1 **4841 Revision 2**

2	
3	A general model for calculating the viscosity of natural iron-bearing silicate melts over a
4	wide range of temperature, pressure, oxygen fugacity and compositions
5	
6	
7	Xianzhe Duan ^{1, 2*}
8	
9	
10	
11	
12	
13 14	
14	
16	
17	
18	
19	
20	
21	¹ School of Nuclear Resource Engineering, University of South China, Hengyang, Hunan
22	421001, China
23	² State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,
24	Chinese Academy of Sciences, Beijing 100029, China
25	
26	
27	
27	
28	
29 30	* Corresponding author (duanxianzhe@126.com, and duanxianzhe@163.com)

31	
32	ABSTRACT
33	A new general model that takes into account the pressure and redox state effect is
34	presented to calculate melt viscosities of natural Fe-bearing melts. This new model is
35	applicable to melts that span a wide range of temperatures (from 733 K to 1873 K), pressures
36	(0.001-15 kbar), H_2O content (from 0 wt% to 12.3 wt%), and compositions (from ultramafic,
37	mafic to silicic melts). The accuracy of the model is calculated to be ± 0.23 log units of
38	viscosity, which is within or close to experimental uncertainty. The transport properties,
39	including glass transition temperature and melt fragility, can also be calculated from this
40	model. A spreadsheet to calculate the viscosity is provided in an Electronic Supplement.
41	
42	Keywords: Melt viscosity; Fe-bearing melts; Oxygen fugacity; Iron oxidation state; Glass
43	transition temperature; Melt fragility; Volcanic eruption

10/6

44

INTRODUCTION

10/6

46

45

The viscosity of silicate melts is one of the most important physical properties governing 47 magmatic processes such as the generation, migration, degassing, crystallization and eruption 48 of magmas (e.g., Shaw, 1972; Hui and Zhang, 2007; Giordano et al., 2008). It is well known 49 that the main parameters that control the viscosity of melts are temperature and melt 50 composition (including water) (e.g., Shaw, 1963, 1972; Kushiro, 1976, 1978b, 1986; Persikov, 51 52 1991; Baker, 1996; Schulze et al., 1996; Stevenson et al., 1996; Richet et al., 1996; Stevenson 53 et al., 1998; Zhang, 1999; Whittington et al., 2000, 2001; Romano et al., 2003; Zhang et al., 54 2003; Dingwell et al., 1996, 2000, 2004; Hui and Zhang, 2007; Ardia et al., 2008; Hui et al., 2009; Giordano et al., 2003, 2006, 2008; Vetere et al., 2007, 2008; Misiti et al., 2006, 2011; 55 Bartels et al., 2012; Chevrel et al., 2013). In general, the melt viscosity has non-Arrhenius 56 57 temperature dependence, and can be significantly reduced by H_2O , which is the most abundant fluid in the upper mantle and crust. In addition to temperature and composition 58 effects, the pressure and redox state (i.e., iron oxidation state or oxygen fugacity) may have 59 important effects (Mysen et al., 1980; Liebske et al., 2003; Mysen and Richet, 2005; Ardia et 60 al., 2008; Hui et al., 2009; Bartels et al., 2012). For instance, Mysen et al. (1980) suggested 61 62 that it was necessary to consider the pressure effect during the magma ascent from upper 63 mantle to Earth surface, and Liebske et al., (2003) reported that the viscosities of dry andesitic melts could decrease by about 1.6 log units with increasing Fe^{2+}/Fe_{tot} from 0.42 to 0.79. In 64 addition, oxygen fugacity controlling the iron oxidation state has been widely recognized to 65

66	play an important role in the structure of melt, thereby significantly affecting melt viscosity
67	(Cukierman and Uhlmann, 1974; Liebske et al., 2003; Mysen and Richet, 2005; Vetere et al.,
68	2008). Due to the importance of viscosity in geological processes, many experiments on the
69	viscosity of melts have been performed over the past half century (e.g., Shaw, 1963; Kushiro,
70	1986; Persikov, 1991; Toplis et al., 1994; Stevenson et al., 1995; Richet et al., 1996; Giordano
71	et al., 2003b; Liebske et al., 2003, 2005; Vetere et al., 2007, 2008; Chevrel et al., 2013).
72	However, these data are far from sufficient for geological applications over a wide T-P-X
73	range of Earth's deep interior due to the inconsistencies within and between the published
74	data sets, particularly at the high T-P range where the data are scattered due to the difficulty in
75	experimental technique (Avramov, 2007; Ardia et al., 2008; Hui et al., 2009). Therefore, many
76	researchers have devoted extensive efforts to the modeling of viscosity in melts in order to
77	interpolate between data points or extrapolate beyond the data range (e.g., Shaw 1972; Baker
78	et al., 1996; Richet et al., 1996; Schulze et al., 1996; Scaillat et al., 1996; Hess and Dingwell.,
79	1996; Zhang et al., 2003; Misiti et al., 2006, 2011; Vetere et al., 2006, 2007, 2008; Avramov,
80	2007; Hui and Zhang, 2007; Giordano et al., 2003, 2006, 2008; Ardia et al., 2008; Hui et al
81	2009) (see the Electronic Supplement for detail).

In this study, I provide a model in which pressure effect and iron oxidation state effect on viscosity have been taken into account. First, the available data are reviewed in Section 2. The framework of the model is presented in Section 3. Then this model is compared with the experimental data with the previous models (Section 4), where evaluation of the model accuracy was performed by the root-mean-square-error (abbreviated as RMSE, hereafter) between the measured and calculated viscosity data, which is defined as follows:

88
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(\log_{10} \eta_{cal}^{i} - \log_{10} \eta_{exp}^{i}\right)^{2}}{n}}$$
(1)

where η_{cal}^{i} and η_{exp}^{i} are the ith calculated and measured viscosity data in Pa s, respectively; 89 n is the number of the data. As can be seen from Eqn. (1), RMSE can be used to measure the 90 goodness of prediction of certain model of interest. Section 5 contains a discussion of the 91 viscosity behavior of natural melts, with the complicated effects exerted by temperature, 92 pressure, melt composition (including water), and redox state. 93 The new model can predict viscosities of various natural Fe-bearing melts from 733 K to 94 1873 K and from 0.001 kbar to 15 kbar with accuracy within or close to experimental data 95 (e.g., RMSE of 0.23 log units). 96 97 **REVIEW OF VISCOSITY DATA** 98 99 100 Over the last half century, experimental scientists have carried out extensive 101 measurements of viscosity of a large variety of natural Fe-bearing silicate melts (from ultra-mafic, mafic and to silicic) over a large temperature-pressure range (Fig. 1). 102 In constructing the literature database for this model, the data used for calibration meet 103 the following minimal criteria: (1) experiments must be on natural silicate melt compositions, 104 (2) complete compositions of melts must have been determined, (3) the redox state (i.e., iron 105 106 oxidation state or oxygen fugacity) should be known, (4) the melts need not to experience a large variation in the iron oxidation state or the crystallization during the viscosity 107 measurements. Among the experimental measurements for Fe-bearing melts (Fig. 1), some 108

10/6

109	fulfill these requirements (Shaw, 1963; Kushiro, 1986; Persikov, 1991; Toplis et al., 1994;
110	Stevenson et al., 1995; Richet et al., 1996; Giordano et al., 2003b; Liebske et al., 2003, 2005;
111	Vetere et al., 2007, 2008; Chevrel et al., 2013), with the following exceptions: (1) several data
112	points of Giordano et al. (2003b) measured for basaltic melts at temperatures above 1670 K
113	are inconsistent with that of Toplis et al. (1994) with a deviation more than 1 log units; (2)
114	several data points of Liebske et al. (2003) collected during heating are not consistent with
115	their data collected during cooling; (3) the data points of Chevrel et al. (2013) where the melt
116	compositions used were distinctly different from those of natural melts. These small amounts
117	of experimental data are not used for parameterization.

118 The experimental data (Labeled as "Data redox state known", hereafter) of this database compiled for anhydrous to hydrous Fe-bearing melts covers more than 14.5 orders of 119 magnitude of viscosity (10^{-1.72}-10^{12.8}Pa s), showing near-Arrhenian to non-Arrhenian 120 temperature dependence, includes more than 220 measurements on more than 20 melt 121 compositions spanning the T-P range of 733-2523 K and 0.001-130 kbar. In this database, 122 Liebske et al. (2005) provide the only data for pressures above 15 kbar (i.e., 28-130 kbar). 123 124 This data set was not used for calibration, but instead for a check of the model predictability. Two sets of viscosity on andesitic melts (Liebske et al., 2003) and shoshonitic melts (Vetere et 125 al., 2007) are also not included in the parameterization, but are also chosen to test whether 126 127 this model can predict data not in the fit (Table 1). Some data (Labeled as "Data redox state unknown", hereafter) with unknown redox 128

Some data (Labeled as "Data_redox_state_unknown", hereafter) with unknown redox
 states (Neuville et al., 1993; Stevenson et al., 1996; Alidibirov et al., 1997; Gottsman et al.,
 2002; Romano et al., 2003; Misiti et al., 2006, 2011) are chosen for checking the

