Manganese carbonate formation from amorphous and nanocrystalline precursors:

Thermodynamics and geochemical relevance

A.V. Radha and Alexandra Navrotsky *

Peter A. Rock Thermochemistry Laboratory and NEAT ORU (Nanomaterials in the Environment, Agriculture, and Technology, Organized Research Unit), University of California Davis, One Shields Avenue, Davis, CA 95616, USA

Revision 1

*Corresponding author: anavrotsky@ucdavis.edu

Abstract

The thermodynamic stabilities of different manganese carbonate phases at ambient conditions were determined by acid solution and water adsorption calorimetry. Amorphous manganese carbonate precursor provides a low energy pathway for MnCO₃ crystallization analogous to that observed in (Ca-Mg-Fe)CO₃ systems where crystallization enthalpies appear to be controlled by cation size (become less exothermic with increase in ionic radius). The surface energy of nanophase MnCO₃ (0.64 ± 0.08 J/m² for hydrous and 0.94 ± 0.12 J/m² for anhydrous surface) is lower than that of nano-calcite and MnCO₃ binds surface water less strongly (-66.6 ± 2.9 kJ/mol) than calcite (-96.26 ± 0.96 kJ/mol). This probably reflects the greater basicity of CaO compared to MnO. Substantial particle size driven shifts in the MnCO₃ - manganese oxide Eh - pH and oxygen fugacity-CO₂ fugacity diagrams were calculated using the measured surface energies. These shifts expand the stability field of hausmannite, Mn₃O₄, in both aqueous and anhydrous environments. The particle size driven (caused by differences in surface energy) shifts in oxidation potential (Eh, oxygen fugacity) and pH of phase boundaries could affect...
stability and electrochemical and catalytic properties and hence influence geochemical and technological processes. Manganese oxides (mainly hausmannite) dominate at the nanoscale in aerated environments, while manganese carbonate is favored in coarse grained materials and reducing environments. In supercritical CO₂, the expansion of the MnCO₃ stability field leads to significant reduction of the Mn₃O₄ stability field.

Keywords: MnCO₃ (rhodochrosite) formation, crystallization enthalpy, surface energy, Eh/pE-pH diagram, CO₂ sequestration,

INTRODUCTION

Manganese carbonate minerals play a vital role in manganese geochemistry by regulating Mn(II) mobility and heavy metal transport, and in the carbon cycle by trapping CO₂ through mineralization (Bourg and Bertin 1994; Goren et al (2012); Pedersen and Price 1982; Schaef et al. 2009, 2010). Mn substituted calcite phases were observed in pilot studies on the reactivity of different basalt samples obtained from sites in the United States, India, and South Africa with aqueous dissolved CO₂ and CO₂–H₂S mixtures under supercritical CO₂ (Schaef et al. 2009, 2010). MnCO₃ is also used as a cost effective and environmentally friendly catalyst support, water treatment agent, and precursor for synthesis of metal oxides for lithium-ion battery materials (Cui et al. 2009; Takahara et al. (2012); Wang and Ao 2007; Yang et al. 2007). Recently, advancements in synthetic strategies have led to the development of multifunctional nano/microporous manganese carbonate composites with porous surfaces having potential in drug delivery, protein encapsulation, biosensing, and as antimicrobial agents (Peng et al. 2011; Qi et al. 2010; Wang et al. 2009; Zhang et al. 2009) as well as
promising, less expensive, Li-ion battery anode materials (Aragón et al. 2007, 2011; Mirhashemihaghighi et al. 2012).

MnCO₃ minerals are found in anaerobic soils and marine sediments, hydrothermal veins and sporadically in high temperature metasomatic deposits as crystalline MnCO₃ (rhodochrosite) or as solid solution with other carbonate minerals with rhombohedral calcite-type structure (Goren et al. 2012; Pedersen and Price 1982). Rhodochrosite (MnCO₃) crystal growth kinetic studies suggest that its growth depends on the chemical speciation of the mineral surface (Sternbeck 1997). Surface potential studies using Kelvin probe electron force microscopy indicate surface heterogeneity due to growth of thin films of manganese oxide nanostructures (Kendall et al. 2008; Na et al. 2007; Na and Martin 2009). These thin films alter crystal growth, reactivity, and surface electrical properties of the less reactive rhodochrosite surface by transforming it into a surface with regions of strongly reactive sites. Analogous phase transformations in other M-O (M = Fe, Mn and Co) systems have been shown to have thermodynamic underpinnings due to surface energy driven shifts in redox equilibria at the nanoscale (Birkner and Navrotsky 2012; Navrotsky et al. 2010). There is growing evidence that calcium carbonate nucleation and growth takes place not only by classical nucleation system (De Yoreo and Vekilov 2003; De Yoreo et al. 2009; Hu et al. 2012) but also by non-classical mechanisms through prenucleation clusters (0.2 to 2 nm size), and liquid-like metastable amorphous, nanophase and mesocrystal precursors in the early stages (Bewernitz et al. 2012; de Yoreo et al. 2007; Fernandez-Martinez et al. 2013; Gebauer and Coelfen 2011; Gebauer et al. 2008; Raiteri and Gale 2010; Tribello et al. 2009; Wallace et al. 2013; Wolf et al. 2011). Our previous thermodynamic studies suggest that the early stage amorphous and nanophase precursors provide a low energy pathway for carbonate mineralization in (Ca-Mg-Fe)CO₃ systems (Forbes et al. 2011; Radha et al. 2012; Radha et al. 2010; Sel et al. 2012). To investigate particle size driven energy
crossovers in CaCO₃ Forbes et al., (2011) recently determined the surface energy of nanophase calcite using acid solution calorimetry. Analogous data are not available for manganese carbonates. However, the structure and phase evolution in the CaCO₃-MnCO₃ solid solution system have been investigated extensively to understand the mixing thermodynamics and formation of intermediate ordered dolomite-type phases (Ca₀.₅Mn₀.₅CO₃, kutnahorite) (Capobianco and Navrotsky 1987; Goldsmith and Graf 1957; Katsikopoulos et al. 2009; McBeath et al. 1998; Pedersen and Price 1982; Wang et al. 2011).

