	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.
1	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
2	
3	REVISION 1
4	Correction date April 30
5	Synthesis and structure of carbonated barium and lead fluoranatites: effect of cation size
5	on A type conherence substitution
0	on A-type carbonate substitution
/	
8	Zachary Wilt,' Caitlyn Fuller,' Taia Bachman,' Victoria Weidner,' Jill D. Pasteris, ² and Claude
9	H. Yoder ^{1*}
10	
11	
12	¹ Franklin and Marshall College, Department of Chemistry, Lancaster, PA 17603
13	² Washington University in St. Louis, Department of Earth and Planetary Sciences, St. Louis, MC
14	63130-4899
15	*To whom correspondence should be addressed. Email: <u>claude.yoder@fandm.edu</u>
16	
17	
18	Running title: A-type carbonate in barium and lead apatites
19	
20	
21	Submitted to American Mineralogist, October, 2013
22	
 23	
29	

-	

25

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

ABSTRACT

26 Substitution of carbonate has long been recognized in both synthetic and natural biologically 27 and geologically precipitated forms of hydroxylapatite. Although the predominant substitution 28 mechanism in all of the calcium members of the apatite group formed below 100 °C is 29 substitution of carbonate for phosphate (B-type), small amounts of A-type substitution of 30 carbonate in the channel sites also occur. The present study focuses on the effect of cation size 31 on the type of substitution of carbonate in members of the apatite group. The barium and lead 32 members offer a larger channel site, which potentially could stabilize A-type substitution. A 33 series of carbonated barium and lead fluorapatites were synthesized in aqueous solution and 34 characterized by powder X-ray diffraction, and infrared and Raman spectroscopy. Carbonate 35 content was determined by combustion analysis. 36 Unit-cell parameters derived from X-ray diffraction showed that, as carbonate content 37 increased, the **a**-axis length decreased and the **c**-axis increased slightly for carbonated barium 38 fluorapatites (CBaApF), whereas the lengths of both the a- and c-axes increased for CPbApF. 39 The co-occurrence of two sets of peaks in the v_3 carbonate region of the infrared spectra of lead 40 and barium carbonated apatites are strongly suggestive of both A- and B-type carbonate 41 substitution. This interpretation is supported by Rietveld analysis of X-ray powder diffraction 42 data, which confirms the presence of significant, but not dominant, A-type substituted carbonate 43 ions. The variation in cell parameters as a function of carbonate substitution mode is discussed, 44 and it is shown that B-type carbonate substitution need not be accompanied by a decrease in the 45 **a**-axis in all apatites. The greater amount of A-type carbonate substitution in barium and lead 46 fluorapatites compared to the their calcium homologs can be attributed to: a) the less negative

47	enthalpies of hydration of the barium and lead ions relative to that of calcium, and/or b) the
48	greater amount of space available for the relatively large carbonate ions in the channels defined
49	by these large cations. Thus, the substitution modes can be controlled by either thermodynamic
50	or kinetic considerations.

51

52 Key words: apatite, Type A-carbonate, Rietveld, infrared, barium apatite, lead apatite

- 53
- 54

INTRODUCTION

55 Only five cations form well-characterized end-member apatites. These elements are the 56 alkaline earth metals Ca, Sr, and Ba, the Group 14 metal Pb, and the transition metal Cd (Pan and 57 Fleet 2002; Flora et al. 2004). The barium and lead apatites are particularly interesting because they contain the largest cations (the six-coordinate ionic radii for Ba^{2+} and Pb^{2+} are 1.35 and 1.19 58 Å, respectively, whereas the radius of Ca^{2+} is 1.00 Å (Shannon 1976)) present in end-member 59 60 apatites and therefore can provide information on how cation size affects the structure and other 61 characteristics of apatites. Of particular interest are the carbonated forms of these compounds 62 because of the biological importance of the carbonated calcium homolog (CCaApOH), which is 63 the mineral component of bones and teeth, and the possibility that larger cations may influence 64 the substitution mode of carbonate. The barium and lead apatites are also of interest because of 65 their formation in the remediation of heavy metal spills using phosphate remediants (Nriagu 1984; Ruby et al. 1994; Traina and Laperche 1999). We have previously reported on the 66 67 preparation and characterization of lead hydroxyl- and chlorapatites (pyromorphites) (Sternlieb 68 et al. 2010) as well as barium hydroxyl- and chlorapatites (Yoder et al. 2012). 69

70	Carbonate can be incorporated in the apatite structure in two different ways. In A-type
71	substitution, carbonate resides in the channels between the M(2) metal ions, as represented, for
72	example, by the formula $Ca_{10}(PO_4)_6(CO_3)_x(F)_{2-2x}$. In B-type substitution, carbonate replaces a
73	phosphate ion. Both types of substitution require charge compensation due to the difference in
74	charge between the carbonate ion and the ions it replaces. In A-type substitution the charge is
75	generally compensated by the removal of two fluoride ions for each substituting carbonate.
76	There is evidence for two positions of carbonate in the channels—the plane of A1 carbonate ions
77	is parallel to the c -axis, while the plane of A2 carbonate ions is nearly perpendicular to the c -
78	axis. A2 substitution appears to be correlated with substitution of carbonate for phosphate (Fleet
79	and Liu 2004, Tacker 2008). For B-type substitution a variety of charge-compensation
80	mechanisms have been proposed (Pan and Fleet 2002), but the two most likely for apatites
81	prepared in aqueous solution are a) paired creation of divalent cation and monovalent anion
82	vacancies and b) substitution of sodium ions for channel calcium ions in solutions bearing
83	sodium reagents (Pan and Fleet 2002). The more common mechanism of charge-compensation
84	with vacancy of both a channel metal ion and a monovalent channel anion for B-type substitution
85	is represented, for example, as $Ca_{10-x}(PO_4)_{6-x}(CO_3)_x(F)_{2-x}$. For calcium hydroxyl- and
86	fluorapatites precipitated at temperatures from 20 to 100 °C in aqueous solution, B-type
87	substitution predominates, although some A-type substitution, typically <15% of all carbonate
88	(Elliott 2002), is generally also present. B-type substitution produces a decrease in the a unit cell
89	dimension with increasing carbonate incorporation. This change in the a -axis length as a
90	function of carbonate content, as observed in calcium fluor- and hydroxylapatites has become an
91	important criterion for recognizing the substitution type—a decrease in a-axis length for B-type

92 substitution and an increase in **a**-axis length for A-type substitution. (LeGeros et al. 1969; Elliott

93 1994; Pan and Fleet 2002)

94	
95	Although at least one study has been performed on samples of barium fluorapatite
96	synthesized at high temperature (Meegoda et al. 1999), there appears to be only one report of a
97	synthesis for this apatite in aqueous solution (Flora et al. 2004). Syntheses of lead fluorapatite in
98	aqueous solution (Bhatnagar 1970) and in the solid state (Liu et al. 2008) have been reported.
99	
100	Our objectives in this study were to prepare barium and lead fluorapatites with varying
101	degrees of carbonation and to determine the substitution mode employed by these compounds to
102	incorporate carbonate. Of particular interest to us was the effect of the nature and size of the
103	cation on the distribution of carbonate in the apatite structure. We have used infrared and Raman
104	spectroscopy as well as Rietveld analysis of XRD patterns to characterize the samples and to
105	determine the location of the carbonate ion in the apatite structure.
106	
107	EXPERIMENTAL METHODS
108	All syntheses utilized Milli-Q deionized water through which N_2 had been bubbled for at
109	least 6 hours to remove CO ₂ . Reagents were ACS reagent grade of purity higher than 98%.
110	
111	Synthesis of Carbonated BaApF
112	In order to minimize exposure to atmospheric CO ₂ , syntheses were performed under a
113	positive pressure of argon, and suction filtration and drying were done in a nitrogen-filled glove
114	bag. Solutions of NH_4F and $(NH_4)_2HPO_4$ were combined before addition of other components.

