12/30

1	AS REVISED: Revision #1
2	Ophirite, $Ca_2Mg_4[Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}W_9O_{34})_2]$ •46H ₂ O, a new mineral with a
3	heteropolytungstate tri-lacunary Keggin anion
4 5	Anthony R. Kampf ^{1§} , John M. Hughes ² , Barbara P. Nash ³ , Stephen E. Wright ⁴ ,
6	GEORGE R. ROSSMAN ⁵ , JOE MARTY ⁶
7 8	
9 10 11	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, U.S.A. ² Department of Geology, University of Vermont, Burlington, VT 05405, U.S.A. ³ Department of Geology and Geophysics, University of Utab, Salt Lake City, Utab 84112, U.S.A.
12	⁴ Department of Statistics, Miami University, Oxford, OH 45056, U.S.A.
13	⁵ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, U.S.A.
14	⁶ 5199 E. Silver Oak Rd., Salt Lake City, UT 84108, U.S.A.
15	
16	ABSTRACT
17	Ophirite, $Ca_2Mg_4[Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}W_9O_{34})_2]$ •46H ₂ O, is a new mineral species from the
18	Ophir Hill Consolidated mine, Ophir District, Oquirrh Mountains, Tooele County, Utah, U.S.A.
19	Crystals of ophirite are orange-brown tablets on $\{001\}$ with irregular $\{100\}$ and $\{110\}$ bounding
20	forms; individual crystals are up to about 1 mm in maximum dimension and possess a pale
21	orange streak. The mineral is transparent, with a vitreous luster; it does not fluoresce in short- or
22	long-wave ultraviolet radiation. Ophirite has a Mohs hardness of approximately 2 and brittle
23	tenacity. No cleavage or parting was observed in the mineral. The fracture is irregular. The
24	density calculated from the empirical formula using the single-crystal cell data is $4.060 \text{ g} \cdot \text{cm}^{-3}$.
25	Ophirite is biaxial (+) with a 2 <i>V</i> angle of $43(2)^{\circ}$. Indices of refraction for ophirite are α 1.730(3),
26	β 1.735(3), γ 1.770(3). The optic orientation (incompletely determined) is Y ^ b \approx 9° and one

[§] Email: akampf@nhm.org

27	optic axis is approximately perpendicular to $\{001\}$. Dispersion $r > v$, strong; pleochroism is $X =$
28	light orange brown, $Y =$ light orange brown, $Z =$ orange brown; $X < Y << Z$. Chemical analyses of
29	ophirite were obtained by electron probe microanalysis; optimization of that analysis using the
30	results of the crystal structure analysis yielded the formula
31	$(Ca_{1.46}Mg_{0.50}Zn_{0.04})_{\Sigma 2.00} (Mg_{3.96}Mn^{3+}{}_{0.04})_{\Sigma 4.00} [(Zn_{1.16}Fe^{3+}{}_{0.68}Ca_{0.14}Sb^{5+}{}_{0.02})_{\Sigma 2.00}$
32	$(Mn^{3+}_{1.42}Sb^{5+}_{0.32}Fe^{3+}_{0.24}W_{0.02})_{\Sigma 2.00} [(H_2O)_2((Fe^{3+}_{0.80}Sb^{5+}_{0.11}Ca_{0.07}Mg_{0.02})_{\Sigma 1.00}(W_{8.71}Mn^{3+}_{0.29})$
33	$\Sigma_{1.00})_2]]$ •46H ₂ O; the simplified formula of ophirite is
34	$Ca_2Mg_4[Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}W_9O_{34})_2]$ •46H ₂ O. Ophirite is triclinic, <i>P</i> 1, with <i>a</i> 11.9860(2), <i>b</i>
35	13.2073(2), <i>c</i> 17.689(1) Å, α 69.690(5), β 85.364(6), γ 64.875(5)°, <i>V</i> 4647.2(4) Å ³ , and <i>Z</i> = 1.
36	The strongest four lines in the diffraction pattern are $[d \text{ in } Å(I)(hkl)]$: 10.169(100)(100,110),
37	11.33(91)(011,010), 2.992(75)(334,341,1 1 5), and 2.760(55)(412,006, 1 3 5). The atomic
38	arrangement of ophirite was solved and refined to $R_1 = 0.0298$ for 9,230 independent reflections.
39	The structural unit, ideally ${}^{[6]}Zn_2{}^{[6]}Mn^{3+}{}_2(H_2O)_2({}^{[4]}Fe^{3+[6]}W^{6+}{}_9O_{34})_2{}^{12-}$, consists of a
40	$[Zn_2Mn^{3+}_2(H_2O)_2]$ octahedral layer sandwiched between opposing heteropolytungstate tri-
41	lacunary (^[4] Fe ^{<math>3+[6]W$6+9$</math>} O ₃₄) Keggin anions. Similar structures with an octahedral layer between
42	two tri-lacunary Keggin anions are known in synthetic phases. Charge balance in the ophirite
43	structure is maintained by the $\{[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \cdot 10H_2O\}^{12+}$ interstitial unit. The
44	interstitial unit in the structure of ophirite is formed of two distinct Mg(H ₂ O) ₆ octahedra and a
45	Ca(H ₂ O) ₆ O ₁ polyhedron, as well as five isolated water molecules. The linkage between the
46	structural unit and the interstitial unit results principally from hydrogen bonding between oxygen
47	atoms of the structural unit with hydrogen atoms of the interstitial unit. Ophirite is the first
48	known mineral to contain a lacunary defect derivative of the Keggin anion, a heteropolyanion
49	that is well-known in synthetic phases. The new mineral is named ophirite to recognize its

discovery at the Ophir Hill Consolidated mine, Ophir District, Oquirrh Mountains, TooeleCounty, Utah, U.S.A.

52

53 *Keywords:* ophirite; new mineral species; heteropolytungstate lacunary Keggin anion; crystal

54 structure; Ophir Hill Consolidated mine, Tooele County, Utah

- 55
- 56

INTRODUCTION

57 The Ophir mining district, Utah, was organized shortly after ore deposits were discovered 58 in the Oquirrh Mountains in 1865. For a century, the district was an important source of lead, 59 zinc, copper, and silver ores until the close of the Ophir Hill Consolidated mine in 1972 (Marty 60 and Wise 2007). The geologic setting of the Ophir district is given by those authors, and this 61 brief summary is taken from their work. The Oquirrh Mountains are formed of allochthonous folded and faulted Paleozoic sedimentary rocks; these nappes were transported eastward in the 62 63 Sevier thrust belt. In the Ophir district, in the southern portion of the Oquirrh Mountains, the 64 sedimentary rocks form an 8,000 ft. sequence that spans the entire Paleozoic, including limestone 65 and dolomite with minor shale and sandstone. Throughout the district there are small intrusions 66 of quartz monzonite porphyry that are spatially related to the ore, and may also be genetically 67 related. Mineralization in the district is confined to a northwest-trending belt less than one mile 68 wide and three miles in length, coincident with the crest of a broad, northwest plunging anticline. 69 The Ophir district had a total production of 2.8 million tons of ore, averaging 6.5% Pb, 1.6% Zn, 70 0.8% Cu, 7.2 oz per ton Ag, and 0.006 oz per ton Au.