131 predictability of this model in the case where the redox state effect is not under consideration, compared with the H-Z model (Hui and Zhang, 2007) and G-R-D model (Giordano et al., 132 133 2008) that are mostly popularly used. 134 135 MODEL FORMULATION AND PARAMETERIZATION 136 Integrating the strengths of the previous models, the effects of melt composition and iron 137 oxidation on melt viscosity were evaluated in this study by a parameter named VSM, which is 138 a modified version of the SM parameter of Giordano et al. (2003a). SM is a 'network 139 140 modifiers' parameter as the molar percentage oxide sum, as defined as the following equation (Eqn. (2)), and was used as a compositional parameter to calculate anhydrous 141 multi-component melt viscosity. 142 $SM = \sum (Na_2O + K_2O + CaO + MgO + MnO + FeO_{tot} / 2)$ 143 (2) where FeO_{tot} is the total iron content. 144 However, iron can exist in both divalent and trivalent states in melts. Divalent iron can 145 act as a network modifier, while trivalent iron can act as a network former, like Si⁴⁺, Ti⁴⁺, Al³⁺, 146 P⁵⁺ (Persikov et al., 1990; Dingwell et al., 1993; Toplis and Dingwell, 1996; Ottonello et al., 147 2001; Moretti, 2005; Mysen and Richet, 2005). I therefore modified the SM expression by 148 distinguishing between the two different valences and roles of iron in silicate melt, treating all 149 ferric iron as a network former and all ferrous iron as a network modifier. If the iron oxidation 150 151 state is not given, the method of Moretti (2005) is used to calculate it under the given $T-P-X-fO_2$ condition. There are some various empirical forms have been proposed to 152

153 quantitatively calculate the iron oxidation state as a function of oxygen fugacity, pressure, temperature and compositions of the melt (Sack et al., 1980; Kilinc et al., 1983; Kress and 154 Carmichael, 1991). Later work attempted to include the effect of water (Moore et al., 1995), 155 while the most recent attempt to predict iron oxidation state including the effect of water has 156 been presented by Moretti (2005), which is the extension of Ottonello et al. (2001). The 157 method of Moretti (2005) for the determination of the iron oxidation state is mainly based on 158 the following three assumptions: (1) iron oxidation state is dominantly controlled by five 159 variables (oxygen fugacity, pressure, temperature, melt composition, water); (2) FeO can 160 produce Fe^{2+} and O^{2-} (Flood and Forland, 1947) and H₂O can be dissociated to H⁺ and O^{2-} 161 162 (Fraser, 1975, 1977); (3) Fe_2O_3 behaves as an amphoteric oxide in the Lux-Flood acid-base acceptation, i.e., Fe_2O_3 in the melt can be double dissociated into Fe^{3+} (basic dissociation) and 163 FeO²⁻ anions (acidic dissociation) (Fraser, 1975, 1977; Ottonello et al., 2001). With the 164 calculated mole fractions of Fe^{2+} and Fe^{3+} in the silicate melt, I replace the total Fe in the SM 165

expression Eq. (2), by the mole fraction of Fe^{2+} and added the oxides such as SiO₂, TiO₂,

167
$$Al_2O_3$$
, Fe^{3+} and P_2O_5 to the denominator to create the VSM parameter.

168
$$VSM = \frac{\sum (Na_2O + K_2O + CaO + MgO + MnO + Fe^{2+})}{\sum (SiO_2 + TiO_2 + Al_2O_3 + Fe^{3+} + P_2O_5)}$$
(3)

where Fe^{2+} and Fe^{3+} are the relative proportion of ferrous and ferric iron in the total iron, respectively; VSM represents the enrichment of non-bridging oxygen atoms in the melt system. Non-bridging oxygen is related to the depolymerization of melts, which in turn affects the amount of free oxygen in the melts and thus influences the viscosity (Mysen and Richet, 2005).

174 The VSM value calculated from the anhydrous melt composition was chosen to

175 characterize the melts. A single value parameter of melt composition, NBO/T, was also used by Giordano et al. (2003a) to model the viscosity of anhydrous melts, while the researchers 176 also used the SM to describe the melt composition in their models (e.g., Giordano et al., 177 2003a, 2006). The use of individual oxides in models creates additional fitting parameters, 178 179 typically more than 10; additional model parameters results in better fitting of the model to the calibration data. However, models with many parameters can sometimes produce 180 inaccurate interpolations and extrapolation (Kenny and McCoach, 2003). Because of this 181 possibility, the VSM parameter is used to characterize anhydrous melt composition and 182 produces a model that provides accurate predictions of viscosity for most common, 183 Fe-bearing melts. 184

In spite of the importance of water in affecting the structure and properties of silicate 185 melts, the relative abundance of the species of it dissolved in melts both as hydroxyl groups 186 and molecular species, appears to be a complex function of at least temperature and melt 187 composition that currently defy accurate modeling (e.g., Silver and Stolper, 1989; Silver et al., 188 1990; Zhang, 1999; Mysen and Richet, 2005). For the purpose of creating a simple-to-use 189 190 model, a method is needed to reflect the influence of water on the viscosity that does not rely upon experimental measurements of the water species in the melts, but yet adequately 191 quantifies the effect of water on the viscosity. After considering many different methods, I 192 193 incorporated the effect of water by the product of VSM and the mole fraction of total water in the melts. 194

Based on the Vogel-Fulcher-Tammann equation (abbreviated as VFT equation, hereafter)
 which expresses the non-Arrhenian temperature dependence of viscosity (Vogel, 1921;

197 Fulcher, 1925; Tammann and Hesse, 1926; Russell et al., 2003), the following equation (Eqn.

198 (4)), which most accurately reproduces the data, is proposed in this study:

$$log \eta = A + \frac{B}{T - C}$$

$$A = a$$

$$B = b_{1} + b_{2} ln(JB)$$

$$C = c_{1} + c_{2} ln(JC)$$

$$JB = b_{3}^{2} + VSM(b_{4}^{2}VSM + 2b_{3}b_{4} + b_{4}X_{H_{2}O} + b_{4}b_{5}P)$$

$$+ X_{H_{2}O}(2b_{3} + X_{H_{2}O} + b_{5}P + b_{4}VSM)$$

$$+ P(2b_{3}b_{5} + b_{5}^{2}P + b_{4}b_{5}VSM + b_{5}X_{H_{2}O})$$

$$JC = c_{3}^{2} + VSM(c_{4}^{2}VSM + 2c_{3}c_{4} + c_{4}X_{H_{2}O} + c_{4}c_{5}P)$$

$$+ X_{H_{2}O}(2c_{3} + X_{H_{2}O} + c_{5}P + c_{4}VSM)$$

$$+ P(2c_{3}c_{5} + c_{5}^{2}P + c_{4}c_{5}VSM + c_{5}X_{H_{2}O})$$
(4)

where T is in Kelvin, P is in kbar; η is viscosity in Pa s; The values of parameters a, b₁-b₅ and c₁-c₅ are listed in Table 2. X_{H2O} is molar fraction of the volatile (H₂O) in melts on a single oxygen basis as defined below (Eqn. (5)) (Stolper, 1982; Zhang, 1999).

where C_{H2O} and M_{H2O} are mass percent and mass per mole of H₂O, respectively, W is the mass

203
$$X_{H_{2}O} = (C_{H_{2}O} / M_{H_{2}O}) / (C_{H_{2}O} / M_{H_{2}O} + (100 - C_{H_{2}O}) / W)$$
(5)

204 205

199

of dry melt per mole of oxygen.

As can be found in Eqn. (4), the viscosity is modeled as the combination of the affects of temperature, pressure, redox state, anhydrous melt composition, and water concentration.

The R² value and RMSE for fitting the data used for the calibration of this model (Table 1) is 0.996 and 0.23, respectively, indicating that this model reproduces the data within or close to the experimental accuracy. The common value of parameter A indicates that the viscosity at infinite temperature based on the model for various Fe-bearing melts (log η_{∞} =-4.75, negligible compositional dependence) is close to the value of log η_{∞} =-4.31±0.74

213	obtained by Russell et al. (2003) to be the optimized viscosity limit for silicate melts. With
214	these parameters, the viscosity of natural Fe-bearing silicate melts including anhydrous and
215	hydrous iron-bearing melts can be calculated.
216	
217	VALIDATION OF THE MODEL
218	
219	More than 10 viscosity models were chosen for comparison in this study (Table 3, which
220	also lists the references denoted by the following model abbreviations).
221	Fig. 2 (a-c) shows the comparisons of the calculated viscosities with this model, H-Z
222	model and the G-R-D model, and the experimental data, including those with known
223	(Data_redox_state_known) and unknown redox states (Data_redox_state_unknown). It should
224	be noted that for proper comparison, the outliers of the H-Z and G-R-D model (Toplis et al.,
225	1994; Richet et al., 1996) were not used in the comparison. In addition, where the information
226	on redox state is absent (Fig. 2a), the contents of FeO and Fe_2O_3 were arbitrarily calculated
227	with the assumption that half of the total iron $FeO_{tot}(wt\%)$ is FeO (wt%) and the other half is
228	Fe ₂ O ₃ (wt%); this was also done in cases where the Fe^{2+}/Fe^{3+} ratios were known
229	(Data_redox_state_known). Fig. 3 compares the predictions of this model with the
230	experimental data with known redox states (Data_redox_state_known). The experimental
231	measurements of iron oxidation state are taken as inputs for the calculation of viscosities with
232	this model. Only the experimental data within the stated T-P-X ranges of models are used in
233	Figs. 2-3.

234	The viscosities calculated from this model are comparable to the H-Z and G-R-D
235	models, and can be applicable in the condition where the redox state effect is unknown (Fig.
236	2). However, the accuracy of previous models for calculating the viscosity of Fe-bearing
237	melts, especially for high iron-bearing melts (e.g., basalt, andesite) (e.g., Toplis et al., 1994;
238	Richet et al., 1996), can be much improved by incorporating redox state effect, as can be seen
239	from Fig. 3.

