Revision 2 - Experimental study of phlogopite reaction rim formation on olivine
in phonolite melts: kinetics, reaction rates and residence times.

Thomas Bartholomew Grant1,2, Ralf Milke1, Bernd Wunder2, Richard Wirth2 and Dieter Rhede2

1 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
2 GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany

ABSTRACT

Experiments were conducted to reproduce reaction rims of phlogopite ± diopside around olivine that have been observed within a wide range of potassic melts, including phonolite. Phlogopite is also a common secondary phase formed at the expense of olivine during metasomatic events involving K\textsubscript{2}O and H\textsubscript{2}O rich fluids or melts. Piston cylinder experiments where olivine single crystals were reacted with synthetic phonolite melt at 10.7-14.7 kbar and 950-1000ºC recreate the mineralogy and textures documented in natural samples. Rim growth is parabolic with time, indicating a diffusion-controlled reaction. Fast diffusion in the melt and varying compositions across the phlogopite reaction rims suggest that diffusion through the rims, along grain boundaries is rate limiting. Reaction rates dramatically increase with temperature as well as the bulk water content of the sample charge. This is because of increasing amounts of atomically bound hydrous species along the grain boundaries increase the rates of diffusion and thereby the rates of rim growth. Atomically bound
hydrous species increase the rates of rim growth by lowering the activation energy for diffusion and by increasing the solubility of diffusing species in the grain boundary region. Transmission electron microscopy shows the presence of isolated pores and open grain boundaries. Most of these may have opened during quenching but there is some evidence to suggest that a free fluid phase may have been locally present in experiments with high melt water contents (>8 wt.%). The measured rim growth rates at different conditions are used to estimate residence times of reacting olivine crystals in natural systems.

Keywords: Phlogopite, olivine, reaction rims, grain boundary diffusion, metasomatism

INTRODUCTION

Phlogopite bearing peridotite rocks has been identified in a number of locations; the Ivrea Zone, Southern Alps (Zanetti et al 1999; Grieco et al, 2001), the Horoman peridotite complex (Arai and Takahashi, 1989), and Lherz (Bodinier et al, 2004). Additionally, phlogopite bearing peridotite xenoliths are observed (Aoki, 1975; Lloyd et al, 1991; Wulff-Pedersen et al, 1996; Stiefenhofer et al, 1997). The phlogopite, along with other phases, is often secondary and forms at the expense of primary peridotite phases such as olivine during metasomatic events involving K₂O and H₂O rich melts or fluids. Clear evidence of replacement of olivine by phlogopite was described in the Horoman peridotite complex (Arai and Takahashi, 1989). The origin and composition of the fluids or melts involved in these reactions are not always well constrained. Slab derived melts or fluids (Sudo and Tatsumi, 1990; Zanetti et al 1999; Prouteau et al, 2001, Wunder and Melzer, 2003), partial melting of pre-metasomatised
mantle (Grieco et al, 2001; Thibault et al, 1992) and fluids released from fractionating alkali basaltic melts (Arai and Takahashi, 1989) have been suggested as potential sources. The range in pressures and temperatures of phlogopite formation are also potentially very large. Xenolith samples from Bultfontein Floors (Aoki, 1975) are thought to originate from 170-100 km compared with much shallower conditions in the Horoman peridotite complex (Arai and Takahashi, 1989) and the Ivrea Zone (Grieco et al, 2001). The stability field of phlogopite has been shown to extend deep into the mantle (Trønnes, 2002) making it an important reservoir for volatiles, alkalis and trace elements. Phlogopite, may also be an important phase in the genesis and alkali budget of arc magmas (Sudo and Tatsumi, 1990), intraplate magmas (Pilet et al, 2011) and ultrapotassic melts (Foley, 1992) during partial melting of metasomatised mantle. Therefore, the mechanisms by which phlogopite forms at the expense of upper mantle minerals is of particular interest.

In addition, there are numerous examples of olivine xenocrysts that have reacted to form phlogopite ± diopside reaction rims when in contact with K$_2$O and H$_2$O rich melts such as: lamprophyre (Foley et al, 2002; Semiz et al, 2012), lamproite (Carmichael, 1967; Çoban and Flower, 2006), kimberlite (Neal and Taylor, 1989), minettes (Davis and Smith, 1993), nephelinite – leucitite (Lloyd et al, 2002) as well as phonolite (Henderson et al, 2012, Grant et al, 2013). These are very small-scale analogues of metasomatic reactions and in all these cases olivine cores clearly show textures indicative of dissolution and replacement by phlogopite. Phase relationships of potassic melts show a change in liquidus phases from olivine to phlogopite ± diopside during cooling (Luth, 1967; Arima and Edgar, 1983; Draper and Green, 1997).

In this study we experimentally reacted olivine single crystals with synthetic
phonolite melt to form phlogopite ± diopside reaction rims. This simple experimental setup recreates the textures and mineralogy observed in naturally occurring rims formed between olivine and phonolite (Henderson et al, 2012; Grant et al, 2013) and other similar melts. The dissolution of olivine and precipitation of phlogopite is driven by a combination of diffusion and interface kinetics, where the slower of the two is rate-limiting (see Dohmen and Chakraborty, 2003 for a detailed discussion). We find that the rate limiting process is grain boundary diffusion through the phlogopite reaction rims. We therefore investigate the structural properties of grain boundaries and interphase boundaries using transmission electron microscopy (TEM). The influence of pressure, temperature and bulk H$_2$O content of the melt on reaction rim growth rates is also discussed. The primary aim of this work is to use experimentally derived rim growth rates to estimate residence times of olivine xenocrysts in the Heldburg Phonolite described by Grant et al (2013). These can then be applied to other occurrences of phlogopite rim growth on olivine in K$_2$O and H$_2$O rich melts.

EXPERIMENTAL METHODS

Starting materials

Two Fe-free synthetic phonolite glasses were prepared (PHG2 and PHG3). The compositions of these two glasses are given in Table 1. Oxide and carbonate forms of each component were accurately weighed, crushed in an agate pestle and mortar in ethanol, and then placed into a platinum crucible. The mixture was then heated in a box furnace at 1600°C for >24 hrs to create a homogenous melt. The melt was then quenched in water to form a glass, removed and checked for homogeneity before
being crushed and used in experiments. PHG3 is a Ca-free glass, which was used in
experiments to avoid liquidus diopside that formed in experiments using PHG2 (see
later). Both starting material glasses were reasonably homogenous (see Table 1).
PHG2 experienced little alkali loss. PHG3 lost ~1 wt.% Na during analysis,
accounting for its low total. Quench rates were fast enough to inhibit micro-crystals in
both PHG2 and PHG3. We used pure forsterite from a single crystal synthesized by
IKZ Berlin and a single crystal of San Carlos olivine. Fragments of each were then
crushed dry using a metal pestle and mortar, separated under size intervals of >500
μm, 250-500 μm and <250 μm and the middle size grouping was used for
experiments. Olivine grains were then added to the crushed glasses of PHG2 or PHG3
in ratios of 84:16 wt.% (glass : forsterite / San Carlos). The composition of the San
Carlos olivine is given in Table 1. Platinum capsules with lengths of about 6mm,
diameters of 3 mm, and wall thicknesses of 0.3 mm were used for all experiments.
One end was crimped and then welded using a PUK3 arc welder. Double distilled
water was added via micro-syringe, and then followed by the forsterite-glass (or San
Carlos-glass) mixture in proportions to give the desired bulk water contents. The top
of the capsule was then welded, weighed and then placed in a 100°C oven for around
an hour and then weighed again to check for any weight loss and the quality of the
welded seal. Samples that showed no weight loss were then used. Capsules were also
cleaned and weighed after the experiments to check for any weight loss. No samples
showed any loss of weight after the experiments, indicating that no volatiles were lost
at peak run conditions. Sample names, bulk water contents, estimated melt water
contents (based on an assumed 84:16 ratio), and run conditions (P-T-t) are given in
Table 2. Three sets of time series experiments were conducted with three different
bulk water contents of 3.9-4.2 wt.% (low water), 5.6-6.5 wt.% (medium water) and
7.2-8.0 wt.% (high water).