In this work, we synthesized and measured the energetics of amorphous and nanophase manganese carbonates to understand their influence on crystal growth, surface reactivity and nanoscale properties of MnCO₃. First, we synthesized amorphous manganese carbonate and measured its crystallization enthalpy using isothermal acid solution calorimetry. To understand the contribution of molecular level surface interactions during manganese carbonate formation and nanoscale thermodynamic effects on its properties, we measured the energetics of nanophase manganese carbonate and determined its surface energy using acid solution and water adsorption calorimetric techniques. Finally, we evaluated the particle size dependent thermodynamic influence on manganese carbonate formation from manganese oxide precursors by constructing Eh(pE)-pH and oxygen-CO₂ fugacity diagrams and analyzed possible MnCO₃ formation during CO₂ sequestration.

MATERIALS AND METHODS

Sample Syntheses

Reagent grade MnSO₄ ·2H₂O, Na₂CO₃ and NaHCO₃ were used for all syntheses. All solutions were prepared using ultra-pure water (resistivity = 18 Mohm.cm at 25 °C) from a Simplicity water
purification system. Nitrogen gas was bubbled through all solutions for at least 30 minutes to remove any dissolved oxygen.

Amorphous manganese carbonate (AMnC): Samples were synthesized by modifying the earlier synthetic approach for amorphous carbonates (Koga et al. 1998). AMnC was precipitated by adding 150 ml 0.02 M MnSO\(_4\) solution to 150 ml of 0.02 M Na\(_2\)CO\(_3\) solution with constant stirring and nitrogen bubbling. Both solutions were cooled in a refrigerator at 4 °C prior to mixing to minimize the crystallization. The precipitate was immediately filtered under vacuum, washed with acetone several times and vacuum dried overnight at 25 °C.

Nanocrystalline manganese carbonate (NMnC): NMnC samples were synthesized by adding 200 ml of 0.1 M MnSO\(_4\) solution to 200 ml of sodium carbonate-bicarbonate buffer (pH = 9) solution at 25 °C. The solution was split into two equal parts immediately after mixing and then aged separately at room temperature and 85 °C in an oven. After aging, solutions were filtered separately under vacuum, washed with acetone several times and vacuum dried overnight at 25 °C. The samples were prepared in 4 separate batches and aged at ambient and 85 °C for 0, 1.0, 2.5 and 5.0 h. A 30 ml sample of the above precipitated solution was hydrothermally treated at 160 °C in a 50 ml capacity Teflon-lined autoclave for 18 h to obtain a bulk MnCO\(_3\) sample with BET particle size above 100 nm.

Both amorphous and nanophase manganese carbonate phases were hydrated with composition MnCO\(_3\)·nH\(_2\)O (see Tables 1 and 2). All dried samples were first equilibrated in air for 24 h in the calorimetry laboratory, continually maintained at 24 ± 0.5 °C and 50 ± 5 % relative humidity, and then stored in screw capped vials in a desiccator with drierite desiccant. All sample characterization and calorimetric measurements on amorphous samples were carried out within a week to minimize any changes due to sample aging. The water contents of the samples were determined from the first weight loss step (ambient to 200 °C) in the thermogravimetric analysis (TGA) curve.
Sample characterization

Powder X-ray diffraction patterns of all samples were collected using a Bruker AXS D8 Advance diffractometer with a zero background sample holder and LynxEye solid state detector (Cu K_α radiation; step size = 0.01 ° and a collection time = 0.5-2 s/step). Phase identification and crystallite size analysis by whole pattern fitting were performed using JADE 8.0 software. The crystallite size from the XRD profiles were determined by whole pattern fitting based on the Scherrer equation with spherical particle shape. A Netzsch STA 449 system was used to carry out thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) measurements in a platinum crucible with argon flow from 30 to 1200 °C at 10 °C/min. The gases evolved during thermal analysis were examined using a Bruker Equinox 55 FTIR spectrometer (range 400 - 4000 cm$^{-1}$) coupled to the Netzsch STA 449 system by a transfer line heated to 150 °C to confirm the loss of H$_2$O and CO$_2$ during TG-DSC runs. The surface area of the samples (degassed at 150 °C for 2 hours) was characterized by nitrogen adsorption measurements using the Brunauer-Emmett-Teller (BET) method with a Micromeritics ASAP 2020 instrument. A five point N$_2$ adsorption isotherm was collected in triplicate for 0.1 g of each sample in the P/P$_0$ relative pressure range of 0.05 - 0.3, where P$_0$ is the saturation pressure at -196 °C. Scanning electron microscopy (SEM) studies were conducted to confirm particle size on a Philips FEI XL30-SFEG high resolution scanning electron microscope at an accelerating voltage of 5 kV. For analysis by scanning electron microscopy, powder samples were ultrasonicated in ethanol, drop-cast onto copper tape, and sputter coated with gold.

