1	Revision 1
2	Slawsonite–celsian–hyalophane assemblage from a picrite sill (Prague Basin, Czech
3	Republic)
4	ZUZANA TASÁRYOVÁ, ^{1, 2,*} Jiří Frýda, ¹ Vojtěch Janoušek ^{1, 2} and Martin Racek ²
5	¹ Czech Geological Survey, Klárov 3, Praha 1, 118 21, Czech Republic
6	² Faculty of Science, Charles University in Prague, Albertov 6, Praha 2, 128 43, Czech
7	Republic
8	* Present address: Czech Geological Survey, Klárov 3, Praha 1, 118 21, Czech Republic.
9	E-mail: zuzana.tasaryova@geology.cz
10	Abstract
11	The first European occurrence of slawsonite is reported from a picrite sill within
12	Upper Ordovician strata of the Prague Basin near the village of Rovina, Czech Republic.
13	The rare slawsonite forms an interstitial phase in association with abundant celsian and
14	hyalophane, replacing the original calcic plagioclase (bytownite). A study of this curious
15	natural slawsonite-celsian-hyalophane assemblage provides a valuable insight into
16	feldspar stability and petrogenesis.
17	Whole-rock geochemical signatures of the picrite sill and underlying doleritic
18	basalt intrusion show conspicuous enrichment in Sr and Ba superimposed on normal
19	basaltic multielement patterns. These two elements were most likely introduced by
20	intergranular fluids during diffusional seafloor metasomatism (rodingitization and
21	serpentinization) of the picrite. Strontian and barian feldspars precipitated directly from
22	BaO-SrO-H ₂ O bearing fluid, which caused decomposition of plagioclase to vuagnatite,
23	aqueous SiO ₂ and Al ₂ O ₃ at $T \le 350$ °C. Subsequently, vuagnatite decomposed to

6/25

1

24	hydrogrossular and excess SiO_2 was consumed by serpentinization of olivine. At the
25	expense of aqueous Al ₂ O _{3,} serpentine reacted to chlorite closing the picrite alteration at
26	320–160 °C. Pressure did not exceed 0.5 GPa. The in situ EDS analyses indicate that the
27	chemical composition of the slawsonite is $Sl_{91}Cn_3An_3Ab_3$ (core) to $Sl_{82}Cn_3An_4Ab_9Or_2$
28	(rim), the celsians range from $Cn_{96.9}An_{0.3}Ab_{0.2}Or_2Sl_{0.6}$ to $Cn_{76.3}An_{4.7}Ab_3Or_{15.7}Sl_{0.3}$, and
29	the hyalophanes vary from $Cn_{72.2}An_{1.4}Ab_{5.1}Or_{21.1}Sl_{0.2}$ to $Cn_{57.3}An_{0.8}Ab_{3.1}Or_{38.5}Sl_{0.3}$.
30	
31	
32	Keywords: slawsonite, celsian, hyalophane, strontium and barium feldspars, vuagnatite,
33	hydrogrossular, rodingitization, serpentinization, Prague Basin
34	
35	Running title: Slawsonite-celsian-hyalophane assemblage from a picrite sill
36	INTRODUCTION
37	Feldspar can be assigned as a barian once its chemical analysis contains more than
38	2 wt% of BaO (Deer et al. 1992). Celsian (BaAl ₂ Si ₂ O ₈ ; Cn) is an end-member of an
39	extensive solid solution with K-feldspar (KAlSi ₃ O ₈), whereby the term hyalophane (Hy)
40	is used for intermediate compositions (10-80 mol% of Cn: Deer et al. 2001 or 15-75
41	mol% of Cn: Essene et al. 2005), with the remainder being dominated by Or prevailing
42	over Ab. Furthermore, hyalophanes with > 50 mol% Cn are referred to as barian, and
43	those with < 25 mol% Cn as potassian. Natural celsians and hyalophanes usually have a
44	monoclinic symmetry. However, even triclinic polymorphs of hyalophane (with less than
44 45	monoclinic symmetry. However, even triclinic polymorphs of hyalophane (with less than Cn ₃₀) were found in nature (Gay and Roy 1968). Celsian structure resembles monoclinic

47	leads to distortion of framework and origin of triclinic symmetry. Nevertheless, celsians
48	do not show strict regularity in alternation of Si and Al atoms like anorthite but rather
49	significant Al and Si disorder (Griffen and Ribbe 1976). An acceptance of large radius
50	ion Ba ²⁺ into celsian framework keep the monoclinic symmetry and explain why
51	hyalophanes with $< Cn_{30}$, e.g., with prevalence of Ca ²⁺ , have triclinic symmetry.
52	Experimental works confirmed the solid solution between celsian and albite (NaAlSi $_3O_8$)
53	but with a miscibility gap (Viswanathan and Harneit 1989). These results were applied to
54	the ternary system BaAl ₂ Si ₂ O ₈ -NaAlSi ₃ O ₈ -KAlSi ₃ O ₈ (Lagache and Catel 1992;
55	Viswanathan 1992). According to the most recent summary (Essene et al. 2005), 8 four-
56	feldspar and 24 three-feldspar assemblages may be stable in the system $BaAl_2Si_2O_8$ -
57	$CaAl_2Si_2O_8-NaAlSi_3O_8-KAlSi_3O_8.$
58	While the occurrence of Ba-bearing feldspars is relatively common, natural
59	slawsonite (SrAl ₂ Si ₂ O ₈ ; Sl) is extremely rare. It is isostructural with paracelsian
60	$(BaAl_2Si_2O_8)$ (Griffen et al. 1977; Matsubara 1985). Paracelsian is a metastable phase of
61	the slawsonite-paracelsian series and reacts to celsian at 550 °C; however, its stability at
62	a lower T remains a possibility (Lin and Foster 1968). Phase transition from the low- T
63	triclinic to the moderate- T monoclinic structure of natural slawsonite at ambient pressure
64	has been observed at 320 °C (Tagai et al. 1995). Monoclinic slawsonite is stable up to
65	500 °C (McCauley 2000) or 600 °C (Bambauer and Nager 1981), when it transforms into
66	another monoclinic polymorph, Sr-celsian (melting $T = 1650$ °C), although the reaction
67	has not yet been reversed. The Sr-celsian is isostructural with celsian but has no natural
68	counterpart (McCauley 2000). Partial replacement of Sr by Ca has been reported in
69	slawsonite from metamorphosed limestones in Wallowa County, Oregon (Griffen et al.