The viscosity model from this study can reproduce the experimental data used in the calibration with a standard deviation of 0.23 log units, and those not used in the calibration within 0.28 log units. These results illustrate the robustness of the model within and beyond its calibration range.

Fig. 4 shows the good prediction of this model at high pressures ($P \ge 1$ kbar), with a remarkable accuracy (RMSE=0.27). However, additional experimental data at higher pressures (P > 15 kbar) is needed for better constraining the model.

Table 3 shows the results of comparisons between the experimental data 247 (Data redox state known) and that calculated by this model, and those of previous general 248 models (e.g., S-B-W model; H-Z model; G-R-D model) and the other specific models in 249 comparison. It can be seen by comparing the different values of RMSE that the model of this 250 study gives better results than the previous models in predicting viscosities of various natural 251 252 Fe-bearing melts over a wide temperature and pressure range. The S-B-W model produces an RMSE of 0.77 log units when compared to experimentally determined melt viscosities. 253 Moreover, the S-B-W model is only applicable to viscosities below 10⁵ Pa s. The comparison 254 between the measurements and the predictions of H-Z model produces the RMSE of 0.7 log 255

256	units, whereas the comparisons of G-R-D model viscosity predictions with the measurements
257	on various melts yield the RMSE of 0.68 log units. The calculated viscosities of various
258	natural Fe-bearing melts with this model is about 0.5 log units more accurate than previous
259	general models (H-Z model; G-R-D model). In addition, the H-Z and G-R-D models include
260	more parameters (37 and 18, respectively) than this model (11) (Table 3), which may result in
261	less accurate interpolations and extrapolations (e.g., Kenny and McCoach, 2003). The
262	relatively large deviations yielded by both H-Z model and G-R-D model for Fe-bearing melts
263	probably reflects that they did not account for the iron redox state.
264	On the other hand, this model gives comparable results to other models except for
265	shoshonitic melts (Vetere et al., 2007), where the standard deviation of this model is 0.40 log
266	units, which is 0.23 log units higher than the V-B-M model (RMSE of 0.17 log units).
267	However, the V-B-M model used the Vetere et al (2007) data for calibration, whereas in the
268	model presented here the data used as a check.
269	This model is based on the data for Fe-bearing melts, and should not be used for Fe-free
270	melts, where the H-Z or G-R-D models are recommended. In addition, this model is best

melts, where the H-Z or G-R-D models are recommended. In addition, this model is best recommended for Fe-bearing melts with well characterized redox states. If the oxygen fugacity rather than iron oxidation state is given, it is recommended to evaluate the iron oxidation state prior to the determination of melt viscosity according to the method of Moretti (2005), which is the most recent attempt to quantitatively calculate the iron oxidation state as a function of oxygen fugacity, pressure, temperature, melt composition and H_2O . The calculation can be done with the files found in the Electronic Supplement. If neither iron oxidation state nor oxygen fugacity are known, the total FeO content (FeO_{tot}, wt%) could be

278	split equally between FeO (wt%) and Fe ₂ O ₃ (wt%) for the calculation of melt viscosity.
279	
280	DISCUSSION
281	
282	The temperature, pressure and compositional effects on the viscosity
283	
284	While some workers (e.g., Bottinga and Weill, 1972; Shaw, 1972) in the earlier studies
285	assumed an Arrhenius temperature dependence of melt viscosity, it has been most widely
286	accepted that the viscosities of silicate melts have non-Arrhenian temperature dependence,
287	and that this dependence is more pronounced in the lower temperature range (e.g., Mysen,
288	1988; Richet and Bottinga, 1995; Hess and Dingwell, 1996; Zhang et al., 2003; Mysen and
289	Richet, 2005; Vetere et al., 2006, 2007, 2008; Misiti et al., 2006, 2011; Hui and Zhang, 2007;
290	Giordano et al., 2008).
291	The important role that the pressure plays in viscosity was not recognized until 1970s.
292	The pressure dependence of viscosity is complicated, and is still subject of debate (e.g.,
293	Kushiro, 1976, 1978a; Scarfe et al., 1979, 1987; Mysen et al., 1980; Brearley et al., 1986;
294	Gupta, 1987; Bottinga and Richet, 1995; Richet et al., 1996; Schulze et al., 1996, 1999; Mori
295	et al., 2000; Behrens and Schulze, 2003; Reid et al., 2003; Liebske et al., 2003, 2005; Poe et
296	al., 2006; Ardia et al., 2008; Vetere et al., 2006, 2008; Hui et al., 2009; Del Gaudio and
297	Behrens, 2009; Bartels et al., 2012). Kushiro (1976) found that the viscosity of albitic melts
298	could decrease by 1 log units from 5 kbar to 24 kbar in the high temperature range. Kushiro
299	(1978a) found a similar decrease of viscosity for jadeite with increasing pressure. Gupta

300	(1987) also reported a negative pressure dependence of viscosity in some synthetic melts (e.g.,
301	Na ₂ O-3SiO ₂ ; Na ₂ O-Al ₂ O ₃ -4SiO ₂ ; K ₂ O-MgO-5SiO ₂ ; Na ₂ O-Al ₂ O ₃ -6SiO ₂). Some workers (e.g.,
302	Kushiro, 1976, 1978a; Mori et al., 2000; Ardia et al., 2008) interpreted this remarkable
303	decrease as the consequence of the coordination change of Al in melts, i.e., from four- to
304	six-fold or the decrease in the T-O-T (T=Si, Al) angle weakening the silicate network. Other
305	works (e.g., Scarfe et al., 1979, 1987; Mysen et al., 1980; Brearley et al., 1986; Bottinga and
306	Richet, 1995; Schulze et al., 1999; Behrens and Schulze, 2003; Del Gaudio and Behrens,
307	2009) suggested that the variation in the viscosity was mainly related to the degree of melt
308	polymerization. For instance, Scarfe et al. (1979) noted that the viscosity of highly
309	polymerized melts exhibited a negative pressure dependence, whereas the less highly
310	polymerize melts showed a positive pressure dependence. Scarfe et al. (1987) found that in
311	the low viscosity range, a positive pressure effect existed in some silicate melts with
312	NBO/T>1, like diopside, whereas most silicate melts with NBO/T<1, such as andesite,
313	tholeiitic basalt, were characterized by a negative pressure effect. On the other hand, in the
314	high viscosity range, the negative pressure effect on viscosity was also found for polymerized
315	melts such as albitic melts (Schulze et al., 1999; Behrens and Schulze, 2003; Del Gaudio and
316	Behrens, 2009). Del Gaudio and Behrens (2009) observed that at low temperature, the
317	pressure effect appeared to be more important than at high temperature. Nevertheless, Reid et
318	al. (2003) reported an "anomalous' pressure dependence of viscosity for diopside, showing
319	that the viscosity increased from 35 kbar to a maximum at 100 kbar and then decreased at
320	higher pressure. A pressure dependence similar to that reported by Reid et al. (2003) was also
321	observed in Liebske et al. (2005), who reported that the viscosity results for peridotite had a

322 maximum at the pressure (i.e., 85 kbar). This viscosity behavior with pressure was explained to be likely associated with structure changes of melt that occur upon compression (Reid et al., 323 2003; Liebske et al., 2005; Poe et al., 2006). A minor effect of pressure on viscosity of 324 synthetic rhyolitic to more feldspaitic melts (Schulze et al., 1996; Bartels et al., 2012), but 325 326 also of iron-free andesite and iron-bearing andesite has been reported (Richet et al., 1996; Liebske et al., 2003; Vetere et al., 2006, 2008). Liebske et al. (2003) found the variation in 327 viscosity of iron-free andesite was less than 0.3 orders of magnitude in the pressure range 328 from 1 kbar to 3 kbar. Vetere et al. (2006) observed no significant dependence of viscosity in 329 hydrous iron-free andesite on pressure in the range of 0.001-5 kbar at high temperature. 330 331 Vetere et al. (2008) suggested that pressure had a minor influence for hydrous iron-bearing and esite with high water content ($H_2O \ge 2.5$ wt%) in the low viscosity range, although these 332 333 authors stated that they didn't have experimental pairs where only pressures were changing (identical temperature, melt composition and iron redox state). Fig. 5 shows the prediction of 334 this model on the pressure dependence of viscosity at 1473 K and in the 0.001 kbar-10 kbar 335 pressure range, demonstrating that the pressure has a minor effect on iron-bearing andesitic 336 337 melts with high H₂O content at high temperature, in good agreement with the pressure trend observed by previous studies (e.g., Liebske et al., 2003; Vetere et al., 2006, 2008). However, 338 when the H_2O decreases, the effect of pressure becomes larger, and cannot be ignored. For 339 instance, the viscosity of iron-bearing andesitic melt with 6 wt% H₂O content, decreases by 340 less than 0.4 orders of magnitude with increasing pressure from 0.001 kbar to 3 kbar, but can 341 342 decrease by about 0.8 orders of magnitude when H_2O content decreases to about 0.1 wt%. A 343 similar pressure trend can also be found at pressures beyond 3 kbar. Therefore, in spite of

smaller influence on viscosity relative to temperature, the pressure effect cannot be neglected to model the viscosity in the geologically relevant conditions. This result is consistent with the point suggested by Mysen et al. (1980) that the pressure effect should be taken into account under the condition during the magma ascent from Earth depth to surface.

