This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

1	Revision 2
2	
3	BERYLLIUM MINERAL EVOLUTION
4	
5	Edward S. GREW
6	School of Earth and Climate Sciences, University of Maine, Orono, ME 04469,
7	Robert M. HAZEN
8	Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, 20015
9	
10	ABSTRACT
11	Beryllium is a quintessential upper crustal element, being enriched in the upper crust by a
12	factor of 30 relative to primitive mantle, 2.1 ppm vs. 0.07 ppm. Most of the 112 minerals with Be
13	as an essential element are found in granitic pegmatites and alkalic rocks or in hydrothermal
14	deposits associated with volcanic and shallow-level plutonic rocks and skarns. Because of the
15	extensive differentiation needed to enrich rocks sufficiently in beryllium for beryllium minerals
16	to form, these minerals are relative late comers in the geologic record: the oldest known is beryl
17	in pegmatites associated with the Sinceni pluton, Swaziland (3000 Ma). In general beryllium
18	mineral diversity reflects the diversity in the chemical elements available for incorporation in the
19	minerals and increases with the passage of geologic time. Furthermore, the increase is episodic;
20	that is, steep increases at specific times are separated by longer time intervals with little or no
21	increase in diversity. Nonetheless, a closer examination of the record suggests that at about 1700
22	Ma, the rate of increase in diversity decreases and eventually levels off at ~35species formed in a
23	given 50 Ma time interval between 1125 and 475 Ma, then increases to 39 species at 125 Ma
24	(except for four spikes), before dropping off to \sim 30 species for the last 100 Ma. These features
25	appear to reflect several trends at work: (1) diversifications at 2475 Ma, 1775 Ma, and 525 Ma,
26	which are associated with highly fractionated rare-element granitic pegmatites and with skarns at

1

12/30

27 Långban and similar deposits in the Bergslagen ore region of central Sweden, and which are 28 inferred to correspond to the collisional phases of the supercontinents Kenorland, Nuna, and 29 Gondwana, respectively; (2) diversification at 1175 Ma due to the rich assemblage of beryllium 30 minerals in the Ilímaussag peralkaline complex, Gardar Province, West Greenland in an 31 extensional environment; (3) diversification at 275 Ma, which is largely attributable to granitic 32 pegmatites (Appalachian Mountains, USA and Urals, Russia) and the Larvik alkalic complex, 33 Norway, but nonetheless related to continental collision and (4) limited exhumation of 34 environments where beryllium minerals could have formed in the last 100 Ma. That the 35 maximum diversity of Be minerals in any one geologic environment could be finite is suggested 36 by the marked slowing of the increase in the number of species formed in a given 50 Ma time 37 interval, whereas the drop off at 100 Ma could be due to 100 Myr being too short a time interval 38 to exhume the deep-seated occurrences where many Be minerals had formed. The relative roles 39 of chance versus necessity in complex evolving systems has been a matter of considerable 40 debate, one equally applicable to what extent the temporal distribution of beryllium minerals is a 41 matter of contingency. On the one hand, the appearance of the most abundant Be minerals, such 42 as beryl and phenakite, early in the history of Be mineralization appears to be a deterministic 43 aspect since these minerals only require the abundant cations Al and Si and crystallize at 44 relatively low concentrations of Be in aqueous solution or granitic magmas. On the other hand, it 45 could be argued that the very existence of most other Be minerals, as well as the temporal 46 sequence of their appearance, is a matter of chance since 55 of the 112 approved Be minerals are 47 known from a single locality and many of these phases require an unusual combination of 48 relatively rare elements. Consequently, we cannot exclude the possibility that other equally rare 49 and thus contingent potential Be minerals await discovery in as yet unexposed subsurface

2

12/30

deposits on Earth, and we suggest that details of Be mineral evolution on other Earth-like planets
could differ significantly from those on Earth.

Keywords: mineral age, beryllium, mineral evolution, granitic pegmatites, peralkaline
 complexes, supercontinent cycle, crystal structure, beryl

54

INTRODUCTION

55 Minerals are conventionally thought to be time-independent – it has been tacitly assumed 56 that the minerals found on Earth and other planetary bodies or meteorites could have formed at 57 any time in the history of the solar system. Mineral evolution challenges this assumption: it 58 cannot be taken for granted that the minerals found today have always been present. This 59 approach to mineralogy is concerned with the first appearance of minerals in the geological 60 record and the relationship between the first appearances and events such as the assembly and 61 break-up of supercontinents, major changes in the composition of the atmosphere, and 62 colonization of dry land. Although Hazen et al. (2008, 2011, 2012) have developed and 63 quantified the mineral evolution paradigm to a far greater extent than before, and Krivovichev 64 (2013) has extended it to the complexity of crystal structures, several important concepts in 65 mineral evolution were anticipated up to nearly 50 years earlier. Compiling data from all over the 66 world, Gastil (1960) found a pronounced cyclicity in mineral dates. Zhabin (1979, 1981) 67 articulated the concept of stages of mineral evolution and duration of a mineral's presence, 68 contrasting common rock-forming minerals like quartz and zircon that have been present 69 throughout geologic time beginning with meteorites with rarities such as welshite (Fig. 1), which 70 has been reported only from a single locality. Yushkin (1982) discussed the increasing 71 mineralogical complexity, which he related to increasing entropy through geologic time, 72 emphasizing that these changes were concentrated in the upper parts of Earth's crust and on its

surface. Mineral evolution was also anticipated in the ore geology literature (Nash et al. 1981;
Meyer 1981, 1985; Rundkvist 1982; Stowe 1994; see also Krivovichev 2013 for a history of
mineral evolution).

76 Minerals containing Be as an essential constituent appear to be relatively late comers on 77 Earth, none having been reported in extraterrestrial rocks (Shearer 2002) or in terrestrial rocks 78 older than ca. 3000 Ma (Grew and Hazen 2009, 2010b, 2013), after 1500 Ma years of Earth's 79 existence. This delayed appearance of Be minerals is no accident, as Be is the least abundant 80 element lighter than Fe in the solar system (Lodders 2010; Lauretta 2011). Beryllium is highly 81 enriched in the upper continental crust compared to other reservoirs, i.e., 2.1 parts per million vs. 82 1.4 parts per million in the lower crust and 0.07 parts per million in primitive mantle (Rudnick 83 and Gao 2005; Palme and O'Neill 2004). However, less than 10 parts per million are rarely 84 sufficient to stabilize a mineral of which Be is an essential constituent (e.g., Grew 2002b). 85 Normally, further enrichment by at least an order of magnitude is necessary for the more 86 common Be minerals, notably beryl, to appear, for example, 70 parts per million in granitic 87 pegmatites (Evensen and London 2002; London and Evensen 2002). 88 The minerals of Be can add a different perspective on mineral evolution from the minerals 89 of mercury, the first element to be treated in detail (Hazen et al. 2012). Both elements are rare, 90 but their cosmochemical behavior differs because Hg has a much lower 50% condensation 91 temperature for a solar-system composition gas: 252 °C for Hg in troilite vs. 1179 °C for Be in 92 melilite (Lauretta and Lodders 1997; Lodders 2003). Their geochemical behavior also is 93 markedly different, as Be is a lithophile elements showing only one valence (2+) in geologic 94 systems, whereas Hg is chalcophile and shows three valence states (0, 1+, and 2+), so that the 95 redox conditions that play a large role in Hg mineral evolution would have had relatively little

96	impact on Be mineral evolution. Another major distinction is that mercury mineralization was
97	enhanced by interactions with organic matter (Hazen et al. 2012), whereas organic materials
98	played a minimal role in the diversification of Be minerals.

99 In the present paper, we review the occurrences of the 112 species containing essential 100 beryllium, with particular emphasis on the first and last reports in the geologic record and the 101 frequency with which the minerals have been reported over geologic time. Broadly speaking 102 there is an increase in mineral diversity with time. As reported by Hazen et al. (2012) for 103 mercury minerals, spurts in species diversification of beryllium minerals appear to be related to 104 the supercontinent cycle. However, the tendency for increased diversification with time does not 105 give the full story of Be mineral evolution, and so our paper will also discuss influences that 106 could have constrained increases in mineral diversity.

107

THE MINERALS OF BERYLLIUM – OUR DATABASE

108 Table 1 lists in alphabetical order the 112 minerals containing essential Be that are

109 considered valid by the Commission on New Minerals, Nomenclature and Classification of the

110 International Mineralogical Association (CNMNC IMA), together with their formulae, which are

111 largely taken from the 2012 CNMNC IMA list (the list can be downloaded from the CNMNC

112 IMA website, http://pubsites.uws.edu.au/ima-cnmnc/IMA_Master_List_%282013-08%29.pdf, or

113 the RRUFF website, http://rruff.info/ima/). Group assignment is based largely on Back and

114 Mandarino (2008) and Mills et al. (2009); other relationships are taken from Hawthorne and

115 Huminicki (2002) and Grice (2010).

116 We question the validity of two of the approved species, and thus we have not included them

117 in our count. Bohseite, Ca₄Be₃AlSi₉O₂₅(OH)₃, may not be distinct from bavenite,

118 Ca₄Be₂Al₂Si₉O₂₆(OH)₂, given the results reported by Lussier and Hawthorne (2011).

119	Krivovichev et al. (2004) found that clinobarylite could be considered the 10-polytype of
120	BaBe ₂ Si ₂ O ₇ , for which barylite is the 2 <i>O</i> -polytype, in which case these minerals are not distinct
121	species, but polytypes of a single species. Vinogradovite had also been listed by the CNMNC
122	IMA as a valid mineral containing essential Be, (Na,Ca,K) ₅ (Ti,Nb) ₄ (Si ₆ BeAl)O ₂₆ ·3H ₂ O.
123	However, Be is not an essential constituent of vinogradovite, because there is no evidence for
124	significant Be in the type material (Semenov et al. 1956). Significant Be substitutes for Si and Al
125	at the Si(2) site in several samples of vinogradovite from the Ilímaussaq complex (Greenland),
126	but it is not dominant at this site, i.e., Si \approx 6, Al \approx 1.2, and Be \approx 0.8 out of 8 atoms total at the
127	Si(2) site (Kalsbeek and Rønsbo 1992), and thus the Ilímaussaq vinogradovite would not qualify
128	as a mineral species distinct from type vinogradovite. Consequently, vinogradovite is no longer
129	listed as a Be mineral in the CNMNC IMA list.
130	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y),
130 131	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although
130 131 132	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an
 130 131 132 133 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as
 130 131 132 133 134 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as (CaY)□(BBe)[OH SiO ₄] ₂ , but this is not a proper end member because there are two cations at
 130 131 132 133 134 135 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as (CaY)□(BBe)[OH SiO ₄] ₂ , but this is not a proper end member because there are two cations at two sites (Hawthorne 2002). Grew (2002a) gave the end member as Y ₂ □(Si ₂ O ₈)O ₂ , i.e., natural
 130 131 132 133 134 135 136 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), $(Y,REE,Ca)(B,Be)_2(SiO_4)_2(OH,O)_2$ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as $(CaY)\Box(BBe)[OH SiO_4]_2$, but this is not a proper end member because there are two cations at two sites (Hawthorne 2002). Grew (2002a) gave the end member as $Y_2\Box(Si_2O_8)O_2$, i.e., natural calcybeborosilite-(Y) could be a solid solution of $Y_2\Box B_2(Si_2O_8)O_2$ with $Ca_2\Box B_2(Si_2O_8)$ (OH) ₂
 130 131 132 133 134 135 136 137 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as (CaY) \Box (BBe)[OH SiO ₄] ₂ , but this is not a proper end member because there are two cations at two sites (Hawthorne 2002). Grew (2002a) gave the end member as Y ₂ \Box (Si ₂ O ₈)O ₂ , i.e., natural calcybeborosilite-(Y) could be a solid solution of Y ₂ \Box B ₂ (Si ₂ O ₈)O ₂ with Ca ₂ \Box B ₂ (Si ₂ O ₈) (OH) ₂ (datolite), Y ₂ FeBe ₂ (Si ₂ O ₈)O ₂ (gadolinite-(Y)) and Y ₂ \Box Be ₂ (Si ₂ O ₈) (OH) ₂ (hingganite-(Y)).
 130 131 132 133 134 135 136 137 138 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as (CaY) \Box (BBe)[OH SiO ₄] ₂ , but this is not a proper end member because there are two cations at two sites (Hawthorne 2002). Grew (2002a) gave the end member as Y ₂ \Box (Si ₂ O ₈)O ₂ , i.e., natural calcybeborosilite-(Y) could be a solid solution of Y ₂ \Box B ₂ (Si ₂ O ₈)O ₂ with Ca ₂ \Box B ₂ (Si ₂ O ₈) (OH) ₂ (datolite), Y ₂ FeBe ₂ (Si ₂ O ₈)O ₂ (gadolinite-(Y)) and Y ₂ \Box Be ₂ (Si ₂ O ₈) (OH) ₂ (hingganite-(Y)). Further discussion of the status of calcybeborosilite-(Y) is beyond the scope of this paper;
 130 131 132 133 134 135 136 137 138 139 	A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), (Y,REE,Ca)(B,Be) ₂ (SiO ₄) ₂ (OH,O) ₂ (e.g., Pekov et al. 2000), could be a valid species although listed as "questionable" in the list at the CNMNC IMA website. Our question is whether Be is an essential constituent. Strunz and Nickel (2001) gave the end-member formula as (CaY) \Box (BBe)[OH SiO ₄] ₂ , but this is not a proper end member because there are two cations at two sites (Hawthorne 2002). Grew (2002a) gave the end member as Y ₂ \Box (Si ₂ O ₈)O ₂ , i.e., natural calcybeborosilite-(Y) could be a solid solution of Y ₂ \Box B ₂ (Si ₂ O ₈)O ₂ with Ca ₂ \Box B ₂ (Si ₂ O ₈) (OH) ₂ (datolite), Y ₂ FeBe ₂ (Si ₂ O ₈)O ₂ (gadolinite-(Y)) and Y ₂ \Box Be ₂ (Si ₂ O ₈) (OH) ₂ (hingganite-(Y)). Further discussion of the status of calcybeborosilite-(Y) is beyond the scope of this paper; sufficient for our purposes is the absence of evidence that Be is an essential constituent of