70	1977; Matsubara 1985) and from slawsonite veinlets cutting pectolite veinlets in
71	metamorphosed xenoliths (glaucophane to pumpellyite-actinolite schist of the Ino Fm.)
72	in Rendai, Japan (Nakajima et al. 1978; Matsubara 1985). Barium substitution was
73	detected in slawsonite veinlets from xenolith in an ultramafic rock exposed in weakly
74	metamorphosed rocks of the Ino Fm. in Sarusaka, Japan (Matsubara 1985; Tagai et al.
75	1995). Xenolith consisted of diopside, chlorite and altered sphene but was devoid of
76	igneous texture and was not considered as primary magmatic product (Matsubara 1985).
77	In this paper, we report the mode of occurrence and chemical composition of a
78	rare assemblage of strontian and barian feldspars from picritic sill intruding to sediments
79	in Rovina (Prague Basin, Czech Republic). We discuss the temperatures of their
80	formation and suggest the likely genesis. Observations and evaluation of this curious
81	slawsonite-celsian-hyalophane assemblage provide valuable information on feldspars
82	phase equilibria, particularly in cases when one coexisting phase – slawsonite – has been
83	noticed only rarely in nature.

84

FIELD RELATIONS AND PETROLOGY OF THE HOST PICRITE

The studied picrite sill, together with the underlying doleritic basalt intrusion, was emplaced within Ordovician (Hirnantian) quartzitic siltstones of the Kosov Fm. (N49° 55.412', E14° 13.320'). The bottom section of the outcrop is partially covered by Quaternary sediments, but the lower contact of the Kosov Fm. with Silurian (Llandovery) black calcareous shales of the Motol Fm. is clearly tectonic. It is represented by the socalled Koda Fault – a synsedimentary structure that was reactivated during Variscan orogeny to thrust Ordovician over the Silurian strata (Kříž 1991). The present-day picrite

6/25

92 outcrop is preserved in the form of several 1 m thick blocks exposed within ca. 15 m

93 wide zone on a vegetated slope.

94	The picrite shows a porphyric texture with idiomorphic olivine and clinopyroxene
95	phenocrysts. Modal composition determined on the basis of point counting by Fiala
96	(1947), and supplemented by our mineral analyses, is as follows: rare fresh olivine
97	phenocrysts (15.2 vol% – Fo _{74–78}) are intensely replaced by serpentine (28.7 vol%) with
98	chlorite (25.6 vol% – Mg-rich chlorite) and usually bear spinel inclusions. Clinopyroxene
99	phenocrysts (6.8 vol% – diopside, hedenbergite) carry tiny spinel (ulvöspinel, magnetite)
100	and ilmenite inclusions; the phenocrysts form poikilitic intergrowths with plagioclase (9.8
101	vol% – An _{70–84}) and olivine. Ilmenite and spinel account for 1.9 vol% of the rock.
102	Biotites (0.7 vol%) overgrow ilmenite and form transition zones to the interstitial matrix
103	(11.3 vol%), which is dominated by chlorite. Partially decomposed plagioclases, chlorite
104	pseudomorphs after calcic amphibole, apatite, ilmenite and spinel constitute the matrix.
105	Recently, secondary mineral assemblage consisting of slawsonite, celsian, hyalophane,
106	vuagnatite, hydrogrossular and pectolite has been identified in the interstitial phase by
107	back-scattered electron (BSE) imaging.

108

ANALYTICAL METHODS

Representative picrite (20 kg) and basalt (40 kg) samples were collected in the field, crushed, homogenized and ground in an agate mill. Major-element analyses were carried out at the Central Laboratories of the Czech Geological Survey, Prague (wet silicate analyses: FAAS, ICP-OES, PMT, IR spectrometry). The trace-element data came from Activation Laboratories, Vancouver (ICP-MS package 4B2 Research, sample dissolution by a lithium metaborate/tetraborate fusion followed by rapid digestion in a

115	weak nitric acid solution). Whole-rock data were processed by the GCDkit package
116	(Janoušek et al. 2006). Analyses and compositional maps of the picrite mineral
117	assemblage were obtained using the scanning electron microscope TESCAN Vega
118	equipped with EDS detector X-Max 50 (Oxford Instruments) at the Institute of Petrology
119	and Structural Geology (Faculty of Science, Charles University in Prague). The raw data
120	were processed with INCA software, employing the XPP matrix correction procedure
121	(Pouchou and Pichoir 1988). Standards used with X-ray lines in parentheses were albite
122	(Na $K\alpha$), sanidine (K, Si $K\alpha$), synthetic garnet (Al $K\alpha$), wollastonite (Ca $K\alpha$), celestine
123	(Sr $L\alpha$), barite (Ba $L\alpha$), olivine (Mg $K\alpha$), almandine (Fe $K\alpha$), rhodonite (Mn $K\alpha$),
124	pentlandite (Ni $K\alpha$), rutile (Ti $K\alpha$), Cr ₂ O ₃ (Cr $K\alpha$) and vanadium (V $K\alpha$); the detection
125	limits were typically 0.1 wt% of the respective element. All analyses were obtained at 15
126	kV acceleration voltage and 1.5 nA beam current with a rastered 3×3 µm beam. Time
127	tests showed no elemental mobilization under these conditions. The compositional
128	variations of samples are represented by maps of X-ray intensity at defined energy
129	intervals. The effect of interference of Sr and Si peaks was suppressed by manual
130	adjustment of the considered energy range. However, only the picrite feldspars were
131	suitable for EDS analyses, because the barian feldspars in the basalt intrusion were
132	smaller than the beam current resolution.
133	In total, twelve analyses of a single slawsonite grain, representative analyses of