348 H_2O is of great importance to viscosity because small variation in H_2O content can cause significant changes in viscosity and thus ultimately influence the mechanisms of 349 transportation and eruption of magma (Shaw, 1963; Kushiro, 1978b; Dingwell et al., 1996, 350 2000; Papale, 1999; Whittington et al., 2000, 2001; Zhang et al., 2003; Morizet et al., 2007; 351 Vetere et al., 2007, 2008; Hui et al., 2009; Misiti et al., 2011; Duan, 2014). It is well 352 353 recognized that H₂O has a significantly negative effect on viscosities of melts, regardless of the melt types, but the viscosity behavior corresponding to H_2O effect has been hotly debated 354 (e.g., Shaw, 1963; Kushiro, 1978b; Davis and Tomozawa, 1996; Dingwell et al., 1996; Zhang, 355 1999; Whittington et al., 2000, 2001; Zhang et al., 2003; Morizet et al., 2007; Misiti et al., 356 2011). Shaw (1963) found the addition of 1 wt% water could cause the reduction by two 357 orders of magnitude in the viscosity of initially anhydrous rhyolitic melts. Dingwell et al. 358 359 (1996) reported that the viscosity of haplogranitic melts dropped drastically with the addition of 0.5 wt% of water and then decrease at water contents of 2 wt%. Richet et al. (1996) 360 suggested a strongest decrease of viscosity for andesitic melts at low water. For example, 1 361 wt% H₂O can decrease viscosity by more than 5 orders of magnitude, but a further viscosity 362 decrease by only 2 orders of magnitude with an additional 2.5 wt% H₂O. A similar effect was 363 observed by Whittington et al. (2000, 2001), who found a decrease of viscosity by 3 orders of 364 magnitude resulted from the first addition of 1 wt% of water, but smaller reductions with 365

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4841

366	further additions of water for both trachyte and phonolite at 900 K. Kushiro (1978b) observed
367	a difference in H ₂ O dependence of viscosity at high temperature and low temperature. For
368	instance, addition of 3.5 wt% $\mathrm{H_{2}O}$ reduces melt viscosity by 7 orders of magnitude at 1 bar
369	and 1000 K, whereas the viscosity is reduced by only 1.5 orders of magnitude with 4.5 wt%
370	H ₂ O at 1600 K and 15 kbar. Some works (e.g., Shaw, 1963; Davis and Tomozawa, 1996;
371	Zhang, 1999; Dingwell et al., 2000; Whittington et al., 2000, 2001; Morizet et al., 2007;
372	Misiti et al., 2011) reported that the decreased viscosity for a given amount of H ₂ O was highly
373	dependent on melt composition, e.g., H ₂ O effect was more pronounced in more polymerized
374	melts. The decrease of viscosity with H_2O may be attributed to the modification of silicate
375	network and thus depolymerization of melt resulted from the reactions between $\mathrm{H}_{2}\mathrm{O}$ and
376	melts (Davis and Tomozawa, 1996; Zhang, 1999)

377

378 The influence of redox state on the viscosity

379

Although some studies (e.g., Moore et al., 1995; Richet et al., 1996) suggested no effect 380 of redox state on melt viscosity, it has been more widely accepted that the redox state plays an 381 important role on melt viscosity (e.g., Cukierman and Uhlmann, 1974; Klein et al., 1983; 382 Mysen, 1988; Dingwell and Virgo, 1988; Mysen and Virgo, 1989; Dingwell, 1991; Neuville et 383 al., 1993; Toplis et al., 1994; Liebske et al., 2003; Dingwell et al., 2004; Hui and Zhang, 2007; 384 Vetere et al., 2008; Giordano et al., 2008). In general, the increase of Fe²⁺/Fe_{tot} ratio (or 385 decrease of Fe³⁺/Fe_{tot}) leads to the decrease of viscosity (Klein et al., 1983; Dingwell, 1989; 386 Neuville et al., 1993). A decrease in viscosity by 0.81 log units on average when Fe²⁺/Fe_{tot} 387

388	increases from about 0 to 0.77 was found for the system Na-Si-Fe-O (composition NS4F40),
389	whereas a decrease by 0.34 log units was found for $NaFeSi_2O_6$ melt when the Fe^{2+}/Fe_{tot} ratio
390	increases from 0.08 to 0.82 (Mysen and Virgo, 1989). Liebske et al. (2003) reported that
391	viscosity of dry and esitic melts could decrease by about 1.6 log units when the ${\rm Fe}^{2+}/{\rm Fe}_{tot}$ ratio
392	increases from 0.42 to 0.79 at 1061 K. Dingwell et al. (2004) found the effect of iron
393	oxidation state on melt viscosity is more pronounced at lower temperature than is at higher
394	temperature. Vetere et al. (2008) indicated that changing Fe^{2+}/Fe_{tot} from 0.83 to 0.60 could
395	cause the increase of viscosity of andesitic melts at high temperature ($\ge 1473K$) with low
396	water (H ₂ O \leq 0.1 wt%) by about 1 log units. The effect of redox state on viscosity of various
397	Fe-bearing melts at 0.001 kbar and 1473 K is shown in Fig. 6a, b, where the oxygen fugacity
398	of each melt corresponds to its iron oxidation state, illustrating that the redox state may exert
399	a significant effect on viscosity. For example, the viscosity of Fe-bearing andesitic melts can
400	increase by about 0.8 log units at 1473 K when increasing the Fe^{3+}/Fe_{tot} ratio from 0.2 to 0.6,
401	where for basaltic melts there is 0.86 log units increase in viscosity for the same variation of
402	iron oxidation state (Fig. 6a). In addition, the viscosities of Fe-bearing basaltic melts,
403	andesitic melts and rhyolitic melts can increase by about 0.5 log units, 0.8 log units and 0.6
404	log units, respectively, at 0.001 kbar and 1473 K when increasing the oxidation state from
405	\triangle NNO-2 to \triangle NNO+2 (Fig. 6b) (note here: \triangle NNO is the oxygen fugacity relative to NNO
406	buffer, see O'Neill, 1987) . Fig. 6c shows the significant effect of oxygen fugacity on the
407	'network modifiers' parameter (VSM) of various Fe-bearing melts under the same T-P
408	conditions as described in Fig. 6(a-b). From Fig. 6, it can be found that the oxygen fugacity
409	may substantially affect iron oxidation state and melt polymerization, and thus exert a

410 significant effect on the viscosity.

411

412 Application of the model

413

414 This new model can be used for the calculation of other physical properties of silicate melts, such as the glass transition temperature (Tg) and the melt fragility (m). The glass 415 transition represents the transition from a melt to a solid phase, and plays a vital role in 416 volcanic eruptions because the mechanical response of the magma or lava to applied stress at 417 this brittle/ductile transition governs the eruptive behavior (Sato et al., 1992; Gottsmann et al., 418 419 2002). Tg is the temperature division between the relaxed liquids and unrelaxed glasses and is defined as follows (Eqn. (6)) (Dingwell and Webb, 1990; Angell, 1991; Plazek and Ngai, 420 1991; Stevenson et al., 1995; Dingwell, 1995; Moynihan, 1995; Webb and Dingwell, 1995; 421 Gottsmann et al., 2002). 422

423
$$\log \eta \Big|_{T=T_g} = K - \log |q| \tag{6}$$

424

ī

where the *K* and *q* are the shift factor and cooling rate, respectively; K may reflect a melt structure influence on the relationship between relaxation time and Tg (Stevenson et al., 1995; Gottsmann et al., 2002). *K* is treated differently in different works. For example, Gottsmann et al. (2002) and Dingwell et al. (2004) considered it as a function of melt composition, whereas it was treated as a constant in Stevenson et al. (1995). In this study, the method of Gottsmann et al. (2002) is used to calculate Tg as function of cooling rate and silicate melt composition.

431 Melt fragility can be used to measure the degree of deviation of viscosity from an

Arrhenian temperature dependence; strong melts tend to have an Arrhenian behavior, whereas
fragile melts show a non-Arrhenian behavior (Plazek and Ngai, 1991). It is clearly defined in
Toplis et al., (1997) that the fragility (m) of melts is the gradient of the viscosity trace at the
glass transition temperature and can be calculated with Eqn. (7).

436
$$m = fragility = \frac{d(\log_{10} \eta)}{d(T_g / T)} \bigg|_{T = T_g} = \frac{B}{T_g (1 - C / T_g)^2}$$
(7)

437 where B and C are the parameters in this model (Eqn. (4)).

Fig. 7a shows the strong effect of H_2O on Tg. The main effect of increased H_2O is to depress values of Tg (Fig. 7a). Model values of Tg decrease sharply with increasing H_2O content (Fig. 7a), which is in agreement with the experimental studies of Giordano et al. (2004a, b). The largest decrease in Tg (145-334 K) is predicted to occur within the first 3 wt% H₂O. Anhydrous melts with Tg values of 893-1125 K have predicted Tg values of 700-725 K at 12 wt% H₂O (Fig. 7a).