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
115	A solution of the metal nitrate and the solution of NH_4F and $(NH_4)_2HPO_4$ were added
116	simultaneously to a solution of NaHCO3 maintained at 80-90°C. The amount of NaHCO3 was
117	varied to produce apatites with different concentrations of carbonate. Before titration, the pH of
118	the carbonate bath was adjusted to pH 12 using 6 M NaOH solution. During the titration at a rate
119	of 0.05 mL/s, the solution was stirred and the pH was maintained at 12. After ca. 3 hours, the
120	reaction mixture was allowed to sit for 16 h at 85 °C with stirring, under nitrogen. After cooling,
121	the white precipitate was suction filtered in a glove bag using a medium porosity filter crucible,
122	washed thoroughly with three portions of water, allowed to aspirate for an hour, dried with
123	nitrogen in a glove bag for 16 h, and finally heated in a 140°C oven for 1 hour. Percent yields
124	were generally above 80%.
125	
126	For the preparation of an apatite using a mole ratio of carbonate to phosphate of 0.5 to 1 the
127	following masses of reagents and volumes of water were used for solution preparation:
128	NaHCO ₃ , 0.1345 g, 20 mL; NH ₄ F, 0.0793 g, 10 mL; (NH ₄) ₂ HPO ₄ , 0.4248 g, 10 mL;
129	Ba(NO ₃) ₂ , 1.4018 g, 20 mL.
130	
131	
132	Synthesis of CPbApF
133	Portions (25 mL) of solutions of 0.15M Pb(NO ₃) ₂ , 0.06M NH ₄ F, and 0.09M NH ₄ H ₂ PO ₄
134	were titrated into 100 mL of water at a rate of about 0.7 mL/min. To the solution, 25 mL of

135 different NH₄HCO₃ concentrations were titrated at a rate of 0.7 mL/min to obtain different

- 136 carbonate/phosphate ratios. The NH₄HCO₃ solution was added at the same time as the other
- 137 reagents. As the reagents were added, the solution was heated to 80°C, brought to pH 9, and

stirred magnetically. The pH was held at 9 throughout the synthesis with 6M NH₃. After all of the reagents were added, the solution was digested for 2 hours and then was suction filtered. The reaction mixture was filtered using a fine porosity glass filter crucible and was washed with three portions of water. The sample was then dried in vacuo in a vacuum desiccator for over 24 hours. Yields were 80- 95%.

143

144 Compositional and structural analyses of samples

145 Powder X-ray diffractograms were obtained using a PANalytical X'Pert PRO MPD (Multi-

146 Purpose Diffractometer) Theta-Theta System with Cu-Kα radiation. A step size of 0.02° 2-theta

147 was used with a range from 5 to 90° 2-theta. X-ray diffraction was used to confirm the identity of

148 the compound, to detect other phases present in the samples, and to provide data for Rietveld

analyses. Data for Rietveld analyses were collected with the sample in a 10 mm silicon cavity

150 mount and scans (ca 5-8 h) sufficient to obtain 60,000 to 100,000 counts.

151

152 Unit cell parameters were determined both during Rietveld analyses and by using profile-

153 fitting of the entire XRD pattern. The indexing method was usually McMaille (Le Bail 2004),

but in some cases the Treor method (Werner et al. 1985) was employed. The unit cell candidate

155 was chosen based on its high figure of merit, symmetry, and absence of un-indexed peaks.

156 Uncertainties in unit cell parameters were generally ± 0.0007 , but repeated measurements on the

157 same sample suggest a higher uncertainty of $ca. \pm 0.001$ Å.

158

Weight percent carbon, lead, phosphorus, and fluoride were all determined by Galbraith
Laboratories, Knoxville, TN. Weight percent carbon was determined using a C-, H-, N-

100

5/21

161 elemental analyzer after combustion at 950°C in oxygen. The reported carbon concentrations

162 have a relative experimental error of ± 0.3 wt.%.

163

- Infrared spectra were obtained using a Ge ATR sample mount on a Bruker Tensor 37 IR
 spectrometer. Each spectrum represents 256 scans at a resolution of 2 cm⁻¹.
- 166

167	The confocal Raman system from Kaiser Optical (Ann Arbor, Michigan) that was used in
168	this study has an integrated, fiberoptically coupled microscope-spectrometer-detector. The
169	HoloLab Series Research Raman Spectrometer is configured for 532-nm laser excitation and
170	simultaneously records the spectral range of 100 to 4000 Δ cm ⁻¹ . The detector is an Andor high-
171	resolution, thermoelectrically cooled CCD array that provided a resolution of 2.5 cm ⁻¹ . Powders
172	were analyzed using an Olympus 80x objective with an N.A. of 0.75. Each Raman spectrum is
173	the average of 32 acquisitions of 4 seconds each. Every sample underwent at least 6 analyses.
174	The laser power was 10 mW at the sample surface, and the diameter of the beam was about 1
175	micrometer at the sample surface. The focus was adjusted for maximum signal:noise ratio.
176	
177	The presence of fluoride was ascertained using ¹⁹ F NMR spectroscopy to determine the
178	relative amount of fluoride in several apatites, previously dissolved in nitric acid. A sample of
179	NaF in the same concentration of acid was used as a standard. Spectra were obtained on an
180	Agilent INOVA 500 MHz spectrometer at 25 °C
181	

182 Rietveld Analysis

5/21

183	The Panalytical program X'pert Highscore Plus (version 2.2e) was used to perform
184	Rietveld analyses on all samples. The profile function was Pseudo Voigt with a polynomial
185	background including 5 coefficient parameters and a flat background parameter. The initial
186	models for P6 ₃ /m calcium fluorapatite (Sudarsanan et al. 1972), barium fluorapatite (Mayer it al.
187	1979), and lead fluorapatite (Belokoneva et al. 1982) were obtained from published single crystal
188	X-ray diffraction data. In all refinements, the zero-shift, scale factor, all 5 background
189	coefficients, unit cell parameters, and profile parameters were refined. It was assumed that both
190	B- and A-type substitution could occur within the same unit cell. The possibility of both types of
191	substitution, either independently or as a mixture of both is well-documented (Beshah et al.
192	1990; Schramm et al. 2000; Tonegawa et al. 2000; Ikoma et al. 2001; Fleet et al. 2004; Astala
193	and Stott 2005; Fleet and Liu 2005; Resende et al. 2006; Nassif et al. 2010). For B-type
194	carbonate the model developed by Wilson et al. (2004) was adopted: the planar carbonate ion
195	was assumed to occupy a face of the tetrahedron that otherwise would have been a phosphate
196	ion, with two of carbonate's oxygen atoms in similar positions to those of the phosphate's
197	oxygen atoms. The occupancies of these two oxygens were not refined. A-type carbonate was
198	assumed to be centered at the position 0, 0, 0.5 with two of the oxygen atoms of the trigonal
199	planar carbonate ion located close to the z-axis, as discussed by Fleet and Liu (Fleet and Liu
200	2005) as the A1 type carbonate. The occupancies of the carbon and its corresponding oxygen
201	sites in A-type substitution were constrained so that the magnitudes of their values changed
202	together.
203	
204	To develop a starting model for the refinements, the occupancies were set to values obtained

205

9

from the formula for B-type substitution as calculated from the analytically-determined

206	carbonate percentage. These occupancies were then refined, which allowed for a refinement
207	independent of the data obtained from chemical analysis. The occupancies of the carbon and
208	phosphorus could be determined with a lack of divergence, but these occupancies exhibited a
209	great deal of uncertainty. The position of the monovalent anion along the z-axis and its site
210	occupancy were refined in all apatites. The bond lengths in the phosphate tetrahedra and other
211	atomic distances obtained by refinement were very close to those in the starting model.
212	Throughout all refinements, the agreement indices were monitored to be sure that the system was
213	not diverging and that the refinement was moving toward a reasonable representation of the
214	actual structure.
215	
216	
217	
217 218	RESULTS AND DISCUSSION
217 218 219	RESULTS AND DISCUSSION Syntheses
217218219220	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished
217218219220221	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively.
 217 218 219 220 221 222 	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively. It is believed that these pH values are optimal. The low solubility of the carbonated lead apatites
 217 218 219 220 221 222 223 	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively. It is believed that these pH values are optimal. The low solubility of the carbonated lead apatites allows for the formation of those compounds under conditions where the concentration of PO ₄ ³⁻
 217 218 219 220 221 222 223 224 	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively. It is believed that these pH values are optimal. The low solubility of the carbonated lead apatites allows for the formation of those compounds under conditions where the concentration of PO ₄ ³⁻ ion is low. The greater solubility of the barium compared to the lead apatites requires higher pH
 217 218 219 220 221 222 223 224 225 	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively. It is believed that these pH values are optimal. The low solubility of the carbonated lead apatites allows for the formation of those compounds under conditions where the concentration of PO_4^{3-} ion is low. The greater solubility of the barium compared to the lead apatites requires higher pH values to ensure higher concentrations of phosphate. Of course, the much greater solubility of
 217 218 219 220 221 222 223 224 225 226 	RESULTS AND DISCUSSION Syntheses The preparation of both the lead and barium carbonated fluorapatites was accomplished by addition of phosphate and fluoride to a solution of the cation at a pH of 9 and 12, respectively. It is believed that these pH values are optimal. The low solubility of the carbonated lead apatites allows for the formation of those compounds under conditions where the concentration of PO ₄ ³⁻ ion is low. The greater solubility of the barium compared to the lead apatites requires higher pH values to ensure higher concentrations of phosphate. Of course, the much greater solubility of Ba(OH) ₂ relative to Pb(OH) ₂ also permits the use of higher pH values in the synthesis of the

229 X-ray diffraction

230	The powder X-ray diffraction patterns of carbonated barium fluorapatites show little change
231	in either position or breadth of the peaks with increasing carbonate content. The full width at half
232	maximum (FWHM) for two barium flluorapatites containing 1.3 and 3/0 wt.% carbonate were
233	0.10 and 0.17, respectively, for the 300 line and 0.20 and 0.20 two theta, respectively, for the 113
234	line. In contrast, the lead fluorapatites show a relatively small change in the breadth of the peaks,
235	but a definite shift in multiple peak positions to higher two-theta values as the carbonate content
236	increases. For lead fluorapatites containing 1.5 and 3.0 wt% carbonate the FWHM values for the
237	112 peak were 0.25 and 0.30, respectively, and for the 300 peak 0.32 and 0.37 two theta,
238	respectively. Therefore, unlike their calcium analogs, which show significant peak broadening
239	with increased carbonate content (Nelson and Williamson 1982; Rey et al. 1991), the barium and
240	lead analogs apparently do not undergo major changes in crystallite size and internal strain as
241	carbonate percentages increase. This lack of significant peak broadening was also observed for
242	carbonated barium hydroxyl- and chlorapatites (Yoder et al. 2012).
243	
244	Unit cell parameters
245	The unit cell parameters obtained for CBaApF are shown in Figure 1, which demonstrates a
246	decrease in the a -axis length of about 0.05Å and a more scattered, but probable increase in c -axis
247	length of about 0.01 Å over a range of ca 3 wt. % carbonate. For CPbApF, the unit cell
248	parameters (Fig. 2) show an increase in both axes and hence an increasing cell volume as
249	carbonate content increases, consistent with the observed shifts in all XRD peaks to lower 2 theta

250 values.

