
Paper #4878 Revison 1 
 

1 
 

Determining hematite content from NUV/Vis/NIR spectra: Limits of detection 1 

William Balsam1,*, Junfeng Ji2, Devon Renock1, Bobby C. Deaton3 and Earle Williams4 2 

1Department of Earth Sciences, Dartmouth College, Hanover, NH  03755, USA  3 

2Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and 4 

Engineering, Nanjing University, Nanjing 210093, China 5 

3Department of Physics, Texas Wesleyan University, Fort Worth, TX  76105, USA 6 

4Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA  02139, USA 7 

*Email: wbalsam@tds.net 8 

Abstract 9 

Hematite occurs in a variety of geologic settings including igneous, metamorphic and 10 

sedimentary rocks as well as in soils. However, it frequently occurs at low concentrations, 11 

especially in soils, where it may be less than 1% by weight. Because hematite has the potential to 12 

be an indicator of oxidizing and climatic conditions in soils and paleosols, it is important to 13 

understand its limit of detection. In this paper we examine the limits of detection of hematite 14 

visually and with diffuse reflectance spectrophotometry (DRS) and X-ray diffraction (XRD). To 15 

accomplish this we used a sample set consisting of “knowns” or calibration samples. These 16 

known samples consisted of 15 different matrices of varying mineral composition into which 17 

hematite in 7 different concentrations ranging from 0.01% to 4% by weight were mixed. 18 

Including the 0% hematite, our calibration dataset consisted of 120 samples. Visually, hematite 19 

can be detected at a concentration of 0.01% by weight in a light matrix and 0.5% in the darkest 20 

of our matrices. However, because of metamerism, visual techniques cannot specifically identify 21 

hematite. We find that for both DRS and XRD the limit of detection is also dependent on the 22 

matrix. For XRD the limit of detection for hematite in bulk samples is about 1%. For DRS the 23 
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limit of detection depends on the data reduction technique used. The commonly used Kubelka-24 

Munk remission function and its first and second derivatives can easily identify hematite at the 25 

0.5% level. However, the first derivative of the percent reflectance curve can detect hematite at 26 

0.01% by weight in a light matrix and 0.05% in a dark matrix. We suggest that the first 27 

derivative of DRS curves is the best currently available method for qualitatively detecting the 28 

mineral hematite at low concentrations found in soils, sediments and rocks.  29 

Work described in this paper may be applied in a number of situations. Our study of visual 30 

limits of hematite detection should aid field geologists in assessing hematite content. Analysis of 31 

color wavelength bands may also have application in remote sensing by indicating which bands 32 

are most sensitive to hematite, reported to be an important constituent of the Martian surface. 33 

Further, this study could help clarify remotely-sensed terrestrial albedo changes, especially the 34 

Sahara/Sahel transition where the sediments change from light, quartz-dominated to dark, 35 

hematite-dominated. Our study also points out that with laboratory-based spectra the first 36 

derivative of the reflectance curve is the most sensitive transform for processing spectral data for 37 

hematite, thereby allowing concentrations as low as 0.01% to be detected.  38 

Keywords (as specified by journal): OPTICAL SPECTROSCOPY: hematite, XRD DATA: 39 

hematite, NEW TECHNIQUE: first derivative transform 40 

 41 

Introduction 42 

Iron oxides and oxyhydroxies are important geological materials. They are common 43 

weathering products and are widespread in soils and rocks. Not only are they economically 44 

significant, forming one of the bases of the industrial age, but they also preserve a variety of 45 

environmental information, making them potentially important proxy monitors of past 46 
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conditions. Iron oxides are important in remote sensing, especially of Mars, where they are 47 

thought to be responsible for the red color (Morris et al. 1997) and have been used to suggest the 48 

presence of water (Christensen et al. 2001). They occur as iron II (wusite), iron II, III 49 

(magnetite), iron oxide III (hematite) and iron III oxide-hydroxide (goethite). Although there are 50 

numerous iron oxide and oxide-hydroxide minerals, the most common on the Earth’s surface are 51 

hematite (α-Fe2O3) and goethite (α-FeOOH) and their polymorphs maghemite (γ-Fe2O3) and 52 

lepidocrocite (γ-FeOOH).  53 

Iron oxides can be powerful coloring agents (Deaton and Balsam 1991) and are 54 

commonly used as pigments in paints and other products. The color imparted by iron oxides can 55 

be far greater than their weight concentration implies making color a rapid and accurate indicator 56 

of oxidizing conditions (Schwertmann 1987). Iron oxides in ancient soils have also been 57 

suggested as indicators of paleorainfall and temperature (Kampf and Schwertmann 1983; 58 

Schwertmann 1987; Schwertmann and Taylor 1989; Torrent and Baron 2002; Balsam et al. 59 

2004; Zhang et al. 2007). However, widespread use of iron oxides for paleoenvironmental 60 

analysis has yet to be fully realized. At least in part this is because iron oxides are usually present 61 

in low concentrations in soils, frequently 1% or less; making quantitative mineral analysis 62 

difficult (Balsam et al. 2004).  63 

Typically, iron oxide mineralogy is determined by X-ray diffraction (XRD; Brown and 64 

Wood 1985). But, the lowest concentration of any particular iron oxide mineral (limit of 65 

detection) that can be identified by XRD without some enrichment procedure is about 1% by 66 

weight (Deaton and Balsam 1991) depending on the matrix composition and complexity (the 67 

matrix effect). Whereas other techniques, X-ray fluorescence (XRF) or atomic absorption 68 

spectrometry (AA) for example, can determine the concentration of elemental iron at very low 69 
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levels, few techniques can identify iron oxide mineralogy at low concentrations. Surprisingly 70 

some evidence (Deaton and Balsam, 1991) suggests that visually hematite can be detected at 71 

concentrations lower than with XRD, but this has not been rigorously investigated. However, the 72 

human eye is a qualitative instrument and color, the eye’s perception of reflected light in the 73 

visible portion of the electromagnetic spectrum (400 – 700 nm), is the result of spectral mixing 74 

which may lead to the same color being produced by a variety of mineral mixtures, that is, 75 

metamerism. Hence, while color may provide hints about composition, it is not a unique 76 

determinant. Spectrophotometers, however, are at least as sensitive to iron oxides as the human 77 

eye and are not subject to the human eye’s vagaries of spectral mixing (Deaton and Balsam, 78 