Calorimetry:
The instrument and methodology used for isothermal acid solution calorimetry for carbonates have been described earlier (Forbes et al. 2011; Radha et al. 2010). A CSC 4400 isothermal microcalorimeter with mechanical stirring was used to measure the enthalpies of solution of samples at 26 °C. Typically a ~5 mg sample pellet was dropped into 5 N HCl solvent (~25 g) and the heat flow (μJ/s) as a function of time gives a calorimetric signal. Measured enthalpies of solution are given in Tables 1 and 2.

A Micromeritics ASAP 2020 gas adsorption analyzer coupled with a Setaram Sensys Calvet microcalorimeter was used for simultaneous accurate water dosing to the sample and measurement of enthalpy of adsorption for each incremental dose of water (Ushakov and Navrotsky 2005). Each water dose (~1-2 micromoles) generates a distinct calorimetric peak and the area under the peak gives the differential enthalpy of adsorption. All chemically adsorbed water generates an adsorption peak with differential enthalpy more negative than the condensation enthalpy of water at 25 °C (-44 kJ/mol). The sum of the differential enthalpies of adsorption divided by the total water up to this coverage gives the integral enthalpy (ΔH_{adsH2Ovapor}). At least 3 runs were done on each sample after degassing at 150 °C for 2 h between the measurements. A blank with the empty tube was run to correct the above data for water adsorbed on the forked tube wall.

RESULTS

Crystallization energy of amorphous manganese carbonate (AMnC):

The absence of any Bragg reflections in the powder XRD patterns of the AMnC samples (Fig. 1a) confirms the formation of X-ray amorphous samples. The X-ray patterns of the same dry AMnC samples stored for 40 days showed sharp reflections of a calcite-like phase. This indicates that the amorphous MnCO$_3$ is metastable and slowly crystallizes to rhodochrosite (see Fig 1a). Therefore, we
measured the energetics on two freshly prepared AMnC samples (AMnC I and II) to minimize any aging as well as crystallization effects.

The thermal decomposition of manganese carbonate is complex due to the formation of various interconvertible manganese oxide phases in different environments (inert or oxidizing) and temperatures (Seguin 1972). In our experiments, the single step decomposition with 38.5% TG weight loss (Fig. SI-1a in supporting information) and the XRD pattern of the decomposed TG products of crystalline bulk MnCO$_3$ confirm the formation of MnO in an Ar atmosphere. At higher temperature, the liberated CO$_2$, if not flushed out, further reacts with MnO to form Mn$_3$O$_4$ and CO (Seguin 1972). The TGA profile of AMnC sample on heating in Ar show that the first weight loss step (30 - 200 °C) corresponds to sample dehydration and they are different for AMnC I and II samples (see Table 1) and The second weight loss is due to decomposition of MnCO$_3$ to MnO (See Fig SI-1b in supporting information). The FTIR spectra of the gases evolved during TG-DSC measurements further confirm the loss of H$_2$O and CO$_2$ at the first and second TGA weight loss steps. The DSC profile of AMnC (Fig. SI-1b in supporting information) shows multiple thermal events similar to those observed in amorphous iron (II) carbonate (Sel et al. 2012). The first endothermic DSC peak (30 - 200 °C) corresponds to loss of water. The second step (200 - 420 °C) shows several thermal events with simultaneous crystallization (exothermic) and decomposition (endothermic) to MnO occurring around ~ 400 °C.

The measured enthalpies of solution in 5 M HCl at 26 °C of two freshly prepared amorphous samples and bulk crystalline MnCO$_3$ are given in Table 1. Amorphous manganese carbonate readily dissolved in 5M HCl to form a very pale pink solution containing Mn(II) ions. The measured exothermic solution enthalpies are used in thermochemical cycle-I in Table 3 to arrive at the crystallization enthalpies of amorphous carbonate samples. The calculated crystallization enthalpies of
two freshly prepared amorphous samples (AMnC I and II) agree with each other within the uncertainties of measurements and correspond to \(-32.44 \pm 0.71 \text{ kJ/mol}\). Although the SEM image of (Fig SI-2 in supporting information) suggest the nanoparticulate (25-50 nm) nature of AMnC samples, no correction for the surface energy contribution to the crystallization enthalpy has been made because the difference in surface energy between amorphous and crystalline MnCO\(_3\) is not known. The exothermic crystallization of AMnC confirms that amorphous MnCO\(_3\) is a metastable phase. It could provide a low energy pathway for crystalline rhodochrosite mineralization analogous to other carbonate systems with Ca, Mg and Fe cations (Forbes et al. 2011; Radha et al. 2012; Radha et al. 2010; Sel et al. 2012).

Surface energy of nanophase manganese carbonate (NMnC)

The phase identification of nanophase and bulk manganese carbonate samples by powder XRD (see Fig. 1b) confirms the formation of rhodochrosite (PDF # 65-1302) with calcite-type structure. A typical TG-DSC curve for NMnC shows just two-step thermal reactions due to dehydration and decomposition of MnCO\(_3\) to MnO and CO\(_2\) (See Fig SI-1c). The water contents per mole of MnCO\(_3\) in NMnC samples (calculated from TGA first weight loss step) were smaller than that of the amorphous phase. Further, the absence of any sharp exothermic crystallization DSC peak confirms the absence of significant residual amorphous phase in NMnC samples.