one hundred and twenty-seven celsian and of nine hyalophane grains, and two analyses of discontinuously zoned barian feldspar obtained from seven thin sections of the picrite are the subject of this paper. Representative analyses of hydrogrossular, vuagnatite, pectolite, plagioclase, olivine, clinopyroxene, spinel, amphibole, chlorite, serpentine, talc and 138 ilmenite are provided in the Appendix. In case of hydrogrossular, $OH = (3-Si) \times 4$ 139 substituting silica was determined from stoichiometry for 8(cations + OH/4). Results of 140 chlorite thermometry calculations (Kranidiotis and MacLean 1987) are also listed in the 141 Appendix. 142 RESULTS 143 Whole-rock geochemistry of the host basic volcanics 144 On the basis of the total alkalis vs. silica diagram (TAS; Le Bas et al. 1986), 145 Rovina picrite is characterized as a subalkaline picrobasalt and the underlying doleritic 146 intrusion is a basalt, falling at the boundary between the alkaline and subalkaline domains 147 (Fig. 1a). 148 Compared to NMORB (Fig. 1b; Sun and McDonough 1989), the basalt is rich in 149 incompatible elements ($Zr_N = 2.0$), while the picrite is depleted ($Zr_N = 0.7$). The positive 150 anomaly of Ba, the most prominent feature of both samples, corresponds to 151 concentrations of 2,460 ppm ($Ba_N = 390.5$) in the picrite and of 550 ppm ($Ba_N = 87.3$) in 152 the basalt. Also Sr concentrations are elevated (167 ppm in the picrite and 428 ppm in the 153 basalt). Moreover, the NMORB-normalized patterns show positive anomalies of Ti, 154 elevated Cs in the picrite (Cs in the basalt was below detection limit of 0.1 ppm) and a 155 distinct trough for K in the basalt. 156 The chondrite-normalized (Boynton 1984) REE patterns (Fig. 1c) are 157 characterized by a moderate LREE over HREE enrichment ($La_N/Yb_N = 3.5-4.0$) and near

158 linear courses lacking any Eu anomaly ($Eu/Eu^* = 1.0$).

7

159 Chemical composition and textures of strontian and barian feldspars

160	The BSE images reveal common barian feldspars and rare slawsonite in the
161	interstitial phase between olivine and diopside phenocrysts and rare barian feldspars
162	enclosed within diopsides (Fig. 2). Mode of occurrence of the barian feldspars is
163	characterized in most cases by thin and rough mantling of plagioclase grains (Fig. 2a).
164	These celsian-rim zones separate the plagioclases from hydrogrossular $(Ca_3Al_2(SiO4)_{3-})$
165	_x (OH) _{4x} ; Hgr) and vuagnatite (CaAlSiO ₄ (OH); Vgt). Rarer are small plagioclase laths
166	enclosed within the diopside phenocrysts, which are completely replaced by celsian, talc
167	and possibly by Ca-Al silicate (Hgr or Vgt?) closely intergrown with Mg-rich mineral
168	(serpentine or chlorite?; Fig. 2b). With the exception of talc, only mixture analyses were
169	obtained from the original plagioclase due to small size of grains and their intergrowth.
170	Described textures suggest resorption of original plagioclases followed by precipitation
171	of Ba-rich feldspars, vuagnatite and hydrogrossular.
172	Only one slawsonite grain has been detected in the seven thin sections of the
173	Rovina picrite sample (Fig. 2a, c). The slawsonite replaces an original bytownite (An ₇₇)
174	lath (Fig. 2c), exhibits undulatory extinction, and is approximately 50 μ m across. The
175	slawsonite composition varies from $Sl_{91}Cn_3An_3Ab_3$ (core) to $Sl_{82}Cn_3An_4Ab_9Or_2$ (rim).
176	The BSE image (Fig. 2c) indicates the negligible content of Ba-rich inclusions. The
177	slawsonite is rimmed by vuagnatite and celsian, which apparently infill fissures cutting
178	the slawsonite grain. Chlorite and a serpentine-chlorite mixture were detected at the
179	upper rim of the slawsonite grain.
180	The analyzed barian feldspars contain 27–41 wt% BaO, and the strontian

181 feldspars 26–28 wt% SrO (Tab. 1). The nomenclature of the barian feldspars follows

8

182	Essene et al. (2005): celsian > 75 mol% Cn, hyalophane > 15 mol% and < 75 mol% Cn.
183	An analysis of discontinuously zoned barian feldspar (Fig. 2d) revealed a hyalophane
184	core $Cn_{64,4}An_{1,1}Ab_{2,4}Or_{31,6}Sl_{0.5}$ and a celsian rim $Cn_{91,8}An_{2,3}Ab_{0.5}Or_{4,7}Sl_{0.7}$. The
185	composition of interstitial celsians varies from Cn _{96.9} An _{0.3} Ab _{0.2} Or ₂ Sl _{0.6} to
186	$Cn_{76.3}An_{4.7}Ab_3Or_{15.7}Sl_{0.3}$, and the hyalophanes range from $Cn_{72.2}An_{1.4}Ab_{5.1}Or_{21.1}Sl_{0.2}$ to
187	Cn _{57.3} An _{0.8} Ab _{3.1} Or _{38.5} Sl _{0.3} (Fig. 3).
188	Celsians and hyalophanes form rather thin rims, which cannot be readily
189	distinguished from plagioclase under the optical microscope (Fig. 4a, b). Barium and
190	strontium distribution maps (Fig. 4c, d) suggest the normal zoning of SrO and the reverse
191	zoning of BaO in barian feldspars overgrowing the original plagioclases of An ₇₀₋₈₄ . The
192	calcium distribution map (Fig. 3e) clearly distinguishes two other components enclosing
193	plagioclases - vuagnatite from hydrogrossular. In addition, pectolite [NaCa ₂ Si ₃ O ₈ (OH);
194	Pct] was identified in the vuagnatite by the use of sodium distribution map (Fig. 3f).
195	DISCUSSION
196	Comparison with published data
197	Among the reported natural slawsonites, the composition of the studied grain (82-
198	91 mol% of Sl and 3–4 mol% of Cn) bears a striking resemblance to that from the
199	Sarusaka ultramafic xenolith described by Matsubara (1985). This author assumed a low-
200	T origin of the slawsonite–celsian assemblage (ca. 300–400 °C) and ruled out any
201	significant substitution of Sr in celsian. The latter is also true for the Rovina celsians, in
202	which the SrO content in barian feldspars does not exceed 0.75 wt% (2.6 mol% Sl).
203	Celsians (97–76 mol% of Cn) and hyalophanes (72–57 mol% of Cn) replace
204	bytownites (An ₇₀₋₈₄) in the studied picrite. Element distribution maps document that the