Piston cylinder apparatus

All experiments were conducted using a Johannes type piston cylinder apparatus (see Johannes et al., 1971; and Johannes, 1973). The sample charge consisted of a drilled natural CaF$_2$ holder for two capsules and the Ni/Ni-Cr thermocouple that measured the temperature at the middle of the capsules. This was surrounded by a graphite sleeve (furnace), and then encased in a 1 inch wide drilled natural CaF$_2$ outer part. Friction effects were accounted for due to the use of natural CaF$_2$ pieces (Harlov and Milke, 2002). Loading of pressure was done first and then the temperature was increased to the peak conditions. Pressure stayed constant to within 0.2 Kbar and the measured thermocouple temperature to within 2-3°C during the experiments. However there could be small thermal gradients across the samples, but the ΔT across the sample is unlikely to be more than 20°C (Schilling and Wunder, 2004). Samples were quenched at a rate of ~20°C/s (calculated over a temperature range of 950-450°C). Run conditions for all experiments are given in Table 2. We conducted two sets of experiments. Single series experiments tested a wider range of different temperatures, pressure, water content, duration and olivine composition, and time series experiments where all parameters were kept constant except for the run duration.

ANALYTICAL METHODS

Electron microprobe (EMP)

An initial assessment of all samples was conducted using the JEOL JXA-8200 (Superprobe) at FU Berlin, Geocampus. Back-scattered electron (BSE) images were
taken as well as microprobe analysis of reaction rims and host olivines. Some data was collected for glasses using wide beams of 15 μm to limit loss of alkalis compared to fully focused beams for all other phases. All analyses were made with accelerating voltages of 15 kV, 20 nA beam current and counting times of 10s on peak and background. The same analytical conditions but with focused beams of 1μm were used to make a series of line scans on SC31. Analyses of glasses were taken using a JEOL (Hyperprobe) JXA-8500F with a thermal field emission cathode (FEG) at GFZ Potsdam. The analysis of glass posed a significant problem considering the high alkali content (>14 wt.%), high volatile contents and the presence of small crystals of phlogopite throughout the glass. In order to measure profiles through glasses away from reaction rims with the maximum spatial resolution (i.e. distance between each point) whilst minimizing migration of alkalis, specific conditions used were; 5 nA beam current, an accelerating voltage of 6 kV, short counting times of 10s on peak and background with a defocused beam of 5 μm. Standards included jadeite (Si and Na), periclase (Mg), orthoclase (Al and K).

Rim thickness measurements

Using the BSE images from the microprobe, rim thicknesses were measured. For each sample several rims were measured, giving >20-30 data points of rim thickness. These were then averaged to give the estimated rim thickness for each sample. Due to the uncertainty in the orientation of the reaction rim with respect to the polished surface, some rims could be cut at a low angle, making their thicknesses appear larger than they actually are. This means that the observed thickness is always slightly larger than the actual rim thickness (Liu et al, 1997). For this reason, the best locations for thickness measurements were where the rims were generally thinner. Rim thicknesses
are comparable from different experiments as long as the same method of measuring rim thickness is always used.

Transmission electron microscope (TEM)

TEM foils were prepared using the focused ion beam (FIB) techniques described by Wirth (2004). Two foils were cut on sample TSF2, one perpendicular to and crossing the olivine-phlogopite interface (foil #3259), and one cut parallel to the olivine interface through the phlogopite rim (foil #3281). One foil was cut from sample TSF6 that was perpendicular to and crossed the olivine–phlogopite interface. Two further foils (#3518 and #3520) were then cut in sample TSF 8, both were perpendicular to the olivine interfaces. TEM and HRTEM images were taken using the FEI Tecnai G2 F20 X-Twin transmission electron microscope at GFZ Potsdam. EDX analyses were acquired using the EDX detector. High angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images were also taken.

RESULTS

Reaction rim assemblages and textures

In all experiments the olivine (Forsterite or San Carlos) reacted with the melt. The Ca-bearing melt (PHG2) produced inner rims of phlogopite and an overgrowth of diopside (Figure 1b) with diopside also occurring as a liquidus phase. The Ca-free (PHG3) experiments produced phlogopite rims only (Figure 1c). These rim assemblages are consistent with those observed in natural examples (Figure 1a). Reaction rims could not be formed at water contents lower than around 4 wt.% bulk H2O. One Ca-bearing experiment at 1000°C produced rims of more Mg-rich olivine
around olivine in part of the capsule, but phlogopite-diopside double rims in the rest
of the capsule. This reflects a small thermal gradient across the samples, where at
1000°C olivine is stable in the melt, and is consistent with the phase relationships of
Draper and Green (1997). At just below 1000°C phlogopite rims are stable, consistent
with the experiments at 950°C. In the Ca-free melt single rims of phlogopite grew
around olivine crystals and no diopside formed. Phlogopite was a liquidus phase in
these experiments. Representative BSE images of the reaction rims are shown in
Figure 1. Olivine shows classic dissolution textures of convoluted and lobate crystal
edges in contact with the phlogopite reaction rim. These features are commonly
observed in reaction rims (for example, Coombs and Gardner, 2004). Rim grain sizes
vary but are mostly 5-15 μm. Grain sizes tend to increase with increasing run
duration. All rims contain some small black patches in Figure 1b-c, which are likely
to have formed during polishing and plucking of rim grains. TEM foils were chosen at
locations where these were not present in order to avoid sampling areas that might
have been affected by plucking. Diopside in Ca-bearing experiments does not always
form a continuous rim around phlogopite inner rims and diopside crystals are
separated by melt. Diopside forming around phlogopite rims appears to be a local
effect of preferential nucleation as Grant et al (2013) suggest.

Despite the high water contents used in the experiments, the melts did not
become saturated with fluid. One experiment (TSF12) did show some vesicles in the
melt surrounding reaction rims, but as several experiments at higher bulk H2O did not
show the same features, the vesicles could have been formed during quenching. There
is also little evidence of crystal settling in the experiments. High water contents are
known to be soluble in phonolite melts even at low-pressure conditions (Carroll and
Blank, 1997; Schmidt and Behrens, 2008).
Reaction rates

Measured rim thicknesses for the time series experiments in Ca-free melt were plotted against the square root of time (Figure 2a-b). Rim growth is not linear with time. For all three different water contents rim growth is parabolic with time, indicating a diffusion-controlled reaction. Rim growth increases with increasing water content in the melt. We can express this behavior with a parabolic rate law (with units of m²/s) for each range in water. This was calculated from the slope of the trend lines given in Figure 2a-b. This gives values of 3.24 x10⁻¹⁶ m²/s for high water contents (~8 wt.% H₂O), 4.3 x10⁻¹⁶ m²/s for intermediate water contents (~5.7 wt.% H₂O) and 6.99 x10⁻¹⁶ m²/s for the lowest water contents (~4 wt.% H₂O). To further explore the effects of water on the rim growth we looked at the experiments in Ca-bearing melt. For each sample the rim thickness was measured in the same way as before (only measuring the phlogopite inner rims) and it was assumed that parabolic rim growth occurred in all experiments. For each experiment at 950°C the measured rim growth was divided by the square root of time. The results of this are shown in Figure 2c. The Ca-bearing and Ca-free melt experiments are consistent with each other despite differences in melt composition, and therefore phase relations, host olivine composition (San Carlos or forsterite), and pressure (10 or 14 kbar). The bulk H₂O content and temperature have a large impact on the rim growth whereas small differences in melt composition, pressure and olivine composition do not. Figure 2c shows that there is a linear relationship between log (m²/s) and H₂O content.

TEM results

Phlogopite-phlogopite grain boundaries
For experiments at around 6 wt.% H₂O the majority of grain boundaries do not appear to have any open space or non-crystalline material between phlogopite crystals. HRTEM imaging shows that the lattice fringes of adjacent phlogopite crystals touch (Figure 3c). This means that the grain boundaries are closed, at least to the scale of ~1 nm. Some grain boundaries appear to have open cavities that are planar and follow crystal edges (Figure 3a). These often contain some epoxy material introduced during polishing but no other precipitated material was observed in the open grain boundaries observed. There are also grain boundaries that contain small micro-pores (<400 nm) (Figure 3b). These pores are oblong to elongate and curved but are separated by regions of grain boundaries where lattice fringes touch, indicating no open grain boundary space connecting different pores. However, the ability to observe 3D connectivity of pores over large enough scales using TEM is not possible. Therefore, from what can be viewed by TEM, it is unlikely that a connected open grain boundary network exists between micropores.