251

A decrease in **a**-axis length was observed previously for CBaApCl, CBaApOH, and CPbApCl, but not in CPbApOH (Yoder et al. 2012; Sternlieb et al. 2010). The decrease in **a**axis length for CBaApF could be attributed to B-type substitution of carbonate for phosphate, as observed for calcium apatites, but Rietveld analysis and IR spectroscopy (see below) indicate the likelihood of significant A-type substitution (Holcomb and Young 1980; Elliot 2001; Tonegawa et al. 2002; Fleet et al. 2004)

258

259 Raman spectra

260 The Raman spectra of the same samples also show clearly defined peaks for P-O and C-O vibrations. Figure 3 displays the 870 to 1100 Δcm^{-1} region for five CPbApF samples of different 261 carbonate composition. The peaks at 927-933 Δcm^{-1} correspond to the v₁ symmetric P-O 262 stretching mode and those at 948-967 Δcm^{-1} to the v₃ asymmetric P-O stretching mode. The 263 intensity of the peaks in the 1039-1050 Δcm^{-1} range correlate with the concentration of carbonate 264 in the samples. All the above peaks are approximately 30 cm^{-1} lower than the corresponding 265 266 peaks in the calcium analogs, indicating that the cation mass difference controls the relative peak 267 positions. Reference to carbonated hydroxylapatite, CCaApOH (Penel et al. 1998), indicates that the peak at ~1050 Δ cm⁻¹ can be assigned to B-type carbonate substitution, which is the dominant 268 269 substitution mechanism recorded in all the Raman spectra. The CPbApF spectra in Figure 3 show not only an increase in intensity of the ~1050 Δcm^{-1} peak with increasing carbonation but 270 also a gradual upshift in peak position, from ~1039 Δ cm⁻¹ in the uncarbonated apatite. Similar 271 272 spectral behavior occurs in CCaApOH samples of increasing carbonate concentration, although 273 in that case the carbonate peak downshifts several wavenumbers (Wopenka and Pasteris 2005).

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
274	These two peak-shift responses are unexpected for a simple v_1 C-O symmetric stretch, as each of
275	the carbonate-correlated peaks is often assigned. Instead, the change in peak position in response
276	to additional carbonate incorporation is more suggestive of a band that reflects the interaction
277	between two modes, i.e., a v_1 C-O and a v_3 P-O mode (Nelson and Williamson 1982; Penel et al.
278	1998; Wopenka and Pasteris 2005; Awonusi et al. 2007). In analogy with CCaApOH (Nelson
279	and Williamson 1982; Penel et al. 1998), the weak peak at 1073 Δcm^{-1} is assigned to A-type
280	carbonate, and several other peaks at lower frequency may represent A-type substitution. The
281	Raman spectral response of PbApF to increasing degrees of carbonation is similar to that of
282	CPbApOH (Sterlieb et al. 2010) except for the much greater shift of the v_1 and v_3 P-O peak
283	positions in CPbApF. Both CPbApOH and CPbApF show peaks for both A- and B-type
284	carbonate substitution, with B-type strongly dominant.
285	

All of the CPbApF samples also show a broad water peak at about 3400 Δ cm⁻¹ that 286 287 dominantly records adsorbed water, but also shows some structural water (Pasteris et al. 2014). A weak sharp peak at 3570 Δ cm⁻¹ (not shown) in the least carbonated samples corresponds to 288 289 OH⁻ ions that presumably occupy the channel. For comparison, the O-H stretch in hydrocerrusite is at 3537 Δcm^{-1} , whereas the O-H stretch in hydroxylapatite is at 3572 Δcm^{-11} and in PbApOH at 290 $3561 \Delta \text{cm}^{-1}$ (Sternlieb et al. 2010). The presence of fluoride in the channel site of an OH-bearing 291 292 apatite phase will displace the O-H stretch peak. Fluoride typically downshifts the peak position 293 due to strong hydrogen bonding in the OH-F interaction, whereas carbonate substitution causes 294 upshift in the O-H stretch of CCaApOH (Pasteris et al. 2012). Thus, the position of the OH peak 295 shown by the least carbonated CPbApF samples may reflect two opposing deflections.

296

297	In the Raman spectra of CBaApF (Fig. 4), the v_1 P-O stretching mode appears at about the
298	same location as that in CPbApF (935 Δcm^{-1} for CBaApF), but the former's peak position is
299	relatively insensitive to the concentration of carbonate in the sample. However, the width of the
300	v_1 P-O stretching mode increases as carbonate content increases. This spectral response is similar
301	to that of CBaApOH (Yoder et al., 2012). In CBaApF, the v_3 mode at 1030 Δ cm ⁻¹ is better
302	resolved than in CPbApF. The intensity of the 1058 Δcm^{-1} peak again indicates the dominance
303	of B-type carbonate substitution compared to the shoulder at ~1075 Δ cm ⁻¹ , which appears to
304	represent A-type substitution.
305	
306	The inset in Figure 4 makes clearer the sensitive intensity response of the 1058 Δcm^{-1} peak
307	to carbonate substitution, as well as the slight peak shifts among the v_3 modes at lower
308	wavenumbers. As with the lead apatites, CBaApF exhibits a broad peak (not shown) centered at
309	about 3400 Δcm^{-1} for the OH stretching of water (mostly adsorbed), but its intensity is not
310	significant except in the most highly carbonated sample. There is no evidence of OH ⁻ ions.
311	
312	The Raman spectra of the two sets of samples confirm the purity of the CPbApF and
313	CBaApF powders. Both phases show a significant component of A-type carbonate substitution
314	(not readily quantifiable), but B-type substitution strongly dominates in both. The CPbApF
315	phase shows a greater degree of structural/atomic disorder in response to carbonate substitution
316	than does the CBaApF, as indicated by the greater peak-broadening in the former. The large
317	amount (6 cm ⁻¹) of shift in the position of the v_1 P-O peak in CPbApF (Fig. 3) also indicates

5/21

318 significant change in the phosphate environment due to carbonate substitution, further319 distinguishing it from CBaApF. In this regard, the Raman data are consistent with the

- 320 comparative XRD results on the two phases.
- 321
- 322
- 323

324 **Rietveld analysis**

Tables 1-3 show the results of Rietveld analyses of the XRD patterns of three series of apatites

326 (CCaApF, CBaApF, and CPbApF) containing low, medium, and high percentages of carbonate.

327 Our Rietveld analyses for three CCaApF apatites were included to provide a control group to

328 demonstrate the general validity of the models used. The atomic coordinates obtained in these

analyses are provided in Table 3, and a summary of refinement parameters, cation occupanicies,

and bond lengths based on the Rietveld results are given in Table 1 and 2. In Table 1 the column

331 "Total counts/difference counts" provides a ratio of the maximum counts of the experimental

332 XRD pattern to the maximum counts obtained when the pattern developed by the refinement is

333 subtracted from the experimental pattern. This is a measure of the agreement between the

334 experimental and refinement-based X-ray patterns. A more widely used agreement index is R_{wp},

for which values below 6 or 7 % are generally considered to be indicative of satisfactory fits of

the data (Wilson et al. 2006; Wilson et al. 2004; Wilson et al. 2005): the lower the R_{wp} value, the

better the fit produced by the refinement. The most important columns in these tables are those

that give the occupancies of all of the sites in the refined structure. For the ideal end member

BaApF ($Ba_{10}(PO_4)_6F_2$), the occupancies of each of the two types of barium sites -- Ba(1) and

Ba(2) -- should be exactly 1.000, meaning that all four possible Ba(1) ions and all six Ba(2) ions

5/21

are present in the unit cell. The total number of each type of atom can be obtained by multiplying the occupancy by the numerical part of the Wykoff symbol for the atom site (see Table 3).