1991). But, like XRD the nature of the matrix also affects a spectrophotometer’s limit of 79 

detection. Although Deaton and Balsam (1991) examined the basics of iron oxide detection by 80 

reflectance spectrophotometry, their study used a limited number of samples (24), matrices (4) 81 

and range of iron oxide concentrations (0.01 – 1%). Further, they did not examine data 82 

enhancement techniques other than first derivatives. 83 

At present, diffuse reflectance spectrophotometry (DRS) is a useful qualitative technique 84 

for identifying hematite, but the method would be more useful if quantitative information could 85 

be extracted from spectra. The ultimate goal of our research is to extract weight concentration of 86 

hematite from DRS spectra. As a first step, in this paper we examine the limits of detection of 87 

hematite in a variety of matrices using the human eye (visually), XRD and with a near ultra-88 

violet (NUV), visible (Vis) and near infrared (NIR) spectrophotometer. In the process we 89 

examine the relationship between color bands and hematite content, the sensitivity of different 90 

data transforms to varying hematite concentrations and revisit the detection limit of hematite 91 

with a modern XRD and computerized data reduction software. To accomplish this, a set of 92 
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calibration samples or “knowns” was prepared. The calibration samples contained hematite in 7 93 

concentrations ranging from 0.01% to 4% by weight. That is, from a concentration barely 94 

detectable with the human eye to a high soil concentration (Torrent et al. 1983). Fifteen matrices 95 

were spiked with the 7 different concentrations of hematite resulting in a total of 120 calibration 96 

samples including the matrix with 0% hematite (Table 1). In this paper, the focus is on hematite 97 

as opposed to both hematite and goethite because goethite can easily be determined by thermally 98 

oxidizing it to hematite and because hematite is a more powerful coloring agent than goethite 99 

(Zhou et al. 2010).  100 

Previous Work 101 

The scientific understanding of light and color goes back to Isaac Newton (1672) who 102 

demonstrated that white light could be separated into its component colors and that color is a 103 

function of light’s wavelength. However, it was Goethe (1810) who suggested that color 104 

depended not only on the wavelength of light but also the physiology of human vision. The first 105 

system based on rigorous scientific experiments and able to express color with consistent 106 

alphanumeric descriptors was that of American artist and Professor Albert H. Munsell (1905). 107 

Munsell’s color system was highly successful and was adopted by the USDA for soil research in 108 

the 1930’s. It is still important today as a means of describing color in a wide variety of materials 109 

(Laamanen et al. 2005). The Munsell color system has been challenged and to some extent 110 

supplanted by the International Commission on Illumination’s CIELAB (L*a*b*) and 111 

CIECAM02 color models. (For a thorough description of CIE color space consult 112 

http://www.cie.co.at/main/freepubs.html.) Both the Munsell and CIE systems allow color to be 113 

measured numerically with a colorimeter which gives more consistent results than the human eye 114 

(Torrent et al. 1983; Deaton 1987). However, both the Munsell and CIE measures are designed 115 
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to mimic human vision. As a result both are subject to the same limitations as human vision, 116 

metamerism. This limitation is overcome by using a reflectance spectrophotometer, a machine 117 

that records percent reflectance relative to a pure white standard. It is possible to quantify color 118 

from a sample’s visible light spectrum, but, because of metamerism, the Vis spectrum may not 119 

be determined from a sample’s color. Hence, in reducing a spectrum to color, information is lost 120 

(Barrón and Torrent 1986). In this paper we focus on the use of a NUV/Vis/NIR 121 

spectrophotometer to identify the mineral hematite. However, we also recognize that the eye can 122 

discern hematite at very low levels and develop some guidelines for geologists to use in the field 123 

to estimate hematite content. 124 

Winters (1930, as referenced in Shields et al. 1968) was perhaps the first to use a 125 

colorimeter/spectrophotometer to analyze geological material, in this case soil. Prior to 1986 126 

spectrophotometers were used mainly as colorimeters to produce data to quantify either Munsell 127 

or CIE colors (see for example Torrent et al. 1983). With the advent of computer-controlled 128 

spectrophotometers, the recording of data became easier and more accurate. Barrón and Torrent 129 

(1986) were the first to use a spectrophotometer with digital data recording to analyze geological 130 

materials. 131 

A number of techniques have been proposed to extract component concentration (weight 132 

percent) from spectral data; none succeeds under all circumstances and most fail in complex 133 

geological environments, e.g. soils. These techniques include color bands, the Kubelka-Munk 134 

remission function and the first and second derivative of this function, log transforms and first 135 

derivatives of the percent reflectance curve. Perhaps the first non-color based technique used to 136 

unmix spectra and one still widely used today is the Kubelka-Munk (K-M) remission function 137 

(Kubelka and Munk 1931; Kubelka 1948). The equation for the remission function is (Eq. 1):  138 
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 139 

f(R) =  =   (Eq. 1) 140 

 141 
where: 142 

R= 0.01 times the percent reflectance at a specific wavelength 143 

k = molar absorption coefficient 144 

s= the scattering coefficient 145 

Log transforms of spectral data are popular in some industries (Hsu 1997). The most 146 

common log transform is the log (1/R), where R is reflectance. However, according to (Clark and 147 

Roush 1984; Clark 1999) this is less robust than the older Kubelka-Munk function. Log 148 

transforms will not be considered further in this study. 149 

To our knowledge the first publication to suggest the use of the first derivative of the 150 

percent reflectance curve to identify hematite was Barranco et al. (1989) who also demonstrated 151 

that the wavelength position of the first derivative peak for hematite is a function of 152 

concentration and the peak wavelength gets longer as the concentration increases. Balsam and 153 

Deaton (1991) confirmed this observation and noted that, although hematite exhibits several 154 

absorption bands in the Vis and NIR, only the Vis absorption band [the result of an electron pair 155 

transition (Scheinost et al. 1998)] persists when the hematite concentration falls below 2% 156 

(Balsam and Deaton 1991). The first derivative peak for the Vis absorption band appears unique 157 

to hematite. We know of no common minerals that show a peak at this wavelength. 158 

Deaton and Balsam (1991) published the first truly systematic investigation of the limits of 159 

detection of different concentrations of hematite and goethite in a variety of matrices by diffuse 160 

reflectance spectrophotometry. They used the first derivative to identify hematite and goethite 161 

both of which they investigated in concentrations from 0.01% to 1% by weight and in four 162 
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different matrices. [Table 1 in Deaton and Balsam (1991) contains details of the simulated 163 

matrices]. From these systematic experiments two characteristics of Vis spectra with hematite 164 

and goethite were evident. First, if matrix composition was held constant the height of the first 165 

derivative peak was a good indicator of either hematite or goethite concentration. [Note, Balsam 166 

and Deaton (1991) indicated that at some concentration above 1% the first derivative peak height 167 

for hematite decreases and is accompanied by an increase in the wavelength of the peak.] 168 

Second, as matrices become darker and possibly more complex, the height of first derivative 169 

peaks for identical concentrations of hematite is reduced. Taking these two observations into 170 

account Deaton and Balsam demonstrated that even under the most difficult circumstances it is 171 

possible to detect hematite at a weight concentration of 0.03% and goethite at 0.05% by weight. 172 

The matrix effect in hematite spectra was first noted by Morris and Lauer (1990), although they 173 

used matrices not typical of mixtures found on Earth.  174 

Scheinost et al. (1998) applied the second derivative of the K-M function to soil samples, 175 

and noted that the minimum concentration of hematite they could easily detect was about 0.5%. 176 

They did not systematically test different concentrations of hematite in a variety of geological 177 

matrices. Nevertheless, they did provide a theoretical basis for the use of derivatives to identify 178 

different iron oxides, especially hematite and goethite, from reflectance spectra.  179 