Table 2 summarizes the particle size analysis of NMnC samples. The crystallite size and the corresponding calculated surface areas from the XRD profiles range from 9.1 to 58.9 nm and 178 to 27.5 m\(^2\)/g, respectively. The BET surface area of the NMnC samples obtained from the nitrogen adsorption isotherm range from \(84.5 \pm 0.24\) to \(7.5 \pm 0.2\) m\(^2\)/mol. The measured BET surface areas are smaller than the values calculated from the XRD particle size (Table 2). The particle sizes estimated
from SEM studies (Fig SI-2) show a wide range of particle size distribution from 32 ± 2 to 144 ± 10 nm (corresponding to surface areas of 50.7 to 11.3 m²/g) and are much higher than values from the XRD and BET measurements. These differences among X-ray, BET and SEM estimates of surface area and particle size are consistent with extensive particle agglomeration. This could occur on dehydration during sample preparation using gold sputter coating or during SEM measurement under high vacuum. Such discrepancies were also observed in our earlier study on surface energy of nanophase calcite (Forbes et al. 2011) that concluded that surface area determination is best performed using BET analysis. Since calcite and rhodochrosite are similar in structure, one could argue that conclusions deduced for calcite would apply to MnCO₃ as well. Therefore, we used the surface area obtained from BET analysis in calculation of the surface energy of nanophase manganese carbonate.

Figure 2 shows the adsorption enthalpies for individual water vapor doses (differential enthalpies) as a function of water coverage on the NMnC surface (H₂O per nm²). The water coverage up to the water condensation point corresponds to the chemisorbed water and the average coverage from 2 runs on NMnC surface is 9 ± 1 H₂O/nm². The remaining water (with a differential enthalpy -44 kJ/mol) is physically adsorbed water. The calculated integral enthalpy (ΔH_adsH₂O-vapor) value for NMnC surface is -66.6 ± 2.9 kJ/mol and corresponds to the average enthalpy of chemisorbed water vapor at 25 °C. The enthalpy of chemisorption for liquid water (ΔH_chemads-liquid) was calculated by removing the contribution of enthalpy of condensation of water vapor at 25 °C (-44 kJ/mol) from the integral enthalpy (ΔH_adsH₂O-vapor). The enthalpies of solution (ΔH_soln) for NMnC samples measured by isothermal calorimetry in 5 M HCl at 26 °C range from -19.2 ± 0.4 to -25.5 ± 0.6 kJ/mol (Table 2). All NMnC samples are hydrated and the corrected enthalpies (ΔH_soln_corr; nano) are obtained by subtracting the contribution of adsorbed water from enthalpies of solution (ΔH_soln). The surface enthalpy (γ in J/m²) of nanophase manganese carbonate for a given surface area (SA in m²/mol) is the excess
enthalpy of nanophase with respect to bulk ($\Delta H_{\text{sol-bulk}} = \Delta H_{\text{sol-corr; nano + SA*\gamma}}$). Any particle size above 100 nm can be treated as a bulk sample in terms of enthalpy because the product of surface area times surface energy gives an effect within experimental error of calorimetric measurements.

Figure 3 shows the water-corrected solution enthalpies plotted against the surface area obtained from BET analysis. The solution enthalpies are corrected for contribution associated with surface water as physically ($\Delta H_{\text{sol-corr-physi}}$) and chemically ($\Delta H_{\text{sol-corr-chemi}}$) adsorbed water (see thermochemical cycles given in Table 3) and they correspond to hydrous and anhydrous surfaces, as discussed in earlier papers (Birkner and Navrotsky 2012; Forbes et al. 2011; Ma et al. 2011; Navrotsky 2009). The data points for both hydrous and anhydrous surfaces each follow linear trends with goodness of fit (R^2) values 0.87 and 0.91. The negative of the slopes of the linear fits correspond to the surface enthalpies. Any substantial contribution of interface enthalpy due to sample agglomeration would lead to non-linear trends and thus this effect seems to be insignificant. The surface enthalpies for hydrous and anhydrous nano-manganese carbonate surfaces are 0.64 ± 0.08 J/m2 and 0.94 ± 0.12 J/m2 respectively. These surface enthalpy values are also approximations to surface energy and surface free energy since the contribution of excess volume (PV term) and surface entropy term ($T\Delta S$) are small (Smith et al. 2009; Wang et al. 2004). Duckworth et al. (2004) report the only other available calculated surface energy (0.442 J/m2) using molecular dynamics simulation studies. The measured surface energy is larger than that from computational modeling of idealized crystallite surfaces but is within the range of those measured for many oxides (Navrotsky 2009). The surface enthalpy of MnCO$_3$ (0.9 ± 0.1 J/m2) is lower than that of calcite (1.9 ± 0.2 J/m2), which suggests the surface interactions of MnCO$_3$ are weaker than those of the calcite surface. Furthermore, the less exothermic water adsorption enthalpy of MnCO$_3$ (-66.6 \pm 2.96 kJ/mol) compared to calcite (-96.26 \pm 0.96 kJ/mol) supports weaker interaction on the MnCO$_3$ surface.
DISCUSSION

Pattern of crystallization energetics in amorphous carbonates

To better understand the driving force behind the crystallization of carbonates, we compare the crystallization energetics of amorphous Ca, Mg, Fe and Mn carbonates as a function of cation ionic radius in Table 1. As noted in our earlier study (Sel et al. 2012), the crystallization enthalpies become less exothermic with an increase in cation radius. Interestingly, isostructural crystalline carbonate minerals also show a similar linear dependence of physical (hardness and density) and spectroscopic (shifts in IR peak positions) properties on cation radius (Railsback 1999). However, geochemical properties such as solubility and distribution coefficients are shown to be controlled by the degree of cation fit in the crystal structure (Railsback 1999). Our current study illustrates the influence of cation radius on the thermodynamics of carbonate crystallization. In order to obtain a fundamental understanding of this trend, there needs to be a detailed structural analysis of amorphous phases in the (Ca-Mg-Fe-Mn)CO₃ system and their M-O bonding environment. This could help link thermodynamics, kinetics, and physical properties.