205	celsians and hyalophanes attain maximal SrO concentrations next to the bytownites (Fig.
206	4d) and that BaO concentrations increase rimwards (i.e., as the barian feldspar grew; Fig.
207	2d, 4c). This could be caused by the incompatibility of Ba in the denser structure of the
208	calcic plagioclase (Blundy and Wood 1991) during bytownite dissolution.
209	The entire dataset acquired spans the miscibility field of the ternary (Ba, K, Na)-
210	feldspar system (Lagache and Catel 1992; Viswanathan 1992). Single discontinuously
211	zoned feldspar (Fig. 2d), sufficiently large to obtain EDS analyses, with a hyalophane
212	core (64 mol% Cn) rimmed by celsian (91 mol% Cn), could indicate the possibility of a
213	solvus gap between celsian and hyalophane (Essene et al. 2005).
214	Albite content in barian feldspars correlates positively with T (Pan and Fleet
215	1991; Chabu and Boulègue 1992; Morishita 2005). Essene et al. (2005) proposed a
216	geothermometer on the basis of observations of barian feldspars with various Ab contents
217	in rocks metamorphosed by various grades. The Ab contents of celsians and hyalophanes
218	in the picrite vary from 0.1 to 6.7 mol%, which is, according to Essene et al. (2005),
219	characteristic of diagenetic conditions ($T = 100-250$ °C). Nevertheless, the amount of Na
220	in barian feldspar increases when buffered by albite. Hence, given the absence of albite in
221	the Rovina picrite, the geothermometer is not applicable to our dataset.
222	Constrains on slawsonite-celsian-hyalophane genesis
223	Taking into account the partial dissolution of bytownites, replacement textures
224	and the reverse zoning of BaO in Ba-feldspars, we suggest that the studied slawsonite,
225	celsians and hyalophanes were not in equilibrium with the picrite magma. An
226	introduction of the necessary Sr and Ba due to crustal contamination of the intruding

227 magma is highly improbable, as the Sr- and Ba-rich phases replace the already

228	crystallized idiomorphic plagioclases. Most importantly, the picrite shows a pristine
229	basaltic whole-rock geochemical signature with superimposed sharp Ba and Sr spikes
230	(Fig. 1). In addition, apparent loss of K in the basalt is a characteristic feature of low T
231	(70–150 °C) basalt–seawater alteration (Bloch and Bischoff 1979; Seyfried 1979) and
232	elevated concentration of Cs (0.9 ppm) in picrite relate to very low T stages of alteration
233	and weathering (Hart et al. 1974). All these observations point to syn- or even post-
234	depositional subsolidus open-system processes, most probably due to an interaction with
235	fluids, rather than to an equilibration of crustal material with basaltic magma.
236	Textural relationships and the presence of vuagnatite, hydrogrossular and
237	pectolite provide a valuable insight into genesis of the Sr- and Ba-rich phases.
238	Vuagnatite, hydrogrossular and pectolite had been considered as products of
239	rodingitization derived from replacement of plagioclase under the conditions of prehnite-
240	pumpellyite facies (Sarp et al. 1976; Matsubara et al. 1977; Barriga and Fyfe 1983;
241	Palandri and Reed 2004; Li et al. 2007; Bach et al. 2013). Rodingitization is a type of Ca-
242	metasomatism leading to depletion of SiO ₂ and Na ₂ O, which ideally occurs at $T < 350$ °C
243	(Pirajno 2013). Rodingitization and serpentinization take place contemporaneously. The
244	former is not caused by Ca-rich nature of serpentinization fluids but by the stability of
245	Ca-silicates (i.e. hydrogrossular; Bach and Klein, 2009). Hence, the principal
246	metasomatic mechanism of rodingitization is not a calcium addition but more importantly
247	a silica loss during serpentinization process (Frost and Beard 2007; Frost et al. 2008;
248	Bach et al. 2013).
249	Taking into account constrains on genesis of the other reported Sr- and Ba-
250	silicates, stronalsite and banalsite (Hori et al. 1987), which formed under silica-poor

silicates, stronalsite and banalsite (Hori et al. 1987), which formed under silica-poor

11

251	conditions, we could infer that silica loss connected to rodingitization and
252	serpentinization could represent a viable mechanism for formation of strontian and barian
253	feldspars in our case. Moreover, Hori et al. (1987) suggested that at slightly Si-richer
254	conditions, during decomposition of plagioclase to any Sr-excluding mineral such as
255	hydrogrossular, formation of slawsonite instead of stronalsite would be favored. Besides
256	that, Liferovich et al. (2006) proposed three major mechanisms for genesis of stronalsite
257	and banalsite: crystallization from a silica-undersaturated sodic magma, formation during
258	high-grade metamorphism and, the most common, deuteric alteration of feldspathoid-
259	bearing igneous rocks. None could reflect likely genesis of slawsonite, celsians and
260	hyalophanes from the Rovina picrite – Ba and Sr concentrations are too high for primary
261	magmatic composition, the picrite and any rocks within the Prague Basin are essentially
262	unmetamorphosed (Chlupáč et al. 1998), and deuteric alteration would require
263	contamination by crustal rocks, which would not preserve the rest of primary magmatic
264	signature of the picrite (Fig. 1).
265	A possible clue to strontian and barian feldspar genesis in the studied picrite could
266	be based on thermodynamic modeling of micro-rodingitization of olivine-rich troctolites
267	(Frost et al. 2008). Thermodynamic reactions of plagioclase alteration to prehnite and
268	grossular/hydrogrossular accompanied by serpentinization and chloritization of olivine
269	were calculated by Frost et al. (2008) for maximum $T = 350 \text{ °C}$ (based on a lower
270	stability limit of clinozoisite) and $P = 0.1$ GPa. Since vuagnatite shows the same mode of
271	occurrence as prehnite, the former merely requiring more silica-deficient conditions
272	(Matsubara et al. 1977), the micro-rodingitization model could be adopted for the Rovina
273	picrite.