Materials and Methods 180 

Materials 181 

To assess if weight percent hematite can be determined from NUV/Vis/NIR spectra, a data 182 

set of 120 samples (Table 1) with known concentrations of hematite in varying matrices was 183 

created with a combination of manufactured and natural materials (Table 2). Manufactured 184 

materials were used for hematite, calcium carbonate and silica; natural materials were used for 185 
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illite, chlorite, kaolinite and montmorillonite. Manufactured materials have the advantage of 186 

having a known composition and consistent physical characteristics with no contaminants. All 187 

the manufactured materials were micron or sub-micron in size. For hematite the color is 188 

indicative of the grain size. Only hematite crystals <~0.1 microns are red in color (Cornell and 189 

Schwertmann 2003); coarser crystals ~0.4 microns are purple and those >~0.5microns are gray 190 

or black. The dominant color of hematite in terrestrial soils and rocks is red suggesting most 191 

natural hematite is also sub-micron size. Because reflectance spectrophotometry does not depend 192 

on reflections from crystal planes, small crystal size is not a problem for DRS as it can be for 193 

XRD. All our clay mineral samples, which are natural materials, might better represent what is 194 

found in soils and sediments. But, they typically have a range of compositions and are rarely 195 

pure. That is, natural materials, even our clay mineral standards, include a variety of other 196 

minerals. All our clay mineral standards were pulverized in a ShatterBox® swing mill to a grain 197 

size of about 10 microns (http://www.spexsampleprep.com/products_by_category.aspx?cat=5). 198 

Hematite concentrations included 0.0, 0.01, 0.05, 0.1, 0.5, 1, 2 and 4 percent by weight. 199 

These hematite concentrations encompass the range found under natural conditions in many soils 200 

and paleosols (Balsam et al, 2004). We used 5 base matrices into which different minerals were 201 

added for a total of 15 different matrices (Table 1). These matrices ranged from light ones based 202 

on calcium carbonate or silica and darker matrices that included illite and chlorite. The base 203 

matrices included calcium carbonate, silica, carbonate and silica mixed 1:1, a matrix designed to 204 

resemble North Atlantic deep-sea sediment and a matrix that simulates Gulf of Mexico sediment. 205 

Carbonate and silica are typical of sediments found on the Earth’s surface with carbonate being 206 

the basis of soil developed on limestone terrains and silica being typical of terrain formed on 207 

both igneous rocks and clastic sedimentary rocks. Silica is also typical of some desert sediments, 208 
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especially the Sahara, and the investigation of silica with varying concentrations of hematite 209 

might be useful in modeling albedo changes from the Sahara (white, quartz-rich) to the Sahel 210 

(red, hematite-rich). The simulated North Atlantic matrix contains silica, carbonate, and illite in 211 

the ratio 4/3/3. To this simulated North Atlantic matrix we add 1, 5 and 15% chlorite. The Gulf 212 

matrix contains carbonate, silica, and illite in the ratio 5/3/2. To the Gulf matrix we added 1, 5 213 

and 15% kaolinite and 1, 5 and 15% montmorillonite. We chose to model North Atlantic and 214 

Gulf of Mexico sediments because the North Atlantic receives sediments that have undergone 215 

substantial physical weathering whereas the Gulf of Mexico receives sediments that have been 216 

subjected to significant chemical weathering. Our mineral ratios are based on work by Biscaye 217 

(1965) and Griffen (1962) which provided the clay mineralogy of North Atlantic and Gulf of 218 

Mexico sediments, respectively.  219 

It is important to note that none of our calibration samples include organic matter. As noted 220 

by Balsam and Damuth (2000), characterizing organic material spectrally is difficult because the 221 

composition and color of organic material is highly variable. The precise pattern produced by 222 

organic matter is a function of the type of organic material, especially how refractory the organic 223 

matter is, and its concentration. Hence few generalizations about organic material are possible. 224 

However, Balsam and Wolhart (1993) and Deaton and Balsam (1996) noted that as organic 225 

material gets darker it seems to conceal the signal of iron oxides by causing absorption through 226 

much of the Vis. 227 

Methods 228 

Visual Detection. The visual detection limit of hematite in our various matrices was tested 229 

by assembling a set of 20 samples ranging in hematite content from 0 to 0.5% and with matrices 230 

that were both light and dark. (All samples with more than 0.5% hematite were sufficiently red 231 
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that there was no reason to test them.) The samples were placed in clear plastic vials randomly 232 

numbered from 1 to 20. Volunteers including geology students, artists and average citizens were 233 

asked to rate the degree of redness from none to slight to moderate to intense. Samples were 234 

drawn one at a time from an opaque cloth bag, the degree of redness was determined through the 235 

plastic vial in sunlight at various times of day, and the sample placed in a different opaque cloth 236 

bag before another sample was analyzed. This procedure was followed until the degree of 237 

redness of all 20 samples was determined. 238 

Sample Preparation. The powdered samples were mixed by grinding in a synthetic 239 

sapphire mortar and pestle. To ensure that components were sufficiently dispersed, a subset of 240 

samples was subjected to a milling step in a McCrone micronizing mill for 10 minutes with 241 

methanol. Reflectance spectra from ground and micronized samples were similar suggesting that 242 

grinding adequately dispersed all sample components. The chief difference between the samples 243 

was that the micronized samples tended to be slightly (~3%) lighter from 350 – 550 nm. For 244 

wavelengths longer than 550 nm the curves were within <1% of each other.  245 

After grinding the samples were placed on glass slides, made into a slurry with distilled 246 

water and allowed to dry at room temperature. The sediment on the resulting slides was thick 247 

enough that light could not pass through, that is, the slides were opaque, and looked like thick 248 

XRD slides (Figure 1 a and b). As noted by Balsam and Deaton (1991) grinding samples not 249 

only enhances the ability to make slides, but also diminishes any grain size and surface 250 

roughness effects. 251 

X-ray Diffraction. To provide a standard technique for the measurement of hematite 252 

concentration for comparison with spectrophotometry, XRD was used on five powder samples. 253 

These samples contained 0, 0.01%, 0.1%, 1.0%, and 4.0% Fe2O3 by weight in the Gulf matrix 254 
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with 1% kaolinite. Each sample was mixed with 10% ZnO and a slurry of solid + iso-propyl 255 

alcohol was produced. ZnO was added as a reference standard to assess shifts in diffraction peak 256 

position. Each slurry was then ground in a McCrone micronizing mill at the University of 257 

Vermont for 10 minutes. Wet milling in methanol using a McCrone micronizing mill is a widely 258 

applied technique for quantitative XRD analysis (Moore and Reynolds 1997). The method has 259 

been proven to produce a narrow, nominally <10 µm, particle size distribution (O’Connor and 260 

Chang 1986; Hillier 2003; Dermatas et al. 2007) while only introducing a minimum of structural 261 

damage. Since these powders were prepared from manufactured and natural materials, the 262 

milling step was primarily used to ensure heterogeneity within the powders. Samples were dried 263 

and loaded in a powder XRD sample holder via a backpacking method to minimize preferred 264 

orientations in the packed-powder bed. 265 

X-ray spectra were obtained using a Bruker D8-Focus diffractometer at Dartmouth 266 

College. The powdered samples were run from 2 to 70 degrees two theta at 40 KV and 40 Ma 267 