Surface energy effects on manganese carbonate formation from manganese oxide precursors

To understand nanoscale effects on manganese carbonate formation from manganese oxide in aqueous medium, we constructed Eh-pH diagrams (Figure 4) for bulk and 10 nm particles using surface energies (hydrous) of nano-MnCO₃ (this study) and nano-Mn₃O₄ (Birkner and Navrotsky 2012) with aqueous Mn²⁺ (10⁻⁶ M) species for a CO₂ partial pressure corresponding to sea level air (P_{CO₂} = 10⁻³.⁵ atm; T = 25 °C) and supercritical CO₂ (P_{CO₂} = 72.9 atm; T = 31.25 °C). MnCO₃ exists only as rhodochrosite therefore one cannot expect any particle size driven shifts in surface energy
related to polymorphic phase transformation. Also, for many oxides (Navrotsky 2009, 2011; Navrotsky et al. 2010) the excess enthalpy measured directly by calorimetry remains constant within experimental error (data fall on a straight line) down to particle sizes near 5-10 nm. For nanophase Mn minerals, all three phase boundaries show some particle size induced shifts (dashed lines in Fig 4) from the corresponding bulk phase boundaries (solid lines in Fig. 4), illustrating the surface energy driven effects on both acid-base and redox equilibria (see Tables SI-1 and SI-2 for thermodynamic data and chemical half reactions). The shifts in acid-base equilibria of the Mn$^{2+}$/nanoMnCO$_3$ and Mn$^{2+}$/nanoMn$_3$O$_4$ phase boundaries toward higher pH confirm that nanophase minerals are metastable and therefore more soluble than bulk minerals. The nanophase Mn$_3$O$_4$/MnCO$_3$ phase boundary shifts suggest the expansion of the hausmannite, Mn$_3$O$_4$ stability field compared to bulk due to the surface energy contributions of nano Mn$_3$O$_4$ (0.96 ± 0.08 J/m2) and MnCO$_3$ (0.64 ± 0.08 J/m2) phases. For the Mn$_3$O$_4$/MnCO$_3$ anhydrous system, the oxygen - CO$_2$ fugacity diagrams at 25 and 100 °C (Fig. 5) indicate that both bulk and nano MnCO$_3$ (10 nm size) stability fields expand with an increase in CO$_2$ partial pressure (Reaction 4 in Table SI-2 in supporting information). High temperature favors the oxidation reaction as evidenced by the shifts in Mn$_3$O$_4$/MnCO$_3$ boundaries (expansion of Mn$_3$O$_4$ field) for bulk and nano to a lower oxygen fugacity region at 100 °C.

In contrast to the Mn-O system (Birkner and Navrotsky 2012), the size driven shifts in the Mn$_3$O$_4$/MnCO$_3$ equilibrium in both Eh - pH and oxygen - CO$_2$ fugacity diagrams favor the formation of Mn$_3$O$_4$ over MnCO$_3$, even though Mn$_3$O$_4$ has the higher surface energy. This is because the surface energies of both phases are fairly similar and the total surface energy contributions of Mn$_3$O$_4$ and MnCO$_3$ phases in 1:3 molar ratio for the phase boundary reaction (see reactions in Table SI-2). This drives the formation of high surface energy Mn$_3$O$_4$ phase over MnCO$_3$, which leads to an expansion of the Mn$_3$O$_4$ stability field. These results demonstrate that at a redox interface, precipitation and
dissolution of Mn phases are controlled not only by redox potential of bulk phases but also by changes in particle size driven surface energy effects, with manganese oxides dominating in nanoparticles in oxidizing environments, but manganese carbonate dominating in bulk samples under reducing conditions.

In supercritical CO₂, both Eh-pH and oxygen fugacity diagrams indicate the expanded stability field for manganese carbonate formation. In supercritical CO₂ conditions (P_{CO₂} = 72.9 atm; T = 31.25 °C), the effect of this modest pressure on surface enthalpy would be through a PΔV term in supercritical CO₂ conditions, where ΔV is the excess surface volume. There are no data for this but, given the modest pressure used, it can not be a significant effect. In supercritical CO₂-H₂O fluid (Fig. 4b), both bulk and nano Mn₃O₄/MnCO₃ phase boundaries are pushed to higher Eh (more oxidizing) and lower pH regions. This expansion of the carbonate stability field favors MnCO₃ formation at lower pH (pH ~ 6 for bulk and pH ~ 7 for nano) leading to substantial reduction in the hausmannite stability field. A significant expansion of the MnCO₃ field around CO₂ fugacity of 1.86 corresponding to supercritical carbon dioxide (73 atm) in Figure 5 suggests its favorable formation in anhydrous medium as well.