Numerous discrepancies exist in the literature on the effect of H_2O on melt fragility, and 444 there is currently no consensus. For example, a negative H₂O dependence of melt fragility in 445 446 various melts was proposed by some works (e.g., Giordano et al., 2003, 2006, Giordano et al. 2008; Del Gaudio et al., 2007), whereas positive H₂O dependence of melt fragility in some 447 polymerized melts (e.g., rhyolitic melts) was obtained in others (e.g., Hess and Dingwell 1995; 448 Zhang et al., 2003; Malfait et al., 2013). Though the effect of H_2O on melt fragility is not well 449 understood, some researchers (e.g., Kohn, 2000; Zhang et al., 2003; Del Gaudio et al., 2007; 450 451 Deubener et al., 2008; Di Genova et al., 2013; Malfait and Sanchez-Valle, 2013) interpreted it as the consequence of the variation in the melt structure mainly associated with the 452

453 dissolution behavior of water in different silicate melts. A negative correlation between the melt fragility and H_2O is predicted by this model (Fig. 7b). This result is consistent with that 454 obtained by Giordano et al. (2003, 2006, 2008) and Del Gaudio et al. (2007). The implication 455 is that dry melt that shows non-Arrhenius behavior tends to become more Arrhenian with 456 457 increasing H₂O content. Fig. 7b also shows that anhydrous rhyolitic to basaltic melts have fragility values of 28.5-32.7, but their fragility values virtually overlap at about 22 and with 458 12 wt% H_2O . Although the negative relationship between melt fragility and H_2O in rhyolitic 459 melts contrasts with their positive correlation obtained by some works (e.g., Hess and 460 Dingwell 1995; Zhang et al., 2003; Malfait et al., 2013), there is a common consensus that 461 H₂O indeed exerts a significant effect on fragilities of melts, regardless of the melt types, 462 especially under low water condition (Fig. 7b). 463

As described above, the glass transition temperature (Tg) and fragility (m) of degassing melt would significantly increase as a consequence of the decreasing H₂O water during magma ascent, implying that melt becomes more non-Arrhenian in its temperature dependence and that the potential of melt for explosive fragmentation increases, respectively, ultimately resulting in volcanic eruption (Fig. 7) (e.g., Angell, 1991; Plazek and Ngai, 1991; Toplis et al., 1997; Stevenson et al., 1995; Gottsmann et al., 2002; Giordano et al., 2004a, b; Giordano et al., 2008).

471

472 Implication for the petrogenesis of magmas

473

The viscosities of Fe-bearing melts calculated by this model are almost 0.5 orders of

475 magnitude higher than those calculated by the previous general models that did not include 476 the Fe oxidation state. The higher viscosities would result in substantially slower ascent 477 velocities of Fe-bearing melts than previously calculated. For example, although the transport 478 rates in dikes are poorly known, a simple model has been proposed for elucidating the 479 rheological relations between the velocity (u) and viscosity of magmas through the volcanic 480 conduits (Eqn. (8)) (Mastin and Ghiorso, 2000; Mastin, 2002; Mastin, 2005):

481
$$u = -(R^2 / 8\eta)(\partial P / \partial z + \rho g)$$
(8)

where u is the average flow velocity, R is the radius of the conduit; η is the viscosity, P is the 482 pressure; z is vertical position (upwards being positive); ρ is density of melt; g is gravitational 483 acceleration. As the value of $(\partial P / \partial z + \rho g)$ is negative in an upward flowing conduit with z 484 positive in the upward direction (Mastin 2005), the velocity of melt shows inversely 485 dependence upon melt viscosity at the given R and $(\partial P / \partial z + \rho g)$. The rates of separation 486 and ascent through dikes of Fe-bearing melts are slower than previously considered possible 487 because of the higher viscosities calculated by this model than previous general models. The 488 concept that the ascent of melt diapirs through the upward flowing conduit relies on the 489 490 rheology of the deforming region of wall rock immediately surrounding the ascending diapir was proposed by Mahon et al. (1988), which used S-B-W model for calculating melt 491 viscosities prior to the calculations of the rheology of the deformation region. Although the 492 calculation of dispir ascent viscosities was not conducted in this study, substitution into the 493 Mahon et al. (1988) calculations of partially molten wall rock viscosities estimated by this 494 model would decrease diapiric ascent rate, and thus increase the depth of final diapir 495 496 emplacement.

This new general model presented in this work represents significant improvement over previous general models (e.g., H-Z model; G-R-D model) for the prediction of the viscosities of Fe-bearing melts and is in good agreement with measured viscosities. These higher viscosities result in almost a half orders-of-magnitude decreases in the melt-transport processes occurring in the Fe-bearing magmas.

502

Acknowledgement I greatly appreciate Dr. Fidel Costa and two anonymous reviewers for 503 their valuable and constructive suggestions, which greatly contributed to the improvement of 504 505 this manuscript. I much thank Dr. Fidel Costa for his significant efforts to kindly polish this 506 manuscript at late stage, Dr. Keith Putirka for his kind assistance in the further improvement of this manuscript, Drs. Keith Putirka, Don R Baker, Bjorn Mysen, Alexander Bartels and 507 Kai-Uwe Hess for their insightful comments on this paper at early stage of this manuscript 508 that have done much help to strengthen this manuscript, and Drs. Zhigang Zhang, Chi Zhang, 509 Ming Geng, and Guangjun Guo for their kind help in this work. This research is supported by 510 the Open Project from State Key Laboratory of Lithospheric Evolution, Institute of Geology 511 512 and Geophysics, Chinese Academy of Sciences.

- 513
- 514

REFERENCES

- Angell, C.A. (1991) Relaxation in liquids, polymers and plastic crystals -strong/fragile
 patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31.
- Ardia, P., Giordano, D., and Schmidt, M.W. (2008) A model for the viscosity of rhyolite as a
 function of H₂O-content and pressure: A calibration based on centrifuge piston cylinder

519	experiments. Geochimica et Cosmochimica Acta, 72, 6103-6123.
520	Avramov, I. (2007) Pressure and temperature dependence of viscosity of glassforming and of
521	geoscientifically relevant systems. Journal of Volcanology and Geothermal Research,
522	160, 165-174.
523	Baker, D. (1996) Granitic melt viscosities: Empirical and configurational entropy models for
524	their calculation. American Mineralogist, 81, 126-134.
525	Bartels, A., Behrens, H., Holtz, F., Schmidt, B.C., Fechtelkord, M., Knipping, J., Crede, L.,
526	Baasner, A., and Pukallus, N. (2012) The effect of fluorine, boron and phosphorus on the
527	viscosity of pegmatite forming melts. Chemical Geology 346, 184-198.
528	Behrens, H., and Schulze, F. (2003) Pressure dependence of melt viscosity in the system
529	NaAlSi ₃ O ₈ -CaMgSi ₂ O ₆ . American Mineralogist, 88(8-9), 1351-1363.
530	Bottinga, Y., and Weill, D.F. (1972) The viscosity of magmatic silicate liquids; a model
531	calculation. American Journal of Science, 272, 438-475.
532	Bottinga, Y., and Richet, P. (1995) Silicate melts: The "anomalous" pressure dependence of
533	the viscosity. Geochimica et Cosmochimica Acta, 59(13), 2725-2731.
534	Brearley, M., and Dickinson, J. (1986) Pressure dependence of melt viscosities on the join
535	diopside-albite. Geochimica et Cosmochimica Acta, 50(12), 2563-2570.
536	Chevrel, M.O., Baratoux, D., Hess, KU., and Dingwell, D.B. (2013) Viscous flow behavior
537	of tholeiitic and alkaline Fe-rich martian basalts. Geochimica et Cosmochimica Acta, In
538	Press.
539	Cukierman, M., and Uhlmann, D.R. (1974) Effects of iron oxidation state on viscosity, Lunar

540 composition. Journal of Geophysical Research 79, 1594-1598.

541	Davis, K.M., and Tomozawa, M. (1996) An infrared spectroscopic study of water-related
542	species in the silicate glasses. Journal of Non-Crystalline Solids, 201, 177-198.
543	Del Gaudio, P., Behrens, H., and Deubener, J. (2007) Viscosity and glass transition
544	temperature of hydrous float glass. Journal of Non-Crystalline Solids, 353(3), 223-236.
545	Del Gaudio, P., and Behrens, H. (2009) An experimental study on the pressure dependence of
546	viscosity in silicate melts. Journal of Chemical Physics, 131, 044504.
547	Deubener, J., Helsch, G., Moiseev, A., and Bornhoft, H. (2009) Glasses for solar energy
548	conversion systems. Journal of the European Ceramic Society, 29(7), 1203-1210.
549	Di Genova, D., Romano, C., Hess, KU., Vona, A., Poe, B., Giordano, D., Dingwell, D., and
550	Behrens, H. (2013) The rheology of peralkaline rhyolites from Pantelleria Island. Journal
551	of Volcanology and Geothermal Research, 249, 201-216.
552	Dingwell, D. (1989) Shear viscosities of ferrosilicate liquids. American Mineralogist, 74,
553	1038-1044.
554	Dingwell, D. (1991) Redox viscometry of some Fe-bearing silicate melts. American
555	Mineralogist, 76, 1560-1562.
556	Dingwell, D., Romano, C., and Hess, K. (1996) The effect of water on the viscosity of a
557	haplogranitic melt under PTX conditions relevant to silicic volcanism. Contributions to
558	Mineralogy and Petrology, 124, 19-28.
559	Dingwell, D.B., and Virgo, D. (1988) Melt viscosities in the Na ₂ O-FeO-Fe ₂ O ₃ -SiO ₂ system
560	and factors controlling the relative viscosities of fully polymerized silicate melts.
561	Geochimica et Cosmochimica Acta, 52, 395-403.
562	Dingwell, D., Courtial, P., Giordano, D., and Nichols, A. (2004) Viscosity of peridotite liquid.