141	None of the valid unnamed minerals (Smith and Nickel 2007) in their list updated in 2011,
142	which is also available at the CNMNC IMA website, appears to be distinct from an approved
143	mineral. However, there are two additional minerals included in Table 1, bringing the total to
144	112 valid Be minerals. Pršek et al. (2010) reported a hingganite in which Nd is dominant among
145	the rare earth elements + yttrium, which is potentially a new species, hingganite-(Nd).
146	Hawthorne (2002) suggested that yttrian milarite approaching the end-member
147	K(CaY)Be ₃ Si ₁₂ O ₃₀ in composition (Černý et al. 1991; Nysten 1996) could be a distinct mineral.
148	Even for valid species, not all reported occurrences are well documented. For example,
149	minasgeraisite-(Y) has been reported from the Krenn quarry, Matzensdorf/Tittling, Germany
150	(Habel and Habel 2009) and Vlastějovice region, Czech Republic (Novák et al. 2013), but in
151	neither case does the reported composition correspond to the ideal minasgeraisite-(Y) end-
152	member $CaY_2Be_2Si_2O_{10}$, and other data such as powder X-ray diffraction are either not given or
153	only mentioned without specifics. Consequently, we have not accepted such reports, and
154	minasgeraisite-(Y) is listed as a mineral occurring only at the type locality.
155	Complex solid solutions, most notably the roscherite group, required special attention; we
156	accepted as valid only those reports of a given mineral species in which the identification was
157	substantiated by chemical analysis, and, if necessary, symmetry. Rhodizite and its Cs-dominant
158	analogue londonite posed a particular problem. "Rhodizite" has been reported from several
159	localities in the Urals and Madagascar and from one locality in Wisconsin and the United
160	Kingdom, but K-dominant material, i.e. rhodizite sensu stricto, has been confirmed only from
161	two localities in Madagascar (Pring et al. 1986; Simmons et al. 2001). Re-examination of
162	"rhodizite" specimens from the Urals turned up londonite (Pekov et al. 2010), whereas the single
163	published analysis of "rhodizite" from the Animikie Red Ace pegmatite in Wisconsin,

164

164	characterized as a "representative" analysis, gave K 0.393 and Cs 0.407 per formula unit (Falster
165	et al. 2001a), i.e., londonite. No analysis is available for rhodizite reported by A.W.R. Kingsbury
166	from Meldon, Devon, U.K. (Embrey 1978); indeed the report needs confirmation (A. Tindle,
167	2008, http://www.mindat.org/mesg-7-92300.html; cf. Ryback et al. 1998, 2001 for other
168	minerals). Consequently, rhodizite is considered to be found at one locality (as defined below),
169	whereas londonite has been verified from 3 localities by this definition.
170	In terms of mineral class (Strunz and Nickel 2001), the Be minerals that we consider valid
171	include 66 silicates (e.g., Fig. 1a,c,d,e,i), 28 phosphates (e.g., Fig. 1b), 1 arsenite, 2 arsenates, 11
172	oxides (Fig.1h) and hydroxides, 1 carbonate (Fig. 1g), and 4 borates (e.g., Fig. 1c).
173	DETERMINING THE AGES FOR CRYSTALLIZATION OF BERYLLIUM MINERALS
174	The database for determining the evolution of Be minerals is presented in Tables 2 and 3,
175	which are compilations of the earliest and latest reported occurrences of Be minerals in the
176	geologic record, respectively, together with the reported number of localities. The first column of
177	references in each table gives the best source for information of the occurrence of the mineral at
178	the specified locality. The second column of references in each table gives the best source of
179	information for dating the crystallization of the mineral, which is the same reference in some
180	cases. The listed references either give all the necessary information or cite other work that we
181	consulted for compiling the table. The age assignments range widely in quality – in some cases,
182	the age is well constrained, in many others, much less so because we must infer that the rock
183	containing a Be mineral is coeval with the dated rock, and this date could be problematic (see
184	below). We also checked whenever feasible the ages of other localities in order to be sure that we

had found the earliest and latest reported occurrences. 185

12/30

186	The number of localities worldwide for a given mineral is specified only if the number does
187	not exceed 10. Closely spaced localities having identical ages, e.g., pegmatites associated with
188	Larvik plutonic complex in the Langesundsfjord area south of Oslo, Norway (Larsen 2010), are
189	considered to constitute a single locality in Table 3. We made extensive use of the compilations
190	in Grew (2000a, b) and at http://www.mindat.org. However, we verified the occurrences listed at
191	http://www.mindat.org for minerals reported from <10 localities to be sure that the cited
192	occurrences were sufficiently substantiated to be considered valid, e.g., minasgeraisite-(Y)
193	above. Of the 112 species of Be minerals, 55 are reported from only one locality – i.e.,
194	"monochronous" (Zhabin 1979, 1981). In contrast, only 23 minerals have been reported from
195	more than 10 localities worldwide. In terms of Zhabin's (1979, 1981) classification, these
196	minerals can be considered either "panchronous", i.e., formed continuously from the beginning
197	until the present time (bertrandite, beryl, helvite, and phenakite come closest to meeting these
198	criteria, Table 3) or "polychronous", i.e., formed many times (e.g., genthelvite, leucophanite, and
199	moraesite, Table 3). Beryl is the most widespread Be mineral by far; the locality list at
200	http://www.mindat.org includes 4776 items as of October 18, 2013, but this list is undoubtedly
201	incomplete. In compiling and interpreting our dataset, we had to take into account the
202	deficiencies in the geologic record and the difficulties in dating beryllium minerals.

203 Imperfections in the geologic record

204 The geologic record is incomplete. A significant proportion of the upper continental crust,

which hosts all the Be minerals discovered to date, has been lost to subduction, erosion, and

206 metamorphism, or is covered by sedimentary or volcanic rocks, by ice, or by water. As pointed

- 207 out by Barton and Young (2002), some deposits of Be minerals formed on or near Earth's
- surface and could be lost to erosion; possible examples are the four minerals (e.g., almarudite,

209	Table 2) reported in Pliocene and Pleistocene volcanic rocks in the Eifel district, Germany
210	(Schminke 2007) and the Roman comagmatic region, Italy (Della Ventura et al. 1992). These
211	four Be minerals might have appeared earlier in the geologic record, but did not survive.
212	Mineral investigations are not evenly distributed over the planet, but are largely limited to
213	bedrock or sediments on or near Earth's surface, and are concentrated in areas that have received
214	the most attention from geologists, mineralogists, and collectors. For example, the presence of
215	numerous centers of mineralogical research and mining activity in Scandinavia undoubtedly
216	played a role in stimulating the many discoveries of Be minerals in the Långban-type deposits,
217	granite pegmatites of the Svecofennian province and northern Norway, Neoproterozoic
218	pegmatites in Norway, and alkalic pegmatites in the Oslo rift (e.g., Magnussan 1930; Holtstam
219	and Langhof 2007; Nysten and Gustafsson 1993; Langhof et al. 2000; Husdal 2008, 2011;
220	Bergstøl and Juve 1988; Larsen 2010). Similarly it is no accident that the pegmatites in the
221	Superior Province of North America are reported to be the oldest occurrences of a fair number of
222	species given the proximity to the University of Manitoba, which is famous for its mineralogists
223	(e.g., Černý 2005).
224	The ambiguities of dating crystallization of beryllium minerals

225 Dating the formation of Be minerals can be problematic, and not only because

226 geochronological data themselves are associated with significant uncertainties. Emerald is the

only Be mineral that has been dated directly, namely by the Rb–Sr method (Vidal et al. 1992); an

attempt with the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ method gave a meaningless age of 6665 Ma due to excess argon

229 (Cheillitz et al. 1993). In principle, any Be mineral containing K could be dated by the K-Ar and

 40 Ar/³⁹Ar methods (e.g., rhodizite, Giuliani et al. 1995) as could gadolinite containing Th and U,

such as the gadolinite-(Y) from Vico Lake in the Roman comagmatic province, Italy (Cámara et

al. 2008). In the great majority of cases, ages of Be minerals must be inferred from ages
obtained on associated minerals, i.e., ⁴⁰Ar/³⁹Ar method on biotite and muscovite with emerald
(Cheilletz et al. 1993) and U-Pb method on columbite-tantalite associated with Be minerals in
pegmatite (e.g., Romer and Smeds 1994; Breaks et al. 2005), or from circumstantial evidence
such as an age for the deposit in which the minerals are found. Not uncommonly, Be minerals
appear to be younger than the host rocks, e.g., metamorphic or in veins and fracture fillings,
introducing even more ambiguity into their ages.

The Tip Top pegmatite associated with Harney Peak granite in the Black Hills, South

240 Dakota (Norton and Redden 1990) is a good example for which a fairly reliable age is possible

because both the mineralogy and the geochronology have been well studied. The unique suite of

secondary Be phosphates in the Tip Top pegmatite formed from the hydrothermal alteration of

triphylite and beryl by meteoric water or residual aqueous fluid at temperatures between 300 and

244 25 °C (Campbell and Roberts 1986; Loomis and Campbell 2002). Emplacement of the Harney

Peak granite is dated at 1715 ± 3 Ma (U-Pb monazite age, Redden et al., 1990). On the basis of

246 mica 40 Ar/ 39 Ar cooling ages, Dahl et al. (2005) calculated that the Harney Peak granite was not

uplifted until ca. 1480–1330 Ma, at which point it had cooled to ca. 300–350 °C, i.e., it is

doubtful the Be minerals would be older than 1300 Ma. However, another approach would give

an age of ~1700 Ma. On the basis of fluid inclusions from the Tin Mountain pegmatite, which is

also associated with the Harney Peak granite, Sirbescu and Nabelek (2003) estimated a

251 crystallization temperature of 340 °C (at 2.7 kbar) for this pegmatite, which is dated at $1702.4 \pm$

252 2.5 Ma (U-Pb apatite age, Krogstad and Walker 1994). Assuming a comparable temperature for

the Tip Top pegmatite and a residual, rather than meteoric, origin of the hydrothermal fluids, we

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

think that a formation age of ca. 1700 Ma is a more reasonable estimate for the secondary Be

255 minerals in the Tip Top pegmatite.