At higher H₂O contents of around 8 wt.% there appears to be a higher density of open linear, to slightly curved, grain boundaries around (greater or equal to) 10 nm wide. These can terminate at crystal edges or taper out along a grain boundary. Pores are present at most grain boundaries and these can be up to 100 nm (Figure 3d) or very small nm sized pores along a grain boundary (Figure 3e). The pores in the latter case are much closer together than those seen in experiments with less water (Figure 3b). For all analyzed TEM foils, rim phlogopites do not appear to be orientated in one crystallographic direction and show random orientations throughout the reaction rims.

Phlogopite-olivine interphase boundaries

At intermediate water contents (6 wt.%), olivine-phlogopite interphase boundaries are
typically closed with few pores and often the lattice fringes of olivine and phlogopite touch (Figure 4a). Open pore cavities are present in some locations (Figure 4b). Although only a small section of the olivine-phlogopite interface was captured by the TEM foil the presence of pores was not limited to being at the head of finger like projections, reported by Milke et al (2013) for quartz-orthopyroxene interphase boundaries into olivine, but can occur anywhere along the rim. This does not contradict their mechanism but shows that other processes might also be involved. Olivine surfaces appear rounded at large magnifications but at low magnifications crystal facets in the dissolving olivine are created (Figure 4). The irregular shape of the interface suggests that the dissolution of olivine is not necessarily faster at different crystal planes or orientations. There is also no correlation between the orientations of phlogopite with that of the host olivine.

At higher water contents the olivine-phlogopite interphase boundaries are clearly open (Figure 4c-d). The open space between olivine and the phlogopite rim is planar and between 40-50 nm wide. HRTEM shows that there are several zones of different material at the olivine side of this interphase boundary (Figure 5). From the open interphase boundary to the interior of the host olivine crystal 3 different zones are identified: an amorphous Si-rich surface layer (ASSL), a distorted olivine region and a finally an undistorted olivine region. The ASSL is around 8 nm thick and is consistent with the ASSL observed on olivine by Daval et al (2011) and other phases (Hellmann et al, 2012, Daval et al, 2013). Due to the small size of the ASSL it was not possible to obtain quantitative data on their composition.

The first 40 nm of the olivine crystal at the interface appears to be distorted. The distortions in the olivine lattice were observed as irregular lattice fringes giving a mottled texture and broader diffraction spots (see figure 5). The distorted region
typically has a regular and nearly planar interface with the ASSL. Daval et al (2011) also noted that olivine adjacent to interfacial regions can be distorted. The distorted region is non-stoichiometric as its Mg / Si ratio is <2 (Table 3), but it is also apparently depleted in Si relative to the non-distorted olivine (Figure 5b). The distorted region most likely has a lower density than the non-distorted olivine, as Mg and Si are both removed during dissolution. Pokrovsky and Schott (2000) showed that the initial stages of dissolution of olivine in acidic solutions are incongruent with M2+ (Mg2+, Fe2+) released more rapidly than silica, resulting in an ASSL. Such a dissolution mechanism was also predicted from ab initio quantum mechanical calculations (Liu et al, 2006). Our data are consistent with such a model. The boundary between distorted and non-distorted olivine is irregular.

Melt pockets

No melt films were observed in any of the TEM foils but melt pockets within the reaction rims were observed (Figure 6). These melt pockets are not common and do not appear to be connected by melt films along the grain boundaries, indicating a low degree of wetting. The melt pockets can vary in size from 1 μm to several nm. In one case we see an area of amorphous material next to an open cavity (Figure 6a). Semi-quantitative EDX analyses of melt pockets showed that their compositions showed enrichments in both Si and Al with minor K and Mg. This would be the expected composition of the bulk melt if isolated and then fractionated phlogopite, except for the absence of Na. Due to short counting times it is unlikely that all the Na would have been volatilized even though there was some beam damage after the analyses, which also reflects the hydrous nature of the melts. The Na could have been fractionated into the phlogopite but seeing as the Na content of phlogopites is very
low this also seems unlikely too. Alternatively, Na could be partitioned into a fluid phase (if present) or it is highly mobile through the reaction rims and can diffuse rapidly to the melt.

Chemistry

Melt profiles

Two samples, TSF4 (black circles) and TSF6 (grey circles), with intermediate bulk H2O contents were analyzed to see if there were any concentration profiles in the melt (Figure 7). For each sample, 4 line scans were taken parallel to each other. The locations of the line scans were taken in regions of glass that were free of other olivines to avoid the possibility that profiles from nearby reactions overlap. Step sizes of 5 μm were used to avoid further loss of alkalis by damaging an area of glass by multiple analyses. This was a noticeable problem when step sizes were lower. Due to the presence of crystals within the glass, mixed analyses were common. This was especially problematic for TSF4, and is why the MgO profile is much more irregular than for TSF6. Data points with anomalously lower SiO2, and higher MgO than the majority of glass analyses were then removed from the data set, but there are still many which could be affected by small fractions of phlogopite in the analyses. For each sample, all four line scans were then compiled together into a single profile. The results of this are shown in Figure 7. The error bars for Na2O and K2O are large because of the short counting times needed to reduce loss of alkalis.

All elements (Si, Al, Na and K) except for Mg have very similar concentrations as the starting material glass within the error bars of the analyses. This is the same for both samples. Magnesium contents in the glasses (<1 wt.%) are significantly lower than the starting material (1.9 wt.%, taking into account the water content of the
melt). All elements show homogenous distribution throughout the line scans within
the error of the analyses. The closest point to the reaction rims has the same
composition as the melt >300 μm away from the rims. Calculating the differentiation
in the melt with different amounts of phlogopite can produce the same melt
compositions and the depletion in MgO with around 2-3% phlogopite formation. The
low totals of the analyses (around 92%) reflect the high concentration of volatiles in
the melt and are consistent with the amounts of water added, just under 7 wt.% by
melt (5.7 wt.% by bulk of the sample). Note that the water content of phlogopite
(ideally 4.3 wt.%) is lower than that of melt in most of the experiments (including
those where line scans were taken). Therefore the water content of the melt should
increase slightly as phlogopite crystallizes.

Reaction rim profiles

One sample (SC31) was chosen for a detailed analysis of the distribution of elements
throughout the phlogopite reaction rims. This sample was a good choice for this study
because the reaction rims were large, and due to the presence of Fe, Ni and Ca, this
sample allowed investigation of a wider range of elements during reaction. Six line
scans were taken from the olivine through the rim and into the melt. Melt analyses
were then removed as the focused beams caused significant damage. The presence of
small diopside crystals in the rims caused a large number of mixed analyses. These
were easily spotted by higher CaO contents in the rim phlogopite data. We placed a
cut off point and removed all phlogopite data points with >0.15 wt.% CaO. All line
scans were then collated together into one single profile for each element. The results
of the rim profiles are given in Figure 8. The dashed lines in Figure 8 show the
location of the interface between olivine and phlogopite.
The profiles for SiO₂ show a constant concentration in the olivine (over a distance of nearly 20 µm) right up to the reaction interface and then a step jump at the rim. The inner rim is then constant in SiO₂ composition for several microns and then becomes very irregular towards the outer rim. The distribution of K₂O is constantly low in the olivine and then increases over several microns, corresponding to mixed analyses across the olivine-rim interface. Throughout the rim K₂O is relatively constant. Both FeO and MgO show very homogenous concentrations in the host olivine right up to the rim interface. The rims are slightly enriched in both components in the inner rims near the olivine and become depleted in both elements towards the melt. For Na₂O and CaO, the overall contents are very low in both olivine and the reaction rims and the short counting times mean that their analyses carry large errors. This makes it difficult to observe any real trends in these components. However, they do not appear to vary across the reaction rims significantly. The profile for Al₂O₃ shows a consistent and strong variation throughout the phlogopite rim, being higher in concentration near the melt interface compared to near the olivine interface. Finally, for NiO, despite the low overall abundances, there does appear to be a consistent trend of decreasing NiO with distance from the olivine. Table 4 includes some representative data of phlogopite compositions from these line scans. Phlogopite compositions at the olivine interface contain excess octahedral Mg, 3.2 p.f.u. (per formula unit), compared to phlogopite at the melt interface with Mg of 2.8 p.f.u. Some Mg can be tetrahedrally coordinated in micas in Al and Fe deficient systems (Seifert and Schreyer, 1971). Increasing Al (up to 1.1 Al p.f.u.) and decreasing Mg (2.8 Mg p.f.u.) towards the melt interface indicates some octahedrally coordinated Al. Towards the melt interface there is a general increase in Al, K, Si and Na p.f.u. in phlogopite.
DISCUSSION

Reaction mechanisms

Diffusion mechanism

The results of the time series experiments show that the rim thicknesses have a linear relationship with the square root of time, i.e. parabolic rim growth. This is a strong indication that rim growth rates are controlled, or rate limited, by a diffusion process. It is therefore important to discuss where diffusion is rate limiting. There are several possible phases through which diffusion could be rate limiting: the melt, the polycrystalline reaction rims (phlogopite) or the host olivine.