274	Hence, desilication of plagioclase to vuagnatite/hydrogrossular and
275	serpentinization of olivine could have taken place simultaneously in the Rovina picrite. If
276	true, the alteration reactions would have involved surplus H ₂ O, SrO and BaO (Fig. 5). We
277	suggest an addition of SrO and BaO by a fluid as celsians even replace plagioclase
278	inclusions in magmatic diopside. The possibility that Ba and Sr were in situ products of
279	original plagioclase decomposition requires a late-magmatic contamination of the picrite.
280	Such case could be expressed by an accommodation of Ba and Sr in outer zones of
281	interstitial plagioclases that were subsequently dissolved. On the contrary, Ba and Sr
282	would not have been accommodated in plagioclases, which were fully crystallized before
283	the diopside growth had been completed. At first, decomposition of plagioclase to
284	vuagnatite occurred, releasing silica and alumina for the reaction of slawsonite or celsian
285	with BaO and SrO supplied by the fluid:
286	
287 288	1. $2\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{H}_2\text{O} \rightarrow 2\text{CaAlSiO}_4(\text{OH}) + \text{Al}_2\text{O}_{3(aq.)} + 2\text{SiO}_{2(aq.)}$ anorthite vuagnatite
289	
290 291	2a. $SrO_{(aq.)} + Al_2O_{3(aq.)} + 2SiO_{2(aq.)} \rightarrow SrAl_2Si_2O_8$ slawsonite
292	or
293 294	2b. $BaO_{(aq.)} + Al_2O_{3(aq.)} + 2SiO_{2(aq.)} \rightarrow BaAl_2Si_2O_8$ celsian
295	
296	Genesis of slawsonite and celsian was most likely triggered by decomposition of
297	plagioclase and these minerals precipitated directly from the fluid. Slawsonite seems the

298 older phase because it is cut by veintlets filled by celsian. As the plagioclase is not a pure

299 anorthite but bytownite, the excess of Na could have been either compensated by a 300 formation of pectolite or lost from the system. Furthermore, vuagnatite was transformed 301 to hydrogrossular: 302 303 3. $6CaAlSiO_4(OH) + H_2O \rightarrow 2Ca_3Al_2(SiO_4)_2(OH)_4 + Al_2O_{3(aq.)} + 2SiO_{2(aq.)}$ 304 vuagnatite hydrogrossular 305 306 Hydrogrossular could also originate by the reaction: $3CaAl_2Si_2O_8 + 2H_2O \rightarrow$ 307 $Ca_3Al_2(SiO_4)_2(OH)_4 + Al_2O_{3(aq.)} + 4SiO_{2(aq.)}$. However, hydrogrossulars enclosed wihin 308 vuagnatites (Fig. 3e) indicate that vuagnatite decomposition was their most probable 309 genesis. Excess silica provided by plagioclase dissolution was consumed by 310 contemporaneous serpentinization of olivine: 311 4. $3Mg_2SiO_4 + SiO_{2(aq.)} \rightarrow 2Mg_3Si_2O_5(OH)_4$ 312 313 forsterite serpentine 314 315 Alumina released by desilication led to the formation of chlorite and rarely talc from 316 serpentine and closed the rodingitization of the Rovina picrite: 317 318 5. $Mg_3Si_2O_5(OH)_4 + Al_2O_{3(aq.)} + H_2O \rightarrow Mg_5Al_2Si_3O_{10}(OH)_8 + SiO_{2(aq.)}$ 319 serpentine chlorite 320 321 In summary, strontian and barian feldspars genesis was most probably connected to 322 diffusional metasomatism - rodingitization and serpentinization reactions, which were 323 caused by SrO-BaO-H₂O intergranular fluid infiltration. Such reactions could operate at

324	$T \le 350$ °C, which represents lower stability limit of clinozoisite. The lower limit of T
325	range suitable for proposed reactions could be constrained by the use of a chlorite
326	thermometer, as chlorites represent the final stage of the Rovina picrite alteration.
327	Discussion on chlorite thermometry (de Caritat et al. 1993) provides variable approaches
328	on T calculations. For chlorites in Al-saturated environment, e.g., in the presence of other
329	aluminous minerals, the Kranidiotis and MacLean (1987) thermometer is the most
330	convenient one. Its calculation (Appendix) gives T range ca. 320–160 °C. Pressure
331	constraint provides a transition of celsian to cymrite, which occurs at $P \sim 0.5$ GPa and
332	350 °C (Graham et al. 1992).
333	The source of Ba and Sr, enriched in the picrite and basalt, is a matter for
334	discussion. Morishita (2005) suggested that Ba and Sr are important constituents in fluids
335	related to the formation of metasomatized rocks in serpentinite-matrix mélanges formed
336	during subduction, which dehydrated Ba-rich sediments – a possible source for Ba-
337	bearing fluids. The Prague Basin, on the contrary, represented a different tectonic setting
338	- rifted basin - during Ordovician (Havlíček 1982). Moreover, the process of
339	rodingitization is characteristic of seafloor metasomatism associated with serpentinization
340	(Pirajno 2013). Thus, range of formation T (350–160 °C) of the Ba- and Sr- feldspars
341	points to their post-magmatic origin due to seafloor metasomatism.
342	CONCLUDING REMARKS AND IMPLICATIONS
343	The whole-rock geochemical signature of the Late Ordovician picrite sill and the
344	underlying doleritic basalt intrusion are characterized by eye-catching enrichment in Ba
345	and Sr. The accommodation of such significant amounts of Ba and Sr in rock samples
346	resulted in the precipitation of a common barian (celsian and hyalophane) and a rare