(0.01 degree step increments at 2 seconds/step). The X-ray data were analyzed using Bruker 268 

EVA pattern processing software.  269 

Reflectance Spectrophotometry. Sample slides were analyzed in a Perkin-Elmer Lambda 270 

6 NUV/Vis/NIR spectrophotometer with a diffuse reflectance sphere. This instrument records 271 

percent reflectance as a function of wavelength from 250 – 850 nm relative to a white, barium 272 

sulfate standard. Samples were analyzed using a slit width of 2 nm and scanned at a rate of 600 273 

nm/min. Total analysis time per sample was 2 to 3 min. Data were collected at 1nm intervals and 274 

written directly to a computer file. As reported by Balsam et al. (2011), data from the Lambda 6 275 

are reproducible to +/-1%. 276 
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Diffuse reflectance spectrophotometry has many advantages compared to visual methods of 277 

mineral identification, that is, color. Spectrophotometers are not affected by metamerism and, 278 

unlike the vagaries of human perception of reflected light, they are consistent and precise. 279 

Further, with laboratory-based spectrophotometers the wavelength of the light source can be 280 

precisely controlled and, with the reflectance spheres used in DRS, the angle of the light 281 

reflected from a sample is not an issue. However, spectrophotometers are limited in a number of 282 

ways. All spectrophotometers produce results that are reflectance value as a function of 283 

wavelength. Individual values are highly dependent on surrounding values resulting in data with 284 

strong serial correlations that must be taken into account in statistical hypothesis tests. Further, as 285 

the spectrophotometer scans a sample’s surface, what it measures is more a function of percent 286 

of surface area than weight. In practical terms, this means that materials with a high density 287 

might be more difficult to identify than materials with a low density. Where density plays a 288 

major role is with organic material that in soils commonly has a very low density [<0.9 – 1.3, 289 

(Pilatti et al. 2006)] compared to mineral components (frequently 2.6 – 2.75). This means that a 290 

small weight percent organic material can have a major impact on the character of a spectrum by 291 

dominating the surface area (Balsam and Wolhart 1993). 292 

Spectral Data Reduction. DRS data were processed in several ways. The first parameter 293 

calculated was optical lightness, also called luminance (L*), grayscale, albedo, or average 294 

reflectance (see Balsam et al. 1999 for details). Percent reflectance in each of the color bands 295 

following the color divisions of Judd and Wyszecki (1975) was also calculated. For example, for 296 

the red color band, the percent reflectance values were summed from 630 to 700 nm, divided by 297 

the optical lightness and multiplied by 100.  298 
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We also calculated changes in the slope of the percent reflectance curve by taking the first 299 

derivatives of the reflectance data as percent per nanometer and recorded the wavelength as the 300 

mid-point of the 10nm calculation interval. First derivatives, as shown below, are more amenable 301 

to interpretation than the untransformed reflectance spectra; the first derivative curves contain 302 

more peaks compared with reflectance curves which tend to be smoother and change more 303 

gradually. Barranco et al. (1989), Deaton and Balsam (1991), Balsam and Deaton (1991), and 304 

Balsam and Damuth (2000) have demonstrated that the position of peaks and valleys on the first 305 

derivative curves are indicative of sediment composition and mineralogy. Finally we determined 306 

the K-M function for the reflectance spectra and calculated the first and second derivative of that 307 

function. Scheinost et al, (1998) indicate that the derivatives of the K-M function are useful for 308 

quantifying hematite and goethite content. 309 

Results 310 

Visual Results 311 

One purpose of this study is to document the sensitivity of the human eye with respect to 312 

hematite in varying matrices. Although Clark (1999) indicates the eye acts as a crude 313 

spectrophotometer, there has been little work that systematically demonstrates its sensitivity to 314 

different minerals under controlled conditions. Further, as noted above, the analogy to a 315 

spectrophotometer is imperfect because the eye records only red, green and blue and not 316 

reflectance at specific wavelengths as a spectrophotometer does. Despite metamerism, we note 317 

that for soils and sediments, hematite is by far the most common mineral capable of producing a 318 

red color or cast (A. Alden http://geology.about.com/od/mineral_ident/tp/Red-Pink-319 

Minerals.htm). Hence, a red color in geological material and particularly in soils likely correlates 320 

with the presence of hematite. 321 
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Results of the visual discrimination of hematite are shown on Table 3. This table illustrates 322 

both the strengths and weaknesses of human vision. In calcium carbonate or carbonate/silica – 323 

hematite was easily distinguished by eye at very low levels, ~ 0.01% by weight. For calcium 324 

carbonate 95.8% of the participants identified 0.01% hematite whereas for carbonate/silica 325 

62.5% of the participants identified 0.01% hematite. Other results exhibit the vagaries of human 326 

vision with inexplicably only 95.8% of participants identifying redness in 0.1% hematite and 327 

carbonate and some participants seeing red where no hematite was present in carbonate/silica, 328 

North Atlantic and Gulf matrices. For the Gulf matrix, hematite is consistently observable at a 329 

concentration of 0.1%; for the North Atlantic matrix the hematite is not consistently observable 330 

until it reaches a concentration of 0.5%.  331 

Clearly hematite is more easily distinguished in light matrices (carbonate or 332 

carbonate/silica) than in the darker matrices. Of these light matrices, hematite is clearly more 333 

evident in calcium carbonate than in carbonate/silica or silica. Despite both calcite and silica 334 

being very white, and their average albedo similar - about 90% for carbonate and 87% for silica - 335 

hematite is clearly more evident in carbonate. Further, at higher percentages hematite has an 336 

orange cast in the silica matrix compared to the typical brick red seen in calcite. A matrix 337 

consisting of a 1:1 mixture of carbonate and silica produces results in between the two pure 338 

matrices and the color at higher percentages has a slight orange cast (Figure 1a). These 339 

observations suggest that in terms of color, the mixing of minerals is a complex process likely 340 

involving differences in refractive indices as well as ability to transmit light (Morris and Lauer 341 

1990).  342 

As illite is added to this 1:1 carbonate/silica matrix the limit of detection of hematite 343 

increases; for 50% illite the detection limit is ~0.1% (Table 3, Figure 1a). This change in 344 
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detection limit is paralleled by a change in sample darkness; 1:1 carbonate/silica with no 345 

hematite has an albedo of 87%; for 50% illite the albedo decreases to 35%. For a matrix 346 

containing 15% chlorite the detection limit falls even further to 0.5% (Table 3, Figure 1b). 347 

However, hematite itself also significantly darkens a sample; as hematite concentration increases 348 

samples get darker. Hence, dark samples of similar reflectivity may be produced by either a dark 349 

matrix, increased hematite or both. It must be emphasized that many of the color changes noted 350 

above are subtle and, were it not for the series of samples presented here, might not be as easily 351 

distinguished.  352 

XRD Results 353 

The X-ray diffractometer technique is well-documented for iron oxides (Bigham et al. 1978), but 354 

the limits of detection in different matrices (e.g., soils and sediments) are not rigorously defined. 355 