563	Earth and Planetary	Science Letters,	226, 127-138.
-----	---------------------	------------------	---------------

- 564 Dingwell, D., Knoche, R., and Webb, S. (1993) The effect of P₂O₅ on the viscosity of 565 haplogranitic liquid. European Journal of Mineralogy, 5, 133-140.
- 566 Dingwell, D.B. (1995) Relaxation in silicate melts; some applications. Reviews in Mineralogy
- 567 and Geochemistry, 32, 21-66.
- 568 Dingwell, D. B., Hess, K.-U., and Romano, C. (2000) Viscosities of granitic (sensu lato) melts:
- 569 Influence of the anorthite component. American Mineralogist, 85, 1342-1348.
- Dingwell, D.B., and Webb, S.L. (1990) Relaxation in silicate melts. European Journal of
 Mineralogy, 2, 427-449.
- 572 Duan, X. Z. (2014) A general model for predicting the solubility behavior of H₂O-CO₂ fluids
- 573 in silicate melts over a wide range of pressure, temperature and compositions.

574 Geochimica et Cosmochimica Acta, 125, 582-609.

- Flood, H. and Forland, T. (1947) The acidic and basic properties of oxides. Acta Chemical
 Scand, 1, 592-604.
- 577 Fraser, D. G. (1975) Activities of trace elements in silicate melt. Geochimica et 578 Cosmochimica Acta, 39, 1525-1530.
- 579 Fraser, D. G. (1977) Thermodynamic properties of silicate melt. Thermodynamics in Geology,
 580 301-325.
- Fulcher, G.S. (1925) Analysis of recent measurements of the viscosity of glasses. Journal of
 the American Ceramic Society, 8, 339-355.
- Giordano, D., and Dingwell, D.B. (2003a) Viscosity of hydrous Etna basalt: implications for
- 584 Plinian-style basaltic eruptions. Bulletin of Volcanology, 65, 8-14.

585	Giordano, D., and Dingwell, D.B. (2003b) Non-Arrhenian multicomponent melt viscosity: a
586	model. Earth and Planetary Science Letters, 208, 337-349.
587	Giordano, D., Mangiacapra, A., Potuzak, M., Russell, J., Romano, C., Dingwell, D., and Di
588	Muro, A. (2006) An expanded non-Arrhenian model for silicate melt viscosity: A
589	treatment for metaluminous, peraluminous and peralkaline liquids. Chemical Geology,
590	229, 42-56.
591	Giordano, D., Romano, C., Papale, P., and Dingwell, D.B. (2004a) The viscosity of trachytes,
592	and comparison with basalts, phonolites, and rhyolites. Chemical Geology, 213, 49-61.
593	Giordano, D., Romano, C., Dingwell, D., Poe, B., and Behrens, H. (2004b) The combined
594	effects of water and fluorine on the viscosity of silicic magmas. Geochimica et
595	Cosmochimica Acta, 68, 5159-5168.
596	Giordano, D., Russell, J. K., and Dingwell, D.B. (2008) Viscosity of magmatic liquids: A
597	model. Earth and Planetary Science Letters, 271, 123-134.
598	Gottsmann, J., Giordano, D., and Dingwell, D.B. (2002) Predicting shear viscosity during
599	volcanic processes at the glass transition: a calorimetric calibration. Earth and Planetary
600	Science Letters, 198, 417-427.
601	Gupta, P.K. (1987) Negative pressure dependence of viscosity. Journal of the American
602	Ceramic Society, 70(7), C152-C153.
603	Hess, K.U., and Dingwell, D.B. (1996) Viscosities of hydrous leucogranitic melts: A
604	non-Arrhenian model. American Mineralogist, 81, 1297-1300.
605	Hui, H., and Zhang, Y. (2007) Toward a general viscosity equation for natural anhydrous and
606	hydrous silicate melts. Geochimica et Cosmochimica Acta, 71, 403-416.

607	Hui, H., Zhang, Y., Xu, Z., Del Gaudio, P., and Behrens, H. (2009) Pressure dependence of
608	viscosity of rhyolitic melts. Geochimica et Cosmochimica Acta, 73, 3680-3693.
609	Kenny, D.A., and McCoach, D.B. (2003) Effect of the number of variables on measures of fit
610	in structural equation modeling. Structural. Equation. Modeling, 10, 333-351.
611	Klein, L.C., FA sano, B.V., and Wu, J.M. (1983) Viscous flow behavior of four
612	iron-containing silicates with alumina, effects of composition and oxidation condition.
613	Journal of Geophysical Research, 88, A880-A886.
614	Kilinc, A., Carmichael, I.S.E., Rivers, M.L., and Sack, R.O. (1983) The ferric-ferrous ratio of
615	natural silicate liquids equilibrated in air. Contributions to Mineralogy and Petrology,
616	83(1), 136-140.
617	Kushiro, I. (1976) Changes in viscosity and structure of melt of NaAlSi ₂ O ₆ composition at
618	high pressures. Journal of Geophysical Research, 81(35), 6347-6350.
619	Kushiro, I. (1978a) Viscosity and structural changes of albite (NaAlSi ₃ O ₈) melt at high
620	pressures. Earth and Planetary Science Letters 41, 87-90.
621	Kushiro, I. (1978b) Density and viscosity of hydrous calc-alkalic andesite magma at high
622	pressre. Carnegie Institute of Washington Year Book 77, 675-678.
623	Kushiro, I. (1986) Viscosity of partial melts in the upper mantle. Journal of Geophysical
624	Research, 91, 9343-9350.
625	Le Bas, M., Le Maitre, R., Streckeisen, A., and Zanettin, B. (1986) A chemical classification
626	of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27,
627	745-750.

629	composition on the viscosity of andesitic melts. Geochimica et Cosmochimica Acta, 67,
630	473-485.
631	Liebske, C., Schmickler, B., Terasaki, H., Poe, B., Suzuki, A., Funakoshi, K., Ando, R., and
632	Rubie, D. (2005) Viscosity of peridotite liquid up to 13 GPa: Implications for magma
633	ocean viscosities. Earth and Planetary Science Letters, 240, 589-604.
634	Mahon, K. I., Harr isson, T. M., and Drew, D. A., 1988. Ascent of a granitoid diapir in a
635	temperature varying medium. Journal of Geophysical Research. 94, 1174-1188.
636	Malfait, W.J., and Sanchez-Valle, C. (2013) Effect of water and network connectivity on
637	glass elasticity and melt fragility. Chemical Geology, 346, 72-80.
638	Mastin, L.G. (2002) Insights into volcanic conduit flow from an open-source numerical model.
639	Geochemistry, Geophysics, Geosystems, 3, 1029-1046.
640	Mastin, L.G. (2005) The controlling effect of viscous dissipation on magma flow in silicic
641	conduits. Journal of Volcanology and Geothermal Research, 143, 17-28.
642	Mastin, L.G., and Ghiorso, M.S. (2000) A numerical program for steady-state flow of
643	magma-gas mixtures through vertical eruptive conduits, USGS Open-File Report 00-209.
644	U.S. Geological Survey, Vancouver, WA, 56 pp.
645	Morizet, Y., Nichols, A. R. L., Kohn, S. C., Brooker, R. A., and Dingwell, D. B. (2007) The
646	influence of H ₂ O and CO ₂ on the glass transition temperature: insights into the effects of
647	volatiles on magma viscosity. European Journal of Mineralogy, 19, 657-669.
648	Moynihan, C.T. (1995) Structural relaxation and the glass transition. Reviews in Mineralogy
649	and Geochemistry, 32, 1-19.
650	Misiti, V., Freda, C., Taddeucci, J., Romano, C., Scarlato, P., Longo, A., Papale, P., and Poe, B.

- T. (2006) The effect of H_2O on the viscosity of K-trachytic melts at magmatic temperatures. Chemical Geology, 235, 124-137.
- Misiti, V., Vetere, F., Freda, C., Scarlato, P., Behrens, H., Mangiacapra, A., and Dingwell, D.
- B. (2011) A general viscosity model of Campi Flegrei (Italy) melts. Chemical Geology,
 290, 50-59.
- Mori, S., Ohtani, E., and Suzuki, A. (2000) Viscosity of the albite melt to 7 GPa at 2000 K.
 Earth and Planetary Science Letters, 175, 87-92.
- Moore, G., Righter, K., and Carmichael, I.S.E. (1995) The effect of dissolved water on the
- 659 oxidation state of iron in natural silicate liquids. Contributions to Mineralogy and 660 Petrology, 120, 170-179.
- Moretti, R. (2005) Polymerisation, basicity, oxidation state and their role in ionic modelling of
 silicate melts. Annals of Geophysics, 48, 583-608
- Mysen, B., Virgo, D., and Scarfe, C. (1980) Relations between the anionic structure and
 viscosity of silicate melts-a Raman spectroscopic study. American Mineralogist, 65,
 665 690–710.
- Mysen, B., Virgo, D., Scarfe, C., and Cronin, D. (1985) Viscosity and structure of iron-and
 aluminum-bearing calcium silicate melts at 1 atm. American Mineralogist, 70, 487-498.
- Mysen, B.O. (1988) Structure and Properties of Silicate melts. Elsevier, Amesterdam, 1988,
 354 pp.
- Mysen, B.O., and Richet, P. (2005) Developments in Geochemistry 10, Silicate Glasses and
 Melts Properties and Structure. Elsevier, Amsterdam.
- Mysen, B.O., and Virgo, D. (1989) Redox equilibria, structure and properties of Fe-bearing