345	For the carbonated apatites prepared in this study, it is important to remember that each
346	B-type substitution replaces one phosphate ion with one carbonate ion and (according to the
347	accepted mechanism) results in the loss or vacancy of one calcium ion and one monovalent ion
348	in order to maintain charge neutrality. A-type substitution, on the other hand, results in the
349	displacement of two monovalent channel anions for each substituting carbonate ion. Hence, pure
350	A-type substitution does not change the occupancies of the cation sites, which would remain at
351	1.000, but decreases the occupancies of the monovalent (X) ions. The type of substitution is also
352	monitored by the occupancies of the two types of carbons belonging to the two structurally
353	distinct types of carbonate ion that could be present in the structure C1 (A1-type carbonate in
354	the anion channel) and C2 (B-type carbonate in the phosphate site).
355	
356	Thus, for the most carbonated calcium control sample CCaApF Table 3 shows
357	occupancies of 0.02(2) for C1 (total of 0.24 A-type carbonate ions), 0.15 for C2 (total of 1.9 B-
358	type carbonate ions), 1.11(7) for Ca1 (total of 4.44 Ca1 cations), 0.96(8) for Ca2 (total of 5.76
359	Ca2 cations), 0.6(1) for F1 (total of 1.2 fluoride ions), and 0.71(6) for P1 (total of 4.4 phosphate
360	ions). The occupancies for C1 and C2 indicate predominant B-type substitution as does the
361	presence of 4.4 phosphate ions, but the high occupancies of the two types of calcium sites
362	indicate A-type substitution, in which no cations are lost. Table 1 also indicates, however, that
363	the isotropic thermal B _{iso} values for these cations, particularly Ca1, are very high. High B _{iso}

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

364	values are generally an indication of high uncertainty in the position and occupancy of an atom.
365	We therefore give less credence to the Ca1 site occupancy and note that substitution of 1.9 B-
366	type carbonate ions (as indicated by the C2 occupancy) should result in loss of the same number
367	of phosphate ions. Hence, the P1 occupancy should be about $6 - 1.9 = 4.1$, in acceptable
368	agreement with the value of 4.4 phosphate ions. The large uncertainties associated with each
369	occupancy are also indicative of a great deal of uncertainty in the position of the carbonate in the
370	final refined structure.
371	
372	Because the most carbonated samples of CBaApF and CPbApF most clearly show A-type
373	substitution in their infrared spectra (see below), we will only analyze the Rietveld occupancies
374	of these two apatites. Thus, CBaApF containing 2.51 wt.% carbonate shows significant

375 occupancy of the channel C1 site (0.07(3)), though this occupancy is only one-quarter that of

the B-type C2 site (0.3(2)). There are also large uncertainties associated with both values. The

377 two barium ion site occupancies of 0.9 each indicate a total vacancy of one barium ion, probably

378 produced by B-type substitution. The fluoride occupancy of 0.3 represents 1.4 fluorine site

379 vacancies, which is consistent with both A- and B-type substitution. The phosphorus occupancy

380 of 0.8 corresponds to 1.2 phosphate vacancies, corresponding to dominant B-type substitution.

381

382 For CPbApF containing 2.72 wt.% carbonate, the refinement produced one of the largest

C1/C2 site occupancy ratios (0.06/0.1), and thus the largest A- to B-type substitution ratios.

Even in this case, however, A-type substitution is only about half that of B-type substitution.

385 The "high" P1, Pb1, and Pb2 and low F1 occupancies are consistent with a significant amount of

386 A-type carbonate. We interpret these data as indicative of a greater ratio of A-type substitution

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21 387 for the barium and lead apatites than that present in CCaApF, but clearly this interpretation is not definitive because of the large uncertainties associated with most of the occupancies. 388 389 **Infrared spectra** 390 The infrared spectra of the CBaApF and CPbApF samples with varying carbonate 391 392 concentrations are shown in Figures 5 and 6, where the IR-active carbonate band

393	(v_3 , asymmetric stretch) is about 90 cm ⁻¹ lower in frequency than the analogous band in
394	CCaApF (Fig. 7). The peaks for CCaApF containing about 13 wt. % carbonate appear at 1421
395	and 1465 cm ⁻¹ with a slight shoulder at about 1500 cm ⁻¹ , consistent with the assignment of peaks
396	at 1420 and 1462 cm ⁻¹ to B-type carbonate (Rosseeva et al. 2008; Fleet et al. 2004; see
397	summaries in Tacker 2008).
398	
399	Comparison of the carbonate regions of CBaApF and CPbApF with that of CCaApF
400	reveals that the peaks for the barium and lead apatites appear at lower frequencies. The low
401	frequency peaks in the carbonate band for CPbApF appear at 1330 and 1382 cm ⁻¹ , with a
402	significant high frequency shoulder from about 1420 to 1460 cm ⁻¹ . The peaks for CBaApF
403	occur at 1400, 1418, 1435, and 1458 cm ⁻¹ . We interpret the high frequency peaks in the spectra
404	of both barium (1435 and 1458 cm^{-1}) and lead apatites (from 1420 to 1460 cm^{-1}) as the
405	asymmetric stretch for A-type carbonate. Indeed, the $\sim 1400 \text{ cm}^{-1}$ region for the most carbonated
406	CBaApF (Fig. 5) shows two sets of peaks, presumably a doublet for A-type carbonate at higher
407	frequency than the doublet for B-type carbonate. This difference between the asymmetric
408	carbonate stretching frequencies of A- and B-type substitution in calcium apatites has been well

409	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21 documented (Schramm et al. 2000; Tonegawa et al. 2000; Fleet et al. 2004). For example, Shi, et
410	al. (2005) report A-type carbonate asymmetric stretching modes for dental enamel at 1452-1456
411	cm^{-1} , 1495-1501 cm ⁻¹ , and 1547-1451 cm ⁻¹ and B-type carbonate modes at 1412-1414 cm ⁻¹ , and
412	1469-1472 cm ⁻¹ . Tacker (2008) reports an average of literature B-type carbonate frequencies for
413	synthetic calcium apatites as 1420 ± 6 and 1458 ± 5 cm ⁻¹ , and for A-type carbonate as 1462 ± 5
414	and $1535 \pm 6 \text{ cm}^{-1}$. For geological apatites, Tacker (2008) reports averaged peak maxima of type
415	B1 at 1409 ± 6 and 1450 ± 5 cm ⁻¹ , type B2 at 1427 ± 1 and 1460 ± 2 cm ⁻¹ , type A1 at 1539 ± 3
416	and $1475 \pm 8 \text{ cm}^{-1}$, and type A2 at 1571 ± 3 and $1499 \pm 5 \text{ cm}^{-1}$, and also stresses peak overlap as
417	a source of error in reported peak frequencies.
418	In our spectra of the barium and lead fluorapatites there is no suggestion of additional
419	peaks that could be attributed to a second, conformationally distinct, A-type carbonate as
420	suggested by Fleet (2003, 2004, 2005). The IR spectra of both the barium and lead fluorapatites
421	show very weak broad peaks centered about 3400 cm ⁻¹ , attributable to water, but no peak at ca.
422	3570 cm ⁻¹ indicative of hydroxide ions.
423	
424	
425	
426	RATIONALIZATION OF CELL PARAMETERS AND SUBSTITUTION MODE
427	Both Rietveld and IR analyses indicate a significant amount of A-type substitution in
428	both CPbApF and CBaApF. For CPbApF, A-type substitution is also indicated by the increase
429	in a - and c -axis lengths as carbonate content increases. Although it is difficult to provide a more

5/21

430 quantitative assessment, it is clear that the amount of A-type substitution in both of these

431 carbonated barium and lead fluorapatites is greater than that present in CCaApF.

432

433 Association of the increase in **a**- and **c**-axis lengths for CPbApF with A-type carbonate 434 substitution is consistent with the long-held belief that an increase in **a**-axis (but a slight decrease 435 in **c**-axis) length in calcium apatites is due to the replacement of the monovalent anion (usually 436 OH or F) with the larger carbonate ion (Holcomb and Young 1980; Elliot 2002; Fleet et al. 437 2004; Tonegawa 2010). However, the clear dominance of B-type substitution in CPbApF seems 438 to make this explanation less plausible. Assuming that the basic hexagonal structure of the 439 apatite is maintained, the increase in both axial lengths must result from additional volume in the 440 crystal structure necessitated by the increasing incorporation of the carbonate ion. Examination 441 of atomic distances in the Rietveld-refined structures of CPbApF with 0.2 wt.% and 2.7 wt.% 442 carbonate shows that the primary differences lie in the distances between the triangularly 443 disposed Pb(2) ions lying within planes perpendicular to the c-axis: the distance between these 444 channel-defining ions is about 6% greater in the more carbonated apatite. By comparison, the 445 closest distances between Pb(1) atoms are only 1.4% greater in the more carbonated apatite. 446 This analysis indicates widening of the channels, which correlates with the increase in the length 447 of both axes. Such widening may result from replacement of fluoride by carbonate (A-type 448 substitution). However, it also may be the case that greater B-type substitution produces a 449 widening of the channels in the lead fluorapatites; that is, even when the carbonate ion does not 450 occupy the channels, but substitutes for phosphate, the channels may widen significantly. 451 Increased substitution of carbonate for phosphate with its concomitant development of fluoride 452 vacancies within the channel may produce greater repulsions (due to loss of attraction to

fluoride) between the channel-bounding lead ions. This channel expansion may be pronounced in CPbApF because of possible channel-delimiting, dative interactions between fluoride ions and the Lewis acidic lead cations, which would disappear as B-type substitution occurs. The same explanation may account for the observed (Sternlieb et al. 2010) increase in the **a**-axis length with increasing carbonate incorporation in CPbApOH.