Interpretation of diffractograms from mixtures with many minerals is not straightforward since 356 

they contain the diffraction peaks for the mineral matrix and hematite. We show a representative 357 

portion of a diffraction pattern (Figure 2) for a synthesized deep-sea sediment matrix that is 358 

moderately complex and of average albedo, Gulf with 1% kaolinite (Table 1) containing 1% 359 

hematite. At a concentration of 4% by weight, hematite is unequivocally identifiable (not 360 

shown). However, the hematite peaks are barely visible at a concentration of 1% (Figure 2) and 361 

are not present at 0.1% concentration (not shown). At 1% concentration, although the peaks 362 

indicative of hematite are present, without an a priori knowledge they probably would not be 363 

interpreted as indicative of hematite. 364 

Diffuse Reflectance Spectrophotometry Results 365 

As indicated above, many transforms have been used to extract compositional information from 366 

spectra. We first examine the nature of percent reflectance spectral curves (raw data) of samples 367 
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containing hematite and then assess if a single transform can accurately represent hematite 368 

concentration in varying matrices. We limit this investigation to commonly used single variables 369 

or ratios of single variables. Variables to be investigated include color bands and their ratios, first 370 

derivatives, Kubelka-Munk remission function, and the first and second derivative of the K-M 371 

function.  372 

Raw NUV/Vis/NIR Spectral Data. A number of features are obvious from the raw 373 

reflectance curves. We use examples of a light matrix, calcite plus silica, and a dark matrix, 374 

North Atlantic plus 15% chlorite (Figures 1a and b), but results from matrices of comparable 375 

lightness are similar. For both the light matrix and the dark matrix it is clear that hematite 376 

produces a characteristic reflectance change between 550 and 600 nm. In the light matrix this 377 

change is evident even with as little as 0.01% hematite (Figure 3 a). Clearly the 378 

spectrophotometer is capable of detecting hematite at concentrations as low as the human eye. 379 

For the darker matrix, 0.01% hematite simply darkens the sample without the distinctive 380 

decrease from 550 -600 nm. The hematite signal in this darker matrix becomes evident at values 381 

>0.01% and is fully apparent at 0.5% by weight, about the same hematite concentration the eye 382 

can distinguish in this matrix (Figure 3 b). 383 

In addition to the change in reflectance between 550 and 600 nm, for each matrix there is a 384 

predictable pattern of change. In each matrix set, as hematite concentration increases the samples 385 

get darker (lower overall reflectance) and the decrease from 550 -600 nm becomes more 386 

pronounced (Figure 3). This pattern is repeated in every matrix set evaluated. There is also a 387 

tendency for the change in reflectance from 550 -600nm to be offset to longer wavelengths as the 388 

hematite concentration increases.  389 
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All these variations corroborate the view of Deaton and Balsam (1991) and Ji et al. (2002) 390 

that if matrix is held constant it is possible to estimate hematite content from the Vis spectrum. 391 

However, these curves also indicate that changes in matrix composition might make it difficult to 392 

estimate hematite concentration when the matrix composition varies.  393 

Color Bands. Perhaps the most straightforward method of reducing spectral data is through 394 

the use of color bands. Color bands and the ratio of color bands are widely used to interpret data 395 

from space-borne spectrophotometers with experience determining how each band can be used 396 

for identifying specific conditions (http://landsat.usgs.gov/best_spectral_bands_to_use.php). 397 

Given the color of hematite, percent reflectance in the red color band could be a potentially 398 

useful variable. However, color bands are difficult to test for limits of detection because any 399 

substance that changes the spectral curve will alter the percent in a color band. Instead of 400 

actually testing the limit of detection, we examine the relationship between color band and 401 

percent hematite. To assess red color band reflectance as an indicator of hematite, we plotted 402 

%hematite vs. %reflectance in the red color band (Figure 4) for the 7 matrix sets shown in Figure 403 

1a and b. The resulting plots indicate that the relationship between % hematite and %red within 404 

each matrix set is an exponential growth curve (Figure 4a). But, for different matrix sets the 405 

curves differ significantly. The curves also show that as hematite concentration increases %red 406 

values for the different matrix sets show significant variation. As a result a %red value of ~38% 407 

could be indicative of hematite values from 1 – 4% (Figure 4b). For each individual matrix set 408 

(Figure 4a), however, the curves are remarkably consistent with all the illustrated curves having 409 

an r2 >0.99 and a standard error of estimate (SEE) <0.095. Clearly, if the matrix is held constant 410 

it would be possible to accurately estimate hematite content from the percent in the red color 411 

band. However, when all 120 test samples are grouped into a single data set, the r2 falls to 0.822 412 
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and the SEE increases to +/-0.559 (Figure 4b). Although the r2 is relatively high, an SEE of +/-413 

0.559 indicates that it would be difficult to detect hematite confidently at concentrations <~0.5%, 414 

making the equation unusable for many soils and sediments. Of all the color bands, percent in the 415 

orange color band (Figure 4c), has the highest r2 and lowest SEE when regressed against 416 

hematite concentration.  417 

First Derivative Values. Our data confirm that hematite produces a very distinctive first 418 

derivative signature. This signature is a peak in the first derivative curve between 555 and 585 419 

nm. In both of the mixture series (Figure 5) this peak is evident and confirms that in light 420 

matrices (calcite and silica, Figure 5a) the limit of detection of hematite with first derivative 421 

values is <0.01% by weight. However, in darker matrices, the North Atlantic with 15% chlorite 422 

for example (Figure 5b), the detection limit of hematite is 0.05%, a concentration that is lower 423 

than can be resolved by the human eye.  424 

The mixture series (Figure 5) clearly shows the matrix effect on reflectance spectra. Part of 425 

the matrix effect is to reduce the limit of detection in darker matrices as described above. In 426 

addition, the matrix effect also suppresses the height of the hematite first derivative peak. In a 427 

light matrix (Figure 5a) the first derivative peak has a maximum value of about 0.9 whereas in 428 

darker matrices that value is reduced to about 0.6 (Figure 5b). A darker matrix also completely 429 

suppresses a peak at about 700 nm and an absorption feature centered at <800 nm (Figure 5). As 430 

shown by Balsam and Deaton (1991) this absorption band, which is frequently used to identify 431 

hematite, completely disappears when hematite concentration falls below 2%. This paper further 432 

refines the above observation and demonstrates that for dark matrices the absorption band 433 

described in Figure 2 of Balsam and Deaton (1991) is not present. In addition, as hematite 434 

concentration increases the wavelength of the first derivative peak also increases. In a light 435 
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matrix the wavelength increases from 565 nm for 0.01% to 585 nm for 4.0% hematite whereas in 436 

a dark matrix it increases from 555 nm for 0.05% to 575 nm for 4% hematite. 437 

Kubelka-Munk Remission Function. Following color bands, the Kubelka-Munk 438 

remission function is probably the most commonly used transform of spectral data. Although it 439 

has been applied to geological data, its sensitivity to diverse minerals has never been rigorously 440 

tested in data sets of different matrices with varying amounts of hematite. Figure 6 shows how 441 

the K-M function transforms the raw spectral data (%reflectance as a function of wavelength, 442 