256 There are no proper constraints on the ages of bearsite and glucine. Both are supergene 257 minerals, i.e., bearsite formed in the oxidized zone of an arsenic-bearing deposit at a depth of 15 258 m below Earth's surface (Kopchenova and Sidorenko 1962), whereas glucine formed in greisens 259 subjected to weathering along faults at depths up to 40 m, e.g., 34 m in one deposit (Pokrovskava 260 et al. 1965; Ginzberg and Shatskaya 1966). The glucine reported from Mount Mica, Paris, Maine 261 (King and Foord 1994; A. Falster, in preparation) could also have a supergene origin, and 262 consequently, it is unlikely that ages of the deposits in which bearsite and glucine occur would 263 give even an approximate age of formation of these two Be minerals.

264 Significance of the diversity diagrams

265 Figures 2a and 2b present two complementary aspects of the increase of Be mineral 266 diversity with time. Cumulative diversity (Fig. 2a) shows the increase in the total number of 267 species that are reported to have formed by a given time in Earth's history, and is based on the 268 reported first occurrences in the geological record. At the present time, the cumulative diversity 269 is 112 species, i.e., the totality of species that have appeared on Earth at one time or another, that 270 have been preserved in the geologic record, and that have been discovered. However, this 271 number is not the number of species that could be forming now or within the last 50-100 Ma, 272 which Figure 2b gives as about 30 species. More generally, Figure 2b shows our estimate of the 273 diversity of Be minerals at a given time in Earth's history, i.e., the number of species inferred to 274 have formed during a given 50 Ma interval. The number of species in these intervals was 275 estimated from three types of information: (1) reported first occurrences, (2) reported last 276 occurrences and (3) frequency of reported occurrences in the geologic record. That is, Figure 2b

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

is based on a larger dataset than Figure 2a, but still one that is relatively small, comprising 110
species and a few hundred localities. It is three orders of magnitude smaller than the number of
dated detrital zircon grains (Fig. 2c). Thus, interpretation of the variations in the number of
species from one 50-Ma interval to the next must be mindful of the poor statistics; differences of
5 species or less are probably not statistically significant.

282 Supercontinent cycles

283 In our discussion relating mineral diversity to supercontinental cycles, we have adopted the

284 names for supercontinents proposed by Hoffman (1997), rather than the alternatives

285 Superia/Sclavia (Bleeker 2003; Cawood et al. 2013) and Columbia (Rogers and Santosh 2002)

286 for the two oldest supercontinents, respectively, and Pannotia in lieu of Gondwana (cf. Hazen et

al. 2012). The names of the older continents are not interchangeable, because each implies a

288 different interpretation of the extent to which continental fragments had aggregated, i.e.,

289 Kenorland is viewed as single supercontinent comprising most of the cratons, including Slave

290 (Sclavia) and Superior (Superia). Nuna comprised North America (including Greenland) and

291 Baltica, but Hoffman (1997) considered connections of Nuna to Siberia and Australia to be

tenuous. In contrast, Rogers and Santosh (2002, Fig. 1) showed Nuna and Siberia to constitute

293 one fragment of Columbia; other fragments comprised Australia and the other continents which

294 eventually regrouped to form Gondwana. Our choice of Kenorland and Nuna makes sense for

295 considering Be minerals, because Be minerals have been found in the Archean Eon in several

296 cratons other than Superia and Sclavia, whereas Paleoproterozoic Be minerals are found only in

297 North America and Baltica (Table 2; Fig. 2a).

298

299

BERYLLIUM IN METEORITES AND THE SOLAR SYSTEM

300	Reeves et al. (1970) formulated the hypothesis that Be formed by high-energy processes
301	involving cosmic rays acting on the interstellar medium, a hypothesis that explains the cosmic
302	abundance of ⁹ Be (e.g., Reeves 1994; Ramaty et al. 1996, 1997). Because of the small electric
303	charge (+ 4) and small binding energy of its nucleus, Be is a "fragile" element that is destroyed
304	by the heat in stellar interiors (Reeves 1994; Lodders 2010). For these reasons Be has a much
305	lower abundance than C, N, and O in the solar system. Beryllium abundance in chondrites,
306	achondrites, stony irons, and irons is reported to range from 0 to 400 ppb Be, but reaches 560
307	ppb in calcium-aluminum-rich inclusions (CAIs), with the maximum concentration in melilite
308	and alteration phases in the CAIs, 649 ppb and \sim 1 ppm, respectively (Lauretta and Lodders
309	1997; Shearer 2002; Paque et al. 2003). The affinity of Be for melilite is attributed to its being
310	isostructural with gugaite, Ca ₂ BeSi ₂ O ₇ .
311	BERYLLIUM MINERALS IN THE ARCHEAN EON (4000 TO 2500 MILLION YEARS)
312	Pegmatites are the primary sources of Be minerals found in Archean rocks. The oldest
313	differentiated pegmatites, ca. 3100 Ma, are reported from the Barberton Mountain Land, South
314	Africa (Tkachev 2011); these deposits include the 3040 Ma New Consort pegmatites (Harris et
315	al. 1995). Although sufficiently differentiated to contain spodumene and up to 39 ppm Be, these
316	pegmatites are reported to be devoid of Be minerals. The two oldest reported Be minerals are
317	beryl and phenakite from southern Africa. Beryl is reported in pegmatites coeval with the

318 Sinceni pluton, Swaziland, and thus dated at 3000 ± 100 Ma using Rb-Sr isotopes (Trumbull

1993); a more precise date for the Sinceni Pluton is given by a $3074 \pm 4 \text{ Ma}^{207}\text{Pb}/^{206}\text{Pb}$ zircon evaporation age (Maphalala and Kröner 1993), but its accuracy needs confirmation (Trumbull

321 1993).

322	Emerald (Fig 1a) and phenakite occur in biotite schist associated with "albitite pegmatoid"
323	and phenakite is found in the pegmatoid in the Gravelotte emerald deposit, Murchison
324	greenstone belt, South Africa (Robb and Robb 1986; Grundmann and Morteani 1989), for which
325	the zircon age of 2969 ± 17 Ma on the Discovery Granite (Poujol 2001) probably best dates
326	crystallization of this "pegmatoid." Granitic pegmatites ranging in age from 2850 to 2550 million
327	years associated with greenstone belts in the Pilbara (Fig. 2a) and Yilgarn Cratons, Western
328	Australia (e.g., Sweetapple and Collins 2002; Jacobson et al. 2007) and the Superior Province,
329	Ontario and Manitoba, Canada (e.g., Breaks et al. 2005; Černý 2005) contain 7 silicate and 3
330	phosphate Be minerals – evidence that the differentiation of granitic melts was more than
331	sufficient to enrich resulting pegmatites in Be (e.g. 170 ppm, Tanco pegmatite, Manitoba,
332	Canada, Stilling 2006) and give a diverse suite of Be minerals in Archean orogenic belts. The
333	increase of diversity is coeval with the two peaks in the number of zircon grains associated with
334	the assembly of Kenorland (Superia/Sclavia, Cawood et al. 2013; Fig. 2c).
335	Peralkaline rocks are very rare in Archean complexes, and there are only two reports of Be
336	minerals in peralkaline rocks of that era – meliphanite and behoite as metasomatic minerals
337	associated with nepheline syenite of the Sakharjok complex, Keivy Alkaline Field, Kola
338	Peninsula, Russia (Bel'kov and Denisov 1968; Batiyeva and Bel'kov 1984; Lyalina et al. 2009),
339	which was dated at 2682 ± 10 Ma (Zozulya et al. 2005).
340	Metamorphic Be minerals are also reported from just one locality in strictly Archean rocks:
341	chrysoberyl in a granulite-facies plagioclase-biotite-quartz gneiss 2640 - 2649 million years in
342	age, Yilgarn craton, Australia (Downes and Bevan 2002). However, two Be silicates and one Be
343	oxide are found in granulite-facies anatectic veins of earliest Paleoproterozoic age (2485 million

Based on reported occurrences, by the earliest Paleoproterozoic Era there were 18 Be
minerals (Figs. 2a,b), representing 16% of the total known.

348 **BERYLLIUM MINERALS IN THE PROTEROZOIC EON (2500 TO 542 MILLION YEARS)**

349 Paleoproterozoic (2500 Ma to 1600 Ma).

350 During the second half of the Paleoproterozoic, i.e., beginning in 2050 Ma after a 435 m.y. 351 period during which no new species have been documented, there was a marked increase Be 352 mineral diversity (Fig. 2a,b) in both metamorphic and pegmatitic environments, which is coeval 353 with the peaks in number of zircon grains coincident with assembly of the supercontinent Nuna 354 (Fig. 2c). A remarkable diversity is found at Långban and similar deposits in the Bergslagen ore 355 region of central Sweden (Magnusson 1930; Holtstam and Langhof 1999; Jonsson 2004): 10 Be 356 species, mostly as skarn minerals at the peak of metamorphism or in related cavities and vugs at 357 ca. 1825 Ma (periods B and C of Magnusson 1930). The history of the Långban-type deposits 358 began with submarine volcanic-hydrothermal exhalation and precipitation in a back-arc setting at 359 1890 Ma followed first by regional amphibolite-facies metamorphism and vein formation 360 through remobilization at about 1850-1800 Ma (Svecofennian event) and then by brittle 361 deformation possibly at about 1000 Ma (period D of Magnusson 1930). Multiple reworking of an 362 unusual mix of constituents in an oxidizing environment where the chalcophile elements Pb, Sb, 363 As, and Sn combined with Be in oxides and silicates resulted in 10 minerals, e.g., welshite (Fig. 364 1e), swedenborgite, and the amphibole joesmithite, which are "monochronous" minerals (Zhabin 365 1979, 1981) unique to Långban and similar deposits – not yet reported outside the Bergslagen 366 ore region.

367	Granite pegmatites were the other major contributor of mineral diversity during the second
368	half of the Paleoproterozoic, but over a narrower time span: between ca. 1850 Ma and 1700 Ma.
369	Four areas yielded 17 of the 28 species of Be minerals reported to first appear in the geologic
370	record at this time: (1) pegmatites approximately coeval with metamorphism of Långban-type
371	deposits between ~ 1800 and ~1850 Ma in age (Lahti 1989; Lindroos et al. 1996; Romer and
372	Smeds 1994; 1996; 1997) in the Svecofennian province of Sweden and Finland; (2) pegmatites
373	associated with the Tysfjord granite, 1742 ± 46 Ma, Nordland, Norway (Andresen and Tull
374	1986; Husdal 2008); (3) pegmatites associated with Harney granite, Black Hills, South Dakota,
375	USA, ca. 1700 Ma (see above); and (4) the Animikie Red Ace pegmatite, Penokean Orogen,
376	Wisconsin, USA, 1760 Ma (e.g., Falster et al. 2001a,b; Sirbescu et al. 2008). Many of these
377	pegmatitic minerals are "monochronous" - one-time occurrences (Zhabin 1979, 1981), which
378	contribute to two spikes that stand out against an overall increase in diversity between 1875 Ma
379	and 1675 Ma (Fig. 2b). Even more of these minerals are secondary phases, which are derived
380	from the alteration of primary Be minerals, in most cases, beryl, i.e. 4 of the new Be minerals
381	from Sweden (Nysten & Gustafsson 1993; Langhof et al. 2000) and all 8 new Be minerals from
382	the Black Hills, South Dakota (Campbell and Roberts 1986; Loomis and Campbell 1992).
383	Diversity could be the result not just of mixing of constituents from different sources by late,
384	low-temperature hydrothermal fluids, e.g., triphylite for phosphate and beryl for Be in the Tip
385	Top pegmatite (Campbell and Roberts 1986; Loomis and Campbell 1992). At low temperatures,
386	hydroxyl and molecular water are incorporated in minerals, resulting in complex crystal
387	structures, which increase the potential for diversity.