IMPLICATIONS

The mechanism of manganese carbonate formation is complex as it forms under reducing conditions in anoxic organic rich sediments or by early diagenetic and biogeochemical processes, such as microbial sulfate and MnO₂ reduction that facilitate Mn²⁺ formation (Frankel and Bazylinski 2003; Gingele and Kasten 1994; Goren et al. (2012); Pedersen and Price 1982). A time-resolved X-ray diffraction analysis of a bio-mediated enzymatic mineral reaction showed the systematic crystal structure evolution from birnessite to hausmannite (Mn₃O₄) and finally to nanocrystalline...
rhodochrosite through intermediate phases with a collapsing interlayer structure (Fischer et al. 2008). Our study provides the thermodynamic basis for such structural evolution by illustrating the existence of low energy pathways involving metastable amorphous and nano precursors for MnCO₃ precipitation. This could be relevant to rhodochrosite formation during biologically induced mineralization as well as in anoxic organic rich sediments. Furthermore, the shifts in Eh (oxidation potential) with particle size could affect electrochemistry and catalytic properties of these materials and hence influence their geochemistry as well as various industrial applications.

Manganese carbonate is usually found as coarse deposits in various geochemical environments. In marine environments, increase in grain size (with associated larger pore spaces) is found to be a prerequisite for authigenic Mn-carbonate formation (Pedersen and Price 1982). Mn oxide minerals typically occur as poorly crystalline fine grained (10 - 100 nm) brown-black masses or coatings and are formed by weathering of Mn-rich carbonates or silicates by in situ oxidation or dissolution-reprecipitation (Glasby 2006; Nicholson et al. 1997; Post 1999). In deep sea water, Mn nodules generally appear in oxygenated environments as concentric layers of Mn and Fe oxides around other minerals such as carbonate mineral fragments, pumice shards, animal remains, and coral fragments (Glasby 2000; Von Damm 1990). Our thermodynamic study suggests that, as manganese minerals undergo dissolution and precipitation at the anoxic - oxic interface of aqueous geochemical environments, both low oxygen fugacity and large grain size thermodynamically favor carbonate formation. The surface energy effects described here thus explain the formation of MnCO₃ as coarse grains in the anaerobic geochemical environments (Pedersen and Price 1982) and are relevant to the formation of manganese oxide minerals as fine grained minerals in soils, sediments and Mn nodules in deep sea floor and crusts (Glasby 2006; Glasby 2000; Post 1999). The size driven thermodynamic effects also explain the appearance of thin films of haumannite (Mn₃O₄) as a nanophase on the
rhodochrosite surface at an anoxic-oxic interface (Kendall et al. 2008; Na et al. 2007; Na and Martin 2009).

Recent evaluations of different geologic environments for CO$_2$ sequestration show relatively faster precipitation of carbonate minerals in basalts compared to other silicate rocks (Sturmer et al. 2007). In addition to other common carbonates, manganese carbonate formation seems to contribute to carbonation reactions of basalt with Mn bearing minerals. The phase equilibrium studies in this work predict the expanded stability field for MnCO$_3$ in supercritical (sc) CO$_2$ both in hydrous and anhydrous media. This also explains the enhanced carbonation reaction on the addition of H$_2$S to scCO$_2$–H$_2$O due to reduction and dissolution of Fe (III) or Mn (III, IV) minerals present in the basaltic rocks (Schaef et al. 2009; Schaef et al. 2010).

Earlier thermodynamic studies have shown that low surface energy oxides with weakly bound water are better water oxidation catalysts (Mn oxides, (Birkner et al. 2013), sensors (tin oxide, (Ma et al. 2011) and Li-ion exchange (LiCoO$_2$, Maram et al. 2013) than phases with larger surface energies and more strongly bound water. The low surface energy and weaker binding sites of MnCO$_3$ that allow easier exchange of adsorbed molecules could be the possible reason for the development of MnCO$_3$ nano/microspheres for drug delivery, biosensing (Peng et al. 2011; Qi et al. 2010; Wang et al., 2009; Zhang et al., 2009) and reversible lithium storage applications (Aragón et al., 2007, 2011; Mirhashemihaghighi et al. 2012). Interestingly, the delithiated microporous manganese carbonate form X-ray amorphous carbonate phase on Li re-intercalation. This phase has not been well characterized and could be a metastable amorphous manganese carbonate phase similar to AMnC in the present study. Thus AMnC could provide a low energy pathway for manganese carbonate formation during the electrochemical process as well. Electrochemical study of AMnC itself as a starting anode material would be interesting and this could also eliminate possible material compatibility issues due to any
volume change arising from the nanocrystalline to amorphous phase transformation during MnCO₃ electrochemical cycling.

Furthermore, both manganese oxides and manganese carbonate may have catalytic activity in the natural environment, may participate in biogeochemical cycles, and may even have provided catalytic environments in prebiotic organic chemistry and the origin of life. The changes in thermodynamic, surface, and electrochemical properties associated with nanophase and amorphous manganese carbonates may be important in these contexts as well.

ACKNOWLEDGEMENTS

This work is supported as part of the Center for Nanoscale Control of Geologic CO₂, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. The authors thank Tien Tran for help with SEM.
Table 1. The water content and calorimetric data of amorphous manganese carbonate (AMnC) samples.