Herein, we describe a new mineral from the Ophir District. The new mineral species was
discovered at the Ophir Hill Consolidated mine and is named ophirite in recognition of the type

73	locality. The new mineral and name were approved by the Commission on New Minerals,
74	Nomenclature and Classification of the International Mineralogical Association (IMA 2013-
75	017). The two cotype specimens used in the description of the mineral are housed in the mineral
76	collection of the Natural History Museum of Los Angeles County under catalogue numbers
77	64029 and 64030. Ophirite is the first known mineral to contain a lacunary defect derivative of
78	the Keggin anion, a heteropolyanion that is well-known in synthetic phases, and its description
79	introduces that polyanion and its associated structural groups to the mineralogical literature.
80	
81	OCCURRENCE
82	Ophirite was found underground at the Ophir Hill Consolidated mine, near a calcite cave
83	known for the presence of micro scheelite crystals. Unlike other mines in the district, the Ophir
84	Hill Consolidated mine is dominated by sulfide minerals; this contrasts, for example, with the
85	abundance of oxide minerals at the Hidden Treasure mine.
86	Tiny veinlets or stringers of black crystalline scheelite were found in the hanging wall
87	adjacent to the cave. The only source of ophirite was a six-cm wide and one-meter long veinlet,
88	surrounded by a narrow zone of sericite-containing pyrite, with occasional foci of apatite,
89	bournonite, galena, sphalerite, and other unidentified sulfides; rare crystals of fluorite and sulfur
90	are also present in the veinlet. Among the black scheelite crystals are inclusions and pockets of
91	dolomite. Ophirite crystals occur mostly at the interface between the dolomite and scheelite; it
92	appears that late acidic and oxidizing hydrothermal solutions, in the presence of pyrite and
93	calcium-rich hornfels, reacted with dolomite and scheelite to produce crystals of ophirite.
94	The compositions of veins in the mine vary considerably. The ore zones, which contain
95	sulfides, were considerably larger and follow the limestone bedding planes. Other phases found

1	2/	3	0
---	----	---	---

96	in the mine include adularia, aurichalcite, azurite, boulangerite, bournonite, calcite,
97	carbonatecyanotrichite, cerussite, chalcoalumite, chalcopyrite, cyanotrichite, dolomite, hübnerite,
98	hydrozincite, ktenasite, linarite, malachite, marcasite, quartz, ralstonite, schulenbergite,
99	serpierite, siderite, spangolite, tennantite, and tetrahedrite.
100	The clear evidence of oxidative alteration of the sulfides, most notably pyrite, is
101	indicative of a late-stage mineral-forming environment that is relatively oxidized; however, the
102	extent of the oxidation, and particularly the oxidation states of Fe and Mn (2+ or 3+), was not
103	immediately evident. To determine oxidation states, we released the oxidation state in the
104	optimization study and conducted optical spectroscopic studies, detailed below. The results,
105	presented below, showed all cations to be in their fully oxidized states: Mg ²⁺ , Ca ²⁺ , Fe ³⁺ , Mn ³⁺ ,
106	Sb ⁵⁺ , and W ⁶⁺ .
107	
108	PHYSICAL AND OPTICAL PROPERTIES
109	Crystals of ophirite are tabular on $\{001\}$ with irregular $\{100\}$ and $\{110\}$ bounding forms;
110	individual crystals are up to about 1 mm in maximum dimension (Figs. 1 and 2). The vitreous
111	and transparent crystals are orange-brown, with a pale orange streak. Ophirite is non-fluorescent
112	in long- and short-wave ultraviolet light. It has a Mohs hardness of 2, brittle tenacity, irregular
113	fracture, and no parting or cleavage. The density of ophirite could not be measured because there
114	is insufficient material for direct measurement and the mineral slowly decomposes in Clerici
115	solution; the calculated density is 4.060 g•cm ⁻³ based on the empirical formula using single-
116	crystal cell data.
117	The optical properties of ophirite were determined in white light. Ophirite is biaxial (+),

119	measurement using a spindle stage, and $2V_{calc} = 42.1^{\circ}$. Dispersion is strong, $r > v$. Orientation
120	(incompletely determined) is $Y^{\wedge} \mathbf{b} \approx 9^{\circ}$, with one optic axis approximately perpendicular to
121	{001}. The pleochroism is $X =$ light orange brown, $Y =$ light orange brown, $Z =$ orange brown; X
122	< Y << Z.
123	
124	OPTICAL SPECTROSCOPY
125	Optical spectra of ophirite (Fig. 3) were obtained on a 62 μ m diameter spot on an
126	approximately 14.2 μm thick, 176 \times 88 μm fragment with a prominent (001) face. Spectra were
127	obtained with linearly polarized light oriented parallel to both extinction directions on this face.
128	In this orientation, light was propagating close to one of the optic axes. A custom-built optical
129	micro-spectrometer with a silicon diode-array detector was used.
130	The spectra in the two extinction directions are similar, showing an absorption tail rising
131	towards the ultraviolet end of the spectrum with an obvious absorption band of moderate
132	intensity superimposed at about 500 nm. Curve fitting indicates that the band is at about 490 nm.
133	The spectra of Mn ³⁺ phases commonly occur in the 500 nm region, usually at a slightly longer
134	wavelength, but sometimes at a slightly shorter wavelength.
135	To further test if this band could be from either Mn^{2+} or Mn^{3+} , the molar absorptivity (ϵ -
136	value) was calculated from the average MnO content (2.25 wt%), the absorbance determined
137	from the curve fitting (about 0.1) and the density (4.06 gm \cdot cm ⁻³). A Beer's law calculation
138	indicates that the ε -value is about 54, if all of the Mn contributes to this band. This is a value
139	consistent with a spin-allowed absorption from Mn ³⁺ , but is inconsistent with the much less-
140	intense spin-forbidden absorptions of Mn^{2+} that may have lower epsilons in this region (for
141	example, epsilon for rhodochrosite is about 0.05 for the absorption bands between 450 and 550

