheses are one standard deviation in terms of the last significant digit; n - number of analyses. Olivine Mg# is molar MgO/(MgO + FeO) ratio. Garnet, ortopyroxene and liquid Mg# are molar MgO /(MgO + FeO + CaO) ratios. Garnet and liquid Ca# are molar CaO/(MgO + FeO + CaO) ratios.

^a - values corrected according to mass-balance calculations;
 ^b - overestimated due to graphite-diamond conversion in the container.