We see no evidence of any concentration profiles in major elements (for example Mg-Fe zoning) forming in the host olivines, which remain homogenous over 10s of microns throughout the reaction. Therefore the reaction process must outpace volume diffusion of elements within olivine. Element profiles through the glass do not show any signs of concentration profiles as well. The melt is homogenous over distance >300 μm and right up to the reaction rim interface, within the resolution of the analyses. For phlogopite to continually form there must be a supply of elements from the melt. The step profiles imply that diffusion in the melt must be fast. Most elements in the glass remain similar to the host melt, whereas MgO shows significant depletion. The homogenous depletion of MgO throughout the melt could only have formed if the diffusion rates in the melt were fast. Secondly, although there is little data on element diffusion rates in phonolites, diffusion rates in wet rhyolite melts for Na (from Zhang et al 2010) are fast enough to equilibrate over the time and length scales of the experiments. Furthermore, the diffusion of elements in the melt will be related to the viscosity of the melt. Adding water will reduce the viscosity and
therefore increases the diffusion rates, but this effect is most pronounced at low water
contents, where OH- acts as a network modifier, and then reduces at higher water
contents. This is inconsistent with the exponential increase in reaction rates with
increasing water contents. It is therefore most likely that the mobility of components
through the reaction rims limits the rates of reaction. Concentration profiles through
the reaction rims shows that they are not homogenous in concentration and are not
well equilibrated. Diffusion through polycrystalline materials is most likely to be
concentrated along grain boundaries (Dohmen and Milke 2010).

Dissolution / interface mechanism

At high bulk water contents (8 wt.% H2O in TSF8) the olivine-phlogopite interphase
boundary is completely open. Several textural features are observed at the olivine side
of the interphase region. These include an ASSL and a distorted olivine structure.
Similar features have been observed during the dissolution of olivine in the presence
of a fluid phase at completely different P-T conditions (90°C and 25 MPa) (Daval et
al 2013), suggesting that the mechanisms by which olivine dissolves are the same
over a wide range of P-T conditions. The same features are not observed in locations
where the interphase boundary had been mechanically opened during polishing and
quenching. Therefore the ASSL and distorted olivine must have formed at peak
conditions during the experiment. The formation of ASSL on the surfaces of silicates
has only been observed to form in the presence of a fluid phase. The fluid may only
consist of several monolayers (7-10 Å), giving it properties of a thin fluid film
(Hellmann et al, 2012).

The distorted region observed here and in Daval et al (2011) has not been
observed in other phases (Hellmann et al, 2012). From Table 3 it appears that the
distorted olivine region is not stoichiometric (Mg/Si <2) with a noticeable loss in Mg relative to Si. This could be consistent with an exchange of Mg$^{2+}$ with H$^+$ by the interaction with a fluid phase at peak experimental conditions (Pokrovsky and Schott, 2000; Daval et al., 2011). Protonation of μ_3-O sites causes an increase in the bond lengths of adjacent atoms making them more labile (Liu et al, 2006). This leads to breaking of Mg-O bonds and the release of Mg$^{2+}$, which becomes solvated as Mg$^{2+}$(H$_2$O)$_6$. Silica is released more slowly than Mg and is the rate-limiting step in dissolution. Although Si is in excess relative to Mg, the distorted region appears to have less Si than in the non-distorted region (Figure 5b). This is because the distorted region is less dense than the non-distorted region, i.e., both Mg and Si are being removed during dissolution but Mg is being lost at a greater rate than Si, leading to non-stoichiometry. This does not appear to be due to differences in the diffusion rates of Mg and Si but is related to the strength of Mg-O (weaker) bonds relative to Si-O bonds (stronger). The interaction of protons at the olivine interface and the loss of both Mg and Si changes bond lengths and introduces both vacancies and defects into the structure of the olivine. This results in the formation of distortions in the olivine lattice that are observed by TEM. However the geometry of the distortions is difficult to characterize.

The dissolution mechanism was not rate limiting. Rim forming components must still pass through the reaction rim from the melt to the olivine-phlogopite interface and we interpret rim growth in this sample (TSF8) to be limited by grain boundary diffusion.

Mass Balance
During rim growth two reaction fronts are possible; one at the olivine – phlogopite interface and one at the phlogopite-melt interface. We calculate the mass balance distribution among phlogopite, forsterite and melt using the principals outlined in Ferry (1984) and extend these calculations by introducing some volume considerations.

In the Ca-free experiments, there are 6 system components (K$_2$O, Na$_2$O, Al$_2$O$_3$, SiO$_2$, MgO, H$_2$O) and 8 phase components (Mg$_2$SiO$_4$ – Forsterite, KMg$_3$AlSi$_3$O$_{10}$(OH)$_2$ – phlogopite, and the six oxides in the melt). Two (8-6) linearly independent net-transfer reactions describe mass transfer among olivine, phlogopite and melt during reaction.

(1) K$_2$O + 6MgO + Al$_2$O$_3$ + 6SiO$_2$ + 2H$_2$O = 2KMg$_3$AlSi$_3$O$_{10}$(OH)$_2$

(2) 2MgO + SiO$_2$ = Mg$_2$SiO$_4$

The progress of reactions (1) and (2), referred to as ξ_1 and ξ_2 respectively, in each experiment are quantitatively recorded by the differences between the final melt composition and the hydrous starting glass.

(3) MgO/Al$_2$O$_3$ = (n^0MgO + 6ξ_1 – 2ξ_2)/(n^0Al$_2$O$_3$ – ξ_1)

(4) SiO$_2$/Al$_2$O$_3$ = (n^0SiO$_2$ + 6ξ_1 – ξ_2)/(n^0Al$_2$O$_3$ – ξ_1)

MgO/Al$_2$O$_3$ and SiO$_2$/Al$_2$O$_3$ are molar ratios in the melt after the experiment using TSF6 as an example, and n^0MgO, n^0Al$_2$O$_3$, and n^0SiO$_2$ are the molar amounts of
MgO, Al₂O₃, and SiO₂ in hydrous melt at the start of the experiment (from Table 1, PHG3 glass) in units of mol/100 g minerals + melt, and ξ₁ and ξ₂ have units of mol/100 g. Substituting number values into equations 3 and 4 for all variables except

ξ₁ and ξ₂,

(3’) 0.108 = (0.048 – 6ξ₁ – 2ξ₂)/(0.187 – ξ₁)

(4’) 5.349 = (0.989 – 6ξ₁ – ξ₂)/(0.187 – ξ₁).