142	nm). The only other cation likely to contribute to the optical absorption spectrum is iron, which
143	is present at a concentration in the same range as manganese. Because the Fe^{2+} spectrum is
144	expected to occur at 800 nm or longer wavelengths, this oxidation state can be ruled out as the
145	cause of the 500 nm absorption.
146	Like Mn^{2+} , Fe^{3+} also has spin-forbidden transitions, but when in a tetrahedral site will
147	have greater intensity than when in the more common octahedral sites of low absorption
148	intensity. Two standards of Fe in tetrahedral oxygen coordination have been presented. In the
149	spectrum of γ -LiAlO ₂ , a band at 450 nm with $\varepsilon = 17.2$ is prominent, along with significantly
150	weaker features between 500 and 600 nm (Waychunas and Rossman 1983). In the spectrum of
151	tetrahedral Fe ³⁺ in orthoclase (Faye 1969), a pair of bands occur at 417 and 441 nm with epsilon
152	of about 1.5, with a much weaker band at 483 nm. Published data for potential standards for a
153	ferri-heteropolytungstate could not be located for the visible spectral region
154	Neither of these standards has bands in the 490 nm region that are as intense as those of
155	the ophirite spectrum. Thus, it is likely that, if tetrahedral ferric iron were present in ophirite, its

156 presence could not be confirmed by optical spectroscopic methods. The optical spectrum

157 suggests four observations on Fe and Mn valence state: 1) Fe^{2+} is not present in ophirite, 2) Mn

158 as Mn^{3+} is plausible in ophirite, 3) absorption caused by Mn^{2+} would be too weak to observe in

159 the optical spectrum, and 4) absorption caused by tetrahedral Fe^{3+} would be difficult or

160 impossible to observe in the optical spectrum. These results are consistent with the results of the

- 161 structural optimization, which indicates that all species are in their fully oxidized states.
- 162
- 163

RAMAN SPECTROSCOPY

164 The Raman spectrum of ophirite was collected with a Renishaw M-1000 microRaman

165	system with a 514.5 nm argon ion laser and a $100 \times$ objective that produced a spot of about 1.2
166	μ m diameter with a depolarizer in the beam directly above the sample. Power at the sample was
167	raised from 0.5 mW to 5 mW with no visible sample damage.
168	The ophirite Raman spectrum in Figure 4 bears close resemblance to the spectra of the
169	other heteropolytungstates, as described by Detusheva et al. (2003). The spectra are dominated
170	by the W=O stretching in the 900-960 cm ⁻¹ region. The W–O–W bridge vibrations that occur in
171	the 800–500 cm^{-1} region and the W–O vibrations in the 250–200 cm^{-1} region are relatively weak.
172	
173	CHEMICAL ANALYSIS
174	Analyses of ophirite (14 on two crystals) were performed at the University of Utah on a
175	Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers. Analytical
176	conditions were 15 KeV accelerating voltage, 10 nA beam current and a beam diameter of 10
177	μ m. Counting times were 20 seconds for each element. Raw X-ray intensities were corrected for
178	matrix effects with a $\phi \rho(z)$ algorithm (Pouchou and Pichoir 1991).
179	Because insufficient material was available for a direct determination of H ₂ O, the amount
180	of water in ophirite was calculated on the basis of 30 total cations (Ca+Mg+Zn+Mn+Fe+Sb+W),
181	charge balance, and 116 O atoms <i>pfu</i> , as determined by the crystal structure analysis (see below).
182	The results are presented in Table 1. The empirical formula of ophirite on this basis is
183	$Ca_{1.73}Mg_{3.99}[Zn_{2.02}(Mn^{3+}{}_{1.82}Sb^{5+}{}_{0.22})(H_2O)_2(Fe^{3+}{}_{2.34})(W_{17.99})O_{68}] \bullet 45.95H_2O. Such a casting of$
184	the formula ignores the extensive substitution in the ophirite structure. There is complex
185	substitution among the cation sites in ophirite, which was quantified using optimization methods
186	(Wright et al. 2000); that substitution is discussed subsequently. The ideal formula of ophirite is
187	$Ca_2Mg_4[Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}W_9O_{34})_2]\bullet 46H_2O.$

188

189

X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION

190Powder and single-crystal X-ray diffraction data for ophirite were obtained on a Rigaku191R-Axis Rapid II curved imaging plate microdiffractometer using monochromatized MoK α 192radiation. The powder data presented in Table 2 for ophirite are in good agreement with those193calculated from the structure data. Observed *d* values and intensities were derived by profile194fitting using JADE 2010 software.

195 The Rigaku CrystalClear software package was used for reducing X-ray intensity data to 196 structure factors, including corrections for Lorentz and polarization effects and the application of 197 empirical absorption corrections; the structures were solved by direct methods using SIR2004 198 (Burla et al. 2005). The SHELXL-97 software (Sheldrick 2008) was used for the structure 199 refinements, utilizing neutral-atom scattering factors. Hydrogen atoms were located using 200 difference Fourier maps, and were refined using O–H and H–H distance restraints. The 201 occupancy of all non-H cations except Mg was released in order to determine the total electron 202 count at those sites, values used subsequently in the optimization of cation occupancy. Details of 203 the data collections and structure refinements are provided in Table 3, and the atom coordinates 204 and equivalent displacement parameters are in Table 4. Table 5 lists selected interatomic 205 distances. A copy of anisotropic displacement parameters, a table of observed and calculated structure factors, and the CIF file for ophirite are on deposit and available as listed below.¹ 206 207

¹ Deposit items AM-14-xx1, AM-14-xx2 and AM-14-xx3 give anisotropic displacement parameters, observed and calculated structure factors, and CIF, respectively. Deposit items are available two ways: for paper copies contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. For an electronic copy visit the MSA web site at http://www.minsocam.org, go to the *American Mineralogist* Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