673	alumosilicate melts: relationship among temperature, composition and oxygen fugacity
674	in the system Na ₂ O-Al ₂ O ₃ -SiO ₂ -Fe-O. American Mineralogist, 74, 58-76.
675	Neuville, D., Courtial, P., Dingwell, D., and Richet, P. (1993) Thermodynamic and rheological
676	properties of rhyolite and andesite melts. Contributions to Mineralogy and Petrology, 113,
677	572-581.
678	O'Neill, H.S.C. (1987) Free energies of formation of NiO, CoO, Ni ₂ SiO ₄ , and Co ₂ SiO ₄ .
679	American Mineralogist, 72(3), 280-291.
680	Ottonello, G., Moretti, R., Marini, L., and Vetuschi Zuccolini, M. (2001) Oxidation state of
681	iron in silicate glasses and melts: a thermochemical model. Chemical Geology, 174(1-3),
682	157-179.
683	Papale, P. (1999) Modeling of the solubility of a two-component H ₂ O+CO ₂ fluid in silicate
684	liquids. American Mineralogist, 84, 477-492.
685	Persikov, Y.S., Zharikov, V.A., Bukhtiyarov, P.G., and Pol'skoy, S.F. (1990) The effect of
686	volatiles on the properties of magmatic melts. European Journal of Mineralogy, 2(5),
687	621-642.
688	Persikov, E. (1991) The viscosity of magmatic liquids: experiment, generalized patterns. A
689	model for calculation and prediction. Applications. Advance in Physical Geochemistry, 9,
690	1-40.
691	Plazek, D.J., and Ngai, K.L. (1991) Correlation of polymer segmental chain dynamics with
692	temperature-dependent time-scale shifts. Macromolecules, 24, 1222-1224.
693	Press, W.M., Teukolski, S.A., Vetterling, W.T., and Flannery, B.P. (1992) Numerical recipes in
694	FORTRAN-The art of scientific computing, second edition, 963 p. Cambridge

695	University Press	Cambridge, U.K.
-----	------------------	-----------------

- Richet, P., Lejeune, A., Holtz, F., and Roux, J. (1996) Water and the viscosity of andesite
 melts. Chemical Geology, 128, 185-197.
- Romano, C., Giordano, D., Papale, P., Mincione, V., Dingwell, D.B., and Rosi, M. (2003) The
- dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields.
 Chemical Geology, 202, 23-38.
- Russell, J., Giordano, D., and Dingwell, D. (2003) High-temperature limits on viscosity of
 non-Arrhenian silicate melts. American Mineralogist, 88, 1390-1394.
- Sato, H., Fugii, T., and Nakada, S. (1992) Crumbling of dacite dome lave and generation of
 pyroclastic flows at Unzen volcano. Nature, 360, 664-666.
- Scarfe, C., Mysen, B., and Virgo, D. (1979) Changes in viscosity and density of melts of
 sodium disilicate, sodium metasilicate, and diopside composition with pressure. Year
- Book Carnegie Institute Washington, 78, 547–551.
- Scarfe, C.M., Mysen, B.O., and Virgo, D. (1987) Pressure dependence of the viscosity of
 silicate melts. Magmatic processes: Physicochemical principles, 1, 59-67.
- Scaillet, B., Holtz, F., Pichavant, M., and Schmidt, M. (1996) Viscosity of Himalayan
 leucogranites: Implications for mechanisms of granitic magma ascent. Journal of
 Geophysical Research, 101, 27691-27699.
- Schulze, F., Behrens, H., Holtz, F., Rous, J., and Johannes, W. (1996) The influence of H₂O on
 the viscosity of a haplogranitic melt. American Mineralogist, 81, 1155-1165.
- Schulze, F., Behrens, H., and Hurkuck, W. (1999) Determination of the influence of pressure
 and dissolved water on the viscosity of highly viscous melts; application of a new

717	parallel-plate viscometer. American Mineralogist, 84, 1512-1520.
718	Shaw, H. (1963) Obsidian-H ₂ O viscosities at 1000 and 2000 bars in the temperature range 700
719	to 900 °C. Journal of Geophysical Research, 68, 6337-6343.
720	Shaw, H.R. (1972) Viscosities of magmatic silicate liquids; an empirical method of prediction.
721	American Journal of Science, 272, 870-893.
722	Silver, L. and Stolper, E. (1989) Water in albitic glasses. Journal of Petrology, 30, 667.
723	Silver, L. A., Ihinger, P. D., and Stolper, E. (1990) The influence of bulk composition on the
724	speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104,
725	142-162.
726	Stevenson, R., Bagdassarov, N., Dingwell, D., and Romano, C. (1998) The influence of trace
727	amounts of water on the viscosity of rhyolites. Bulletin of Volcanology. 60, 89-97.
728	Stevenson, R.J., Dingwell, D.B., Webb, S.L., and Bagdassarov, N. S. (1995) The equivalence
729	of enthalpy and shear stress relaxation in rhyolitic obsidians and quantification of the
730	liquid-glass transition in volcanic processes. Journal of Volcanology and Geochermal
731	Research, 68, 297-306.
732	Stevenson, R.J., Dingwell, D.B., Webb, S.L., and Sharp, T.G. (1996) Viscosity of
733	microlite-bearing rhyolitic obsidians: an experimental study. Bulletin of Volcanology,
734	58, 298-309.
735	Stolper, E. (1982) The speciation of water in silicate melts. Geochimica et Cosmochimica
736	Acta, 46, 2609-2620.
737	Tammann, G., and Hesse, W. (1926) Die abhängigkeit der viskosität von der temperature bei
738	unterkühlten flüssigkeiten. Z Anorg Allg Chem, 156, 245-257.

739	Toplis, M., Dingwell, D., Hess, K., and Lenci, T. (1997) Viscosity, fragility, and
740	configurational entropy of melts along the join SiO ₂ -NaAlSiO ₄ . American Mineralogist,
741	82, 979-990.
742	Toplis, M.J., and Dingwell, D.B. (1996) The variable influence of P_2O_5 on the viscosity of
743	melts of differing alkali/aluminium ratio: Implications for the structural role of
744	phosphorus in silicate melts. Geochimica et Cosmochimica Acta, 60(21), 4107-4121.
745	Toplis, M.J., Dingwell, D.B., and Libourel, G. (1994) The effect of phosphorus on the iron
746	redox ratio, viscosity, and density of an evolved ferro-basalt. Contributions to
747	Mineralogy and Petrology, 117, 293-304.
748	Vetere, F., Behrens, H., Holtz, F., and Neuville, D. (2006) Viscosity of andesitic melts-new
749	experimental data and a revised calculation model. Chemical Geology, 228, 233-245.
750	Vetere, F., Behrens, H., Misiti, V., Ventura, G., Holtz, F., De Rosa, R., and Deubener, J. (2007)
751	The viscosity of shoshonitic melts (Vulcanello Peninsula, Aeolian Islands, Italy): Insight
752	on the magma ascent in dikes. Chemical Geology, 245, 89-102.
753	Vetere, F., Behrens, H., Schuessler, J., Holtz, F., Misiti, V., and Borchers, L. (2008) Viscosity
754	of andesite melts and its implication for magma mixing prior to Unzen 1991-1995
755	eruption. Journal of Volcanology and Geochermal Research, 175, 208-217.
756	Vogel, D.H. (1921) Das Temperaturabh ngigkeitsgesetz der Viskosit t von Flüssigkeiten.
757	Physical.Z., 645-646.
758	Webb, S.L., and Dingwell, D.B. (1995) Viscoelasticity. Reviews in Mineralogy and
759	Geochemistry, 32, 95-119.

760 Whittington, A., Richet, P., and Holtz, F. (2000) Water and the viscosity of depolymerized

761	aluminosilicate melts. Geochimica et Cosmochimica Acta, 64, 3725-3736.
762	Whittington, A., Richet, P., Linard, Y., and Holtz, F. (2001) The viscosity of hydrous
763	phonolites and trachytes. Chemical Geology, 174, 209-223.
764	Zhang, Y. (1999) H ₂ O in rhyolitic glasses and melts: measurement, speciation, solubility, and
765	diffusion. Reviews of Geophysics, 37, 493-516.
766	Zhang, Y., Xu, Z., and Liu, Y. (2003) Viscosity of hydrous rhyolitic melts inferred from
767	kinetic experiments, and a new viscosity model. American Mineralogist, 88, 1741-1752.
768	
769

Tables

Table 1 Experimental data of natural Fe-bearing melt viscosity used in this model (including
 data for calibration and for test)

Reference	Melt	T (K)	P (kbar)	H_2O	N^*	
Reference	WICH	I (K)	I (KUdi)	(wt%)		
Giordano et al. (2003b)	Basalt	798-1004	0.00	0.02-1.5	22	
Liebske et al. (2003) [*]	Andesite	1006-1098	0.00	0.00	22	
Richet et al. (1996)	Andesite	996-1123	0.00	0.00	41	
Toplis et al. (1994)	Basalt (MTV1)	1670-1673	0.00	0.00	4	
	Basalt (MTV2)	1572-1867	0.00	0.00	4	
	Basalt (MTV3)	1621-1769	0.00	0.00	4	
	Basalt (MTV4)	1719-1867	0.00	0.00	4	
	Basalt (MTV6)	1673-1873	0.00	0.00	4	
	Basalt (MTV7)	1673-1873	0.00	0.00	3	
	Basalt (MTV8)	1673-1873	0.00	0.00	3	
	Basalt (MTV9)	1673-1873	0.00	0.00	3	
Shaw (1963)	Rhyolite	973-1173	1.0-2	4.3-6.2	5	
Persikov (1991)	Rhyolite	973-1173	0.5-7	2.1-12.3	12	
Liebske et al. (2005) [*]	Peridotite	2043-2523	28-130	0.00	21	
Vetere et al. $(2007)^*$	Shoshonite	733-1573	0.001-5	0.019-4.75	21	
Vetere et al. (2008)	Andesite	747-1573	3.0-10	0.02-6.31	27	
Stevenson et al. (1995)	Rhyolite	897-965	0.00	0.16-0.21	6	
Kushiro (1986)	Olivine Tholeiite I	1648-1748	7-12.5	0.00	6	
	Olivine Tholeiite II	1623-1673	7-12.5	0.00	3	
	Low-alkali Tholeiite	1623-1673	10.0-15	0.00	5	
	Alkali Olivine Basalt	1623-1698	7.0-15	0-1.08	7	
	K-rich Alkali Basalt	1673-1698	7-12.5	0.00	3	

773 # Number of measurements.