Therefore ξ₁ = 0.01027 and ξ₂ = –0.0165 and ξ₂/ξ₁ = -1.61. This fits with what is observed in the experiments: phlogopite crystallizes and forsterite dissolves. The total amount of phlogopite formed in the experiment is ξ₁. We must now calculate the amount of phlogopite in the rims relative to phlogopite formed as a liquidus phase in the melt. The amount of phlogopite formed in the melt is determined by image analysis of BSE images using the ImageJ software. By producing a binary color image, the % area of phlogopite and melt can be measured. We find that in sample TSF6 the melt contains approximately 3.65 % phlogopite by volume. Using the known weighed amounts of solid material (forsterite + glass) in the sample and the density of olivine (3.22 g/cm³) and melt (2.38 g/cm³ – using the method in McBirney, 1993) the volume proportion of both phases at the start of the experiment can be calculated (forsterite = 11% and melt = 89%). The amount of phlogopite in the melt as a percentage of the total sample is approximately 3.25 %. An estimated volume of each olivine grain is calculated using a diameter of 375 µm (median of size range 250-500 µm of crushed forsterite) and spherical shapes. By deducting the volume of olivine after the experiments (375 – 2*rim thickness), the volume of rim phlogopite
can be estimated (0.92% of total sample). The percentage of phlogopite in the rims out of the total amount of phlogopite formed is therefore 22%. By multiplying the ratio of ξ_2/ξ_1 by 0.22 (=0.35) we can obtain an overall equation of the reaction of forsterite to phlogopite;

$$0.35 \text{ Fo} + K_2O + 5.3 \text{ MgO} + Al_2O_3 + 2.65 \text{ SiO}_2 + 2H_2O = 2 \text{ Phlog}$$

Reaction (5) is the sum of the two reactions, one at the olivine-phlogopite interface and the other at the phlogopite-melt interface. Considering the large fraction of MgO needed to form phlogopite after (5) and its low concentration in the melt (Table 1), the availability of MgO seems to limit phlogopite formation.

Simple volumetric considerations can be used to reconstruct the position of the original olivine-melt interface and the respective contributions of the two partial reactions. This reconstruction makes use of the basic assumption that once an olivine grain is encased in a phlogopite mantle, any further mica formation at the inner (olivine-phlogopite) interface is spatially restricted to the volume made available by olivine dissolution. As reaction rim formation is controlled by grain-boundary diffusion, the outward diffusion of excess components from the olivine (e.g. Mg) should be expected to be similarly effective as the inward diffusion (e.g. of Al and K) from the melt.

The molar volumes of forsterite (2 MgO p.f.u.) and phlogopite (3 MgO p.f.u.) are 44 and 150 cm3mol$^{-1}$, respectively. Dissolution of 1 mol forsterite thus releases enough MgO for precipitation of 0.67 mol phlogopite, i.e. 44 vol% phlogopite could form by replacement of forsterite at the olivine-phlogopite interface whereas 56 vol%
must crystallize outwardly as an overgrowth fed by MgO diffusion through the rim. Combining these volume constraints in the reaction rims and the volumetric fraction of rim vs. bulk phlogopite we can now write weighed reactions for all three contributions to phlogopite formation in the experiments that sum up to reaction (5):

(5a). \[0.35 \text{Fo} + 0.05 \text{K}_2\text{O} + 0.05 \text{Al}_2\text{O}_3 + 0.15 \text{SiO}_2 + 0.11 \text{H}_2\text{O} = 0.11 \text{Phlog} + 0.4 \text{MgO}\]

(5b). \[0.07 \text{K}_2\text{O} + 0.4 \text{MgO} + 0.07 \text{Al}_2\text{O}_3 + 0.2 \text{SiO}_2 + 0.13 \text{H}_2\text{O} = 0.13 \text{Phlog}\]

(5c). \[0.88 \text{K}_2\text{O} + 5.3 \text{MgO} + 0.88 \text{Al}_2\text{O}_3 + 2.3 \text{SiO}_2 + 1.76 \text{H}_2\text{O} = 1.76 \text{Phlog}\]

where (5a) applies to the forsterite-phlogopite interface, (5b) to the phlogopite-melt interface, and (5c) to the bulk phonolite. This mass-and-volume balance explains several observations from the experiments.

Firstly, the dominance of (5c) over reactions (5a+b) indicates why the MgO concentration in the quenched glass after experiment was lower than the in the initial glass although a source of MgO was added to this glass. The olivine-mica core-rim-structures are essentially neutral with respect to the MgO balance because all released MgO can immediately be incorporated into rim phlogopite.

Secondly, in the rims a maximum of 44 vol% of phlogopite can be formed at the forsterite-phlogopite interface, such that the initial forsterite-melt contact must be located inside the phlogopite rims and nearer to the forsterite than to the melt interface. The 44 vol% is an upper boundary because the phlogopite in contact with melt could have acted as a substrate for further phlogopite overgrowths fed by MgO
from the melt. From this perspective the transition in chemical composition for all major components in phlogopite (K$_2$O, MgO, Al$_2$O$_3$, SiO$_2$) (Figure 8) can be explained in terms of growth directions. The rather flat part of the concentration profile (apart from mixed analyses at the olivine-phlogopite interface) in the inner parts of the rims is interpreted as crystallization at the olivine-phlogopite interface buffered to local equilibrium, whereas the outwards increasingly scattered element distribution represents crystallization at the phlogopite-melt interface. The transition between these zones that might represent the original forsterite-melt contact is located at about one third rim thickness from the olivine-phlogopite interface in accordance with the mass-volume balancing.

Finally, the balancing provides solid estimates for mass fluxes through the phlogopite rims. The chemical fluxes are mutually interrelated by crystal volume and ionic charges, and in such complex reactions it seems improbable that one single component controls the distribution of all the others and acts as being rate-limiting. However, the outward flux of the MgO component from the forsterite to the melt interface is clearly the largest flux involved and might play a leading role for overall rim growth rates.

Effects of H$_2$O on grain boundary diffusion

The experimental data in this study shows two clear observations; (a) growth of phlogopite rims is rate limited by diffusion along phlogopite-phlogopite grain boundaries and (b) rim growth rates increase with increasing bulk water contents of the sample charge (see Figure 2c). It therefore appears that the diffusion rates of chemical components along the grain boundaries are increased when the water content of the melt is increased. As hydrous species (H$^+$, OH$^-$) will be exchanged
between grain boundaries and the melt, the amounts of atomically bound fluid along
grain boundaries are expected to increase as the water content of the melt increases.
Atomically bound fluid species will lower the activation energies required for
diffusion by introducing higher concentrations of weaker hydrogen bounds relative to
Si-O or M-O (where M = a metal cation) bonds that are dominant in dry grain
boundaries (Rubie, 1986). Increasing amounts of atomically bound fluid species along
grain boundaries have been shown in many other systems to increase rates of
diffusion and thereby increase rim growth rates (Liu et al, 1997; Yund, 1997; Keller
et al, 2008; Carlson, 2010; Gardés et al, 2012). Our data (Figure 2c) are consistent
with such an interpretation. The phlogopite-phlogopite grain boundaries formed in the
reaction rims in our experiments are partially hydrated by atomically bound fluid
species. Increasing amounts of H$_2$O in the melt results in further hydration of the
grain boundaries leading to faster diffusion rates and rim growth.

Our results demonstrate the effects of increasing melt water contents will have
on the rates and progress of metasomatic reactions in the upper mantle. The amount of
water contained within hydrous grain boundaries, even if only at very low amounts
(ppm) may significantly enhance the mobilities and exchange of elements between the
metasomatic melt and the wall rock.

Origin of pores and open grain/ inter-phase boundaries.

Pores and open grain and interphase boundaries were observed in the TEM foils of
samples with low water (e.g. TSF2) and high water (e.g. TSF8). These either formed
during quenching (cooling and unloading of pressure) or by the presence of an
intergranular fluid at peak experimental conditions. If a free fluid formed at these
pressures and temperatures it should contain a significant amount of dissolved solute
species (Manning, 2004). During quenching a fluid should therefore form precipitates observable under TEM.

During cooling and unloading of pressure all phases will change in volume. The melt, which is the most voluminous phase in each sample, will contract (see Seifert et al., 2013). This has caused some large cracks to appear across the samples that cross cut other features (some are observable in Figure 1b.). Additionally, polishing weakens the phlogopite leading to wedge shaped voids in the surface (extending <30 nm into the sample) that are observable in the TEM foils (see Figure 3a). The phlogopite in the reaction rims will also experience a net decrease in volume due to greater amounts of contraction during cooling compared to expansion during unloading of pressure (Tutti et al, 2000; Comodi et al, 2004), and this could cause some grain boundaries to open. Furthermore, contraction of the surrounding melt and olivine may also result in stress on the reaction rims leading to partial opening of the grain and interphase boundaries. Opening of grain boundaries by anisotropic thermal contraction has also been observed in quartz for example (Kruhl et al., 2013). This provides a sound explanation for the formation of most of the open grain boundaries observed (for example those in Figure 3a.) that do not contain any evidence of material precipitated from a fluid phase. Furthermore it is also possible that the volatile-rich phase within the grain boundaries exsolves a fluid phase during quenching. This could be a possible explanation for the origin of micro-pores along grain boundaries (Figure 3b).