<table>
<thead>
<tr>
<th>Amorphous MCO₃·nH₂O</th>
<th>Water (n) (mol) (TGA)</th>
<th>Enthalpy of Crystallization (ΔH<sub>crys</sub>) (kJ/mol)</th>
<th>Ionic/ crystal radius M²⁺ (nm)<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MnCO₃·nH₂O (AMnC-I)<sup>a</sup></td>
<td>1.2 ± 0.04</td>
<td>-32.44± 0.71</td>
<td>0.083 (0.097)</td>
</tr>
<tr>
<td>MnCO₃·nH₂O (AMnC-II)<sup>a</sup></td>
<td>1.78 ± 0.19</td>
<td>-31.62 ± 0.82</td>
<td></td>
</tr>
<tr>
<td>CaCO₃·nH₂O (ACC)<sup>b</sup></td>
<td>1.13 - 1.58</td>
<td>-17 ± 1 to -24 ± 1</td>
<td>0.1 (0.114)</td>
</tr>
<tr>
<td>MgCO₃·nH₂O (AMC)<sup>c</sup></td>
<td>1.28</td>
<td>-35.8 ± 1.2</td>
<td>0.072 (0.086)</td>
</tr>
<tr>
<td>FeCO₃·nH₂O (AFC)<sup>d</sup></td>
<td>1.75</td>
<td>-37.8 ± 9.8</td>
<td>0.078 (0.092)</td>
</tr>
</tbody>
</table>

The values in () is crystal radius.

- a This work
- b (Radha et al., 2010)
- c (Radha et al., 2012)
- d (Sel et al., 2012)
- e http://abulafia.mt.ic.ac.uk/shannon/ptable.php
Table 2. The water content, particle size analysis and calorimetric data of nanophase manganese carbonate (NMnC) samples.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Precipitate aging condition</th>
<th>nH₂O (mol)</th>
<th>Surface area BET (m²/mol)</th>
<th>ΔH_{soln} (KJ/mol)</th>
<th>ΔH_{corr-H₂O} (KJ/mol)</th>
<th>XRD Crystallite size (nm)</th>
<th>BET Particle size (nm)</th>
<th>SEM Particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMnC-1</td>
<td>5 min at 25 °C</td>
<td>0.79 ± 0.04</td>
<td>9712 ± 28</td>
<td>-25.5 ± 0.6</td>
<td>-25.2 ± 0.6</td>
<td>9.1 ± 0.4</td>
<td>19.2 ± 0.08</td>
<td>32 ± 2</td>
</tr>
<tr>
<td>NMnC-2</td>
<td>5.0 h at 25 °C</td>
<td>0.51 ± 0.01</td>
<td>8073 ± 230</td>
<td>-22.6 ± 0.8</td>
<td>-22.3 ± 0.8</td>
<td>28 ± 3</td>
<td>23.1 ± 0.7</td>
<td>92 ± 8</td>
</tr>
<tr>
<td>NMnC-3</td>
<td>1.0 h at 25 °C</td>
<td>0.39 ± 0.02</td>
<td>4927 ± 38</td>
<td>-22.9 ± 0.5</td>
<td>-22.8 ± 0.5</td>
<td>28 ± 1.7</td>
<td>37.8 ± 0.3</td>
<td>96 ± 4</td>
</tr>
<tr>
<td>NMnC-4</td>
<td>1.0 h at 85 °C</td>
<td>0.12 ± 0.01</td>
<td>4698 ± 60</td>
<td>-21.0 ± 0.5</td>
<td>-20.99 ± 0.5</td>
<td>38.6 ± 1.8</td>
<td>39.7 ± 0.6</td>
<td>97 ± 8</td>
</tr>
<tr>
<td>NMnC-5</td>
<td>2.5h at 25 °C</td>
<td>0.35 ± 0.02</td>
<td>3168 ± 138</td>
<td>-20.3 ± 0.9</td>
<td>-20.1 ± 0.9</td>
<td>34.0 ± 1.8</td>
<td>58.8 ± 2.8</td>
<td>86 ± 10</td>
</tr>
<tr>
<td>NMnC-6</td>
<td>2.5 h at 85 °C</td>
<td>0.09 ± 0.02</td>
<td>4232 ± 253</td>
<td>-21.1 ± 0.9</td>
<td>-21.0 ± 0.9</td>
<td>35.9 ± 1.9</td>
<td>44.0 ± 5.1</td>
<td>78 ± 9</td>
</tr>
<tr>
<td>NMnC-7</td>
<td>HT at 160 °C</td>
<td>0.02 ± 0.01</td>
<td>857 ± 23</td>
<td>-19.2 ± 0.4</td>
<td>-19.2 ± 0.4</td>
<td>58.9 ± 3</td>
<td>217.5 ± 6.5</td>
<td>144 ± 10</td>
</tr>
</tbody>
</table>

ΔH_{soln} = enthalpy of solution; ΔH_{sol-corr, nano} = enthalpy corrected for water as physically (physi) and chemically (chmi) adsorbed.
Table 3. Thermochemical cycles used to calculate of crystallization enthalpy (ΔHcrys) of amorphous manganese carbonate (AMnC) and surface energies of nanophase MnCO₃ (NMnC).

I – Crystallization enthalpy of AMnC (ΔHcrys)

\[
\text{MnCO}_3 \cdot \text{nH}_2\text{O} (\text{amr, 26 ºC}) + 2 \text{HCl (soln, 26 ºC)} \rightarrow \text{Mn}^{2+} (\text{soln, 26 ºC}) + \text{CO}_2 (\text{g, 26 ºC}) + (1 + \text{n}) \text{H}_2\text{O (soln, 26 ºC)} + 2\text{Cl}^- (\text{soln, 26 ºC}) \quad \Delta H_1 = \Delta H_{\text{soln (amorphous)}} \\
\text{H}_2\text{O (l, 26 ºC)} \rightarrow \text{H}_2\text{O (soln, 26 ºC)} \\
\text{MnCO}_3 (\text{xl, 26 ºC}) + 2 \text{HCl (soln, 26 ºC)} \rightarrow \text{Mn}^{2+} (\text{soln, 26 ºC}) + \text{CO}_2 (\text{g, 26 ºC}) + 2\text{Cl}^- (\text{soln, 26 ºC}) \text{H}_2\text{O (soln, 298 K)} \quad \Delta H_3 = \Delta H_{\text{soln-rhodochrosite}} \\
\text{MnCO}_3 \cdot \text{nH}_2\text{O} (\text{amorphous, 298 K}) = \text{MnCO}_3 (\text{rhodochrosite, 26 ºC}) + \text{n H}_2\text{O (26 ºC)} \quad \Delta H_4 = \Delta H_{\text{trans}}
\]