208

DESCRIPTION OF THE STRUCTURE

12/30

209	Ophirite is a bipartite structure that consists of a structural unit and an interstitial unit, as
210	elucidated by Schindler & Hawthorne (2001). The $\{{}^{[6]}Zn_2{}^{[6]}Mn^{3+}_2(H_2O)_2({}^{[4]}Fe^{3+[6]}W^{6+}_9O_{34})_2\}^{12-}$
211	heteropolyanion defines the structural unit, the anionic portion of the structure. The more rigid
212	structural units are linked by the interstitial unit, the cationic portion of the structure, with bonds
213	of lower bond-valence linking Mg and Ca to an O atom of the structural unit and/or interstitial
214	H_2O groups. The interstitial unit in ophirite, $\{[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \cdot 10H_2O\}^{12+}$, balances the
215	charge of the structural unit and links the structural units together. The atomic arrangement of
216	ophirite is depicted in Figure 5.
217	
218	$The\{{}^{[6]}Zn_{2}{}^{[6]}Mn^{3+}{}_{2}(H_{2}O)_{2}({}^{[4]}Fe^{3+[6]}W^{6+}{}_{9}O_{34})_{2}\}^{12-} structural unit$
219	The structural unit in ophirite consists of the ${[6]Zn_2^{[6]}Mn^{3+}_2(H_2O)_2([4]Fe^{3+[6]}W^{6+}_9O_{34})_2}^{12-1}$
220	polyanion (Fig. 6). That polyanion is formed of two ($^{[4]}Fe^{3+[6]}W^{6+}{}_{9}O_{34}$) groups (Fig. 7), with an
221	intervening $Zn_2Mn^{3+}_2(H_2O)_2$ edge-sharing octahedral layer formed of two $Mn^{3+}O_6$ and two
222	$ZnO_5(H_2O)_1$ octahedra that share oxygen atoms with the (^[4] Fe ^{3+[6]} W ⁶⁺ ₉ O ₃₄) groups. Although
223	ophirite is the first known mineral to contain the ($^{[4]}Fe^{3+[6]}W^{6+}{}_{9}O_{34}$) group, the {XM ₉ O ₃₄ }
224	heteropolyanion is well-known in synthetic compounds.
225	Keggin (1934) was the first to solve the atomic arrangement of the heteropolyanionic
226	(XM ₁₂ O ₄₀) group, using X-ray diffraction methods. Now known as the Keggin heteropolyanion,
227	the heteropoly acid is formed of twelve M–O octahedra surrounding a central tetrahedral cation,
228	X; the most common M cations are Mo and W. The Keggin heteropolyanion is also known to
229	spawn defect structures in which one or more of the octahedra are removed from the $(XM_{12}O_{40})$

230 Keggin anion, such as (XM₁₁O₃₉), a defect structure in which one octahedron is absent from the

231 Keggin anion, and the (XM_9O_{34}) group, a defect structure in which three octahedra are absent 232 from the Keggin anion. Such heteropolyanions are known as "lacunary Keggin structures" to 233 note the defect structures caused by the missing octahedra; the (XM_9O_{34}) group is also known as 234 a "tri-lacunary" because of the deficiency of three octahedra. A rich literature exists on the 235 chemistry and structure of lacunary Keggin anions. The heteropolytungstate ($^{[4]}Fe^{3+[6]}W^{6+}O_{34}$) in ophirite is a tri-lacunary Keggin anion of 236 237 the α -B-(XM₉O₃₄) type, and it forms the foundation of the structural unit in ophirite. In ophirite, two of the {XM₉O₃₄} tri-lacunary Keggin anions (X = Fe³⁺, M = W⁶⁺; Fig. 7) create a 238 "sandwich" structure with four intervening coplanar edge-sharing octahedra ($2 \times [(Mn^{3+}O_6) +$ 239 $(ZnO_5(H_2O)_1)$) between opposing {Fe³⁺W₉O₃₄} groups, yielding the structural unit of 240 ${^{[6]}Zn_2}^{[6]}Mn^{3+}{}_{2}(H_2O)_{2}({^{[4]}Fe^{3+[6]}W^{6+}{}_{9}O_{34}})_{2}}^{12-}$ depicted in Figure 6. Although ophirite is the first 241 242 example of the tri-lacunary polyanion in minerals, the sandwich structure with four intervening 243 octahedra between two tri-lacunary Keggin anions is well-known in synthetic compounds (e.g., 244 Li et al. 2009, Limanski et al. 2002, Bosing et al. 1997 and references therein).

245

246 The { $[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \cdot 10H_2O$ }¹²⁺ interstitial unit

As noted by Schindler and Hawthorne (2001), the charge of the anionic structural units is balanced by the cationic interstitial unit. The interstitial unit in the structure of ophirite is formed of two distinct $Mg(H_2O)_6$ octahedra and a $Ca(H_2O)_6O_1$ polyhedron, as well as five isolated water molecules. Note that the oxygen atom of the $Ca(H_2O)_6O_1$ polyhedron is shared with one of the W octahedra of the structural unit, whereas the remainder of the linkage between the structural unit and the interstitial unit is attained through hydrogen bonding. The complete interstitial unit (not including the oxygen atom shared with the structural unit) has a composition of

254	${[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \cdot 10H_2O]^{12+}}$, balancing the charge of the structural unit with its
255	extensive cation substitutions, and yielding the simplified structural formula
256	$\{[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \bullet 10H_2O\}^{12+} \{Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}_2W_{18}O_{68})\}^{12-} \text{ for ophirite.}$

276

258 **Cation substitution**

259 The extensive substitution among the cations and cation sites in ophirite was elucidated 260 using the program OccQP (Wright et al. 2001), which uses a constrained least-squares 261 formulation to optimize occupancy assignments based upon site scattering, chemical 262 composition, charge balance, bond valence and cation-anion bond lengths. The results of the 263 optimization are provided in Table 6. Those results demonstrate the extensive cation solution in 264 both the structural unit and interstitial unit, which yields the charge balance in ophirite. The 265 method was also used to determine the "best-fit" valence state for Fe and Mn, as the program 266 was free to vary the valence state of these cations during the minimization process; as expected, all Fe was found to be Fe³⁺, and the Mn results are in accord with the optical spectroscopic 267 results that are consistent with all Mn as Mn^{3+} . 268 269 The simplified structural formula for ophirite can be written: $\{[Mg(H_2O)_6]_4[Ca(H_2O)_6]_2 \cdot 10H_2O\} \{Zn_2Mn^{3+}_2(H_2O)_2(Fe^{3+}_2W_{18}O_{68})\}.$ Given the results of the 270 271 optimization, the parallel detailed structural formula for ophirite can be written as: $\{[(Mg,Mn)(H_2O_6)]_4[(Ca,Mg,Zn)(H_2O_6)]_2 \cdot 10H_2O\} \{(Zn,Fe^{3+},Ca,Sb^{5+})_{\Sigma \ge 00}\}$ 272 $(Mn^{3+},Sb^{5+},Fe^{3+},W)_{\Sigma 2 \ 00} (H_2O)_2 [(Fe^{3+},Sb^{5+},Ca,Mg)_{\Sigma 2 \ 00} (W^{6+},Mn^{3+})_{\Sigma 18 \ 00}O_{68}]$. The quantification 273 274 of the substitutions is given in Table 6. 275

IMPLICATIONS

277	Many complex heteropoly anions have been synthesized, and they have long been used in
278	industry and as catalysts in chemical processes. The most widely known heteropoly anion is the
279	Keggin anion, for which a large body of literature exists. Until now, minerals containing the
280	Keggin anion were not known to occur. Ophirite is the first known mineral to contain a lacunary
281	defect derivative of the Keggin anion and its description introduces that polyanion and its
282	associated structural groups to the mineralogical literature. The occurrence of ophirite
283	demonstrates the natural conditions under which Keggin anions can form, and suggests that other
284	members of this class of compounds occur naturally.
285	
286	ACKNOWLEDGEMENTS
287	We are grateful to Leo Ault, mine owner, who allowed access to the Ophir Hill
288	Consolidated mine for collecting. The manuscript was improved by reviews by Joel Grice and
289	Stefan Graeser, and Editors Fernando Colombo and Ross John Angel both also provided helpful
290	comments. This study was funded, in part, by the John Jago Trelawney Endowment to the
291	Mineral Sciences Department of the Natural History Museum of Los Angeles County and by
292	National Science Foundation grants NSF-MRI 1039436 to JMH and EAR-0947956 to GRR.
293	