Figure 3). As with the percent reflectance data (Figure 3), it is clear that hematite affects the K-443 

M spectrum, especially from 500 – 600 nm. The K-M function compresses the curves at the red 444 

end of the spectrum and expands, reverses (light samples with 0% hematite have lower values 445 

and as hematite is added and samples get darker the values increase) and spreads out values at 446 

the violet end of the spectrum. K-M values in the light matrix (Figure 6a) indicate a potential 447 

problem; the 4 curves with hematite values ranging from 0 – 0.1% are virtually identical. 448 

However, for the dark matrix the values are more spread out at the violet end of the spectrum 449 

(Figure 6b).  450 

Geological researchers generally do not use untransformed K-M values; rather either first 451 

or second derivative values are used. Figure 7 shows the first derivative values for the light and 452 

dark matrices. The first derivative of the K-M function exhibits patterns similar to the first 453 

derivative of the %reflectance curves with one important exception, the limit of detection for 454 

both the matrices increases to between 0.1% and 0.5%. (In both matrices the peak at 0.1% is so 455 

small that it is likely to be overlooked and 0.5% appears a more realistic detection limit.) For 456 

both matrices the limit of detection using the K-M function is at least 10 times greater than the 457 

amount that can be identified with the first derivative (Figure 5). Scheinost et al. (1998) 458 
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suggested that 0.5% is the lowest concentration of hematite that can be easily identified using the 459 

K-M function. Our work strengthens this conclusion. However, we cannot rule out the possibility 460 

that in some matrices the detection limit is lower, possibly only slightly >0.1% by weight.  461 

Several researchers (Scheinost et al. 1998; and Torrent et al. 2007) have suggested that the 462 

second derivative of the K-M function provides useful data to characterize iron oxides from DRS 463 

spectra. Our data show that in both light and dark matrices the second derivative of the K-M 464 

function (Figure 8) has the same limit of detection as the K-M first derivative, that is, about 465 

0.5%. Scheinost et al. (1998) also suggested that the ratio of the amplitude difference between 466 

the ~415 nm minimum and the ~445 nm maximum for goethite and the ~535 nm minimum and 467 

~580 nm maximum for hematite is a good measure of the goethite to hematite ratio. The 468 

detection limit also applies to the amplitude of the difference from 535 – 580 nm which 469 

approaches 0 for hematite values less than 0.5%. Although this paper does not address the 470 

mineral goethite, Deaton and Balsam (1991) indicate that in dark matrices the detection limit for 471 

goethite is about 0.5%. Clearly, when using ratios of the K-M second derivatives to determine 472 

hematite to goethite ratios one must be careful to insure that the values are above the detection 473 

limit.  474 

Discussion 475 

For the field geologist and soil scientist this paper provides a method to assess fine-grained (sub-476 

micron) hematite content visually. The detection limit of hematite by eye varies with the color, 477 

lightness and mineralogy of the matrix (Figures 1, 5). In light matrices such as quartz or calcite, 478 

hematite can be detected visually at concentrations as low as 0.01%. The addition of light 479 

minerals such as kaolinite and montmorillonite in a light matrix has little additional effect on the 480 

hematite detection limit. However, as the matrix darkens because of the addition of dark minerals 481 
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such as illite or chlorite, the detection limit increases reaching 0.1% to 0.5% by weight. The 482 

transition from light to dark matrices is also marked by a change in the character of the red color 483 

from intense and vibrant to muddy (Figure 9). Given some a priori knowledge of rock or 484 

sediment mineralogy field geologists and soil scientists should be able to use color to make a 485 

reasonable estimate of hematite concentration. 486 

In addition to altering the detection limit, different minerals also change the color of the 487 

sample for the same concentration of hematite. With carbonate and silica matrices, despite the 488 

fact that both are very light, the hematite visually is more obvious in the carbonate matrix than in 489 

the silica matrix and the color of the samples in each of these white matrices differs with the 490 

silica samples being somewhat lighter and less saturated for a corresponding hematite 491 

concentration. Further, mixtures with chlorite and especially with high concentrations of illite 492 

tend to give the samples a decidedly brown cast. Hence, a reddish brown color and its 493 

Munsell/CIE equivalent is not just the result of different iron oxide minerals as indicated by 494 

Torrent et al (1983), but also the matrix in which they are found.  495 

This change in color with matrix is well illustrated by our samples that contain 0.1% 496 

hematite (Figure 9). These samples range from red-orange to pink to various shades of brownish-497 

red. Clearly, in samples with different matrices there is no consistent relationship between color 498 

and hematite content suggesting that Munsell or CIE color is not useful for identifying hematite 499 

concentration. Some efforts have been made to quantify color using the Munsell and CIE color 500 

systems. The seminal work with respect to hematite is that of Torrent et al. (1983) who first used 501 

data from spectrophotometers to calculate numerical color parameters based on tristimulus 502 

values which indicate the relative spectral sensitivities of the three types (R, G, B) of cone cells. 503 

They demonstrated a high degree of correlation (r2) between numerical color parameters and 504 
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hematite content in specific soil types. However, they also demonstrated that when the soil type 505 

changed (that is matrix composition changed) a different regression equation was required or the 506 

correlation was significantly reduced. Hence, based on their data, it appears that a single 507 

equation is capable of estimating hematite content only if sample matrices are mineralogically 508 

similar. This view is also supported by our plot of percent red vs. hematite content (Figure 4), 509 

indicated by the plots of Deaton and Balsam (1991) and the data in this paper. Ji et al (2002) 510 

have since used the observation that if matrix is held constant, then the effect of changing 511 

hematite concentration is consistent and predictable. They showed that by chemically removing 512 

iron oxides from a natural matrix and then spiking that matrix with known concentrations of 513 

hematite and goethite it was possible to write equations based on DRS spectra that could 514 

accurately estimate hematite and goethite content in similar matrices.  515 

Although there are significant differences in the data gathered by satellite-borne 516 

spectrophotometers and our laboratory instrument, bi-directional reflectance vs. diffuse 517 

reflectance and a significant thickness of atmosphere for satellites, the comprehensive nature of 518 

the dataset used in this study has the potential to be useful to those engaged in remote sensing. In 519 

remote sensing the amount of reflectance in a color band or the ratio of color bands is commonly 520 

used to determine composition. In this study we show that if matrix is held constant, percent in 521 

the red color band forms a predictable exponential growth curve from which hematite could be 522 

estimated (Figure 4a) with reasonable precision. However, when all the matrices are combined 523 

the r2 of the red color band vs. hematite decreases and more importantly the SEE falls to +/-0.559 524 

(Figure 4b) indicating the ability to detect hematite at concentrations less than about 0.5% is 525 

limited. We note (Figure 4c) that of all the color bands, orange is best at estimating hematite 526 

content and has a higher r2 and lower SEE than the red band. In spectral analysis of remote 527 
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sensing data from satellite-borne spectrophotometers the ratio of (color) bands is frequently used; 528 

the Landsat TM band 3/1 ratio (about red/blue) is reported to be indicative of iron oxides 529 

(Sabins, 1999; Ji et al 2004). Our data, however, indicate that the green/red ratio is better at 530 

discriminating hematite content. A plot of the green/red color band ratio versus %hematite 531 