388 Mesoproterozoic and Neoproterozoic (1600 Ma to 542 Ma).

389	The second half of the Proterozoic Eon is marked by a continuation of the overall increase in
390	diversity up until about 950 Ma, e.g., the two Be minerals in the 1538 Ma skarns of the
391	Pitkaranta ore field, Karelia, Russia (Amelin et al. 1997; Sviridenko and Ivashchenko 2000;
392	Stein et al. 2003; Ramo 2005). The latter part of the increase overlaps assembly of the
393	supercontinent Rodinia (1300-950 Ma, Cawood et al. 2013), but not all the Be occurrences
394	during this time can be related to the phase of supercontinent assembly, for example, the 1267
395	Ma Igaliko and 1160 Ma Ilímaussaq peralkaline complexes (see below). Other contributors to the
396	increase in diversity are granitic pegmatites, a zinc deposit, metamorphic rocks and skarns, and
397	hydrothermal supergene alteration. Minerals in granitic pegmatites include secondary Sc-Be
398	minerals bazzite and oftedalite from the Heftetjern pegmatite, renowned for its diversity in Sc
399	minerals (e.g., Raade et al. 2004; Bergstøl and Juve 1988; Juve and Bergstøl 1990). The
400	Heftejern pegmatite is related to the Tørdal granite (Bergstøl and Juve 1988; Cooper et al. 2006),
401	which is coeval with 967±4 Ma (U-Pb zircon) post-orogenic Vrådal granite in Telemark, Norway
402	(Bergstøl and Juve 1988; Andersen et al. 2007). Bergstøl and Juve (1988) attributed most of the
403	Sc enrichment of the pegmatite to contamination with mafic volcanogenic rocks through which
404	the pegmatites passed, i.e., mineral diversity (new Be-Sc minerals) resulted from mixing of
405	constituents from two different sources. Metamorphic, skarn, hydrothermal, and supergene
406	minerals include two minerals from ca. 1000 Ma rocks in the zinc deposits of the Franklin
407	Marble, New Jersey in the Grenville Province of North America. Aminoffite (Hurlbut 1937) is
408	the only mineral containing either B or Be that could belong to the fissure mineralization at
409	Långban, Sweden (period D of Magnusson 1930), which is attributed to hydrothermal activity at
410	1000 Ma, over 800 Ma later than the skarn and vug minerals of periods B and C (Jonsson 2004;
411	personal communication, 2009).

412	The large spike at 1160 Ma is due to the Ilímaussaq peralkaline complex, in the Gardar
413	Province, southwest Greenland (e.g., Peterson and Secher 1993; Krumrei et al. 2006; McCreath
414	et al. 2012). Together with the nearby Igaliko complex, it constitutes one of the world's premier
415	localities for Be minerals, both in species appearing for the first time in the geologic record (9
416	minerals in the Ilímaussaq complex, e.g., sørensenite, Fig. 1c, Table 4) and in overall diversity
417	(Engell 1971; Markl 2001). However, in contrast to the mineral species found in the Långban-
418	type deposits, few of the minerals in the Igaliko and Ilímaussaq complexes are "monochronous"
419	(Zhabin 1979, 1981), such as sørensenite; many of these unusual minerals, e.g., tugtupite, are
420	also found in younger peralkaline complexes (Table 4), notably Khibiny and Lovozero on the
421	Kola Peninsula, Russia (362 Ma, Pekov 2000; Yakovenchuk et al. 1999; Arzamastsev et al.
422	2007); Larvik complex, Norway (294 Ma, Larsen 2010); Mont Saint-Hilaire, Quebec, Canada
423	(124 Ma, Eby 1984; Currie et al 1986; Gilbert and Foland 1986); and Zomba-Malosa, Malawi
424	(113 Ma, Eby et al. 1995).
425	The overall increase in diversity until about 950 Ma was followed first by a leveling off at
426	35-38 species per 50-Ma interval (Fig. 2b), and then a spike of 41-42 species at 575-525 Ma.
427	This spike in Be mineral diversification extends beyond the Proterozoic Eon into the Cambrian
428	Period, coeval with the assembly of the supercontinent Gondwana (700-500 Ma, Cawood et al.
429	2013). Of the nine Be minerals new to the geologic record between 585 and 500 Ma, six are
430	secondary, including four phosphates of the roscherite group, in pegmatites associated with the
431	Late Neoproteroterozoic-Cambrian Brasiliano orogeny, Minas Gerais, Brazil, 585-500 Ma (e.g.,
432	Atencio 2000; Morteani et al 2000; Pedrosa-Soares et al. 2011).
433	In summary, we see a recurring theme – the major contributions to Be mineral diversity are
434	suites of secondary, low-temperature minerals containing components generally not occurring

together in great abundance. These minerals have complex crystal structures incorporating
significant amounts of OH and H₂O, which can add considerably to structural complexity in
some cases (Table 1 and Krivovichev 2013).

438 BERYLLIUM MINERALS IN THE PHANEROZOIC EON (542 MILLION YEARS TO THE PRESENT)

The most salient feature in the Paleozoic is a prominent spike of 54 species at 275 Ma

superimposed on a modest increase from 35 at 475 Ma to 39 species at 125 Ma. An example of

441 increased diversity in the early Paleozoic is formation of høgtuvaite during Caledonian

442 metamorphism (414 Ma) of an 1800 Ma Be deposit (Grauch et al. 1994; Skår 2002). Granitic

443 pegmatites in the Urals (e.g., makarochkinite at 265 Ma, roggianite at 250 Ma, Table 2) and

444 Appalachians (e.g., gainesite at 293 Ma, Table 2; also Bradley et al. 2013), together with alkalic

445 pegmatites associated with Larvik plutonic complex at 294 Ma in the Oslo rift, Norway (Larsen

446 2010) contributed to the 275 Ma spike, which is coeval with one of the peaks in the number of

447 zircon grains and assembly of Pangea (Fig. 2b,c).

The youngest feature in Figure 2b is a drop off from 39 to about 30 species during the last

100 Ma, despite the appearance of four beryllium minerals in the Pleistocene volcanic rocks in

450 the Eifel district, Germany (Schminke 2007) and the Plio-Pleistocene Roman comagmatic region

451 or Roman perpotassic province (e.g., Della Ventura et al. 1992), e.g., almarudite and stoppaniite,

452 respectively. Other examples of very young volcanic occurrences are behoite at Honeycomb

453 Hills, Juab County, Utah (Table 3), as well as beryl and bertrandite at Spor Mountain, about 35

454 km distant (younger than 21 Ma, possibly younger than 6-7 Ma, Lindsey 1977).

455

DISCUSSION

Figures 2a and 2b show that very broadly beryllium mineral diversity increases with the passage of geologic time and the increase is episodic, i.e., spikes of markedly increased diversity 458 separated by longer time intervals with much less increase; indeed none between 2450 and 1950 459 Ma. After 1700 Ma, the rate of overall diversity increase slackens and eventually tops off at ~ 40 460 species present in a given 50 Ma time interval except for a prominent spike at 275 Ma, before 461 dropping off to ~30 species for the last 100 Ma. These features appear to reflect several trends at 462 work: (1) episodic and uneven diversification related to overall evolution of the continental crust. 463 (2) finiteness in the maximum mineralogical diversity in a given geological environment, and (3) 464 limited exposure of environments where beryllium minerals could be forming now, geologically 465 speaking (last 5-10 Ma).

466 Beryllium minerals and supercontinent cycles

467 The spikes in diversity shown in Figure 2b, namely, 2475 Ma (break in the steady diversity 468 increase), 1775 Ma (paired spikes), 1175 Ma, 550 Ma (paired spikes), and 275 Ma, overlap peaks 469 in numbers of dated detrital zircon grains in the compilation of Voice et al. (2011), which was 470 used by Cawood et al. (2013), and is reproduced as Figure 2c. That is, these diversity spikes 471 could correspond to the collisional phases of the supercontinental cycles of Kenorland, Nuna, 472 Rodinia, Gondwana, and Pangea, respectively. Cawood et al. (2013) emphasized that the peak in 473 zircon numbers probably does not represent episodic spurts of continental growth, but rather the 474 greater potential for preservation of rocks formed during the later stages of ocean closure and 475 continental collision, a similar conclusion was reached by Condie et al. (2011). The 476 correspondences are noteworthy in that preservation plays a different role. The zircons are 477 detrital grains from metasedimentary and sedimentary rocks ranging in age from Archean to 478 Recent (Voice et al. 2011), and thus could have been preserved in many cases without their 479 source rocks in the continental crust being preserved, whereas the beryllium minerals were found

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

in situ, i.e., the segment of continental crust containing the beryllium minerals must be preservedin order for the beryllium minerals to be preserved.

482 Nonetheless, there are several complications in relating the diversity spikes to 483 supercontinent cycles. The spikes in species diversity relate to three distinct geologic 484 environments: (1) metamorphic and metasomatic complexes, (2) granitic pegmatites, and (3) 485 alkalic and peralkaline intrusive complexes. Regional metamorphic rocks and most granitic 486 pegmatites (the main exception being pegmatites in the NYF family, e.g., Černýand Ercit 2005) 487 are characteristic of collisional orogeny (e.g., rare-element pegmatites, Bradley et al. 2012, 2013) 488 and thus relating the spikes resulting from diversification in these two environments, i.e., 2475 489 Ma, 1775 Ma and 525 Ma, could correspond to the collisional phases of Kenorland, Nuna, and 490 Gondwana, respectively, as suggested above. The last correspondence is not surprising as all the 491 reported species are found in Brazil (plus one in Madagascar). In addition, minerals formed in 492 the zinc deposit at Franklin, New Jersey during the Grenville orogeny at ca. 1000 Ma could be 493 related to assembly of Rodinia.

Granitic pegmatites and related rocks in the Urals and Appalachians, together with pegmatites associated with the Larvik plutonic complex, contribute to the large spike in diversity at 275 Ma. This spike is roughly coeval with a late phase of collision of Pangea (Appalachians, Bradley et al. 2013), whereas the Larvik pegmatites are associated with passive rifting in the Oslo Graben, possibly related to the rotation of the Pangea supercontinent during a late stage of the Hercynian/Variscan orogeny (Heersemans et al. 1996; 2004; Larsen et al. 2008).

500 Linking mineral diversification to supercontinent evolution is less obvious for the spike

501 centered at 1175 Ma and the diversity increase beginning at about 1300 Ma (Figs. 2a, b). These

502 increases in diversity are due to minerals found in the peralkalic Igaliko and Ilímaussaq

22

12/30

503	complexes of the Gardar Province in West Greenland. Upton et al. (2003) associated rifting in
504	the province with the break-up of the supercontinent Paleopangea, but only stated this
505	association in the abstract and did not explore or develop it further in the paper. We are not
506	aware of another paper in which rifting in the Gardar Province is tied to supercontinent breakup.
507	For example, J.D.A. Piper (e.g., Piper 1982, 2010), who developed the concept of a Paleopangea
508	supercontinent that lasted from at least 1300 Ma to its breakup extending from 600 to 500 Ma,
509	did not mention such a relationship. Goodenough et al. (2002) suggested that magmas in the
510	Gardar Province originated in subcontinental lithospheric mantle metasomatized by subduction-
511	related fluids or melts during the Ketilidian orogeny at about 1800 Ma, an interpretation
512	extended by Goodenough et al. (2013) to include enrichment of rare earth elements, Nb and Ta.
513	Taken a step further, we suggest that Be was also introduced with these elements, but this leaves
514	unanswered the question concerning the relationship to supercontinent assembly and break up.
515	One might conjecture that rifting in the Gardar Province bears a relationship to the older events
516	recorded in accreted terranes (1140-1250 Ma, Rivers 2008) in the Grenville belt analogous to
517	that of far field rifting in the Oslo Graben to the Variscan/Hercynian orogeny.
518	Structural and chemical complexity of beryllium minerals
519	Krivovichev (2013) summarized mineral evolution as involving both increasing diversity of

520 mineral species and increasing crystal structural complexity, which is a measure of both size-

and symmetry-sensitive aspects and can be calculated according to a modified Shannon formula.