12/30

295	
296	References
297	
298	Barats, D., Leitus, G., Popovitz-Biro, R., Shimon, L.J.W. and Neumann, R. (2008) A stable
299	"End-On" iron(III)-hydroperoxo complex in water derived from a multi-iron(II)
300	polyoxometalate and molecular oxygen. Angewandte Chemie International Edition 2008, 47,
301	9908–9912.
302	Bösing, M., Loose, I., Pohlmann, H. and Krebs, B. (1997) New strategies for the generation of
303	large heteropolymetalate clusters: The β -B-SbW ₉ fragment as a multifunctional unit.
304	Chemistry: A European Journal, 3, 1232–1237.
305	Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L.,
306	Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal
307	structure determination and refinement. Journal of Applied Crystallography, 38, 381-388.
308	Detusheva, L.G., Kuznetsova, L.I., Dovlitova, L.S., and Likholobov, V.A. (2003) Study of the
309	equilibrium of formation of arsenic(III) lacunar heteropolytungstates by Raman
310	spectroscopy. Russian Chemical Bulletin, International Edition, 52, 370-374.
311	Faye, G.H. (1969) The optical absorption spectrum of tetrahedrally bonded Fe ³⁺ in orthoclase.
312	Canadian Mineralogist, 10, 112–117.
313	Keggin, J.F. (1934) The Structure and Formula of 12-Phosphotungstic Acid. Proceedings of the
314	Royal Society, A, 144, 75–100.
315	Li, B., Yan, Y., Li, F., Xu, L., Bi, L., and Wua, L. (2009) Synthesis, crystal structure, and
316	properties of two sandwich-type tungstovanadates. Inorganica Chimica Acta, 362, 2796-

317 2801.

- Limanski, E.M., Piepenbrink, M., Droste, E., Burgmeister, K. and Krebs, B. (2002) Syntheses
- and X-ray characterization of novel $[M_4(H_2O)_2(XW_9O_{34})_2]^{n-}$ (M=Cu^{II}, X=Cu^{II}; and M=Fe^{III},
- 320 X=Fe^{III} polyoxotungstates. Journal of Cluster Science, 13, 369–379.
- 321 Marty, J. and Wise, W.S. (2008) Minerals from the Hidden Treasure and other mines in the
- 322 Ophir District, Tooele County, Utah. Rocks and Minerals, 83, 52–62.
- 323 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 324 microvolumes applying the model "PAP." In K.F.J. Heinrich and D.E. Newbury, Eds.
- 325 Electron probe quantitation, p. 3 1–75. Plenum Press, New York.
- 326 Schindler, M., and Hawthorne, F.C. (2001) A bond-valence approach to the structure, chemistry,
- 327 and paragenesis of hydroxyl-hydrated oxysalt minerals. I. Theory. The Canadian
- 328 Mineralogist, 39, 1225-1242.
- 329 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- 330 Waychunas, G.A., and Rossman, G.R. (1983) Spectroscopic standard for tetrahedrally
- 331 coordinated ferric iron: γ -LiAlO₂: Fe³⁺. Physics and Chemistry of Minerals, 9, 212–215.
- 332 Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals
- using quadratic programming. American Mineralogist, 85, 524–531.

TABLE 1. Analytical results for ophirite.

Const.	Wt%	S.D. (metal)	Ideal Wt% [†]	Standard
CaO	1.68	0.61	1.94	diopside
MgO	2.79	0.09	2.78	diopside
ZnO	2.86	0.36	2.81	Zn Metal
Mn ₂ O ₃	2.50	0.22	2.73	rhodonite
Fe ₂ O ₃	3.25	0.20	2.76	hematite
Sb ₂ O ₅	0.61	0.13	_	GaSb (syn)
WO ₃	71.94	1.01	72.06	W metal
H ₂ O	15.24*		14.92	
Total	100.87		100.00	

* Based on structure [†] Calculated using Ca₂Mg₄[Zn₂Mn³⁺₂(H₂O)₂(Fe³⁺W₉O₃₄)₂]•46H₂O.

TABLE 2. Powder X-ray diffraction data for ophirite.