458

459 In contrast to the effect of carbonate on the **a**-axis length in CPbApF, the **a**-axis length of 460 CBaApF decreases uniformly with an increase in carbonate substitution. For this Ba apatite both 461 Rietveld analysis and infrared spectroscopy indicate that A-type carbonate substitution is a 462 substantial portion of the total substitution, but less than that in the lead analog. The decrease in 463 the **a**-axis length in CBaApF (in which the proportion of A-type substitution is less than that in 464 the lead analog) with increasing carbonate incorporation, can be explained by the smaller amount 465 of A-type carbonate, by the absence of dative interactions of fluoride ions with the non Lewis 466 acidic barium ions, or by both effects.

467

468 Our IR and Rietveld analyses suggest that A-type carbonate substitution is more 469 prevalent in barium and lead fluorapatites than in the smaller cation analog CCaApF, an 470 observation that can be rationalized by the larger channels present in the barium and lead 471 compounds. The differences in volume available in the channel can be estimated in two 472 dimensions by considering one plane of M(2) ions. The areas of the arcs produced by the M(2)473 ions, obtained using standard formulas along with 6-coordinate ionic radii (Shannon 1976) and 474 the 60° angle within the arc, are subtracted from the area of the triangle. The resulting "free 475 space" in two dimensions provides an estimate of the space within the M(2) triangles in the

21

476 absence of a monovalent anion. Using distances obtained from the structures of CaApF 477 (Wyckoff 1965) and BaApF (Mathew et al. 1979) we estimate their free areas to be 4.6 Å² and 478 $5.5 Å^2$, respectively, an increase in area of 20% in moving from Ca⁺² to Ba⁺². Thus, we assume 479 that A-type substitution is either more energetically favorable or kinetically more viable for 480 apatites that contain larger cations.

481

482 Modeling studies of the relative stabilities of the A- and B-type carbonate sites in 483 CCaApOH at 37 °C indicate that A-type (and mixed AB-type) carbonate substitution is 484 energetically more favorable than B-type (Peroos et al. 2006). Assuming that the presumably 485 greater electrostatic interactions in the channel favor A-type substitution even in apatites with 486 larger cations, we speculate that in the compounds prepared here, which contain larger cations, 487 A-type substitution is thermodynamically favored. Why, then, do not all apatites, regardless of 488 cation size, contain carbonate only in the channel (though one could imagine compounds with 489 apatitic structures that could contain either extremely large cations or cations of lower charge 490 where the channel site would not be energetically favored)? The answer may lie in the rate of 491 the carbonate-incorporating reaction; that is, the rate at which carbonate substitutes for phosphate 492 may be greater than the rate at which it substitutes for monovalent channel ions during the 493 formation of the carbonated apatite. If these assumptions are correct, they also seem to suggest 494 that during the formation of the carbonated apatite, the channel structure has already formed 495 before the carbonate enters the mechanistic sequence.

496

497 It is also possible that B- type carbonate substitution is favored for most apatites formed498 in aqueous solution for thermodynamic reasons. Thermochemical analysis of substitution

490

22

5/21

requires an assumption about the charge balance mechanism involved in those substitutions. Wefind no evidence from Raman, IR, or XRD for the incorporation of sodium in our products. We

501 have also done sodium analyses for calcium apatites prepared with the same procedure used for

the syntheses of the barium apatites and have found only ca. 1% sodium in those products.

- 503 Moreover, the changes in occupancies observed in our Rietveld analysis are consistent with
- 504 dominant B-type substitution involving creation of calcium and fluoride vacancies. The
- 505 equations for the most common substitution mechanisms for A-type and B-type carbonate are

506 shown below for the substitution of one mole of carbonate per mole of apatite.

507 A-type:
$$M_{10}(PO_4)_6F_2(s) + CO_3^{2-}(aq) -> M_{10}(PO_4)_6(CO_3)(s) + 2 F(aq)$$

508 B-type:
$$M_{10}(PO_4)_6F_2(s) + CO_3^{2-}(aq) \longrightarrow M_9(PO_4)_5(CO_3)F(s) + M^{2+}(aq) + PO_4^{3-}(aq) + F^{-1}(aq) + F^{$$

- 509 (aq)
- 510

511 Subtraction of the second equation from the first produces:

512
$$M_9(PO_4)_5(CO_3)F(s) + M^{2+}(aq) + PO_4^{3-}(aq) --> M_{10}(PO_4)_6(CO_3)(s) + F(aq)$$

513 B-type A-type

514 which represents the relative "stability" of B-type substitution of one carbonate for phosphate compared to A-type substitution of one carbonate for two fluorides in solution (assuming the 515 516 charge compensation mechanism shown). The Gibbs energy change for this reaction could be 517 estimated in several ways, one of which is to calculate the lattice enthalpy of both 518 $M_9(PO_4)_5(CO_3)F(s)$ and $M_{10}(PO_4)_6(CO_3)(s)$ and then determine the enthalpy of hydration of the resultant gaseous ions (which form the solvated $M^{2+}(aq)$, $PO_4^{3-}(aq)$, and F(aq) ions in the 519 520 equation above). The resultant ΔH° could then be converted to ΔG° using standard techniques 521 for estimating absolute entropies. The lattice enthalpy for A- type apatite can with some

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/2	21
certainty be assumed to be greater (meaning that the potential energy of the A-type apatite is	
lower and therefore it is more stable) than that of B-type apatite. This assertion rests on the	
greater number of more highly charged ions in the A-type lattice and the results of molecular	
dynamics calculations (Peroos et al. 2006). If the enthalpies of hydration of the M^{2+} , PO_4^{3-} and	d
F ⁻ ions are ignored, the ΔH° (and ΔG°) for the equation above could be assumed to be negative	e
and the formation of A-type apatite in solution could be assumed to be favorable with respect t	to
B-type apatite at least under conditions where the concentrations of the ions in solution are	

- 529 similar.
- 530

522

523

524

525

526

527

528

531 Our experimental work indicates that for barium and lead fluorapatites B-type 532 substitution is favorable, but less so than for the calcium analog. This difference could be 533 explained by the differences in enthalpies of hydration of the cations (the anions need not be 534 considered because they will be the same no matter what cation is being considered), which in kJ/mol are Ca^{2+} -1577, Ba^{2+} -1305, Pb^{2+} -1481 (Smith 1977). The Gibbs energies of hydration 535 536 also vary inversely with the ionic radii of the ions (Latimer et al. 1939). The enthalpies (and Gibbs energies) of hydration therefore make ΔG° for the equation above less favorable for those 537 apatites that contain cations with the most negative enthalpies of hydration. Thus, the greater 538 539 amount of A-type carbonated apatite for barium and lead fluorapatite compared to calcium 540 fluorapatite can be attributed to the less negative enthalpy (and Gibbs energy) of hydration of the larger Ba^{2+} and Pb^{2+} ions. 541

542

543 The greater percentage of carbonate that resides in the channel sites of the barium and 544 lead fluorapatites, relative to that of carbonated calcium fluorapatite, can therefore be attributed

5/21

to an increased rate of incorporation into the more spacious barium and lead cation channels
and/or to the thermodynamically-determinant effect of the solvation of the cations. We are
continuing to study the consequences of these and similar observations.

548

549 **IMPLICATIONS**

550 Our work provides structural observations and principles that can be used to understand 551 the incorporation of carbonate in compounds in the apatite family that vary in the size and 552 chemical nature of the cations present. These principles, in turn, are of value in the interpretation 553 of unit cell parameters, particularly their variation with carbonate content, differences in 554 occupancies of different substitution sites, and the nature/importance of the channel structure of 555 apatites. We have shown that apatites with cations larger than calcium may incorporate 556 carbonate more readily in the A- (channel) site and that an increase in the relative amount of A-557 type substitution is not necessarily revealed experimentally by an increase in the length of the a-558 axis. We have also provided a thermochemical analysis that can be used for any apatite to 559 understand the relative energetics of A- vs B-type carbonate substitution. These principles may 560 be of value in understanding the composition and compositional variation within bone and tooth 561 material and in the design of apatites that, by virtue of different substitution patterns, may have 562 properties that are of value in, for example, the remediation of heavy metal contamination or the 563 encapsulation of nuclear waste.