Pore cavities along grain boundaries in sample TSF8 (Figure 3d) have negative phlogopite crystal shapes. We suggest that it is unlikely that such textures would form under rapid quenching. As a comparison, the pores along the grain boundaries in sample TSF2 Figure 3b are distinctly more rounded or have irregular
shapes. Therefore the pores in sample TSF2 are likely to have formed during quenching whereas those in sample TSF8 appear to have formed at peak conditions. However, fluid pores at peak P-T conditions are likely to be transient and dynamic (Billa et al., 2013; Norberg et al., 2013), due to simultaneous dissolution and precipitation at the interfaces between the pore fluid and surrounding phlogopite.

The open interphase boundary in sample TSF8 contains an ASSL and dissolution features in olivine (Figure 5) that have been observed previously in samples where a fluid has reacted with olivine (Daval et al., 2011) and other phases (Hellmann et al., 2012). This is strong evidence to support the idea that a free fluid was present at peak experimental conditions and reacted with the olivine surface. Although it cannot be conclusively proven, we interpret these results as evidence of a fluid phase at the interphase boundary in sample TSF8 at peak experimental conditions.

In sample TSF2 a small open cavity containing amorphous material is present at the olivine-phlogopite interphase boundary. The amorphous material is enriched in Si and Al implying transport of Al from the melt to the olivine interface. This feature is likely to have existed at peak conditions either as a single solute rich fluid phase (which separated during quenching) or an unmixed melt + fluid phase.

Although many open grain boundary and pore features observed in TEM are most likely to have formed by contraction of the sample during cooling, there do appear to be evidence of some fluid being present at peak experimental conditions and that the amount of fluid appears to be greater in samples with greater amounts of water in the melt. We suggest that the formation of a fluid phase is a distinct possibility but this cannot be equivocally proved from our data as the rims cannot be viewed during peak conditions. Any formation of a fluid phase along grain boundaries...
or at interphase boundaries would be a particularly surprising result considering that the melt is undersaturated with fluid.

Crystallization of phlogopite will increase the amount of H$_2$O in the melt (recalling that phlogopite contains less water than the starting melt). For example, in sample TSF8, however, it is unlikely that the crystallization of matrix phlogopite was enough to saturate the melt in H$_2$O. Experiments using PHG2 and up to 12.4 wt.% H$_2$O have been conducted but they did not become saturated with H$_2$O (unpublished data). A satisfactory explanation as to why small amounts of free fluid might form in the grain and interphase boundaries during reaction rim growth is lacking. The properties of hydrated grain boundaries at upper mantle conditions and the exchange of fluid species with silicate melts is poorly understood. We can speculate that from our results it may be possible to form small localized amounts of fluid under non-equilibrium conditions but further work is necessary to understand this phenomena and its implications for mantle metasomatism.

APPLICATIONS

Residence times

Reaction rims can be used to provide estimates of residence times of phenocrysts or xenocrysts in their host magma (Rutherford, 2008). Specifically, the reaction rates calculated here can be used to estimate residence times of olivine xenocrysts in the Heldburg Phonolite (Grant et al, 2013). The natural phlogopite rim thicknesses are typically around 20-30 μm. In Figure 2c a parabolic rate law (R) was calculated for each experiment at the same P-T conditions but varying H$_2$O. As R = m2/s, it is simple to rearrange this and calculate a residence time (s) from a known rim thickness.
in nature (~25 µm) and known R at different melt H\textsubscript{2}O conditions (at 950°C and 1.0 GPa).

This gives a rough estimate of the residence times at different conditions (Figure 9). At the highest bulk H\textsubscript{2}O the estimated residence time would be around several hours, whereas at the lowest bulk H\textsubscript{2}O the estimated residence times would be up to around 100 days. It is more likely that the water content in the melt at Heldburg was towards the lower end of this scale averaging at about 4 wt.% (although it varies between 3-6 wt.%). This was estimated using calculations (from Ridolfi and Renzulli, 2012), from amphibole compositions in Grant et al. (2013). Temperatures of the Heldburg Phonolite during reaction rim formation are estimated to be between 850-950°C (Grant et al, 2013). This should therefore give residence times of several weeks to a few months for the natural reaction rims. This data is consistent with previous estimates given within Grant et al (2013).

Two experiments at 1000°C are also shown in Figure 9, to demonstrate the effects of temperature on estimated residence times. It is clear that the water content of the melt will have an important effect, as well as temperature, on the rim growth rates and constraining both parameters will be important if reaction rims of this kind are to be used as a way of calculating residence times. It is also potentially possible to calculate the melt water contents based on H\textsubscript{2}O partitioning between clinopyroxene and melt (Wade et al, 2008; O’Leary et al, 2010), although data for phonolite melts are lacking. In systems where the rim growth was rate limited by diffusion in the melt, these results may still apply. If convection or any kind of mechanical movement of xenocryst relative to the melt takes place, and this is highly likely during eruption, then melt boundary layers could be eroded. This means that diffusion through the rim itself will have a more direct effect on rim growth rates in a dynamic system rather
than a static experimental setting.

ACKNOWLEDGEMENTS

The authors would like to thank the German Research Foundation (DFG) for the FOR funding for this project (MI1205/2-2). We thank Anja Schreiber for FIB sample preparation, Katharina Marquardt, Luiz Morales and Wilhelm Heinrich for helpful discussions.

BIBLIOGRAPHY

Kruhl, J. H., Wirth, R., and Morales, L. F. (2013). Quartz grain boundaries as fluid
and pyroxene reactions rims. Contributions to Mineralogy and Petrology, 126, 217-223.
upper-mantle xenoliths from the Quaternary volcanics south-east of Gees, West Eifel,
Germany. Mineralogical Magazine, 55, 95-112.
parageneses from the K-mafic-carbonatite effusive magmatic association of Katwe-
Kikorongo, SW Uganda. Mineralogy and Petrology, 74, 299-322.
Luth, W.C. (1967) Studies in the system KAlSiO₄-Mg₂SiO₄-SiO₂-H₂O: inferred phase
Science Letters, 223, 1-16.
Milke, R., Neusser, G., Kolzer, K., and Wunder, B. (2013) Very little water is
necessary to make a dry solid silicate system wet. Geology, 41, 247-250.
micas from the Blue Ball Kimberlite, Arkansas: a record of chemical evolution during
crystallization. Mineralogy and Petrology, 40, 207-224.
Experimental development of patch perthite from synthetic cryptoperthite:
microstructural evolution and chemical re-equilibration. American Mineralogist, 98,

-MgO-SiO₂-H₂O and their relations to phlogopite. Contributions to Mineralogy and
Petrology, 30, 196-215.

phonolitic magmas and time scales of crystal fractionation in magma chambers. Earth

potassic lamprophyres with affinities to lamproites from the Denizili region, Western
Anatolia, Turkey: implications for uppermost mantle processes in a back arc setting.
Lithos, 134-135, 253-272.

peridotite xenoliths from the Letlhakane kimberlites, Botswana. Contributions to
Mineralogy and Petrology, 127,147-158.

implication for magma genesis at subduction zones. Geophysical research letters, 17,
29-32.

from a carbonated phlogopite lherzolite: implications for metasomatism in the
continental lithospheric mantle. American Mineralogist, 77, 784-794.

Trønnes, R. G. (2002) Stability range and decomposition of potassic richterite and

Tables

Table 1. Starting material compositions. No data is given for the synthetic olivine as it is pure forsterite.
Table 2. Experimental run conditions, including measured rim thicknesses. All time series experiments use Ca-free glass (PHG3), and all “Single experiments” use Ca-bearing glass (PHG2).

Table 3. EDX analyses of distorted and undistorted olivine regions in sample TSF8. Error for Mg analyses are ~8% and the error for Si analyses are~5% and the calculated error for each analysis is given in brackets. For Si/Mg the calculated error propagation is given the brackets.