38 16.72 16.5383 45 0 0 1 (2.6365 5 4 0 1 (1.7298)	1	_
		145
$11.2739 \ 100 \ 011 \ 33 \ 2.5916 \ 3 \ 413 \ 1.7283$	1	2 .3.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$\overline{1} \cdot 2 \cdot 10$
$100 \ 10.69 \ \left\{ \begin{array}{c} 10.8185 \ 52 \ 10.0 \end{array} \right. \left(\begin{array}{c} 2.5690 \ 3 \ \overline{1} \ 4 \ 1 \end{array} \right) $	1	468
$100 \ 10.09 \ (10.2594 \ 51 \ 110 \ 7 \ 2.506 \ 2.5087 \ 6 \ \overline{1}44 \ (1.7140$	2	407
9.8552 8 111 $17 2382 \int 2.3829 \ 6 \ \overline{41}4 4 1685 \int 1.6842$	2	$\overline{4}$ $\overline{1}$ 8
9.3972 15 $\overline{1}$ 0 1 17 2.362 (2.3562 5 4 0 3 (1.6811)	2	271
55 8.27 8.2692 56 0 0 2 5 2 239 $\int 2.2340 \ 2 \ \overline{1} \ 4 \ 6$ (1.6580)	1	751
$8.0735 15 0\overline{1} 1 \qquad 5 2.239 2.2302 3 \overline{2} 0 7 \qquad 1.6561$	1	263
$12 604 \int 5.9994 4 122 12 2176 \int 2.1824 3 1\overline{4}2 11 1651 \int 1.6545$	1	3.3.10
$12 0.04 \left(\begin{array}{ccc} 5.9786 & 5 & 0.21 \end{array} \right) 12 2.176 \left(\begin{array}{ccc} 2.176 \\ 2.1655 & 6 & 0\overline{1} \end{array} \right) 1.6501 1.650$	1	$\overline{2} \cdot 2 \cdot 10$
33 5.44 5.4408 10 $\overline{2}\overline{1}1$ (2.1247 2 $\overline{1}28$ 1.6487	3	753
$7 = 5.20 \int 5.2750 9 2.21 \qquad 0 2.117 2.1108 2 \overline{4} \\ 2.0 \qquad 1.6446$	2	$\overline{6}$ $\overline{5}$ 3
$7 5.50 (5.2646 9 \overline{2} \ 0 \ 1) (2.0797 2 4 \ 6 \ 3) (1.6186)$	2	285
7 4.825 4.8267 6 $0\overline{2}1$ 6 2.067 2.0692 1 $\overline{3}35$ 1.6147	2	$0\overline{5}5$
16 4.519 4.4889 6 $\overline{1}$ 2 1 0 2.0673 1 0 0 8 1.6115	1	577
18 4 225 (4.3412 7 1 3 2 (2.0635 1 1 6 1 20 1.612 (1.6105	1	$\overline{3}$ $\overline{4}$ 7
$18 \ 4.555 \ 4.2964 \ 6 \ \overline{12}2 \ (2.0012 \ 1 \ \overline{41}6 \ 1.6023 \ 1.6023$	1	070
(4.1359 9 1 2 4 1.9967 1 3 3 8 1.6008	2	$1 \overline{4} 6$
$(1.9892 \ 1 \ \overline{13} \ 6 \ 1.5998)$	3	$3\overline{1}8$
$ \begin{array}{c} 27 & 4.119 \\ 4.1007 & 3 & 232 \\ \end{array} $	5	$\overline{3} \overline{5} 6$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\overline{1} \cdot 3 \cdot 11$
$\begin{pmatrix} 3.6208 & 7 & 312 \\ 1.9133 & 2 & \overline{34}5 \\ 1.5589 \end{pmatrix}$ 1.5589	2	527
15 3.588 $\left\{ 3.6066 \ 4 \ \overline{231} \right\}$ 22 1.016 1.9119 1 610 20 1.554 1.5472	3	713
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	648
$13 \ 3.464 \ 3.4673 \ 12 \ 3 \ 0 \ 1 \\ 1.9058 \ 1 \ \overline{1} \ 2 \ 9 $ (1.5021)	3	$\overline{7} \overline{5} 3$
3 3.319 3.3077 7 0.05 1.9047 1 3 $\overline{1}$ 6 11 1.498 1.5000	2	$\overline{4} \overline{2} 9$
$30 \ 3.190 \ 3.1993 \ 15 \ \overline{1} \ 3 \ 3 \qquad 1.8989 \ 4 \ \overline{4} \ 3 \ 2 \qquad 1.4952$	2	2.7.10
$\begin{pmatrix} 3.0196 & 6 & 3.3.4 \\ 1.8596 & 3 & 6.5.3 \\ 1.8596 & 3 & 6.5.3 \\ 1.4680 \end{pmatrix}$	2	$4\overline{4}3$
$75 2.992 \left\{ \begin{array}{cccc} 2.9947 & 16 & 3 \\ 4 & 1 \end{array} \right\} 18 1.856 \left\{ \begin{array}{cccc} 1.8530 & 2 & 6 \\ 1.8530 & 2 & 6 \\ 1.4673 \end{array} \right\} \left\{ \begin{array}{cccc} 10 & 1.466 \\ 1.4673 \end{array} \right\}$	3	686
$2.9462 9 \overline{1} \overline{1} 5$ $1.8513 3 \overline{4} 3 4$ (1.4483)	1	2.3.12
$1 \le 2.9150 = 7 = 3.03$ (1.8071 4 $\overline{5}.22$ 1.4429	1	$\overline{2}$ 7 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	680
$(2.7645 \ 8 \ 412 \ 1.8039 \ 1 \ \overline{5}15 \ 1.4418$	1	715
55 2.760 { 2.7564 21 006 15 1.799 { 1.8009 1 067		
$2.7522 11 \overline{1} 3 5 \qquad 1.7943 1 \overline{1} \overline{3} 7$		
2.7102 9 $\overline{3}\overline{4}1$ 1.7933 1 276		
1.7916 1 $\overline{1}65$		

- 345 Only calculated lines with intensities greater than 7 are listed unless they correspond to observed
- 346 lines. Mismatches in intensities between observed and calculated lines are due to the large
- 347 number of lines of relatively low intensity that are not listed.

TABLE 3. Sample and crystal data for ophirite.

Formula weight	5726.57
Temperature	293(2) K
Wavelength	0.71075 Å
Crystal size	0.040 x 0.090 x 0.100 mm
Crystal system	Triclinic
Space group	$P\overline{1}$
Unit cell dimensions	$a = 11.9860(2) \text{ Å}$ $a = 69.690(5)^{\circ}$
	$b = 13.2073(2) \text{ Å}$ $\beta = 85.364(6)^{\circ}$
	$c = 17.6891(12) \text{ Å}$ $\gamma = 64.875(5)^{\circ}$
Volume	2370.35(18) Å ³
Absorption coefficient	22.543 mm ⁻¹
<i>F</i> (000)	2579
Theta range	3.06 to 27.46°
Index ranges	$-15 \le h \le 15, -17 \le k \le 17, -22 \le \ell \le 22$
Reflections collected	76,304
Independent reflections	$10,834 [R_{int} = 0.0578]$
Completeness	99.8%
Max. and min. transmission	0.4658 and 0.2114
Structure solution	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-97 (Sheldrick, 2008)
Function minimized	$\Sigma \mathrm{w}(F_{\mathrm{o}}^{2} - F_{\mathrm{c}}^{2})^{2}$
Data / restraints / parameters	10834 / 72 / 802
Goodness-of-fit on F^2	1.034
Δ/σ_{max}	0.002
Final R indices	9,230 data;
r mai ix muices	$I > 2\sigma(I)$ $R_1 = 0.0298, wR_2 = 0.0671$
	all data $R_1 = 0.0386, wR_2 = 0.0704$
Weighting scheme	$w = 1/[\sigma^2(F_0^2) + (0.0338P)^2 + 11.0210P]$
	where $P = (F_0^2 + 2F_c^2)/3$
Largest diff. peak and hole	2.059 and -1.388 e ⁻ A ⁻⁵

357 ophirite.