- 522 On the basis of 3949 structure reports on minerals extracted from the Inorganic Crystal Structure
- 523 Database, Krivovichev (2013) classified structures in terms of total structural information
- 524 content (bits per unit cell) into very simple (0-20 bits), simple (20-100 bits), intermediate (100-
- 525 500 bits), complex (500-1000 bits), and very complex (> 1000 bits), respectively, 15%, 28%,

526 46%, 8% and 3%, and the proportions reported for 92 beryllium mineral structures in

527 Krivovichev's (2013) database are not very different (Table 1; Fig. 3).

528 There is little, if any, increase in complexity of Be mineral structures with time. Although 529 none of the minerals reported to first appear in the Archean (>2500 Ma) have complex structures, 530 their absence could simply be due to the proportion of complex and very complex structures 531 being only 14% among beryllium minerals.

532 Chemical composition played a more important role in the diversification of beryllium 533 minerals than crystal structure. For example, minerals in the beryl and gadolinite-datolite group 534 illustrate the limitations of relying on structural complexity as a measure of mineral evolution. 535 Beryl, bazzite, and stoppaniite give total structural complexities of 133-146 bits; only the Cs-Li 536 beryl-group mineral pezzottaite is significantly higher at 941 bits (Table 1). These numbers belie 537 the complexity of beryl composition, which incorporates significant Li, Na, and Cs in the most 538 differentiated granitic pegmatites (Černý 2002). Mixing with Sc-bearing fluids resulted in the Sc-539 dominant analogue, bazzite (Bergstøl and Juve 1988), whereas a combination of unusually oxidizing conditions and peralkalinity might explain the high Fe³⁺-and low Al content in 540 541 stoppaniite (Černý 2002). Moreover, the rarer beryl-group species appear later in the geologic 542 record than beryl (Table 2). Similarly, structural complexity of gadolinite and hingganite has a 543 narrow range (107-114 bits, Table 1), yet the solid solutions of these minerals are highly 544 complex with substitutions involving both light and heavy REE, Ca, and Fe at the larger 545 sites, Be and B at tetrahedral sites, and hydroxyl at O sites, all of which have confounded 546 classification of this mineral group (e.g., Grew 2002a). Only gadolinite-(Y) is reported from 547 Archean rocks, whereas two of the four hingganite species have not been found in Precambrian 548 rocks (Table 2). In summary, the chemical variables that define mineral species in these two

549 groups constitute a more sensitive measure of increasing diversity with time than does structural

550 complexity.

551 Are there limits to beryllium mineral diversity?

552 Figure 2a suggests that there is no limit to Be mineral diversity. However, this diagram gives 553 cumulative diversity, which would correspond to actual diversity at any given time only if 554 species formed earlier in Earth's history continued to form up until the time in question. e.g., all 555 112 Be minerals found in the geologic record were forming now. Figure 2b shows that this is not 556 the case, and that there could be a limit to beryllium mineral diversity, at least in the more 557 widespread geologic environments in the upper continental crust, e.g., granitic pegmatites, 558 alkaline and peralkaline pegmatites, metamorphic rocks and skarns. Discounting the spikes 559 discussed above, Figure 2b shows that between 1700 Ma and 100 Ma the number of species 560 likely to have formed during a given 50 Ma time interval increases more slowly and eventually 561 levels out at ~ 40 species. The spikes result from addition of up to 15 more species to a given 562 time interval; many of these species are found only in one deposit ("monochronous" of Zhabin 563 1979), e.g., six minerals at Långban, Sweden (1825 Ma). This unique diversity must reflect a 564 one-time convergence of circumstances such as a unique mixing of constituents not generally 565 enriched together. In other cases, the "monochronous" minerals are secondary phases, e.g., five 566 of the secondary hydrated phosphates at the Tip Top mine, South Dakota (1702 Ma).

Table 4 is also suggestive of an upper limit to diversity in alkalic pegmatites. Although the overall diversity of the Phanerozoic Larvik and Mont Saint-Hilaire alkalic complexes rivals or exceeds that of the Proterozoic Ilímaussaq complex, neither introduces as many minerals new to the geologic record as does Ilímaussaq. The proportion of Be minerals in any one of the 8 complexes that are not found in the other 7 complexes does not exceed 20%; i.e., the beryllium

572 mineral assemblages among the 8 complexes differ much less than one might expect given the 573 availability of a wide variety of rare elements, several of which are essential constituents of Be 574 minerals (Table 4).

A third example comprises 16 minerals reported in granitic pegmatites and alpine fissures in the Alpine-Himalayan belt (5-33 Ma, Table 3). None of these minerals is new to the geologic record; rather they are reported from granitic pegmatites as old as 3000 Ma (e.g., beryl Table 2). This situation suggests that even in an environment as conducive to extreme mineralogical diversity as a granitic pegmatite, there are limits to diversity; the exceptional diversity in secondary beryllium minerals at the Tip Top mine, Black Hills, S.D., is the exception, not the rule in granitic pegmatites.

582 Why is there a decrease in diversity in the Upper Cretaceous and Cenozoic?

583 The drop off in diversity from ~40 species to ~30 species in the last 100 Ma is unexpected, 584 particularly as another five species were first reported in the geologic record in this time period, 585 including four species in Pleistocene volcanic rocks at Earth's surface (Eifel, Germany and 586 Roman Comagmatic Province, Italy). This drop-off contrasts with the marked increase in 587 diversity of Hg, Br, I, and B minerals in the last 100 million years, which Hazen et al. (2012) and 588 Grew and Hazen (2010a) attributed to many of the minerals being soluble in aqueous fluids (e.g., 589 halides and many borates) or volatile (e.g., native Hg), and thus ephemeral. None of the 110 Be 590 minerals can be considered ephemeral in this sense, and thus preservation of Be mineral diversity 591 is relatively little affected by stability of minerals at Earth's surface. Thus, once a Be mineral 592 forms it is more likely to be preserved unless it erodes away. Conversely, only a few Be 593 minerals, such as bearsite, glucine, uralolite, and moraesite, are supergene, i.e., formed by

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

oxidation or weathering close to Earth's surface (Kopchenova and Sidorenko 1962; Pokrovskaya
et al. 1965; Ginzberg and Shatskaya 1966).

596 The situation for Be minerals could be analogous to that for economically significant 597 orogenic gold deposits, none of which are younger than 50 Ma (Goldfarb et al. 2001). Since such 598 deposits typically formed at mid-crustal levels, Goldfarb et al. (2001) concluded that they are 599 still being unroofed. Beryllium minerals might also be sensitive indicators of the rates of deep 600 rock exposure and erosion. Even in geologic terms, 100 Myr is a relatively short time interval, 601 one that could be insufficient for formation and exhumation of rocks containing a diverse 602 assemblage of Be minerals. Herein lies a possible explanation for this paradox: perhaps 603 additional Be mineral species have been forming at depth over the past 100 Ma, but there has not 604 been sufficient time for certain geologic environments to be exhumed. For example, there are no 605 Be-enriched plutonic alkalic complexes younger than 100 Ma, so the youngest ages reported for 606 minerals characteristic of this environment exceed 100 Ma. Another example is surinamite, a 607 metamorphic mineral restricted to relatively deep-seated rocks (typically P \ge 8 kbar, T \ge 800 °C, 608 e.g., Grew 2002b) no younger than 1050 Ma (Chimwala, Chipata district, Zambia, de Roever and 609 Vrána 1985; Johnson et al. 2006). Younger analogues of Precambrian upper-amphibolite to 610 granulite-facies rocks are not often exhumed, and given the scarcity of surinamite (5 localities, 611 worldwide, 7 if the 3 Antarctic localities are counted separately, Grew 2002b), the chances of 612 finding surinamite in an exhumed terrane are slim indeed. In contrast, the more common Be 613 minerals such as beryl and bertrandite have been found in relatively deep-seated complexes 614 exhumed in the Alpine-Himalaya orogenic belt (e.g., Pakistan, Fig. 4), as well as in Neogene and 615 Quaternary volcanic deposits.

616 Mineral evolution: An accident of historical contingency?

27

12/30

617 The relative role of chance versus necessity in complex evolving systems has been a matter of 618 considerable debate. For example, a dominant role for contingency was advanced for biological 619 evolution by Stephen J. Gould, who "confronted our traditional view about progress and 620 predictability in the history of life with the historian's challenge of contingency—the 'pageant' 621 of evolution as a staggeringly improbable series of events, sensible enough in retrospect and 622 subject to rigorous explanation, but utterly unpredictable and quite unrepeatable" (Gould 1989, 623 p. 14; see also Gould 2002). This conclusion arose in part from Gould's interpretation of the 624 "weird wonders" from the Middle Cambrian Burgess Shale of British Columbia-a soft-bodied 625 fauna that features many unusual, if not unique, invertebrate morphologies. However, Conway-626 Morris (1998) challenged Gould's conclusions and countered that virtually all of the seemingly 627 strange Burgess Shale fossils represent well-established arthropod anatomies, and thus do not 628 support the hypothesis of contingency-dominated evolution. Mahler et al. (2013) also challenged 629 Gould's view of biological evolution, finding that many anatomical features in the speciation of 630 Caribbean lizards are predictable. 631 An analogous debate can inform studies of the evolution of Be minerals. To what extent is the

temporal distribution of beryllium minerals a matter of chance versus necessity? On the one hand, the appearance of the most abundant Be minerals, including beryl, phenakite, and chrysoberyl, early in the history of Be mineralization appears to be a deterministic aspect of any Earth-like planet. These phases only require the abundant cations Al and Si, and they crystallize at relatively low concentrations of Be in aqueous solution or granitic magmas. Therefore, if a Be concentration mechanism exists on a terrestrial planet or moon, then these phases are likely to be among the first Be minerals to form. The likelihood that these phases would form and not others 639 in widespread geologic environments is also suggested by the limit to beryllium mineral640 diversity implicit in Figure 2b.

641 On the other hand, it could be argued that the very existence of most other Be minerals, as 642 well as the temporal sequence of their appearance, is a matter of chance. The fact that 55 of the 643 112 approved Be minerals are known from only 1 locality (Table 1) points to the significant role 644 of contingency in diversification. Most of these phases require an unusual combination of 645 relatively rare elements (Be combined with Sc, Zn, Zr, or Sn, for example, Table 5). Several of 646 these odd combinations yield different minerals in different environments, e.g., Be-Sn gives 647 sørensenite in the alkalic Ilimaussag complex, Greenland, but sverigite in the skarn complex at 648 Långban, Sweden. Furthermore, these unusual chemical concatenations must be exposed at or 649 near Earth's surface and then must be recognized as sufficiently different from other minerals to 650 warrant study. This realization, that chance plays a significant role in Earth's mineral evolution 651 and in our discovering the diversity resulting from this evolution, has important implications not 652 only for the present paper, but also for other papers on mineral evolution (e.g., Zhabin 1979; 653 Hazen et al. 2008, 2012).

To what extent, therefore, does chance play a significant role in the evolution of Earth's nearsurface environment? Would any planetary body of the same size and composition, the same location relative to a star similar in size to our Sun, and subjected to comparable meteoritic and cometary bombardment end up grossly similar to Earth? A full consideration of these questions is beyond the scope of the present paper, but some basic principles are worth exploring in the context of Be mineral evolution.