- 564
- 565

ACKNOWLEDGMENTS

The authors acknowledge the Lucille and William Hackman Research Endowment at Franklinand Marshall College and the Center for Materials Innovation at Washington University for

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
568	partial funding of this study. This material is based upon work supported by the National Science
569	Foundation under Grant No. 0923224. We are also indebted to Linh Tran and Molly Carney for
570	technical assistance and to the reviewers for their insightful comments.
571	
572	References Cited
573	Astala, R., and Stott, M. J. (2005) First principles investigation of mineral component of bone:
574	CO ₃ substitutions in hydroxyapatite. Chemistry of Materials, 17, 4125-4133.
575	
576	Awonusi, A., Morris, M.D., and Tecklenburg, M.M.J. (2007) Carbonate assignment and
577	calibration in the Raman spectrum of apatite. Calcified Tissue International, 81, 46-52.
578	
579	Bhatnagar, V. M. (1970) Preparation, lattice parameters and X-ray powder patterns of lead
580	fluorapatite and lead chlorapatite, Inorganic and Nuclear Chemistry Letters, 6, 913-917
581	
582	Belokoneva, E.L., Troneva, E.A., Dem'yanets, L.N., Duderov, N.G., and Belov. N.V. (1982)
583	The crystal structure of synthetic fluoropyromorphite Pb ₅ (PO ₄) ₃ F. Kristallografiya, 27,
584	793-94.
585	
586	Beshah K., Rey C., Glimcher M.J., Schimizu M., and Griffin R.G. (1990) Solid state carbon-13
587	and proton NMR studies of carbonate containing calcium phosphates and enamel.
588	Journal of Solid State Chemistry, 84, 71-81.
589	

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
590	Elliot, J. C. (2002) Calcium phosphate biominerals. In Kohn, M. J., Rakovan, J., and Hughes,
591	J.M. Eds, Phoshates-Geochemical, geobiological, and materials importance, 48, p. 427-
592	453. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,
593	Chantilly, Virginia
594	
595	Fleet, M.E., and Liu, X. (2003) Carbonate apatite type A synthesized at high pressure:
596	new space group (P3) and orientation of channel carbonate ion. Journal of Solid
597	State Chemistry, 174, 412–417.
598	
599	Fleet, M.E., and Liu, X. (2004) Location of type B carbonate ion in type A-B carbonate apatite
600	synthesized at high pressure. Journal of Solid State Chemistry, 177, 3174–3182.
601	
602	Fleet, M.E., Liu, X., and King, P.L. (2004) Accommodation of the carbonate ion in apatite: an
603	FTIR and X-ray structure study of crystals synthesized a 2-4 GPa. American Mineralogist
604	89, 1422-1432.
605	
606	Fleet, M.E., and Liu. X. (2005) Local structure of channel ions in carbonate apatite.
607	Biomaterials., 26, 7548-554.
608	
609	Flora, N.J., Hamilton, K.W., Schaeffer, R.W., and Yoder, C.H. (2004) A Comparative Study of
610	the Synthesis of Calcium, Strontium, Barium, Cadmium, and Lead Apatites in Aqueous
611	Solution. Synthesis and Reactivity of Metal-Organic Compounds, 34, 503-521.
612	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

Holcomb, D.W., and Young, R.A., (1980) Thermal decomposition of human tooth enamel.

Calcified Tissue International, 31, 189-201. Ikoma, T., Kubo, Y., Yamazaki, A., Akao, M., and Tanaka, J. (2000) Key Engineering Materials. 192-1, 191-94. Latimer, W. M., Pitzer, K. S., Stansky, C. M. (1939) The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode, Journal of Chemical Physics, 7, 108-111. Le Bail, A. (2004) Monte Carlo indexing with McMaille, Powder Diffraction, 19, 249-254. LeGeros, R.Z., Trautz, O.R., Lkein, E., and LeGeros, J.P. (1969) Two types of carbonate substitution in the apatite structure. Experimentia, 25, 5-7. Liu, X., Shieh, S.R., Fleet, M.E., and Akhmetov, A. (2008) High-pressure study on lead fluorapatite. American Mineralogist, 93, 1581-1584. Mathew, M., Mayer, I., Dickens, B., and Schroeder, L.W. (1979) Substitution in barium-fluoride apatite: the crystal structures of $Ba_{10}(PO_4)_6F_2$, $Ba_6La_2Na_2(PO_4)_6F_2$ and Ba₄Nd₃Na₃(PO₄)₆F₂. Journal of Solid State Chemistry, 28, 79-95.

634

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

635	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21 Meegoda, C., Bonner, C.E., Loutts, G., Stefanos, S., and Miller, III, G.E. (1999) Raman
636	spectroscopic study of barium fluorapatite. Journal of Luminescence, 81, 101-109.
637	
638	Nassif, N., Martineau, F., Syzgantseva, O., Gobeaux, F., Willinger, M., Coradin, T., Cassaignon,
639	S., Azaïs, T., and Giraud-Guille, M. M. (2010) Chemistry of Materials. 22, 3653-3663.
640	
641	Nelson, D. G. A., Williamson, B. E., (1982) Low-temperature laser Raman spectroscopy of
642	synthetic carbonated apatites and dental enamel, Australian Journal of Chemistry, 35, 715-
643	727/
644	
645	Nriagu, J. O. (1984) Phosphate Minerals, Nriagu, J.O., and Moore, P.B., Eds. 318-329,
646	Springer-Verlag, New York.
647	
648	Pan, Y., and Fleet, M.E. (2002) Composition of the apatite-group minerals: substitution
649	mechanisms and controlling factors. In Kohn, M.J., Rakovan, J., and Hughes, J.M., Eds.
650	Phosphates-Geochemical, geobiological, and materials importance, 48, p. 13-49. Reviews
651	in mineralogy and geochemistry, Mineralogical Society of America, Chantilly, Virginia.
652	
653	Pasteris, J.D., Yoder, C. H., and Wopenka, B. (2014) Molecular water in nominally unhydrated
654	carbonated hydroxylapatite: the key to a better understanding of bone mineral. American
655	Mineralogist, 99, 16-27.

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
657	Pasteris, J.D., Yoder, C.H., Sternlieb, M.P., and Liu, S. 20120. Effect of carbonate
658	incorporation on the hydroxyl content of hydroxylapatite. Mineralogical Magazine, 76,
659	2741-2759.
660	
661	Penel, G., Leroy, G., Rey, C., and Bres, E. (1998) MicroRaman spectral study of the PO ₄ and
662	CO ₃ vibrational modes in synthetic and biological apatites. Calcified Tissue International,
663	63, 475-481.
664	
665	Peroos, S., Du, Z., and de Leeuw, N. H. (2006) A computer modeling study of the uptake,
666	structure and distribution of carbonate defects in hydroxyl-apatite. Biomaterials, 27, 2150-
667	2161.
668	
669	Resende, N.S., Nele, M., and Salim, V.M.M. (2006) Effects of anion substitution on the acid
670	properties of hydroxyapatite. Thermochimica Acta, 451, 16-21.
671	
672	Rey, C., Renugopalakrishnan, V., Collins, B., Glimcher, M.J., (1991) Fourier transferom infrared
673	spectroscopic study of the carbonate ions in bone mineral during aging, Calcified Tissue
674	International, 49, 251-258.
675	
676	Rosseeva, E.V., Buder, J., Simon, P., Schwarz, U., Frank-Kamenetskaya, O. V., and Kniep, R.
677	(2008) Synthesis, characterization, and morphogenesis of carbonated fluorapatite-gelatine
678	nanocomposites: a complex biomimetic approach toward the mineralization of hard
679	tissues, Chemistry of Materials, 20, 6003-6013.

681	Ruby, M.V., Davis, A., and Nicholson, A.D. (1994) In situ formation of lead phosphates in soils
682	as a method to immobilize lead. Environmental Science and Technology, 28, 646-654.
683	
684	Shannon, R.D. (1976) Revised effective ionic-radii and systematic studies of interatomic
685	distances in halides and chalcogenides. Acta Crystallographica Section A, 32, 751-767.
686	
687	Schramm, D.U., Terra, J., Rossi, A.M., and Ellis, D. E. (2001) Configuration of CO ₂ (-) radicals
688	in gamma-irradiated A-type carbonated apatites: theory and experimental EPR and
689	ENDOR studies. Physical Review B, 63, 1-14.
690	
691	Shi, J., Klocke, A., Zhang, M., and Bismayer, U. (2005) Thermally-induced structural
692	modification of dental enamel apatite: decomposition and formation of carbonate groups.
693	European Journal of Mineralogy, 17, 769-775.
694	
695	Smith, D. W. (1977) Ionic hydration enthalpies, Journal of Chemical Education, 54, 540-541.
696	
697	Sternlieb, M.P., Pasteris, J.D., Williams, B.R, Krol, K.A., and Yoder, C.H. (2010) The structure
698	and solubility of carbonated hydroxyl- and chloro lead apatites. Polyhedron, 29, 2364-
699	2372.