347	strontian (slawsonite) feldspar assemblage, filling the interstitial space between the								
348	olivine and diopside phenocrysts. This represents the first known occurrence of								
349	slawsonite in Europe. From the study of this feldspar assemblage in the picrite, the								
350	following implications emerged:								
351	1) Ba- and Sr-feldspars formed due to desilication of original plagioclases during								
352	interaction with SrO-BaO-H ₂ O fluid.								
353	2) The surplus Sr and Ba was probably introduced by intergranular fluid during								
354	diffusional seafloor metasomatism (i.e. rodingitization and serpentinization).								
355	2) Ba- and Sr-feldspars precipitated directly from fluid phase at $350 - 160$ °C and								
356	less than 0.5 GPa.								
357	ACKNOWLEDGEMENTS								
358	The authors are grateful to Milan Fišera and Stanislav Vrána for optical								
359	microscopy consultations and to Radmila Nahodilová for valuable comments on stability								
360	relations. This study was funded by the GA ČR (Czech Science Foundation) project								
361	210/10/2351 and our special thanks are extended to the Strategic Research Plan of the								
362	Czech Geological Survey. We wish to acknowledge helpful reviews by Tomoaki								
363	Morishita, Axel Liebscher and Richard Yuretich, which markedly improved the quality of								
364	the paper.								
365	REFERENCES CITED								
366	Bach, W. and Klein, F. (2009) The petrology of seafloor rodingites: insights from								
367	geochemical reaction path modeling. Lithos, 112, 103–117.								

368	Bach, W., Jöns, N. and Klein, F. (2013) Metasomatism within the ocean crust. In D.E.
369	Harlov and H. Austrheim, Eds., Metasomatism and the Chemical Transformation
370	of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes, p. 253-
371	288. Springer, Berlin.
372	Bambauer, H.U. and Nager, H.E. (1981) Gitterkonstanten und displazive Transformation
373	$synthetischer \ Erdalkalifeldspäte. \ I. \ System \ CaAl_2Si_2O_8-SrAl_2Si_2O_8-BaAl_2Si_2O_8.$
374	Neues Jahrbuch für Mineralogie Abhandlungen, 141, 225–239.
375	Barriga, F. and Fyfe, W.S. (1983) Development of rodingite in basaltic rocks in
376	serpentinites, East Liguria, Italy. Contributions to Mineralogy and Petrology, 84,
377	146–151.
378	Bloch, S. and Bischoff, J.L. (1979) The effect of low-temperature alteration of basalt on
379	the oceanic budget of potassium. Geology, 7, 193–196.
380	Blundy, J.D. and Wood, B.J. (1991) Crystal-chemical controls on the partitioning of Sr
381	and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions.
382	Geochimica et Cosmochimica Acta, 55, 193–209.
383	Boynton, W.V. (1984) Geochemistry of the rare elements: meteorite studies. In P.
384	Henderson, Ed., Rare Earth Element Geochemistry, p. 63-114. Elsevier,
385	Amsterdam.
386	Chabu, N. and Boulègue, J. (1992) Barian feldspar and muscovite from the Kipushi Zn-
387	Pb-Cu deposit, Shaba, Zaire. The Canadian Mineralogist, 30, 1143-1152.
388	Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z. and Štorch, P. (1998) Palaeozoic of the
389	Barrandian (Cambrian to Devonian), 183 p., Czech Geological Survey, Prague.

- 390 De Caritat, P., Hutcheon, I. and Walshe, J.L. (1993) Chlorite geothermometry: A review.
- Clays and Clay Minerals, 41, 219–239.
- 392 Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to the Rock-Forming
- 393 Minerals, 2nd ed., 696 p., Pearson Education Ltd., London.
- 394 _____, ____, ____(2001) Rock-forming minerals: feldspars, Vol. 4A, 2nd ed., 992
- 395 p., The Geological Society, London.
- 396 Essene, E.J., Claflin, C.L., Giorgetti, G., Mata, P.M., Peacor, D.R., Árkai, P., and
- 397 Rathmell, M.A. (2005) Two-, three- and four-feldspar assemblages with
- 398 hyalophane and celsian: implications for phase equilibria in BaAl₂Si₂O₈-
- 399 CaAl₂Si₂O₈-NaAlSi₃O₈-KAlSi₃O₈. European Journal of Mineralogy, 17, 515-
- 400 535.
- 401 Fiala, F. (1947) Diabasové pikrity v Barrandienu (Mořinka, Rovina, Sedlec). Věstník
 402 Královské české společnosti nauk, 19, 1–55.
- 403 Frost, B.R. and Beard, J.S. (2007) On silica activity and serpentinization. Journal of
- 404 Petrology, 48, 1351–1368.
- 405 _____, ____, McCaig, A. and Condliffe, E. (2008) The formation of micro-rodingites
- 406 from IODP Hole U1309D: key to understanding the process of serpentinization.
- 407 Journal of Petrology, 49, 1579–1588.
- 408 Gay, P. and Roy, N.N. (1968) The mineralogy of the potassium-barium feldspar series:
- 409 III. Subsolidus relationships. Mineralogical Magazine, 36, 914–932.
- 410 Graham, C.M., Tareen, J.A.K., McMillan, P.F. and Lowe, B.M. (1992) An experimental
- 411 and thermodynamic study of cymrite and celsian stability in the system BaO–
- 412 Al₂O₃–SiO₂–H₂O. European Journal of Mineralogy, 4, 251–269.