	x/a	y/b	z/c	U_{eq} *
M1	0.89860(8)	0.63418(7)	0.32977(5)	0.01612(17)
M2	0.97962(8)	0.61798(7)	0.51246(5)	0.02115(18)
M3	0.74884(9)	0.56532(8)	0.49729(6)	0.0269(2)
M4	0.2029(2)	0.0955(2)	0.15709(14)	0.0242(5)
M5	0.5557(3)	0.2693(2)	0.14317(18)	0.0368(6)
M6	0.72573(18)	0.12204(16)	0.47144(11)	0.0345(4)
W1	0.62958(3)	0.59597(3)	0.305958(18)	0.02324(7)
W2	0.68205(3)	0.79959(3)	0.153583(17)	0.02192(7)
W3	0.59807(3)	0.84097(3)	0.329077(18)	0.02213(7)
W4	0.14645(3)	0.70577(3)	0.33653(17)	0.02102(7)
W5	0.95150(3)	0.86633(3)	0.173366(17)	0.02129(7)
W6	0.87027(3)	0.89918(2)	0.350128(17)	0.02192(7)
W7	0.00624(3)	0.58314(3)	0.144552(17)	0.02216(7)
W8	0.94939(3)	0.37895(3)	0.294331(17)	0.02156(7)
W9	0.19665(3)	0.42058(3)	0.309721(17)	0.02161(7)
01	0.7321(4)	0.7060(4)	0.2866(3)	0.0210(10)
02	0.9553(4)	0.7555(4)	0.3003(3)	0.0209(10)
03	0.9977(4)	0.5250(4)	0.2781(3)	0.0197(10)
04	0.9122(4)	0.5581(4)	0.4444(3)	0.0218(10)
05	0.8794(5)	0.7852(4)	0.4474(3)	0.0246(11)
06	0.0426(5)	0.6511(4)	0.5971(3)	0.0250(11)
D 7	0.1226(5)	0.6184(4)	0.4410(3)	0.0247(11)
08	0.1641(5)	0.3971(4)	0.4185(3)	0.0253(11)
09	0.6865(5)	0.5239(5)	0.4098(3)	0.0289(12)
D10	0.6509(5)	0.7451(5)	0.4316(3)	0.0286(12)
011	0.5286(5)	0.5364(5)	0.2978(3)	0.0303(12)
012	0.5141(5)	0.7428(5)	0.3179(3)	0.0291(12)
013	0.7827(5)	0.4838(5)	0.2756(3)	0.0275(11)
014	0.6050(5)	0.6960(4)	0.1843(3)	0.0266(11)
015	0.6168(6)	0.8799(5)	0.0549(3)	0.0340(13)
016	0.5731(5)	0.9049(4)	0.2047(3)	0.0247(11)
017	0.8326(5)	0.6755(4) 20	0.1391(3)	0.0252(11)

018 0.79	967(5)	0.8715(4)	0.1578(3)	0.0270(11)
019 0.46	542(5)	0.9581(5)	0.3392(4)	0.0382(14)
O20 0.71	123(5)	0.9098(5)	0.3169(3)	0.0284(12)
O21 0.28	886(5)	0.7037(5)	0.3521(3)	0.0315(12)
O22 0.19	959(5)	0.5725(4)	0.3038(3)	0.0250(11)
O23 0.11	154(5)	0.8141(5)	0.2224(3)	0.0272(11)
O24 0.04	454(5)	0.8539(4)	0.3621(3)	0.0240(11)
025 0.96	623(6)	0.9683(5)	0.0834(3)	0.0348(13)
O26 0.02	207(5)	0.7209(4)	0.1488(3)	0.0244(11)
O27 0.88	823(5)	0.9761(4)	0.2318(3)	0.0254(11)
O28 0.81	154(5)	0.0273(5)	0.3747(3)	0.0314(12)
O29 0.02	296(6)	0.5985(5)	0.0440(3)	0.0348(13)
O30 0.17	752(5)	0.4874(4)	0.1891(3)	0.0253(11)
031 0.97	749(5)	0.4413(4)	0.1759(3)	0.0273(12)
O32 0.94	489(5)	0.2500(5)	0.2893(3)	0.0304(12)
033 0.13	392(5)	0.3097(4)	0.3052(3)	0.0255(11)
O34 0.35	551(5)	0.3334(5)	0.3164(3)	0.0335(13)
035 0.36	672(5)	0.0920(5)	0.1080(3)	0.0344(13)
H35A 0.42	29(6)	0.027(5)	0.139(4)	0.041
H35B 0.36	67(8)	0.095(7)	0.058(2)	0.041
O36 0.25	537(5)	0.1214(5)	0.2560(4)	0.0366(14)
H36A 0.33	32(4)	0.080(6)	0.277(5)	0.044
H36B 0.21	19(6)	0.188(5)	0.269(5)	0.044
037 0.28	893(6)	0.9127(5)	0.2153(4)	0.0422(15)
H37A 0.22	20(4)	-0.081(9)	0.238(5)	0.051
H37B 0.35	51(5)	-0.116(8)	0.253(4)	0.051
O38 0.04	402(6)	0.0990(6)	0.2066(4)	0.0404(15)
H38A 0.00	02(7)	0.055(7)	0.203(5)	0.048
H38B 0.09	91(7)	0.054(7)	0.252(4)	0.048
039 0.12	247(6)	0.2796(5)	0.1008(4)	0.0387(14)
H39A 0.07	76(7)	0.301(7)	0.060(4)	0.046
H39B 0.10	01(8)	0.323(7)	0.132(4)	0.046
O40 0.15	533(6)	0.0698(7)	0.0582(4)	0.0485(17)
H40A 0.2	13(5)	0.014(7)	0.043(6)	0.058
H40B 0.07	79(4)	0.088(8)	0.040(6)	0.058
O41 0.61	199(7)	0.1202(6)	0.1149(4)	0.0518(18)
H41A 0.63	35(9)	0.046(4)	0.146(5)	0.062
H41B 0.55	51(6)	0.148(7)	0.080(5)	0.062

O42	0.4899(8)	0.4193(6)	0.1739(5)	0.060(2)
H42A	0.525(10)	0.465(9)	0.140(4)	0.072
H42B	0.494(11)	0.425(10)	0.223(3)	0.072
O43	0.5905(7)	0.3576(6)	0.0292(4)	0.0503(17)
H43A	0.534(6)	0.372(9)	-0.010(4)	0.06
H43B	0.665(4)	0.318(9)	0.012(5)	0.06
O44	0.5380(8)	0.1689(6)	0.2588(4)	0.059(2)
H44A	0.489(8)	0.187(8)	0.298(4)	0.07
H44B	0.595(7)	0.093(4)	0.280(5)	0.07
O45	0.3699(8)	0.3200(8)	0.1117(6)	0.070(2)
H45A	0.345(11)	0.261(8)	0.139(6)	0.084
H45B	0.402(11)	0.299(10)	0.067(5)	0.084
O46	0.7354(6)	0.2284(6)	0.1832(4)	0.0468(16)
H46A	0.771(7)	0.279(6)	0.158(6)	0.056
H46B	0.800(6)	0.155(4)	0.197(6)	0.056
O47	0.8161(9)	0.0425(8)	0.6050(5)	0.078(3)
H47A	0.861(8)	0.076(10)	0.616(8)	0.093
H47B	0.736(4)	0.088(10)	0.608(9)	0.093
O48	0.5116(8)	0.1655(8)	0.4577(5)	0.064(2)
H48A	0.501(11)	0.102(7)	0.455(6)	0.077
H48B	0.495(11)	0.167(9)	0.508(3)	0.077
O49	0.6677(7)	0.2764(6)	0.3417(4)	0.0520(18)
H49A	0.703(8)	0.251(7)	0.301(4)	0.062
H49B	0.614(8)	0.353(4)	0.320(5)	0.062
O50	0.0769(7)	0.8691(7)	0.5375(5)	0.0561(18)
H50A	0.082(9)	0.809(7)	0.523(7)	0.067
H50B	0.002(5)	0.900(8)	0.555(7)	0.067
O51	0.6507(7)	0.3100(6)	0.4984(4)	0.0539(18)
H51A	0.591(7)	0.384(4)	0.479(5)	0.065
H51B	0.634(9)	0.272(7)	0.548(3)	0.065
O52	0.7192(8)	0.9252(6)	0.5346(5)	0.066(2)
H52A	0.658(7)	0.997(4)	0.514(7)	0.079
H52B	0.702(10)	0.872(6)	0.524(7)	0.079
O53	0.4133(7)	0.4275(7)	0.9084(5)	0.0589(19)
H53A	0.448(8)	0.358(6)	0.953(4)	0.071
H53B	0.330(4)	0.457(8)	0.920(6)	0.071
O54	0.1818(7)	0.5998(8)	0.9065(5)	0.062(2)
H54A	0.144(9)	0.602(10)	0.953(4)	0.074