\[
\Delta H_4 = \Delta H_1 - n \Delta H_2 - \Delta H_3
\]

II - Correction for liquid water (NMnC hydrous surface) (ΔH_{sol-corr-physi})

\[
\text{MnCO}_3 \cdot \text{nH}_2\text{O} (\text{xl, 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + (1 + \text{n}) \text{H}_2\text{O (sln, 298 K)} + 2\text{Cl}^- (\text{sln, 298 K}) \quad \Delta H_1 = \Delta H_{\text{sol}} \\
\text{H}_2\text{O (l, 298 K)} \rightarrow \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_2 = -0.4 \text{ kJ/mol (Parker, 1965)} \\
\text{MnCO}_3 (\text{xl, 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + 2\text{Cl}^- (\text{sln, 298 K}) + \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_4 = \Delta H_{\text{sol-corr-physi}}
\]

\[
\Delta H_4 = \Delta H_1 - n \Delta H_2
\]

III - Correction for chemisorbed liquid water (NMnC anhydrous surface)(ΔH_{sol-corr-chem})

\[
\text{MnCO}_3 \cdot \text{nH}_2\text{O} (\text{xl, 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + (1 + \text{n}) \text{H}_2\text{O (sln, 298 K)} + 2\text{Cl}^- (\text{sln, 298 K}) + \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_1 = \Delta H_{\text{sol}} \\
\text{H}_2\text{O (chemi-ads, 298 K)} \rightarrow \text{H}_2\text{O (liq, 298 K)} \quad \Delta H_3 = (\Delta H_{\text{chemads-liq}}) = 43.02 \pm 0.79 \text{ kJ/mol} \\
\text{MnCO}_3 (\text{xl, 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + 2\text{Cl}^- (\text{sln, 298 K}) + \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_4 = \Delta H_{\text{sol-corr-chem}}
\]

\[
\Delta H_4 = \Delta H_1 - n \Delta H_2 - (n-x) \Delta H_3
\]

IV - Enthalpy of conversion from NMnC to bulk (ΔH_{nano-bulk})

\[
\text{MnCO}_3 (\text{xl, 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + 2\text{Cl}^- (\text{sln, 298 K}) + \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_5 = \Delta H_{\text{sol-cor, bulk}} \\
\text{MnCO}_3 (\text{xl, nano 298 K}) + 2 \text{HCl (sln, 298 K)} \rightarrow \text{Mn}^{2+} (\text{sln, 298 K}) + \text{CO}_2 (\text{g, 298 K}) + 2\text{Cl}^- (\text{sln, 298 K}) + \text{H}_2\text{O (sln, 298 K)} \quad \Delta H_6 = \Delta H_{\text{sol-cor, nano}} \\
\text{MnCO}_3 (\text{xl, nano, 298 K}) \rightarrow \text{MnCO}_3 (\text{xl, bulk, 298 K}) \quad \Delta H_7 = \Delta H_{\text{6-bulk}} \Delta H_5
\]
List of Figure Captions

Figure 1. Powder XRD patterns of (a) amorphous manganese carbonate (AMnC) and (b) nanophase manganese carbonate (NMnC) samples.

Figure 2. Differential enthalpies of water adsorption on nanophase manganese carbonate as a function of surface coverage (H$_2$O per nm2).

Figure 3. The solution enthalpies for the water-corrected rhodochrosite samples plotted against the surface area obtained by BET analysis for (a) hydrous surface and (b) anhydrous surface.

Figure 4. The Eh(pE)-pH diagrams of Mn$_3$O$_4$/MnCO$_3$ for bulk and nano (10 nm) phases with aqueous Mn species ([Mn$^{2+}$] = 10$^{-6}$). (a) P$_{CO_2}$ at normal sea level air (P$_{CO_2}$ = 10$^{-3.5}$, T = 25 °C) and (b) in supercritical CO$_2$ (P$_{CO_2}$ = 72.9 atm, T = 31.25 °C). Reactions 2 and 3 are given in Table 5.

Figure 5. The oxygen-CO$_2$ fugacity diagrams for bulk and nanophase (10 nm) Mn$_2$O$_3$/MnCO$_3$ system at 25 and 100 °C for equilibrium reaction 6 MnCO$_3$(s) + O$_2$ → 2 Mn$_3$O$_4$(s) + 6 CO$_2$(g).
References:

Figure 1
\[\Delta H_{\text{H}_2\text{O}_{\text{ads}}} = -66.6 \pm 2.96 \text{ kJ/mol} \]

Surface coverage = 9 ± 1 H\textsubscript{2}O/nm2

Figure 2
Surface energy (hydrous surface) = 0.64 ± 0.08 J/m²

Surface energy (anhydrous) = 0.94 ± 0.12 J/m²
Figure 4
Figure 5