- 413 Griffen, D.T. and Ribbe, P.H. (1976) Refinement of the crystal structure of celsian.
- 414 American Mineralogist, 61, 414–418.
- 415 _____, ____, and Gibbs, G.V. (1977) The structure of slawsonite, a strontium
- 416 analogue of paracelsian. American Mineralogist, 62, 31–35.
- 417 Hart, S.R., Erlank, A.J. and Kable, E.J.D. (1974) Sea floor basalt alteration: Some
- 418 chemical and Sr isotopic effects. Contributions to Mineralogy and Petrology, 44,
- 419 219–230.
- 420 Havlíček, V. (1982) Ordovician in the Bohemia: Development of the Prague Basin and its
- 421 benthic communities. Sborník Geologických Věd, 37, 103–136.
- 422 Hori, H., Nakai, I., Nagashima, K., Matsubara, S. and Kato, A. (1987) Stronalsite,
- 423 SrNa₂Al₄Si₄O₁₆, a new mineral from Rendai, Kochi City, Japan. Mineralogical
- 424 Journal, 13, 368–375.
- 425 Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of the
 426 common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.
- 427 Janoušek, V., Farrow, C.M., and Erban, V. (2006) Interpretation of whole-rock
- geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit
 (GCDkit). Journal of Petrology, 47, 1255–1259.
- 430 Kranidiotis, P. and MacLean (1987) Systematics of chlorite alteration at the Phelps
- 431 Dodge massive sulfide deposits, Matagama, Quebec. Economic Geology, 82,
- 432 1898–1911.
- 433 Kříž, J. (1991) The Silurian of the Prague Basin (Bohemia) tectonic eustatic and
- 434 volcanic controls on facies and faunal development. In M.G. Bassett, P.D. Lane
- 435 and D. Edwards, Eds., The Murchison Symposium: Proceedings of an

- 436 International Conference on The Silurian System. Special Papers in
- 437 Palaeontology, 44, 179–203.
- 438 Lagache, M. and Catel, N. (1992) Solid solution and unmixing in the (Ba,K,Na)-
- 439 feldspars. Part I. The albite–celsian solvus determined by ion-exchange
- 440 experiments. European Journal of Mineralogy, 4, 209–212.
- 441 Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B. (1986) A chemical
- classification of volcanic rocks based on the total alkali–silica diagram. Journal of
 Petrology, 27, 745–750.
- 444 Li, X.P., Zhang, L., Wei, C., Al, Y. and Chen, J. (2007) Petrology of rodingite derived

445 from eclogite in western Tianshan, China. Journal of Metamorphic Geology, 25,
446 363–382.

447 Liferovich, R.P., Mitchell, R.H., Zozulya, D.R. and Shpachenko, A.K. (2006)

Paragenesis and composition of banalsite, stronalsite, and their solid solution in
nepheline syenite and ultramafic alkaline rocks. Canadian Mineralogist, 44, 929–

- 450 942.
- 451 Lin, H.C. and Foster, W.R. (1968) Studies in the system BaO–Al₂O₃–SiO₂. I. The
- 452 polymorphism of celsian. American Mineralogist, 53, 134–144.
- 453 Matsubara, S. (1985) The mineralogical implication of barium and strontium silicates.

454 Bulletin of the National Science Museum Series C, 11, 37–96.

- 455 ——, Kato, A. and Sakurai, K. (1997) The occurrence of vuagnatite from Shiraki,
- 456 Toba, Mie Prefecture, Japan. Bulletin of the National Science Museum Series C,
- 457 3, 41–48.

458	McCauley, R.A. (2000) Polymorphism and dielectric electric properties of Ba- and Sr-
459	containing feldspars. Journal of Materials Science, 35, 3939-3942.
460	Morishita, T. (2005) Occurrence and chemical composition of barian feldspars in a
461	jadeitite from the Itoigawa-Ohmi district in the Renge high-P/T-type metamorphic
462	belt, Japan. Mineralogical Magazine, 69, 39-51.
463	Nakajima, T., Maruyama, S. and Matsuoka K. (1978) Metamorphism of the green rocks
464	of the Ino Formation in central Shikoku. Journal of the Japanese Association of
465	Mineralogists, Petrologists and Economic Geologists, 84, 729-737.
466	Palandri, J.L. and Reed, M.H. (2004) Geochemical models of metasomatism in ultramafic
467	systems: serpentinization, rodingitization and sea floor carbonate chimney
468	precipitation. Geochimica et Cosmochimica Acta, 68, 1115-1133.
469	Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the
470	Hemlo area, Ontario. The Canadian Mineralogist, 29, 481–498.
471	Pirajno, F. (2013) Effects of metasomatism on mineral systems and their host rocks:
472	alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall
473	alteration and listvenites. In D.E. Harlov and H. Austrheim, Eds., Metasomatism
474	and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and
475	Extraterrestrial Processes, p. 203–251. Springer, Berlin.
476	Pouchou, J.L. and Pichoir, F. (1988) Determination of mass absorption coefficients for
477	soft X-rays by use of the electron microprobe. In D.E. Newbury, Ed., Microbeam
478	analysis, p. 319–324. San Francisco Press, San Francisco.
479	Sarp, H., Bertrand, J. and McNear, E. (1976) Vuagnatite, CaAl(OH)SiO ₄ , a new natural
480	calcium aluminium nesosilicate. American Mineralogist, 61, 825-830.

21

481	Seyfried, W.E. Jr. (1979) Low temperature basalt alteration by sea water: an experimental
482	study at 70°C and 150°C. Geochimica et Cosmochimica Acta, 43, 1937–1947.
483	Sun, S. and McDonough, W.F. (1989) Chemical and isotope systematics of oceanic
484	basalts: implications for mantle composition and processes. In A.D. Saunders and
485	M.J. Norry, Eds., Magmatism in the Ocean Basins, Special Publications 42, p.
486	313–345. The Geological Society, London.
487	Tagai, T., Hoschi, T., and Suzuki, M. (1995) A new modification of slawsonite,
488	SrAl ₂ Si ₂ O ₈ : its structure and phase transition. Zeitschrift für Kristallographie, 210,
489	741–745.
490	Viswanathan, K. (1992) Solid solution and unmixing in the (Ba,K,Na)-feldspars. Part II:
491	an X-ray powder diffraction study of the ternary feldspars. European Journal of
492	Mineralogy, 4, 213–216.
493	and Harneit, O. (1989) Solid-solution and unmixing in the feldspar system, albite
494	(NaAlSi ₃ O ₈)–celsian (BaAl ₂ Si ₂ O ₈). European Journal of Mineralogy, 1, 239–248.
495	FIGURE CAPTIONS
496	Figure 1. Whole-rock geochemical analyses of the Rovina picrite and basalt. (a) TAS
497	diagram (Le Bas et al. 1986; dividing line between the subalkaline and alkaline domains
498	after Irvine and Baragar 1971). (b) Spiderplot normalized by average NMORB
499	composition with model courses of the OIB and EMORB reservoirs (from Sun and
500	McDonough 1989). (c) Chondrite-normalized (Boynton 1984) REE patterns.
501	
502	Figure 2. Back-scattered electron images with positions of EDS analyses. (a) Interstitial
503	phase – slawsonite and celsians. Rectangle indicates position of Fig. 4. (b) Original