359	H54B	0.148(9)	0.567(10)	0.882(5)	0.074
2(0	055	0.6599(8)	0.3241(9)	0.8424(6)	0.079(3)
360	H55A	0.672(10)	0.371(10)	0.866(8)	0.095
361	H55B	0.738(5)	0.285(10)	0.828(8)	0.095
	O56	0.8373(9)	0.2245(8)	0.0022(6)	0.078(3)
362	H56A	0.867(12)	0.226(9)	-0.046(4)	0.094
262	H56B	0.864(12)	0.148(4)	0.035(5)	0.094
303	O57	0.6333(8)	0.1289(7)	0.9588(5)	0.060(2)
364	H57A	0.646(11)	0.115(9)	1.011(2)	0.072
	H57B	0.658(10)	0.184(8)	0.928(5)	0.072
365	O58	0.5965(6)	0.5614(6)	0.5611(4)	0.0407(15)
366	H58A	0.518(4)	0.616(6)	0.548(5)	0.049
500	H58B	0.601(7)	0.515(6)	0.612(3)	0.049
367					

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

TABLE 5. Selected bond distances for atoms in ophirite.

372						
373	M1-		M2-		M3-	
374	O2	1.894(5)	O5	1.963(5)	O10	2.074(5)
375	01	1.898(5)	06	1.979(5)	O58	2.079(6)
376	O3	1.900(5)	O4	2.010(5)	O4	2.079(5)
377	O4	1.911(5)	O4'	2.022(5)	09	2.091(5)
378	Mean	1.901	O7	2.047(5)	O7	2.171(5)
379			08	2.069(5)	08	2.181(5)
380			Mean	2.015	Mean	2.113
381						
382	M4-		M5-		M6-	
383	O38	2.061(6)	O41	2.014(7)	O47	2.363(8)
384	O40	2.069(6)	O42	2.047(7)	O28	2.386(6)
385	O37	2.069(6)	O43	2.059(7)	O49	2.390(7)
386	O35	2.076(6)	O44	2.067(7)	O48	2.393(9)
387	O36	2.076(6)	O45	2.095(9)	O50	2.407(8)
388	O39	2.079(6)	O46	2.104(7)	051	2.461(7)
389	Mean	2.072	Mean	2.064	O52	2.480(8)
390					Mean	2.411
391						
392	W1-		W2-		W3-	
393	011	1.739(5)	O15	1.736(5)	019	1.743(5)
394	09	1.785(5)	O14	1.870(5)	O10	1.790(5)
395	O12	1.918(5)	O16	1.897(5)	O20	1.903(5)
396	013	1.983(5)	O17	1.927(5)	012	2.013(5)
397	O14	2.064(5)	O18	1.992(5)	O16	2.061(5)
398	01	2.200(5)	01	2.236(5)	01	2.151(5)
399	Mean	1.948	Mean	1.943	Mean	1.944
400						
401	W4-		W5-		W6-	
402	O21	1.735(6)	O25	1.729(5)	O28	1.734(5)
403	O7	1.882(5)	O18	1.867(5)	O5	1.825(5)
404	O22	1.884(5)	O27	1.933(5)	O24	1.930(5)
405	O23	1.982(5)	O26	1.933(5)	O20	1.961(5)
406	O24	2.001(5)	O23	1.949(5)	O27	2.008(5)
407	O2	2.182(5)	O2	2.206(5)	O2	2.188(5)
408	Mean	1.944	Mean	1.936	Mean	1.941
409						
410	W7-		W8-		W9-	
411	O29	1.732(5)	O32	1.739(5)	O34	1.741(5)
412	O17	1.903(5)	06	1.824(5)	08	1.876(5)
413	O26	1.926(5)	O13	1.860(5)	O33	1.890(5)

O30	1.927(5)	O31	2.018(5)	O22	1.968(5)
O31	1.950(5)	O33	2.057(5)	O30	1.997(5)
O3	2.225(4)	O3	2.162(5)	O3	2.188(5)
Mean	1.944	Mean	1.943	Mean	1.943
Wieun	1.911	1010ull	1.9 15	1010ull	1.915

TADIE 6 Sita	agginanta	for action	aitaa	in anhirita
I ABLE U. SHE	occupants	IOI Cation	SILES	III ODIIIIIIC.
	· · · · · · · · · · · · · · · · · · ·			- r

Cation Site	Site Occupants
M1	$Fe^{3+}_{0.80}Sb^{5+}_{0.11}Ca_{0.07}Mg_{0.02}$
M2	$Mn^{3+}_{0.71}Sb^{5+}_{0.16}Fe^{3+}_{0.12}W_{0.01}$
M3	$Zn_{0.58}Fe^{3+}_{0.34}Ca_{0.07}Sb^{5+}_{0.01}$
M4	$Mg_{0.99} Mn_{0.01}^{3+}$
M5	$Mg_{0.99}Mn^{3+}_{0.01}$
M6	$Ca_{0.73}Mg_{0.25}Zn_{0.02}$
W1	$W_{0.96}Mn^{3+}_{0.04}$
W2	$W_{0.96}Mn^{3+}_{0.04}$
W3	$W_{0.96}Mn^{3+}_{0.04}$
W4	$W_{0.96}Mn^{3+}_{0.04}$
W5	$W_{0.98}Mn^{3+}_{0.02}$
W6	$W_{0.97}Mn^{3+}_{0.03}$
W7	$W_{0.98}Mn^{3+}_{0.02}$
W8	$W_{0.98}Mn^{3+}_{0.02}$
W9	$W_{0.97}Mn^{3+}_{0.03}$