First, we expect that the concentration of Be in such a planet as a whole would be comparableto that of Earth since Be is one of the sparsest elements in the cosmos due to its destruction in

662	stellar interiors (Reeves 1994; Lodders 2010); a planet enriched in Be such as Isaac Asimov's
663	(1954) fictional "Junior" in the novella "Sucker Bait" is not likely. Second, the volumetric
664	distribution of major rock-forming minerals will certainly be similar to Earth. Basalt will
665	dominate the crust, while derivative igneous rocks will also be abundant. Complex pegmatites
666	and alkali rocks with suites of Be minerals will form as widespread, if volumetrically minor,
667	deposits. Beryllium phases will also occur in hydrothermal zones associated with volcanic and
668	shallow-level plutonic rocks and skarns. These types of deposits, which are volumetrically minor
669	but widespread on Earth today, thus appear to be deterministic aspects of any Earth-like planet.
670	Furthermore, the episodic appearance and relative timing of many Be minerals may also be
671	deterministic. Morra et al. (2013) found regulatities in the size distributions of tectonic plates
672	over the last 200 Ma, with the implication that timing of supercontinent assembly and break-up
673	might not be a matter of chance, but rather is governed by the dynamics of the Earth system and
674	thus in principle is predictable. To the extent that mineral formation and preservation is linked to
675	the supercontinent cycle, Be mineral episodicity and sequence may be constrained. With
676	increasing sophistication and quantification in studies such as Morra et al. (2013), it may be
677	possible to evaluate the extent to which determinism is a dominant factor in the large-scale
678	sweep of Earth history.
679	On the other hand, many details of Earth's Be mineral evolution story must be contingent on

679 On the other hand, many details of Earth's Be mineral evolution story must be contingent on 680 improbable events. The occurrence of many unique minerals with Be plus other rare elements 681 depends initially on the chance juxtaposition of elements rarely found together in significant 682 concentrations, coupled with the subsequent preservation and fortuitous exposure of the deposit. 683 It is likely that the 55 approved Be minerals known from a single occurrence, as well as many of

684	the 10 Be minerals reported from two or three occurrences, i.e., 49-58% of the 112 Be minerals,
685	represent chance finds that might well be absent on other similar planets.
686	By this reasoning, we also cannot exclude the possibility that other equally rare and thus
687	contingent potential Be minerals await discovery in as yet unexposed subsurface deposits,
688	despite the apparent limit on mineral diversity implicit in Figure 2b. Furthermore, other plausible
689	Be minerals, i.e., phases with a distinct composition and crystal structure that meet criteria of the
690	the correspondence principle of Lewis acidity – Lewis basicity (Hawthorne 2013 and in
691	preparation) and with a plausible pressure-temperature-composition stability range, may have
692	never formed on Earth because such rare contingent events did not occur. Consider the
693	distribution of minerals of Be and coexisting elements in Table 5. Geochemical affinity could
694	play a role in predicting which rare combinations are more likely, for example, 2 of 16 known
695	minerals of the lithophile element Sc and 4 of 17 known minerals of the lithophile element Cs
696	contain essential Be; all 6 minerals are from granitic or alkalic pegmatites, while there are no
697	known Be minerals that incorporate the chalcophile element Cu or the siderophile elements Co
698	and Ni-all relatively common mineral-forming elements, but ones that do not enjoy
699	geochemical affinities with Be. Thus, it is not surprising that there are no Be minerals
700	incorporating the less abundant chalcophile (e.g., Se, Ag, Te, Hg, Bi) or siderophile (Mo)
701	elements. Nonetheless, there are counter examples to the influence of geochemical affinity, i.e.,
702	the presence of 15 Be minerals with the chalcophile elements S, Zn, As and Sb, and absence of
703	Be minerals incorporating the lithophile elements Nb, Ta, Th and U, which, like Be, are
704	commonly enriched in granitic or alkalic pegmatites.
705	The recent discoveries of new species in the roscherite group, ferrochiavennite and of
706	mariinskite, the Cr analogue of chrysoberyl, point to the possibility of discovering other

707	analogues of known Be minerals, particularly those analogues that have already been
708	synthesized, at least as a subordinate constituent:
709	1. $Mn^{2+} \Leftrightarrow Fe^{2+} \Leftrightarrow Mg^{2+}$. Most plausible are Fe^{2+} analogues of Mn^{2+} phases such as
710	väyrynenite and trimerite;
711	2. Cr^{3+} , V^{3+} , Mn^{3+} , $Fe^{3+} \Leftrightarrow Al^{3+}$. Possibilities include analogues of chrysoberyl and beryl,
712	e.g. BeFe ₂ O ₄ (up to about 45% in synthetic chrysoberyl; Gjessing et al. 1943; Gusarov and
713	Semin 1992) and BeV_2O_4 (up to 70% in synthetic chrysoberyl, Sarazin and Forestier
714	1959). Up to a few percent $Be_3V_2Si_6O_{18}$ or $Be_3Cr_2Si_6O_{18}$ have been reported in synthetic
715	beryls (e.g., Franz and Morteani 2002). Frondel and Ito (1968) synthesized V-, Cr- and
716	Mn-bearing bazzite from mixtures containing up to 50% $Be_3V_2Si_6O_{18}$, $Be_3Cr_2Si_6O_{18}$ and
717	$Be_3Mn_2Si_6O_{18}$ in $Be_3Sc_2Si_6O_{18}$, but were unable to quantify the proportion of the V, Cr
718	and Mn end members as the run products contained other phases.
719	3. OH \Leftrightarrow F substitution. A natural F-dominant analogue of hambergite has been reported
720	(53.7% of the F end member, Novák et al. 1998), but the F compound, Be ₂ (BO ₃)F, is not
721	isostructural with hambergite (Baidina et al. 1978; Burns et al. 1995).
722	The great majority of the rare Be minerals are chemically complex silicates or phosphates,
723	whereas other anionic complexes are much subordinant. Except for tugtupite, halogens occur
724	only as substituants for hydroxyl. Nonetheless, the known 11 oxides and hydroxides, plus the
725	single carbonate, have by no means exhausted the potential for Be minerals other than silicates,
726	borates and phosphates. Examples of relatively simple compounds reported as synthetics include
727	a carbonate BeCO ₃ • $4H_2O$; sulfates of which the tetrahydrate BeSO ₄ • $4H_2O$ is most commonly
728	encountered; halides BeF2 and BeCl2 and a sulfide, BeS (Ross 1964; Bell 1972; Everest 1973
729	and references cited therein). Several of these compounds correspond in stoichiometry to well

730	known minerals of other elements in Group IIB, but differ markedly in crystal structure, e.g. BeS
731	is isostructural with sphalerite; α -BeF ₂ and γ -BeF ₂ have the structures of β -cristobalite and
732	quartz, respectively; and α -BeSO ₄ has the structure of low cristobalite. In general, the Be
733	compounds are less stable than corresponding compounds of other Group IIB elements, e.g., the
734	sulfate and carbonate break down at lower temperatures than other alkaline earth sulfates and
735	carbonates, respectively, mainly due to the stronger polarizability of Be^{2+} (Everest 1973). The
736	compounds discussed above by no means exhaust the possibilities for Be minerals, given the
737	large number of other synthetic compounds, e.g., the oxides $Be_3Al_2O_6$ and $BeAl_6O_{10}$ (Franz and
738	Morteani 2002 and references cited therein), complex beryllium fluorides (e.g., Hahn 1953; Ross
739	1964; Bell 1972) and alkali boratoberyllates such as NaBe ₂ (BO ₃)F ₂ (Baidina et al. 1975) and
740	NaBeB ₃ O ₆ (Wang et al. 2010). Many of these synthetic compounds are highly soluble in water,
741	so it is not surprising that they would not have been preserved except conceivably as yet
742	undiscovered daughter crystals in fluid or melt inclusions.
= 10	T 11 .1

743 Implications

744 The relative roles of determinism and contingency, together with the potential of other Be 745 minerals implicit in the diversity of synthetic beryllium compounds, have implications regarding Earth's potentially "missing" Be minerals, including the extinction of phases that once existed 746 747 but are now eroded or dissolved away. It is, of course, more difficult to analyze what is missing from Earth's complex historical record than what is present. Nevertheless, a fuller consideration 748 749 of what we do not find, but conceivably could find, would add insight to the story of Earth's 750 evolution. And, given the number of potential rare and as yet unknown Be minerals, we suggest 751 that details of Be mineral evolution on other Earth-like planets may differ significantly from 752 those on Earth as a consequence of contingent events.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

753

754

ACKNOWLEDGMENTS

755 We thank Roy Kristiansen for his continuing interest in our study of Be mineral evolution and 756 for providing reference on these minerals, as well as keeping us up to date on the latest 757 information. Erik Jonsson, Robert Martin, Milan Novák contributed critical unpublished 758 information on Be mineral occurrences and ages for which we are grateful. Sergey Krivovichev 759 is thanked for calculating the total structural information content for atencioite, ferrochiavennite, 760 mariinskite, oftedalite, unnamed (related to kyzylkumite) and welshite. ESG thanks László 761 Horváth for permission to cite his report of epidymite from Wind Mountain, New Mexico; 762 François Fontan and Ted Johnson for specimens of rhodizite and sørensenite, respectively. 763 Robert Downs, Evgeny Galuskin and Irina Galuskina for critical Russian-language references; 764 Ulf Hålenius, László Horváth and Peter Lyckberg are thanked for permission to reproduce 765 photographs of beryllium minerals from the RRUFF project, Swedish Museum of Natural 766 History, and personal collections respectively. We thank Associate Editor Fernando Colombo for 767 handling and commenting on the manuscript as well as Dwight Bradley and Gregor Markl for 768 their constructive comments on an earlier version of the manuscript; especially enlightening was 769 Gregor Markl's drawing our attention to the likely role that contingency plays in the evolution of 770 minerals. ESG was supported by U.S. National Science Foundation grant EAR 0837980 to the 771 University of Maine. RMH thanks the NASA Astrobiology Institute, the Deep Carbon 772 Observatory, and the Carnegie Institution of Washington for support of mineral evolution 773 research.

774

12/30

775 **References:**

776 Agakhanov, A.A., Pautov, L.A., Belakovskiy, D.I., Sokolova, E.V. and Hawthorne, F.C. (2003): 777 Telyushenkoite, $CsNa_6[Be_2(Si,Al,Zn)1_8O_{39}F_2] - a$ new cesium mineral of the leifite group. 778 New Data on Minerals 38, 5-8. 779 Allen, R.L., Lundstrom, I., Ripa, M. and Christofferson, H. (1996) Facies analysis of a 1.9 Ga, 780 continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide 781 and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, 979-1008. 782 Amelin, Yu.V., Larin, A.M. and Tucker, R.D. (1997) Chronology of multiphase emplacement of 783 the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic 784 evolution. Contributions to Mineralogy and Petrology, 127, 353-368. Andersen, T., Andresen, A. and Sylvester, A.G. (2002) Sveconorwegian crustal underplating in 785 786 southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites 787 and gneisses in Telemark, southern Norway. Lithos, 93, 273-287. 788 Andersen, T., Griffin, W.L. and Sylvester, A.G. (2007) Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. Norges Geologiske Undersekelse 789 790 Bulletin, 440,5-18. 791 Andresen, A. and Tull, J.F. (1986). Age and tectonic setting of the Tysfjord gneiss granite, 792 Efjord, North Norway. Norsk Geologisk Tidsskrift, 66, 69-80. 793 Arzamastsev, A.A., Arzamastseva, L.V., Travin, A.V., Belyatsky, B.V., Shamatrina, A.M., and 794 Antonov, A.V., Larionov, A.N., Rodionov, N.V. and Sergeev, S.A. (2007) Duration of 795 formation of magmatic system of polyphase Paleozoic alkaline complexes of the Central 796 Kola:U-Pb, Rb-Sr, Ar-Ar data. Doklady Earth Sciences, 413A, 432-436. 797 Asimov, I. (1954) Sucker Bait. Astounding Science Fiction, 52(6), 8-56; 53(1), 111-139. 798 Atencio, D. (2000) Type Mineralogy of Brazil. Universidade de Sao Paulo, Instituto de 799 Geociencias: Sao Paulo, Brazil 800 Atencio, D., Coutinho, J.M.V. and Menezes Filho, L.A.D. (2005) Roscherite-group minerals 801 from Brazil. Axis, 1, Number 6 http://www.mineralogicalrecord.com/journal.asp Atencio, D., Chukanov, N.V., Coutinho, J.M.V., Menezes Filho, L.A.D., Dubinchuk, V.T. and Möckel, S. (2007) Ruifrancoite, a new Fe³⁺-dominant monoclinic member of the roscherite 802 803 group from Galiléia, Minas Gerais, Brazil. Canadian Mineralogist, 45, 1263-1273. 804 805 Atencio, D., Matioli, P.A., Smith, J.B., Chukanov, N.V., Coutinho, J.M.V., Rastsvetaeva, R.K. and Möckel, Steffen (2008) Footemineite, the Mn-analog of atencioite, from the Foote 806 807 Mine, Kings Mountain, Cleveland County, North Carolina, U.S.A., and its relationship with 808 other roscherite-group minerals. American Mineralogist, 93, 1-6.