(Figure 10) again suggests a nonlinear relationship between these two variables and a regression 532 

employing an exponential decay curve produces a higher r2 and lower SEE compared to the red 533 

color band (Figure 4b), but a lower r2 and higher SEE compared to orange (Figure 4c).  534 

Other transforms of the raw spectral data (Figure 3), that is, first derivative curves (Figure 535 

5) or the Kubelka-Munk remission function and derivatives of it (Figure 6, 7, 8) were examined. 536 

Of these two commonly used transforms, the first derivative of the percent reflectance curve is 537 

clearly superior at detecting hematite. In light matrices, first derivatives can detect hematite at a 538 

concentration of 0.01% by weight; in darker matrices hematite can be detected at a concentration 539 

of 0.05% by weight with first derivatives. For the Kubelka-Munk remission function the lowest 540 

detection limit documented in this study is ~0.5%, the same as in previous studies (Scheinost et 541 

al, 1998). This high detection limit is consistent with the work of Simmons (1972) who warned 542 

that marked deviations from theory have been observed when the K-M function is applied to 543 

strongly absorbing materials, for example, hematite.  544 

DRS first derivative curves’ peak height is sensitive to hematite concentration (Figure 5). 545 

But, peak height is also a function of matrix composition and therefore is not a reliable indicator 546 

of hematite concentration in varying matrices. Further, it is clear that sample lightness must be 547 

taken into account as it influences both the limit of detection and the height of the hematite first 548 

derivative peak. These considerations suggest that the range in hematite concentrations in soils 549 

and rocks cannot be adequately characterized with a single variable. In addition, our first 550 
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derivative curves suggest that trying to characterize the spectral response of hematite with a 551 

single sample is inadequate because the spectral curve changes with both hematite concentration 552 

and matrix mineralogy. This observation is especially true when trying to characterize hematite 553 

from a pure sample. Comparison of our data to the spectral pattern of pure hematite (Barranco et 554 

al. 1989) indicates that spectral patterns based on pure minerals are not likely to be reliable 555 

indicator of absorption features in natural mixtures. A similar conclusion was reached by Morris 556 

and Lauder (1990).  557 

Implications of this Research 558 

Iron is one of the more common elements on the Earth’s surface. It is ubiquitous in its many 559 

chemical forms in soils, sediments and rocks. On the surface iron is not only present in igneous, 560 

metamorphic and clay minerals, but also, in the presence of oxygen, forms iron oxides and 561 

oxyhydroxides that accumulate in soils and sediments. These oxide/oxyhydroxide minerals, 562 

although visually quite evident from their color, occur in low concentrations and are difficult to 563 

identify by conventional instrumental methods such as XRD. In this paper we demonstrate that 564 

visual methods can effectively be applied to provide qualitative estimates (none, sparse, 565 

common, and abundant) of hematite content. Further, we show that DRS has the capability of 566 

providing semi-quantitative estimates of hematite content if matrix is held constant. This 567 

information should be useful to mineralogists and in soil science, sedimentology, marine 568 

geology, and paleoclimatology, fields in which DRS has already been applied with some success. 569 

For the mineralogist this paper expands and reinforces previous studies. When the study of 570 

Deaton and Balsam (1991) that compared XRD and DRS was published, the default technique 571 

for detecting the presence and percentages of hematite in various matrices was XRD. The results 572 

of this study with more up to date equipment and computer processing software confirms the 573 
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work of Deaton and Balsam (1991) that about 1% is the detection limit of hematite in a complex 574 

matrix with XRD. The results of the original study indicated that DRS could improve on XRD in 575 

terms of detection limits. The current, more thorough investigation indicates that the detection 576 

limit with DRS is at least 100 times lower than XRD for a light matrix (Figure 5a), and at least 577 

20 times lower in a dark/complex matrix (Figure 5b). Understanding this limit in typical 578 

geological and soil environments is important because hematite is frequently less than 1%. We 579 

also demonstrate that for DRS the data reduction technique is an important control on the limit of 580 

detection. Using the popular Kubelka-Munk remission function the detection limit of hematite is 581 

about 0.5%. But, by using the first derivative of the reflectance curve the detection limit lowers 582 

to 0.01 – 0.05% depending on matrix. This study also indicates the importance of knowing the 583 

limits of detection for both XRD and DRS when assessing output from computer programs to 584 

avoid interpreting noise as data.  585 

For the soil scientist or sedimentologist we document that the limits of detection of 586 

hematite visually depends on the darkness of the matrix, that is, 0.01% in a light matrix and 0.10 587 

to 0.50% in darker matrices. In addition, we provide some guidance for visual determination of 588 

concentrations above the detection limit. We also note that qualitative visual estimates of 589 

hematite content can be further refined through the use of a spectrophotometer to positively 590 

identify hematite (the eye cannot distinguish between different red materials) and to provide 591 

semi-quantitative estimates of hematite content with the use of first derivative curves. These 592 

estimates are below the limit of detection of XRD. Qualitative estimates of hematite content have 593 

also been used in marine geology to trace the dispersal of Saharan dust in the equatorial Atlantic 594 

(Balsam et al, 1995) and the redistribution of terrestrial sediments by deep ocean currents 595 

(Barranco et al., 1989). The data provided in this paper will help to further refine these estimates 596 
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and, through the use of appropriate first derivative curves based on sample albedo (dark, light, 597 

etc.), make semi-quantitative estimates possible. Enhanced identification of hematite could also 598 

be useful in paleoclimatic work. As noted earlier, the ratio of hematite to goethite has been used 599 

as an indicator of precipitation with hematite dominating in warm dry conditions and goethite in 600 

cooler, wetter conditions. Perhaps the easiest way to determine goethite concentration is by 601 

thermally oxidizing it to hematite and using the after and before difference to calculate goethite 602 

(Zhou et al. 2010). Because this work is the first step towards improving estimates of hematite 603 

concentration directly from spectra, it will also enhance determining goethite and hematite to 604 

goethite ratios that are potentially useful in paleoclimatic studies.  605 

This work may also have application in remote sensing, especially of Mars where sub-606 

micron hematite is thought responsible for the red color of some of the planet (Christensen et al. 607 

2001). In this study the orange color band proved to be a useful proxy for moderate 608 

concentrations of red hematite, better than the ratio of color bands. Further, when attempting to 609 

characterize the spectrum of a mineral it is important to remember that the spectrum of a pure 610 

sample will likely differ from the spectrum of that mineral mixed with other components. Morris 611 

and Lauder (1990) reached a similar conclusion, but we emphasis that not only is difference in 612 

matrix composition important, but also that the albedo of the matrix has a major influence on the 613 

detection limit. Finally, if data quality from remote sensing instruments permits, first derivative 614 

curves have the potential to identify and quantify hematite at very low concentrations, depending 615 

on matrix composition. 616 
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Table 1. Sample composition by matrix and hematite content. The bold numbers refer to the sample number used in this study. The 752 
simulated North Atlantic matrix contains silica, carbonate, and illite in the ratio 4/3/3; the Gulf matrix contains carbonate, silica, and 753 
illite in the ratio 5/3/2. The text contains additional details of matrix composition. 754 
 755 
 756 