- * The data are not used for the calibration of the model, but for the check.
- 775
- 776

777 Table 2 Parameters for this model

a	-4.753468E+00 (1.116472E-01)				
b_1	7.317415E+03 (3.356892E-01)				
b ₂	-1.572090E+02 (3.719342E-02)				
b ₃	-3.068000E-02 (3.740712E-03)				
b_4	1.816191E-01 (6.108900E-02)				
b ₅ 2.185230E-01 (4.804092E-02)					
\mathbf{c}_1	1.672632E+02 (3.729234E-01)				
c_2	-1.765680E+01 (1.779570E+00)				
c ₃	-6.101450E-05 (3.555688E-05)				
c_4	3.044336E-04 (1.376224E-04)				
c ₅	6.653222E-04(3.630155E-05)				

778

779 The parameters and standard deviations (in parentheses) are estimated by

780 Levenberg-Marquardt method of nonlinear least squares according to Press et al. (1992)

781

7	82	
7	83	

Table 3 Comparison between the predictions of models for melt viscosity and the experimental data with known redox states

Model		N^{i}	Various ^a	Basalt ^b	Shoshonite ^c	Andesite ^d	Rhyolite ^e	Ref
This model	$RMSE^{f}$	11	0.23	0.26	0.40	0.16	0.32	This study
S-B-W model	RMSE	8	0.77	0.99		0.15		1, 2
H-Z model	RMSE	37	0.70^{g}	0.35 ^g	1.55	0.79 ^g	0.32	3
G-R-D model	RMSE	18	0.68^{h}	0.56	0.62	0.77^{h}	0.99	4
Baker model	RMSE	7					0.54	5
S-B-H model	RMSE	5					1.20	6
H-D model	RMSE	6					0.72	7
Z-X-L model	RMSE	7					2.03	8
A-G-S model	RMSE	6					2.53	9
H-Z-X model	RMSE	11					2.03	10
R-L-H model	RMSE	10				0.89		11
V-B-S model	RMSE	7				0.16		12, 13
V-B-M model	RMSE	6			0.17			14
M-V-F model	RMSE	6			0.82			15, 16
NT . D1 1					1.21 1			

⁷⁸⁴ Note: Blank range indicates the melt ranges where the specific models are not intended to be

- ^a The viscosity calculated for various melts in the stated *T-P-X* range of relevant models
 ^b The viscosity calculated for basaltic melts in the stated *T-P-X* range of relevant models
- ^c The viscosity calculated for shoshonitic melts in the stated *T-P-X* range of relevant models
- ^d The viscosity calculated for andesitic melts in the stated *T-P-X* range of relevant models
- ^e The viscosity calculated for rhyolitic melts in the stated *T-P-X* range of relevant models
- ^f The root-mean-square-error (log units) between the measured and calculated data defined in
 Eqn. (1) in the Text.
- ^g The experimental data belong to the outliers of H-Z model are not in comparison here (see
 the Text for detail)
- ^h The experimental data belong to the outliers of G-R-D model are not compared here (see the Text for detail)
- i The number of parameters used in each model
- ^j The reference number: 1, Shaw (1972); 2, Bottinga and Weill (1972); 3, Hui and Zhang (2007); 4, Giordano et al. (2008); 5, Baker (1996); 6, Schulze et al. (1996); 7, Hess and Dingwell (1996); 8, Zhang et al. (2003); 9, Ardia et al. (2008); 10, Hui et al. (2009); 11, Richet et al. (1996); 12, Vetere et al. (2006); 13, Vetere et al. (2008); 14, Vetere et al. (2007); 15, Misiti et al. (2006); 16, Misiti et al. (2011)
- 803
- 804 805
- 806

⁷⁸⁵ applied; the *T-P-X* range of each model is shown in the text in detail

807	Figure Captions
808	Fig. 1. The melt compositions of the database in this study. (a) Total alkalis (Na ₂ O+K ₂ O, wt%)
809	versus SiO ₂ (wt%) diagram (Le Bas et al., 1986). F, foidite; Ph, phonolite; Pc, picrobasalt; B,
810	basalt; R, rhyolite ; T, trachyte or trachydacite; H1, basanite or tephrite; H2, phonotephrite;
811	H3, tephriphonolite; J1, trachybasalt; J2, basaltic trachyandesite; J3, trachyandesite; L1,
812	basaltic and esite; L2, and esite ; L3, dacite. (b) Total iron content (FeO _{tot} , wt%) versus ${\rm SiO}_2$
813	(wt%) diagram.
814	Fig. 2. Comparisons of the calculated data by general models (e.g., this model; H-Z model;
815	G-R-D model) with experimental viscosity data, including those with known
816	(Data_redox_state_known) and unknown redox states (Data_redox_state_unknown). Note:
817	only the experimental data within the stated T-P-X ranges of models are used. Since the H-Z
818	and G-R-D models intended to predict the viscosity at the atmospheric pressure, the data
819	beyond their pressure range are not used in Fig 2 (b-c). The circles denote the experimental
820	data with known redox states, which include those used for calibration of the model (filled
821	circles), and the ones used only for testing the predictability of the model (open circles). In
822	addition, the filled squares are the experimental data with unknown redox states. The dashed
823	lines indicate 95% confidence level of the calculated viscosities. RMSE is the abbreviation of
824	root-mean-square-error (log units) between the measured and calculated data. (a) Comparison
825	between the calculated data with this model and the experimental data. Note: in this figure,
826	the FeO and Fe ₂ O ₃ contents were arbitrarily calculated, assuming that half of the total iron
827	FeO_{tot} (wt%) is FeO (wt%) and the other half is Fe_2O_3 (wt%). (b) Comparison between the
828	calculated data with H-Z model and the experimental data. Note: the outliers of H-Z model

829	(Toplis et al., 1994; Richet et al., 1996) are not plotted. (c) Comparison between the
830	calculated data with G-R-D model and the experimental data. Note: the outliers of G-R-D
831	model (Richet et al., 1996) are not plotted. The sources of experimental data with known
832	redox states (Data_redox_state_known): Shaw (1963); Kushiro (1986); Persikov
833	(1991); Toplis et al. (1994); Stevenson et al. (1995); Richet et al. (1996); Giordano et al.
834	(2003b); Liebske et al. (2003, 2005) ; Vetere et al. (2007, 2008). Note: most of these data are
835	used in the model calibration, except those data (Liebske et al., 2003, 2005; Vetere et al., 2007)
836	that are not used for parameterization, but for checking the predictability of this model. The
837	sources of experimental data with unknown redox states (Data_redox_state_unknown):
838	Neuville et al. (1993); Stevenson et al. (1996); Alidibirov et al.(1997); Gottsman et al. (2002);
839	Roman et al. (2003); Misiti et al. (2006) ; Misiti et al. (2011).
840	Fig. 3. Comparison between the calculated data with this model and the experimental data
841	with known redox states (Data_redox_state_known). The circles denote the experimental data
842	with known redox states, which include the ones used for the calibration of the model (filled
843	circles), and the ones used for testing the predictability of the model (open circles). The
844	dashed lines indicate 95% confidence level of the calculated viscosities. RMSE is the
845	abbreviation of root-mean-square-error (log units) between the measured and calculated data.
846	In this case, the experimental measurements of iron oxidation state are taken as inputs for
847	calculation of melt viscosity. The experimental data sources are the same as those defined in
848	Fig. 2.
0.40	

Fig. 4. The prediction of this model in the high pressure range ($P \ge 1$ kbar). The symbols are the experimental measurements of melt viscosity. The dashed lines indicate 95% confidence level of the calculated viscosities.

- Fig. 5. The pressure dependence of viscosity for Fe-bearing and esitic melts with different H_2O
- contents. The source of the melts: Vetere et al. (2008).
- Fig. 6. The effect of redox state on viscosity of various melts at 0.001 kbar and 1473 K. (a)
- 855 The viscosity of various melts varying with Fe^{3+}/Fe_{tot} ; (b) The viscosity of various melts
- varying with oxygen fugacity; (c) The 'network modifers' parameter (VSM) varying with
- 857 oxygen fugacity. See the Text for detail. The melt source: basalt, Giordano et al. (2003b);
- andesite, Liebske et al. (2003); rhyolite, Persikov (1991).
- Fig. 7. The properties of silicate melts predicted by this model. (a) Computed values of Tg (K)
- vs. H₂O content (wt%) for diverse melt compositions including: alkali basalt, theoleiite,
- shoshonite, andesite, rhyolite, assuming q (cooling rate) as 0.0833 K/s. (b) Model curves for
- the values of fragility (m) vs. H₂O content (wt%) for the same melts as shown in Fig.7a,
- assuming q (cooling rate) as 0.0833 K/s. Explosive volcanic behavior is favored by melt with
- low fragility (e.g., strong) at high volatile contents.
- 865
- 866
- 867

Figures

Fig.1a

Fig. 1b

Fig. 2a

Fig. 2b

Fig. 2c

Fig. 3

Fig.4

Fig.6a

Fig. 6b

Fig.7a

Fig. 7b