Table 4. Phlogopite compositions. X (in μm) refers to the distance along the rim line scan shown in Figure 8, where X=0 is the olivine interface and X>0 is the distance from the olivine interface. Errors in brackets are to 2 decimal places.

Figures

Figure 1. Back scattered electron (BSE) images of natural and experimental reaction rims. Panel a – image of a natural examples of a phlogopite reaction (with minor diopside) on a olivine xenocryst. Amounts of diopside vary (see Grant et al, 2013 for further examples) Panel b – image taken of SC31 showing double rims of phlogopite + diopside. Diopside is also a liquidus phase in this experiment. Note the interstitial glass and discontinuous thickness of the diopside outer rim. Inner phlogopite rim thicknesses are fairly consistent. Convoluted olivine – phlogopite interphases are clearly observable. Note large unfilled cracks that crosscut all other features. Panel c – image from TSF6 demonstrating that single rims of phlogopite form in Ca-free melt. Phlogopite is also an abundant liquidus phase.
Figure 2. Rim growth with time and melt water content. Panel a-b shows the variation in rim thickness with time for the time series experiments (Ca-free melt). The ranges in bulk water content are given for each set of time series experiments. Error bars are the standard deviation of rim thickness for each experiment. Panel c shows the increase in rim growth with bulk water content of the sample at 950°C. Black squares are the time series experiments and the grey circles are single experiments with Ca-bearing melt. Error bars for the bulk water content corresponds to the likely maximum variations in the amount of olivine from 10-20% of the bulk in the sample.

Figure 3. HAADF, TEM bright field and HREM images of phlogopite-phlogopite grain boundaries. The images only contain phlogopite. Images a-c are from sample TSF2 and d-e TSF8. Areas marked by an A are pores cavities, and areas marked by a B are open grain boundaries. a) HAADF image: a pore along a grain boundary, B = open grain boundary. Panel b is a higher magnification of the HAADF image of the grain boundary with the highlighted pore in panel a. Panel c is a HREM lattice fringe image of a phlogopite-phlogopite grain boundary. The dashed white line shows the location of the phlogopite-phlogopite grain boundary. The lattice fringes are touching. Panel d is a TEM bright-field image showing a grain boundary decorated by isolated pores typically around 100 nm in size. Panel e is a TEM bright-field image showing a grain boundary decorated by small (<20 nm) pores that are very closely spaced.

Figure 4. TEM images of olivine – phlogopite interphase boundaries. A and B have the same meanings as in Figure 3 and dashed lines indicate the location of the interphase boundary. Panel a, a HREM lattice fringe image is taken from sample TSF6 and shows a closed interphase boundary where the lattice fringes of phlogopite
and olivine are touching. Panel b, a HAADF image, is from sample TSF2 and shows a micro-pore at the olivine interface. Facets in the olivine surface are visible at these resolutions. Panel c (HAADF image) is from sample TSF8 and shows a completely open grain boundary between olivine and phlogopite. The image is around 4.5μm across. Black square shows the location of the images taken by HRTEM in Figure 5. Panel d (HAADF image) shows a higher magnification image of the open grain boundary that tapers out and closes towards the top left of the image.

Figure 5. HRTEM imaging of the interface region shown in panel c in Figure 4 from sample TSF8. The analyses are of the interface region and olivine only. The Si-jump ratio grey-scale map in panel a with light grey indicating high Si and dark grey lower Si. An intensity line scan in panel b shows four main regions across the interface, denoted by numbers 1-4 in each panel. The y-axis on this plot is in arbitrary units that relate to the amount of Si detected in the jump ratio image. 1 corresponds to the interface region, 2 is a thin 8-10 nm amorphous Si-rich surface layer (ASSL) similar to those observed by Hellmann et al (2012), 3 is a distorted olivine and shows a mottled texture in panel d, and region 4 is non-distorted olivine. The y-axis in panel b is in arbitrary units. Panel C shows the FFT diffraction spots of the distorted olivine, Panel D shows the FFT diffraction spots for the non-distorted olivine. Panel e is a HREM image of the non-distorted olivine and Panel f shows the layer sequence of the interface region, ASSL and distorted olivine.

Figure 6. HRTEM and HAADF images of melt pockets. Both images are form sample TSF2. The right hand panel image is about 1.25μm wide. Note the partially open grain boundaries. In the HREM image in panel a the non-crystalline material is
characterized by the absence of lattice fringes as seen in olivine and phlogopite. This amorphous material is located adjacent to an open cavity (marked with an A). A and B labels are the same as in Figure 3 and 4, however the pore cavity in Figure 6a (labeled with an A) appears different here to those in Figures 3 and 4 because under HRTEM the back wall of the cavity is partially visible. C = amorphous material.

When analyzed the amorphous material was very Si and Al rich with very small amounts of K and Mg.

Figure 7. Line scans taken in samples TSF4 (black circles) and TSF6 (grey circles) using the FEG probe at the GFZ Potsdam. All line scans go from the olivine, through the phlogopite reaction rim and extend through the glass. Dashed lines separate olivine, phlogopite rims and glass in sequential order going from left to right in each panel. Error bars correspond to the standard deviation from the FEG-probe data. See the analytical methods section for how this data was collected.

Figure 8. Line scans through phlogopite reaction rims from SC33.

Figure 9. Using the calculated rim growth rates from each experiment the predicted time to produce a rim with a thickness of 25 μm is estimated. This equates to an estimate residence time of the olivine xenocrysts found within the Heldburg Phonolite (Grant et al, 2013) that have rim thicknesses that are typically <100 μm. Grey circles are for experiments at 950ºC and black circles for two experiments at 1000ºC.
Table 1. Starting materials

<table>
<thead>
<tr>
<th></th>
<th>PHG2 glass (N=13)</th>
<th>PHG3 weighed</th>
<th>PHG3 glass (N=28)</th>
<th>San Carlos olivine (N=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>60.50 (0.31)</td>
<td>61.46</td>
<td>60.09 (0.67)</td>
<td>39.43 (0.30)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.39 (0.27)</td>
<td>19.69</td>
<td>19.57 (0.60)</td>
<td>0.04 (0.02)</td>
</tr>
<tr>
<td>FeOtot</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.47 (0.19)</td>
</tr>
<tr>
<td>NiO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.38 (0.02)</td>
</tr>
<tr>
<td>MgO</td>
<td>1.95 (0.06)</td>
<td>1.99</td>
<td>1.98 (0.05)</td>
<td>52.07 (0.30)</td>
</tr>
<tr>
<td>CaO</td>
<td>2.51 (0.03)</td>
<td>-</td>
<td>-</td>
<td>0.11 (0.01)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>8.43 (0.18)</td>
<td>7.95</td>
<td>6.84 (0.29)</td>
<td>-</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.12 (0.08)</td>
<td>8.9</td>
<td>8.67 (0.08)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>99.94</td>
<td>99.99</td>
<td>97.18</td>
<td>100.55</td>
</tr>
</tbody>
</table>