523	TABLES
522	alteration of plagioclase and olivine in the picrite.
521	Figure 5. Schematic sketch of textural relationships and reactions that operated during the
520	
519	slawsonite; Vgt = vuagnatite.
518	= anorthite; Chl = chlorite; Cn = celsian; Hgr = hydrogrossular; Pct = pectolite; Sl =
517	and crossed polars (b) Element distribution maps of Ba (c), Sr (d), Ca (e), and Na (f). An
516	Figure 4. Microphotograph of interstitial mineral assemblage: Plane polarized light (a)
515	
514	$KAlSi_{3}O_{8}$ - $SrAl_{2}Si_{2}O_{8}(b)$.
513	ternary plots $NaAl_2Si_2O_8$ -KAlSi_3O_8-(SrAl_2Si_2O_8 + BaAl_2Si_2O_8) (a) and BaAl_2Si_2O_8-
512	Figure 3. Analyses of barian and strontian feldspars with An content < 6 mol% in the
511	
510	Kranidiotis and MacLean (1987).
509	slawsonite; $Sp = spinel$; $Srp = serpentine$; $Tlc = talc$; $Vgt = vuagnatite$. Chlorite <i>T</i> after
508	celsian, Di = diopside; Fo = forsterite; Hgr = hydrogrossular; Hy = hyalophane; Sl =
507	inpurity.) (d) Discontinuously zoned barian feldspar. An = anorthite; Chl = chlorite; Cn =
506	Slawsonite. (Dark stain below position of Sl_4 analysis represents surface external
505	silicate (hydrogrossular or vuagnatite) and Mg mineral (serpentine or chlorite). (c)
504	plagioclase enclosed within diopside. Ca+Al+Si+Mg stand for mixture analysis of Ca-Al

Table 1. Selected strontium and barium feldspar analyses (wt%) recalculated to structural
formulae (apfu) and end members (mol%).

	SL_1	SL_2	SL_4	SL_5	SL_8	SL_10	SL_11	SL_12	Cn_1	Cn_2	Cn_117	Cn_128	Hy_1	Hy_10	Cn_rim	Hy_core
Na ₂ O	0.19	0.28	0.25	0.23	0.44	0.46	0.71	0.88	0.02	0.02	0.17	0.27	0.46	0.29	0.04	0.23
Al ₂ O ₃	31.45	31.36	31.26	31.06	31.00	31.16	30.35	30.55	25.66	26.31	25.82	25.38	24.68	23.97	25.73	24.31
SiO ₂	37.30	37.07	37.10	36.64	37.48	37.85	38.39	39.21	30.69	31.18	34.13	35.69	37.48	42.69	32.04	40.69
K₂O			0.02		0.06	0.03	0.14	0.24	0.26	0.37	1.48	2.18	2.92	5.58	0.62	4.52
CaO	0.54	0.55	0.51	0.67	0.62	0.82	0.71	0.60	0.05		0.13	0.78	0.22	0.13	0.37	0.19
FeO	0.15	0.14	0.13	0.07	0.19	0.20	0.17	0.36	0.16	0.27	0.43	0.29	0.29	0.10	0.58	0.41
SrO	28.24	28.29	27.86	28.04	27.78	26.98	26.26	26.03	0.17		0.17	0.10	0.06	0.11	0.22	0.15
BaO	1.55	1.23	1.69	1.75	1.67	1.68	1.75	1.53	41.32	39.97	37.11	34.62	32.43	27.06	39.93	29.99
Total (wt%)	99.42	98.93	98.83	98.46	99.21	99.18	98.48	99.39	98.33	98.12	99.43	99.32	98.55	99.94	99.54	100.47
						Formu	lae (catio	ons based	d on 8 ox	(ygens)						
Na	0.02	0.03	0.03	0.02	0.05	0.05	0.07	0.09	0.00	0.00	0.02	0.03	0.05	0.03	0.01	0.03
AI	2.00	2.01	2.00	2.00	1.98	1.98	1.93	1.92	1.96	1.99	1.87	1.81	1.74	1.59	1.92	1.64
Si	2.02	2.01	2.02	2.01	2.03	2.04	2.08	2.09	1.99	2.00	2.10	2.15	2.24	2.40	2.03	2.33
К	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.02	0.03	0.12	0.17	0.22	0.40	0.05	0.33
Ca	0.03	0.03	0.03	0.04	0.04	0.05	0.04	0.03	0.00	0.00	0.01	0.05	0.01	0.01	0.02	0.01
Fe	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.02	0.01
Sr	0.88	0.89	0.88	0.89	0.87	0.84	0.82	0.81	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00
Ва	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.03	1.05	1.00	0.89	0.82	0.76	0.60	0.99	0.67
Total (apfu)	4.99	5.00	5.00	5.00	5.01	5.00	5.00	5.00	5.04	5.03	5.03	5.04	5.03	5.03	5.04	5.03
							En	d membe	ers							
An	3.23	3.25	3.05	3.97	3.61	4.87	4.18	3.53	0.30	0.00	0.83	4.68	1.35	0.78	2.29	1.10
Ab	2.07	3.01	2.74	2.48	4.62	4.92	7.60	9.28	0.21	0.22	1.90	2.97	5.12	3.06	0.50	2.40
Or	0.00	0.00	0.17	0.00	0.39	0.19	1.00	1.63	1.98	2.92	11.08	15.67	21.13	38.48	4.65	31.59
Cn	3.39	2.68	3.70	3.79	3.56	3.63	3.75	3.26	96.91	96.85	85.61	76.36	72.20	57.34	91.80	64.44
SI	91.31	91.05	90.33	89.76	87.82	86.39	83.48	82.29	0.60	0.00	0.57	0.32	0.20	0.34	0.75	0.47