680

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
701	Sudarsanan, K., Mackie, P.E., and Young, R.A. (1972) Comparison of synthetic and mineral
702	fluorapatite, Ca ₅ (PO ₄) ₃ F, in crystallographic detail. Materials Research Bulletin, 7, 1331-
703	338.
704	
705	Tacker R.C. (2008) Carbonate in igneous and metamorphic fluorapatite: two type A and two type
706	B substitutions. American Mineralogist, 93, 168-176.
707	
708	Tonegawa, T., Ikoma, T., Yoshioka, T., Hanagata, N., and Tanaka, J. (2010) Crystal structure
709	refinement of A-type carbonate apatite by X-ray powder diffraction. Journal of Material
710	Science, 45, 2419-2426.
711	
712	Traina, S.J., and Laperche, V. (1999) Contaminant bioavailability in soils, sediments, and aquatic
713	environments. Proceedings of the National Academy of Sciences of the United States of
714	America, 96, 3365-3371.
715	
716	Werner, PE., Eriksson, L. and Westdahl, M. J., Journal of Applied Crystallography 18, 367-
717	370.
718	
719	Wilson R.M., Elliott J.C., Dowker S.E.P., and Smith R.I. (2004) Rietveld structure refinement of
720	precipitated carbonate apatite using neutron diffraction data. Biomaterials, 25, 2205-13.
721	

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827 5/21
722	Wilson, R.M., Elliott, J.C., Dowker, S.E.P., and Rodriguez-Lorenzo, L.M. (2005) Rietveld
723	refinements and spectroscopic studies of the structure of Ca-Deficient apatite. Biomaterials.
724	2005, 26, 1317-327.
725	
726	Wilson, R.M., Dowker, S.E.P., and Elliott, J.C. (2006) Rietveld refinements and spectroscopic
727	structural studies of a Na-free carbonate apatite made by hydrolysis of monetite.
728	Biomaterials., 27, 4682-692.
729	
730	Wopenka, B., and Pasteris, J.D. (2005) A mineralogical perspective on the apatite in bone.
731	Materials Science and Engineering C, 25, 131-143.
732	
733	Wyckoff, R.W.G. (1965) Crystal Structures, 2 nd Edition, Vol. 3, p. 228, Interscience, New York.
734	
735	Yoder, C. H., Pasteris, J.D., Krol, K.A., Weidner, V. L, and Schaeffer, R. W. (2012) Synthesis,
736	structure, and solubility of carbonated barium chlor- and hydroxylapatites. Polyhedron,
737	44, 143-149.
738	
739	Yoder, C.H., and Rowand, J.P. (2006) Application of the simple salt lattice energy
740	approximation to the solubility of minerals. American Mineralogist, 91, 747-752.
741	
742	
743	Figure Captions

745

746	Fig. 1.	Variation of unit cell	parameters as a	function of	f weight p	percent carbonate	in CBaApF.
-----	---------	------------------------	-----------------	-------------	------------	-------------------	------------

- 747 Fig. 2. Variation of unit cell parameters as a function of weight percent carbonate in CPbApF.
- 748 Fig. 3. Raman spectra for five CPbApF samples of varying carbonate composition.
- **Fig. 4**. The 900 1200 Δ cm⁻¹ region of the Raman spectra of three CBaApF samples. In the
- inset, the peaks are normalized to the intensity of the v_3 mode at 1031 Δ cm⁻¹, making more clear
- 751 the increase in intensity of the 1058 Δ cm⁻¹ peak representing B-type substitution.
- **Fig. 5**. IR spectrum of CBaApF showing carbonate and phosphate bands in the region between
- $1500 \text{ and } 900 \text{ cm}^{-1}$. The inset shows the carbonate region.
- **Fig. 6**. The infrared spectra of CPbApF samples from 700 to 1600 cm⁻¹. The inset shows the
- 755 carbonate region.
- **Fig. 7**. The IR spectra of CCaApF samples from $1800 750 \text{ cm}^{-1}$.
- 757
- 758
- 759

760 **Table 1**. Rietveld refinement parameters and site occupancies for cations and

761 monovalent anions.

Compound	Wt. Percent CO ₃	Ion CO3 Per Unit Cell	Total Counts: Difference Ratio	Rwp (%)	M ₁ Occupancy	M ₁ B- iso	M ₂ Occupancy	M ₂ B- iso	X Ions/ Unit Cell
CCaApF	1.45	0.24	5	7.53	1.13(7)	2.5(1)	0.88(6)	0.0(1)	1.6(2)
CCaApF	4.23	0.67	6	6.23	1.13(7)	2.5(2)	0.91(8)	0.0(1)	1.8(2)
CCaApF	13.55	1.88	12.5	4.58	1.11(7)	3.1(1)	0.96(8)	0.9(1)	1.2(2)
CBaApF	0.70	0.23	25	5.04	0.94(9)	0.28(5)	0.92(9)	0.14(4)	1.2(4)
CBaApF	1.31	0.42	13	6.17	1.0(1)	0.68(5)	1.0(1)	0.63(4)	1.2(4)
CBaApF	2.51	0.77	16	6.15	0.9(1)	0.38(5)	0.9(1)	0.57(5)	0.6(4)

<u>5/</u>21

CPbApF	0.22	0.10	23	4.51	1.0(2)	0.41(5)	1.0(2)	0.94(4)	1.6(8)
CPbApF	1.59	0.67	21	7.20	1.0(2)	0.97(9)	0.9(2)	1.22(8)	1.0(8)
CPbApF	2.72	1.09	70	4.04	1.0(1)	0.69(4)	0.9(1)	1.35(4)	1.0(4)

763	Table 2.	Selected be	ond lengths	obtained in	the Ri	ietveld re	efinements.
			<u> </u>				

Compound	Wt. Percent CO ₃	P1-O1 (Å)	P1-O2 (Å)	P1-O3 (Å)	M1-O1 (Å)	M1-O2 (Å)	M ₁ -O ₃ (Å)	M2-X (Å)	M2-O2 (Å)	M2-O3 (Å)
CCaApF	1.45	1.5385(2)	1.5454(2)	1.5364(2)	2.403(3)	2.454(3)	2.809(1)	2.332(3)	2.366(3)	2.338(1)
CCaApF	4.23	1.5321(2)	1.5390(2)	1.5347(2)	2.396(4)	2.453(4)	2.798(1)	2.293(3)	2.384(3)	2.344(1)
CCaApF	13.55	1.5233(2)	1.5302(2)	1.5331(2)	2.372(4)	2.467(4)	2.787(1)	2.293(3)	2.363(3)	2.340(1)
CBaApF	0.70	1.5382(2)	1.5330(2)	1.5329(2)	2.725(2)	2.710(2)	>3	2.525(1)	2.663(1)	2.739(1)
CBaApF	1.31	1.5370(2)	1.5318(2)	1.5332(2)	2.726(3)	2.710(3)	>3	2.524(1)	2.659(1)	2.741(1)
CBaApF	2.51	1.5336(2)	1.5284(2)	1.5327(2)	2.726(3)	2.706(3)	>3	2.494(1)	2.675(1)	2.747(1)
CPbApF	0.22	1.5564(2)	1.5435(2)	1.5869(2)	2.510(1)	2.728(1)	2.911(1)	2.939(1)	2.383(1)	2.562(1)
CPbApF	1.59	1.5641(2)	1.5511(2)	1.6028(2)	2.52(1)	2.76(1)	2.929(4)	>3	2.322(4)	2.595(2)
CPbApF	2.72	1.5700(2)	1.5570(2)	1.6094(2)	2.542(6)	2.764(5)	2.937(1)	>3	2.309(2)	2.600(1)

Table 3. Site occupancies and atomic coordinates for atoms in synthesized CMApF.