- 809 Aurisicchio, C., De Vito, C., Ferrini, V. and Orlandi, P. (2002) Nb and Ta oxide minerals in the 810 Fonte del Prete granitic pegmatite dike, Island of Elba, Italy. Canadian Mineralogist, 40, 811 799-814. 812 Back, M.E & Mandarino, J.A. (2008): Fleischer's Glossary of Mineral Species 2008. The 813 Mineralogical Record Inc., Tucson, Arizona. 814 Baidina, I.A., Bakakin, V.V., Batsanova, L.R., Pal'chik, N.A. Podberezskaya, N.V. and 815 Solov'eva, L.P. (1975) X-ray structural study of borato-fluoroberyllates with the 816 composition $MBe_2(BO_3)F_2$ (M = Na, K, Rb, Cs). Journal of Structural Chemistry, 15(6), 817 963-965. Baidina, I.A., Bakakin, V.V., Podberezskava, N.V., Alekseev, V.I., Batsanova, L.R. and 818 819 Pavlyuchenko (1978) Crystal structure of beryllium fluoride borate Be₂(BO₃)F. Journal of 820 Structural Chemistry, 19(1), 105-108. Barbier, J., Grew, E.S., Moore, P.B. and Su, S.-C. (1999) Khmaralite, a new beryllium-bearing 821 822 mineral related to sapphirine: A superstructure resulting from partial ordering of Be, Al and 823 Si on tetrahedral sites. American Mineralogist, 84, 1650-1660. 824 Barton, M.D. and Young, S. (2002): Non-pegmatitic deposits of beryllium: mineralogy, geology, 825 phase equilibria and origin. Reviews in Mineralogy and Geochemistry, 50, 591-691. 826 Batiyeva, I.D. and Bel'kov, I.V. (1984) Sakharyok Alkalic Massif and its rocks and minerals. 827 Kola Filial of the USSR Academy of Sciences, Apatity, Russia [in Russian] 828 Bayanova, T. and Voloshin, A. (1999) U-Pb Dating of Zircon Megacrysts (8cm) from 829 Amazonite Rand-Pegmatite of Mt. Ploskaya, Baltic Shield. Journal of Conference Abstracts, 830 European Union of Geosciences 10, 4(1), 153. Bel'kov, I.V. and Denisov, A.P. (1968) Meliphane of the Sakharyok alkalic massif. Materialy po 831 832 Mineralogii Kol'skogo Poluostrova, 6, 221-224 [in Russian]. 833 Bell, N.A. (1972) Beryllium halides and pseudohalides. Advances in Inorganic Chemistry and 834 Radiochemistry, 14, 255-332. 835 Belolipetskii, A.P. and Voloshin, A.V. (1996) Yttrium and rare earth element minerals of the Kola Peninsula, Russia. In Jones, J.P., Wall, F. and Williams, C. T. (eds.) Rare Earth 836 837 Minerals Chemistry, Origin and Ore Deposits, The Mineralogical Society Series 7, 311-326. 838 Bergstøl, S. and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in 839 Tørdal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin. Mineralogy and Petrology, 38, 229-243. 840 841 Bernhard, F., Hauzenberger, C. and Walter, F. (2008) Pseudosinhalite, magnesiotaaffeite- $6N^{2}3S$ and magnesiotaaffeite- $2N^2S$ as replacement products of spinel in dolomite marble from 842 843 Stubenberg, Styria, Austria. Canadian Mineralogist, 46, 1195-1205.
 - 36
| 844
845
846 | Birch, W.D., Pring, A. and Foord, E.E. (1995) Selwynite, NaK(Be,Al)Zr ₂ (PO ₄) ₄ .2H ₂ O, a new gainesite-like mineral from Wycheproof, Victoria, Australia. Canadian Mineralogist 33, 55-58. |
|--------------------------|---|
| 847 | Bleeker, W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71, 99-134. |
| 848
849 | Bradley, D.C. (2011) Secular trends in the geologic record and the supercontinent cycle, Earth-
Science Reviews, 108, 16-33. |
| 850
851
852 | Bradley, D.C., McCauley, A., Buchwaldt, R., Shea, E.K. and Bowring, S. (2012) Lithium-
cesian-tantalum pegmatites through time, their orogenic context, and relationships to the
supercontinent cycle. Geological Society of America Abstracts with Programs. 44(7), 294. |
| 853
854
855
856 | Bradley, D.C., Buchwaldt, R., Shea, E.K., Bowring, S., O'Sullivan, P., Benowitz, J., McCauley,
A. and Bradley, L. (2013) Geochronology and orogenic context of northern Appalachian
lithium-cesium tantalum pegmatites. Geological Society of America Abstracts with
Programs. 45(1), 108. |
| 857
858
859 | Breaks, F.W., Selway, J.B. and Tindle A,C. (2005) Fertile peraluminous granites and related rare-element pegmatites, Superior Province of Ontario. Short Course Notes – Geological Association of Canada, 17, 87-125. |
| 860
861
862 | Brugger, J. & Gieré, R. (1999): As, Sb, Be and Ce enrichment in minerals from a
metamorphosed Fe-Mn deposit, Val Ferrera, eastern Swiss Alps. Canadian Mineralogist 37,
37-52. |
| 863
864
865 | Bulnaev, K.B. (2006) Fluorine-beryllium deposits of the Vitim Highland, western Transbaikal
Region: Mineral types, localization conditions, magmatism, and age. Geology of Ore
Deposits, 48, 277–289. |
| 866
867
868 | Burke, E.A.J. and Lustenhouwer, W.J. (1981) Pehrmanite, a new beryllium mineral from
Rosendal pegmatite, Kemiö Island, southwestern Finland. Canadian Mineralogist 19:311-
314. |
| 869
870 | Burns, P.C. Novák, M. and Hawthorne, F.C. (1998) Fluorine-hydroxyl variation in hambergite: a crystal-structure study. Canadian Mineralogist, 33, 1205-1213. |
| 871
872 | Cámara, F., Oberti, R., Ottolini, L., Della Ventura, G. and Bellatreccia, F. (2008) The crystal chemistry of Li in gadolinite. American Mineralogist, 93, 996-1004. |
| 873
874 | Campbell, T.J. and Roberts, W.L. (1986): Phosphate minerals from the Tip Top Mine, Black Hills, South Dakota. Mineralogical Record, 17, 237-254. |
| 875
876 | Cawood, P.A., Hawkesworth, C.J, and Dhuime, B. (2013) The continental record and the generation of continental crust. Geological Society of America Bulletin. 125, 14-32. |
| 877
878 | Ceciliato, L. (2007) Phenacite and fluorite in Elba pegmatites. Rivista Mineralogica Italiana, 3, 162-164 (in Italian) |

- Černá, I., Selway, J.B. and Chapman, R. (2002) Paragenesis and origin of secondary
- beryllophosphates; beryllonite and hydroxylherderite from the BEP granitic pegmatite,
- southeastern Manitoba, Canada. Canadian Mineralogist, 40, 1339-1345.
- černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Reviews in Mineralogy and
 Geochemistry, 50, 405-444.
- Černý, P. (2005) The Tanco rare-element pegmatite deposit, Manitoba; regional context, internal
 anatomy, and global comparisons. Short Course Notes Geological Association of Canada
 17, 127-158.
- černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian
 Mineralogist, 43, 2005-2026.
- Černý, P., Hawthorne, F.C., Jambor, J.L. and Grice, J.D. (1991) Yttrian milarite. Canadian
 Mineralogist, 29, 533-541.
- Chao, C.-L. (1964) Liberite (Li2BeSiO4), a new lithium-beryllium silicate mineral from the
 Nanling Ranges, South China. Acta Geol Sinica 44(3):334-342 (in Chinese with English
 abstract)[Am Mineral 50: 519]
- Cheilletz, A., Feraud, G., Giuliani, G. and Ruffet, G. (1993) Emerald dating through ⁴⁰Ar/³⁹Ar
 step-heating and laser spot analysis of syngenetic phlogopite. Earth and Planetary Science
 Letters, 120, 473-485.
- Chukanov, N.V., Möckel, S., Rastsvetaeva, R.K. and Zadov, A.E. (2003) Greifensteinit aus
 Sachsen, Österreich, Cornwall, USA, Brasilien and Kasachstan. Lapis, 28(4), 39.
- Chukanov, N.V., Rastsvetaeva, R.K., Möckel, S., Zadov, A.E., and Levitskaya, L.A. (2006) The
 roscherite group and its new representative member atencioite,
- 901 $\operatorname{Ca}_2\operatorname{Fe}^{2+}\Box\operatorname{Mg}_2\operatorname{Fe}^{2+}_2\operatorname{Be}_4(\operatorname{PO}_4)_6(\operatorname{OH})_4\bullet 6\operatorname{H}_2O$. New Data on Minerals, 41, 18-25.
- 902 Chukanov, N.V., Atencio, D., Zadov, A.E., Menezes Filho, L.A.D., and Coutinho, J.M.V. (2007)
 903 Guimarãesite, a new Zn-dominant monoclinic roscherite-group mineral, from Itinga, Minas
 904 Gerais, Brazil. New Data on Minerals, 42, 11-15.
- Collins, R.F. (1949) Volcanic rocks of northeastern New Mexico. Bulletin of the Geological
 Society of America, 60, 1017-1040.
- 907 Condie, K.C., Bickford, M.E., Aster, R.C., Belousova, E. and Scholl, D.W. (2011) Episodic
 908 zircon ages, Hf isotopic composition, and the preservation rate of continental crust.
 909 Geological Society of America Bulletin, 123, 951–957.
- 910 Conway-Morris, S. (1998) The Crucible of Creation: The Burgess Shale and the Rise of
 911 Animals, Oxford: Oxford University Press.
- Cooper, M.A., Hawthorne, F.C., Ball, N.A., Černý, P. and Kristiansen, R. (2006) Oftedalite,
 (Sc,Ca,Mn²⁺)₂K(Be,Al)₃Si₁₂O₃₀, a new member of the milarite group from the Heftetjern