Table 2. Experimental run conditions

<table>
<thead>
<tr>
<th>Sample</th>
<th>Olivine type</th>
<th>Temperature (°C)</th>
<th>Pressure (Kbar)</th>
<th>Bulk water (H₂O wt.%</th>
<th>Melt water</th>
<th>Duration (hrs)</th>
<th>Rim thickness (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSF2</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>6.5</td>
<td>7.7</td>
<td>168.0</td>
<td>21.3 (3.9)</td>
</tr>
<tr>
<td>TSF3</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>5.6</td>
<td>6.7</td>
<td>74.0</td>
<td>13.8 (3.5)</td>
</tr>
<tr>
<td>TSF4</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>5.7</td>
<td>6.8</td>
<td>3.0</td>
<td>1.7 (1.5)</td>
</tr>
<tr>
<td>TSF6</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>5.7</td>
<td>6.8</td>
<td>26.0</td>
<td>7.9 (3.4)</td>
</tr>
<tr>
<td>TSF7</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>3.9</td>
<td>4.6</td>
<td>26.0</td>
<td>2.8 (1.1)</td>
</tr>
<tr>
<td>TSF11</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>4.2</td>
<td>5.0</td>
<td>72.5</td>
<td>5.3 (2.2)</td>
</tr>
<tr>
<td>TSF14</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>4.2</td>
<td>5.0</td>
<td>5.3</td>
<td>1.6 (0.5)</td>
</tr>
<tr>
<td>TSF8</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>7.2</td>
<td>8.6</td>
<td>26.0</td>
<td>25.0 (4.2)</td>
</tr>
<tr>
<td>TSF12</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>8.0</td>
<td>9.5</td>
<td>72.5</td>
<td>34.0 (5.4)</td>
</tr>
<tr>
<td>TSF13</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>7.8</td>
<td>9.3</td>
<td>5.3</td>
<td>11.8 (2.8)</td>
</tr>
<tr>
<td>Single experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fo25</td>
<td>Forsterite</td>
<td>950</td>
<td>14.7</td>
<td>9.1</td>
<td>10.6</td>
<td>3.0</td>
<td>14.1 (1.5)</td>
</tr>
<tr>
<td>Fo28</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>8.6</td>
<td>10.0</td>
<td>3.0</td>
<td>10.7 (1.5)</td>
</tr>
<tr>
<td>Fo30</td>
<td>Forsterite</td>
<td>950</td>
<td>10.7</td>
<td>7.7</td>
<td>9.0</td>
<td>3.0</td>
<td>10.2 (2.0)</td>
</tr>
<tr>
<td>SC31</td>
<td>San Carlos</td>
<td>1000</td>
<td>14.7</td>
<td>4.2</td>
<td>4.9</td>
<td>3.8</td>
<td>8.5 (1.3)</td>
</tr>
<tr>
<td>Fo32</td>
<td>Forsterite</td>
<td>1000</td>
<td>14.7</td>
<td>4.7</td>
<td>5.5</td>
<td>3.8</td>
<td>6.8 (1.1)</td>
</tr>
<tr>
<td>SC33</td>
<td>San Carlos</td>
<td>950</td>
<td>10.7</td>
<td>3.8</td>
<td>4.4</td>
<td>24.0</td>
<td>6.6 (1.4)</td>
</tr>
</tbody>
</table>
Table 3.

<table>
<thead>
<tr>
<th>Point no.</th>
<th>Mg</th>
<th>Si</th>
<th>Mg / Si</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>63.5 (5.1)</td>
<td>36.5 (1.8)</td>
<td>1.74 (0.09)</td>
<td>distorted</td>
</tr>
<tr>
<td>2</td>
<td>66.4 (5.3)</td>
<td>33.6 (1.7)</td>
<td>1.98 (0.09)</td>
<td>undistorted</td>
</tr>
<tr>
<td>3</td>
<td>61.4 (4.9)</td>
<td>38.6 (4.9)</td>
<td>1.59 (0.09)</td>
<td>distorted</td>
</tr>
<tr>
<td>4</td>
<td>66.6 (5.3)</td>
<td>33.4 (1.7)</td>
<td>1.99 (0.09)</td>
<td>undistorted</td>
</tr>
</tbody>
</table>

Table 4. Phlogopite compositions

<table>
<thead>
<tr>
<th></th>
<th>Olivine interface</th>
<th>Olivine interface</th>
<th>Mid-rim</th>
<th>Mid-rim</th>
<th>Melt interface</th>
<th>Melt interface</th>
<th>Melt interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>42.12 (17)</td>
<td>41.86 (17)</td>
<td>43.01 (17)</td>
<td>43.48 (17)</td>
<td>46.06 (18)</td>
<td>42.88 (17)</td>
<td>43.09 (17)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>11.86 (9)</td>
<td>11.59 (9)</td>
<td>12.77 (9)</td>
<td>13.09 (10)</td>
<td>14.36 (10)</td>
<td>13.44 (10)</td>
<td>13.55 (10)</td>
</tr>
<tr>
<td>FeO</td>
<td>0.64 (9)</td>
<td>0.73 (9)</td>
<td>0.38 (7)</td>
<td>0.19 (7)</td>
<td>0.16 (7)</td>
<td>0.25 (7)</td>
<td>0.19 (7)</td>
</tr>
<tr>
<td>NiO</td>
<td>0.22 (3)</td>
<td>0.21 (3)</td>
<td>0.08 (3)</td>
<td>0.11 (3)</td>
<td>-</td>
<td>0.12 (2)</td>
<td>0.07 (3)</td>
</tr>
<tr>
<td>MgO</td>
<td>29.92 (15)</td>
<td>30.37 (15)</td>
<td>27.56 (15)</td>
<td>28.21 (15)</td>
<td>25.17 (14)</td>
<td>27.83 (15)</td>
<td>27.11 (15)</td>
</tr>
<tr>
<td>CaO</td>
<td>0.07 (1)</td>
<td>0.09 (1)</td>
<td>0.04 (1)</td>
<td>0.04 (1)</td>
<td>0.09 (1)</td>
<td>0.05 (1)</td>
<td>0.05 (1)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.86 (8)</td>
<td>0.76 (7)</td>
<td>0.68 (7)</td>
<td>0.78 (7)</td>
<td>0.78 (7)</td>
<td>0.73 (7)</td>
<td>1.16 (8)</td>
</tr>
<tr>
<td>K₂O</td>
<td>8.70 (4)</td>
<td>8.62 (4)</td>
<td>9.33 (5)</td>
<td>9.28 (5)</td>
<td>8.18 (4)</td>
<td>9.56 (5)</td>
<td>9.34 (5)</td>
</tr>
<tr>
<td>Total</td>
<td>94.39</td>
<td>94.23</td>
<td>93.84</td>
<td>95.22</td>
<td>94.84</td>
<td>94.86</td>
<td>94.59</td>
</tr>
<tr>
<td>X (µm)</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>18</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Al</th>
<th>Fe</th>
<th>Ni</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine interface</td>
<td>2.95</td>
<td>0.98</td>
<td>0.04</td>
<td>0.01</td>
<td>3.13</td>
<td>0.01</td>
<td>0.12</td>
<td>0.78</td>
</tr>
<tr>
<td>Olivine interface</td>
<td>2.94</td>
<td>0.96</td>
<td>0.04</td>
<td>0.01</td>
<td>3.18</td>
<td>0.01</td>
<td>0.10</td>
<td>0.77</td>
</tr>
<tr>
<td>Mid-rim</td>
<td>2.95</td>
<td>0.98</td>
<td>0.04</td>
<td>0.01</td>
<td>3.13</td>
<td>0.01</td>
<td>0.12</td>
<td>0.78</td>
</tr>
<tr>
<td>Mid-rim</td>
<td>3.006</td>
<td>1.067</td>
<td>0.011</td>
<td>0.006</td>
<td>2.907</td>
<td>0.003</td>
<td>0.105</td>
<td>0.818</td>
</tr>
<tr>
<td>Melt interface</td>
<td>3.143</td>
<td>1.155</td>
<td>0.009</td>
<td>0.000</td>
<td>2.559</td>
<td>0.007</td>
<td>0.103</td>
<td>0.712</td>
</tr>
<tr>
<td>Melt interface</td>
<td>2.982</td>
<td>1.102</td>
<td>0.015</td>
<td>0.007</td>
<td>2.885</td>
<td>0.004</td>
<td>0.098</td>
<td>0.848</td>
</tr>
<tr>
<td>Melt interface</td>
<td>3.002</td>
<td>1.113</td>
<td>0.011</td>
<td>0.004</td>
<td>2.815</td>
<td>0.004</td>
<td>0.157</td>
<td>0.830</td>
</tr>
</tbody>
</table>
Figure 1.

(a) Phlogopite and olivine

(b) Diopside and phlogopite

(c) Phlogopite and forsterite
Figure 3
Figure 4

(a) Phlogopite and Olivine

(b) Close-up view of Olivine with Phlogopite

(c) Phlogopite and Olivine with scale bar of 5 nm and 500 nm

(d) Phlogopite and Olivine with scale bar of 500 nm and 200 nm
Figure 6

a) Olivine

b) Phlogopite

5 nm

200 nm
Figure 7

- SIO (wt %)
- CaO
- Al2O3 (wt %)
- Na2O
- K2O (wt %)

Distance from olivine (μm)
Figure 8