	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827							5/21	
	Synthesis	PercentC	lons CO ₃	Atom	Wyckoff	Site	x	С	Z
	•	Wt. %	carbonate	sito	Wyckoff	occup.		Coordinates	
Compound	ID	<u>ись»</u>	ions per	SILE	symbol symbol	occup.	x	V	z
Compound		CO3-	unit ^e cell per cell		-,			,	
CC- 1 - E		1 / 5	0.24						
ССадрг	DSCAAPFIS	1.45	0.24	C1	12i	0.01(2)	0 014000	0.010000	0.019000
				C2	12i	0.0(1)	0.419700	0.013700	0.187000
				Ca1	 4f	1 13(7)	0 333333	0.666667	0.0006(7)
				Ca2	6h	0.88(6)	0.2429(4)	0.2532(4)	0.250000
				F1	2a	0.8(1)	0.000000	0.000000	0.250000
				01	 6h	1.000000	0.158100	0.484300	0.250000
				02	6h	1.000000	0.588000	0.121200	0.250000
				03	12i	0.8(1)	0.341600	0.084800	0.070400
				05	12i	0.01(2)	0.105000	0.166500	0.002000
				06	12i	0.01(2)	0.021000	0.051000	0.187000
				07	12i	0.01(2)	0.073000	0.001000	0.128200
l				P1	6h	0.916064	0.398100	0.029300	0.250000
CCaApF	DSCaApF1	4.23	0.67				·		
I				C1	12i	0.00(2)	0.014000	0.010000	0.019000
I				C2	12i	0.0(1)	0.419700	0.013700	0.187000
I				Ca1	4f	1.13(7)	0.333333	0.666667	0.0013(8)
I				Ca2	6h	0.91(8)	0.2395(4)	0.2502(5)	0.250000
l				F1	2a	0.9(1)	0.000000	0.000000	0.250000
l				01	6h	1.000000	0.158100	0.484300	0.250000
l				02	6h	1.000000	0.588000	0.121200	0.250000
l				03	12i	0.79(8)	0.341600	0.084800	0.070400
				05	12i	0.00(2)	0.105000	0.166500	0.002000
l				06	12i	0.00(2)	0.021000	0.051000	0.187000
l				07	12i	0.00(2)	0.073000	0.001000	0.128200
00- A-F	D00- 4 F0	10 55	4.00	51	ווס	0.8(1)	0.398100	0.029300	0.250000
ССаАрн	Озсаярня	13.55	1.88	C1	12i	0 02(2)	0.01/000	0.010000	0 010000
				C2	121	0.02(2)	0.014000	0.010000	0.019000
l				Ca1	<u>عد</u> 4f	1 11(7)	0.419700	0.656667	0.107000
				Ca2		0.96(8)	0.3333333	0.2523(5)	0.0001(0,
l				F1	2a	0.6(1)	0.000000	0.00000	0.250000
l				01	 6h	1.000000	0.158100	0.484300	0.250000
l				02	6h	1.000000	0.588000	0.121200	0.250000
I				03	12i	0.7(1)	0.341600	0.084800	0.070400
l				05	12i	0.02(2)	0.105000	0.166500	0.002000
I				06	12i	0.02(2)	0.021000	0.051000	0.187000
l				07	12i	0.02(2)	0.073000	0.001000	0.128200
l				P1	6h	0.71(6)	0.398100	0.029300	0.250000
CBaApF	CT5	0.70	0.23						
l				Ba1	4f	0.94(9)	0.333333	0.666667	0.0006(4)
l				Ba2	6h	0.92(9)	0.2571(1)	0.2391(1)	0.250000
l				C1	12i	0.04(2)	0.018000	0.065000	0.008000
l				C2	12i	0.1(2)	0.017800	0.419600	0.198000
l				F1	2a	0.6(2)	0.000000	0.000000	0.250000
l				01	6h	1.000000	0.482000	0.140400	0.250000
I				02	6h	1.000000	0.117400	0.576000	0.250000
l				03	121	1.0(1)	0.079100	0.34/300	0.088800
l				05	121	0.04(2)	0.084000	0.208900	0.028000
l				Ub O7	121	0.04(2)	0.007000	0.023000	0.143000
l				07	121	0.04(2)	0.022000	0.008000	0.139000
1				P1	6h	1.0(2)	0.031900	0.401/00	0.250000

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live) DOI: http://dx.doi.org/10.2138/am-2014-4827

	This is	a preprint, the Cite a	e final version as Authors (Y	is subject to ear) Title, Am	change, of erican Mine	the American eralogist, in pr	Mineralogist (MS	SA)	
	[]	DOI will not wo	rk until issue	is live.) DOI: I	http://dx.do	i.org/10.2138/	am-2014-4827		5/21
CBaApF	CT2	1.31	0.42	Do1	4 £	1 0(1)	0 222222	0 666667	0.0007/
				Bal	41 6h	1.0(1)	0.333333		0.0007(
				BdZ	101	1.0(1)	0.2571(1)	0.2394(1)	0.25000
					121	0.04(2)	0.018000	0.065000	0.00800
				C2	121	0.2(2)	0.017800	0.419600	0.19800
				FI O1	Zd	0.6(2)	0.000000	0.000000	0.25000
				01	6N Ch	1.000000	0.482000	0.140400	0.25000
				02	0[] 12:	1.000000	0.117400	0.576000	0.2500
				03	121	1.0(1)	0.079100	0.347300	0.0888
				05	121	0.04(2)	0.084000	0.208900	0.0280
				06	121	0.04(2)	0.007000	0.023000	0.1430
				07	121	0.04(2)	0.022000	0.008000	0.1390
CD - 4 - 5	CT7	2.54	0 77	P1	6N	0.9(2)	0.031900	0.401700	0.2500
СваАрн	C17	2.51	0.77	Do1	٨f	0.0(1)	0 222222	0 666667	0 0011
				Bal Ba2	41 6b	0.9(1)	0.3333333	0.000007	0.0011
				Dd2	12:	0.3(1)	0.2348(2)	0.2370(2)	0.2300
					121	0.07(3)	0.018000	0.005000	0.0000
				C2	121	0.3(2)	0.017800	0.419600	0.1980
				FI O1	Zd	0.3(2)	0.000000	0.000000	0.2500
				01	60 Ch	1.000000	0.482000	0.140400	0.2500
				02	0[] 12:	1.000000	0.117400	0.576000	0.2500
				03	121	1.0(1)	0.079100	0.347300	0.0888
				05	121	0.07(3)	0.084000	0.208900	0.0280
				06	121	0.07(3)	0.007000	0.023000	0.1430
				07	121	0.07(3)	0.022000	0.008000	0.1390
				P1	6N	0.8(2)	0.031900	0.401700	0.2500
CPbApF	ZW11	0.22	0.10	C1	10:	0.06(2)	0.018000	0.065000	0 0000
					121	0.06(3)	0.018000	0.065000	0.0080
				C2	2-	0.5(5)	0.412000	0.004000	0.16/0
				FI O1	Zd	1.000000	0.000000	0.000000	0.2500
				01	011 Ch	1.000000	0.164000	0.487000	0.2500
				02	10	1.000000	0.582000	0.096000	0.2500
				03	121	0.8(2)	0.347000	0.080000	0.0780
				05	121	0.06(3)	0.068200	0.212200	0.0280
				06	121	0.06(3)	0.007000	0.005000	0.1520
				07	121	0.06(3)	0.024000	0.010000	0.1480
				P1	6h	0.9(2)	0.400400	0.019100	0.2500
				PD1	4f	0.8(1)	0.3333333	0.666667	-0.001
	7\4/1 0	1 50	0.67	P02	011	0.8(1)	0.2376(3)	0.2348(3)	0.2500
СРОАРГ	20012	1.59	0.67	C1	12i	0.06(4)	0.018000	0.065000	0 0080
				C1 C2	121	0.00(4)	0.018000	0.003000	0.0080
				C2 E1	22	0.3(4)	0.412000	0.004000	0.1070
				F1 01	2a 6h	1.000000	0.000000	0.000000	0.2500
				01	6h	1.000000	0.104000	0.487000	0.2500
				02	10	1.000000	0.382000	0.090000	0.2500
				03	121	0.7(2)	0.547000	0.060000	0.0780
				05	121	0.06(4)	0.008200	0.212200	0.0280
				00	121	0.06(4)	0.007000	0.005000	0.1520
				U/ D1	121	0.00(4)	0.024000	0.010000	0.1480
				PL Dh1	6N	0.8(3)	0.400400	0.019100	0.2500
				201 062	4t ch	0.8(2)	0.333333		-0.001
CDb A ~ F	714/2	2 7 2	1 00	202	60	0.8(2)	0.2491(6)	0.2485(5)	0.2500
сгодрг	2003	2.72	1.09	C1	17i	0 06(3)	0.018000	0.065000	0 0090
				C1	121	0.00(3)	0.010000	0.005000	0.0080
				C2 E1	171	0.00000	0.412000	0.004000	0.19/0
				F1 01	2d د ا	1 000000	0.000000	0.000000	0.2500
				01	011 Ch	1.000000	0.104000	0.467000	0.2500
				02	10	T.000000	0.562000	0.090000	0.2501

This is a preprint, the final version is subject to change, of the American Mineralogist (MS	SA)
Cite as Authors (Year) Title. American Mineralogist, in press.	

	Cite as A	Authors (Year) Title. Ameri	ican Mineralo	ogist, in press	S.		5/04
I	(DOI will not work u	Intil Issue is live.) DOI: http	p://dx.doi.org	/10.2138/am	-2014-4827		5/21
		03	12i	0.7(1)	0.347000	0.080000	0.078000
		05	121	0.06(3)	0.068200	0.212200	0.028000
		06	12i	0.06(3)	0.007000	0.005000	0.152000
		07	12i	0.06(3)	0.024000	0.010000	0.148000
		P1	6h	1.0(2)	0.400400	0.019100	0.250000
		Pb1	4f	1.0(1)	0.333333	0.666667	-0.003(1)
l		Pb2	6h	0.9(1)	0.2472(4)	0.2474(3)	0.250000
768							
769							
105							
770							
//0							
771							
772							
112							
773							
774							
775							
115							
776							
777							
,,,,							
//8							
779							
780							
/80							
781							
782							
,02							
702							
/83							
784							
785							
105							
786							

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

792 Fig. 2

793

794 Fig. 3

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

799

800 Fig. 5

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

802 Fig. 6

803

804

805

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2014-4827

808

809 Fig. 7 810

01

811

812 813

013