Percentage Mixed Hematite
0 0.01 0.05 0.1 0.5 1 2 4

Base Matrix Other Minerals Added to Base Sample Number
Carbonate 1 2 3 4 5 6 7 8
Silica 9 10 11 12 13 14 15 16
Carb/Sil 17 18 19 20 21 22 23 24

10% Illite 25 26 27 28 29 30 31 32
25% Illite 33 34 35 36 37 38 39 40
50% Illite 41 42 43 44 45 46 47 48

North Atlantic 1% Chlorite 49 50 51 52 53 54 55 56
5% Chlorite 57 58 59 60 61 62 63 64
15% Chlorite 65 66 67 68 69 70 71 72

Gulf 1% Kaolinite 73 74 75 76 77 78 79 80
5% Kaolinite 81 82 83 84 85 86 87 88
15% Kaolinite 89 90 91 92 93 94 95 96

1% Montmorillonite 97 98 99 100 101 102 103 104
5% Montmorillonite 105 106 107 108 109 110 111 112

15%  Montmorillonite 113 114 115 116 117 118 119 120757 
 758 
 759 

760 
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 761 
 762 
Table 2. Sources of material used to make the samples. 763 
 764 
Source Materials   
   
Hematite Pfizer R-1599 Pure red iron oxide Lot E3044 
CaCO3 Baker reagent 1288-05 Lot D29353 
Silica (SiO2) Aldrich Lot 02315MX 
Illite API#35  Fifthian, IL 
Chlorite (ripidolite) Clay Mineral Repository  Flagstaff Hill, El Dorado City, CA 
Kaolinite API#9 Mesa Alta, NM 
Montmorillonite (Na-Ca; beidellite) API#31 Cameron, AZ 

 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 
 773 
 774 
 775 
 776 
 777 
 778 
 779 
 780 
 781 
 782 
 783 
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 784 
Table 3. Results of visual test of hematite discrimination in different matrices. The matrices are 785 
arranged from lightest to darkest starting with 0% hematite. The Gulf matrix contains 15% 786 
montmorillonite and the North Atlantic matrix  contains 15% chlorite. There were 24 participants 787 
in the test. 788 
 789 

Matrix/ %Hematite %Seeing Red 
  

Carb 0% 0.0 
Carb 0.01% 95.8 
Carb 0.05% 100.0 
Carb 0.1% 95.8 
Carb 0.5% 100.0 

  
Carb/Sil 0% 8.3 

Carb/Sil 0.01% 62.5 
Carb/Sil 0.05% 100.0 
Carb/Sil 0.1% 100.0 
Carb/Sil 0.5% 100.0 

  
Gulf 0% 8.3 

Gulf 0.01% 12.5 
Gulf 0.05% 29.2 
Gulf 0.1% 62.5 
Gulf 0.5% 100.0 

  
North Atlantic 0%  4.2 

North Atlantic 0.01% 8.3 
North Atlantic 0.05% 8.3 
North Atlantic 0.1% 20.8 
North Atlantic 0.5% 100.0 

 790 
 791 

792 
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Figure Captions 793 

Figure 1. (a) Slides of mixed samples in 4 different matrices of calcium carbonate/silica, 794 

1:1, mixed with differing concentrations of illite and 8 different concentrations of hematite 795 

including 0%. Note that as the matrix gets darker with the addition of illite the detection limit of 796 

hematite increases. Samples 17 – 48 (Table 1) are illustrated on this figure. (b) Slides of mixed 797 

samples in the North Atlantic matrix (silica, carbonate, and illite in the ratio 4/3/3) with varying 798 

concentrations of hematite and chlorite. Samples 49 – 72 (Table 1) are illustrated on this figure. 799 

Similar to the experiments with increasing illite concentration, increasing chlorite concentration 800 

makes hematite more difficult to detect. The color of the samples shown on the following figures 801 

only approximates direct visual observation. The subtlety of the color variation shown by the 802 

samples is nearly impossible with to reproduce even adjusting for color temperature of the 803 

lighting and bracketing exposures. In addition, the fidelity of the images is further degraded 804 

preparing them for publication or by printing them. 805 

Figure 2. X-ray spectrum of 1% hematite in the Gulf matrix with 1% kaolinite (sample 78, Table 806 

1). Peaks attributable to quartz, calcite and ZnO are labeled. The primary hematite peaks are 807 

indicated by arrows. These peaks are so small that hematite would likely not be identified by 808 

most analysts. The 1% kaolinite in this sample is below the detection limit of XRD in this 809 

matrix. 810 

Figure 3. Example of changes in spectral percent reflectance curves with both changing matrices 811 

and hematite content. Zero percent hematite is the matrix with no hematite added to it. (a) is a 812 

light matrix of calcite and silica (samples 17 – 24, Table 1) whereas (b) is a dark matrix (samples 813 

65 – 72, Table 1). 814 



Paper #4878 Revison 1 
 

38 
 

Figure 4. (a) Percent hematite as a function of percent reflectance in the red color band, 630 – 815 

700 nm, for the seven data sets shown in Figure 1. (b) Percent hematite as a function of percent 816 

reflectance in the red color band for all 120 samples in the calibration data set. (c) Percent 817 

hematite as a function of percent reflectance in the orange color band, 590 - 630 nm, for all 120 818 

samples in the calibration data set. Note that both the r2 and SEE for orange are better than for 819 

the red color band. 820 

Figure 5. First derivative of the percent reflectance data (Figure 3) from the two matrix series 821 

presented (Figures 1a and b). Note that for each matrix the height of the first derivative peak 822 

increases with increasing hematite concentration up to 1% in a light matrix (a) and 4% in a 823 

darker matrix (b). 824 

Figure 6. Kubelka-Munk remission function applied to percent reflectance spectra from the two 825 

matrix series [carbonate/ silica matrix (a) and North Atlantic matrix (b)] illustrated on Figures 1 826 

and 3. Note how the K-M function compresses the red end of the spectrum and expands the blue 827 

end. 828 

Figure 7. First derivative of the K-M function for the carbonate/ silica matrix (a) and North 829 

Atlantic matrix (b). The lowest concentration of hematite that can be easily detected by the first 830 

derivative of the K-M function is 0.5% in contrast to first derivative curves (Figure 5) with a 831 

limit of 0.05% or less. 832 

Figure 8. Second derivative of the K-M function for the carbonate/silica matrix (a) and North 833 

Atlantic matrix (b). 834 

Figure 9. Examples of the “matrix effect”. All the illustrated samples (samples 4, 12, 28,60, 835 

84,and 108 on Table 1) contain 0.1% hematite, but are in different matrices. Note the variation in 836 

color and the changing ability to detect hematite in differing matrices.  837 
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Figure 10. Relationship between %hematite and the ratio of the percent reflectance in the green 838 

versus red color bands for all 120 samples. Taking the ratio of color bands slightly improves the 839 

ability to estimate hematite concentration compared to only the red color band. V1 in the 840 

equation refers to the ratio of green to red color bands. 841 
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Figure 6. 935 
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