- 914 Pegmatite, Tordal, Norway; description and crystal structure. Canadian Mineralogist, 44,915 943-949.
- 916 Cox, D.E., Frazer, B.C., Newnham, R.E. and Santoro, R.P. (1969) Neutron diffraction
 917 investigation of the spiral magnetic structure in Cr₂BeO₄. Journal of Applied Physics, 40,
 918 1124-1125
- 919 Currie, K.L., Eby, G.N. & Gittins, J. (1986): The petrology of the Mont Saint Hilaire Complex,
 920 southern Quebec; an alkaline gabbro-peralkaline syenite association. Lithos 19, 65-81.
- Dahl, P.S. and Foland, K.A.. (2008): Concentric slow cooling of a low-P-high-*T* terrane:
- Evidence from 1600–1300 Ma mica dates in the 1780–1700 Ma Black Hills Orogen, South
 Dakota, U.S.A. American Mineralogist, 93, 1215-1229.
- Della Ventura, G., Di Lisa, G.A., Marcelli, M., Mottana, A. & Paris, E. (1992): Composition and
 structural state of alkali feldspars from ejecta in the Roman potassic province, Italy ;
 petrological implications. European Journal of Mineralogy 4, 411-424.
- Della Ventura, G., Rossi, P., Parodi, G.C. Mottana, A., Raudsepp, M. and Prencipe, M. (2000)
 Stoppaniite, (Fe,Al,Mg)₄(Be₆Si₁₂O₃₆)*(H₂O)₂(Na,□) a new mineral of the beryl group from
 Latium (Italy). European Journal of Mineralogy 12, 121-127.
- Della Ventura, G., Bonazzi, P., Oberti, R. and Ottolini, L. (2002) Ciprianiite and mottanaite(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist,
 87, 739-744.
- DeMark, R.S. (1984) Minerals of Point of Rocks, New Mexico. Mineralogical Record, 15(3),
 149-156.
- DeMark, R.S. (1989) Micromounting in New Mexico. Mineralogical Record, 20(1), 57-64.
- Demartin, F., Gramaccioli, C.M. and Pilati T (1992) A first occurrence of euclase in the Swiss
 Alps: Discovery and refinement of the crystal structure. Schweizerische Mineralogische und
 Petrographische Mitteilungen, 72, 159-165.
- 939 Demartin, F.; Guastoni, A., Pezzotta, F and Picciani (2003): Barylith, Niobophyllit &
 940 yttriumreicher Milarit Neufunde aus den Pegmatiten von Zomba–Malosa, Malawi. Lapis
 941 28 (1), 18-21, 58.
- 942 De Rita, D., Funiciello, R. Rossi, U. and Sposato, A. (1983) Structure and evolution of the
 943 Sacrofano-Baccano Caldera, Sabatini volcanic complex, Rome. Journal of Volcanology and
 944 Geothermal Research, 17, 219–236.
- de Roever, E.W.F. & Vrána, S. (1985): Surinamite in pseudomorphs after cordierite in
 polymetamorphic granulites from Zambia. American Mineralogist **70**, 710-713.
- Devouard, B. and Devidal, J.L. (2007) Pezzottaite from Myanmar, Gems & Gemology, 43(1),
 70-72

- Downes, P.J. and Bevan, A.W.R. (2002) Chrysoberyl, beryl and zincian spinel mineralization in
 granulite-facies Archaean rocks at Dowerin, Western Australia. Mineralogical Magazine,
 66, 985-1002.
- Downs, R. T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography,
 Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General
 Meeting of the International Mineralogical Association in Kobe, Japan. 003-13.
- Dunn, P.J. and Wight, W. (1976) Green gem herderite from Brazil. Journal of Gemmology, 15,
 27-28.
- Dunn, P.J., Peacor, D.R., Grice, J.D., Wicks, F.J. and Chi, P.H. (1990) Wawayandaite, a new
 calcium manganese beryllium boron silicate from Franklin, New Jersey. American
 Mineralogist, 75, 405-408.
- Eby, G.N. (1984) Geochronology of the Monteregian Hills alkaline igneous province, Quebec.
 Geology, 12, 468-470.
- Beby, G.N., Roden-Tice, M., Krueger, H.L., Ewing, W., Faxon, E.H. and Woolley (1995)
 Geochronology and cooling history of the northern part of the Chilwa Alkaline Province, Malawi. Journal of African Earth Sciences, 20, 275-288.
- Embrey, P.G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine, 42,
 170-177
- 967 Engell, J. (1971) Beryllium mineralization in the Ilímaussaq intrusion, South Greenland, with
 968 description of a field beryllometer and chemical methods. Grønlands Geologiske
 969 Undersøgelser Rapport, 33, 1-40.
- 970 Evensen, J.M. & London, D. (2002): Experimental silicate mineral/melt partition coefficients for
 971 beryllium, and the beryllium cycle from migmatite to pegmatite. Geochimica et
 972 Cosmochimica Acta 66, 2239–2265.
- Everest, D.A. (1973) 9. Beryllium. In: Bailar, J.C., Jr., Emeléus, H.J., Nyholm, R. and TrotmanDickenson, A.F. (eds) Comprehensive Inorganic Chemistry, Volume 1 H, Noble Gases,
 Group IA, Group IIA, Group IIIB, C and Si, p. 531-590) Pergamon, Oxford.
- Falster, A.U., Simmons, W.B. and Webber, K.L. (2001a): The mineralogy and geochemistry of
 the Animikie Red Ace pegmatite, Florence County, Wisconsin. Recent Research
 Developments in Mineralogy 1, 7-67.
- Falster, A.U., Simmons, W.B. and Webber, K.L. (2001b): Unorthodox compositional trends in
 columbite-group minerals from the Animikie Red Ace pegmatite, Wisconsin, USA. Journal
 of the Czech Geological Society 46, 69-79.
- Fernandez, A., Schreurs, G., Villa, I.M., Huber, S. and Rakotondrazafy, M. (2003) Age
 constraints on the tectonic evolution of the Itremo region in Central Madagascar.
 Precambrian Research, 123, 87–110.

985	Fershtater, G.B. Krasnobaev, A.A., Bea, F., Montero, P. and Borodina, N.S. (2007) Geodynamic
986	settings and history of the Paleozoic intrusive magmatism of the central and southern Urals:
987	Results of zircon dating. Geotectonics, 41, 465-486.
988	Flink, G. (1917) Contribution to Swedish mineralogy. 105. Harstigite from Harstigsgrufvan.
989	Arkiv för Kemi, Mineralogi och Geologi, 6, 49-51 (in Swedish).
990	Foord, E.E., Gaines, R.V., Crock, J.G., Simmons, W.B., Jr. and Barbosa, C.P. (1986)
991	Minasgeraisite, a new member of the gadolinite group from Minas Gerais, Brazil. American
992	Mineralogist, 71, 603-607.
993	Foord, E.E., Brownfield, M.E., Lichte, F.E., Davis, A.M. and Sutley, S. J. (1994) Mccrillisite,
994	NaCs(Be,Li)Zr ₂ (PO ₄) ₄ .1-2H ₂ O, a new mineral species from Mount Mica, Oxford County,
995	Maine, and new data for gainesite. Canadian Mineralogist, 32, 839-842.
996 997	Fornaseri, M. (1985) Geochronology of volcanic rocks from Latium (Italy) Rendiconti della Società Italiana di Mineralogia e Petrologia, 40, 73-106.
998 999	Franz, G. and Morteani, G. (2002) Be-Minerals: Synthesis, Stability, and Occurrence in Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 50, 551-589.
1000 1001	Frondel, C. and Ito, J. (1968) Synthesis of the scandium analogue of beryl. American Mineralogist, 53, 943-953.
1002 1003	Gastil, G. (1960) The distribution of mineral dates in time and space. American Journal of Science, 258, 1-35.
1004 1005 1006	Gatta, G.D., Rotiroti, N., McIntyre, G.J., Guastoni, A. and Nestola, F. (2008) New insights into the crystal chemistry of epididymite and eudidymite from Malosa, Malawi: A single-crystal neutron diffraction study. American Mineralogist, 93, 1158-1165.
1007	Gilbert, L.A. and Foland, K.A. (1986) The Mont Saint Hilaire plutonic complex; occurrence of
1008	excess (super 40) Ar and short intrusion history. Canadian Journal of Earth Sciences, 23,
1009	948-958.
1010	Ginzberg, A.I. and Shatskaya, V.T. (1966) Hypergene beryllium phosphates and conditions of
1011	their formation. In: Geology of Rare-Element Deposits, 30, 101-117. Nedra, Moscow (in
1012	Russian).
1013 1014	Giuliani, G., Cheilletz, A. and Vidal, P. (1995) La datation isotopique des gemmes. Analusis Magazine, 23(1), 34-37.
1015	Giuseppetti, G., Mazzi, F., Tandini, C. Larsen, A.O., Åsheim, A. and Raade, G. (1990)
1016	Berborite polytypes. Neues Jahrbuch für Mineralogie Abhandlungen, 162, 101-116.
1017 1018	Gjessing, L., Larsson, T. and Major, H. (1943) Isomorphous substitute for Al ^{***} in the compound Al ₂ BeO ₄ . Norsk Geologisk Tidskrift, 22, 92-99.

1019 Goldfarb, R.J., Groves, D.I. and Gardoll, S. (2001) Orogenic gold and geologic time: a global 1020 synthesis. Ore Geology Reviews, 18, 1–75. 1021 Goodenough, K.M., Upton, B.G.J. and Ellam, R.M. (2002) Long-term memory of subduction 1022 processes in the lithospheric mantle: evidence from the geochemistry of basic dykes in the 1023 Gardar Province of South Greenland. Journal of the Geological Society, London, 159, 705-1024 714. 1025 Goodenough, K.M., Krabbendam, M., Shaw, R.A. and Crowley, Q.G. (2013) Making and 1026 breaking Columbia (Nuna): formation of a critical metal province? A North Atlantic view. 1027 Building Strong Continents, 2-4 September 2013 University of Portsmouth, UK Programme 1028 and Abstracts, p. 44. 1029 Gould, S.J. (1989) Wonderful Life. The Burgess Shale and the Nature of History. Norton, New 1030 York. 1031 Gould, S.J. (2002) The Structure of Evolutionary Theory. Cambridge, Massachusetts: Belknap 1032 Press. 1033 Grauch, R.I.; Lindahl, I., Evans, H.T., Jr., Burt, D.M., Fitzpatrick, J.J., Foord, E.E., Graff, P.R. & 1034 Hysingjord, J. (1994): Høgtuvaite, a new beryllium member of the aenigmatite group from 1035 Norway, with new X-ray data on aenigmatite. Canadian Mineralogist 32, 439-448. 1036 Grew, E. S. (2002a) Mineralogy, petrology and geochemistry of beryllium: An introduction and 1037 list of beryllium minerals. Reviews in Mineralogy and Geochemistry, 50, 487-549. 1038 Grew, E. S. (2002b) Beryllium in metamorphic environments (emphasis on aluminous 1039 compositions). Reviews in Mineralogy and Geochemistry, 50, 487-549. 1040 Grew, E., and Hazen, R. M. (2009): Evolution of the minerals of beryllium, a quintessential 1041 crustal element [Abstract]. Geological Society of America Abstracts with Programs, 41(7), 1042 99. 1043 Grew, E. and Hazen, R.M. (2010a) Evolution of boron minerals: Has early species diversity been 1044 lost from the geological record? Geological Society of America Abstracts with Programs, 1045 42(5), 92. 1046 Grew, E., and Hazen, R. M. (2010b): Evolution of the minerals of beryllium, and comparison 1047 with boron mineral evolution [Abstract]. Geological Society of America Abstracts with Programs, 42(5), 199. 1048 1049 Grew, E.S. and Hazen, R.M. (2013) Evolution of the minerals of beryllium. Stein Magasin for 1050 Populærgeologi. Særhefte 1 Roy Kristiansen 70 År, 4-19. 1051 Grew, E. S., Belakovskiy, D. I., Fleet, M. E., Yates, M. G., McGee, J. J., and Marquez, N. (1993) 1052 Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern 1053 Tien Shan, Tajikistan. European Journal of Mineralogy, 5, 971-984.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675	12/30
Grew, E. S., Yates, M. G., Belakovskiy, D. I., Rouse, R. C., Su, SC, and Marquez, N. (1) Hyalotekite from reedmergnerite-bearing alkali pegmatite, Dara-i-Pioz, Tajikistan an Mn skarn, Långban, Värmland, Sweden: a new look at an old mineral. Mineralogical Magazine, 58, 285-297	994) d from
Grew, E.S., Yates, M.G., Barbier, J., Shearer, C.K., Sheraton, J.W., Shiraishi, K. and Mot Y. (2000): Granulite-facies beryllium pegmatites in the Napier Complex in Khmara a Amundsen Bays, western Enderby Land, East Antarctica. Polar Geoscience, 13, 1-40	oyoshi, nd
Grew, E.S., Barbier, J., Britten, J.F., Yates, M.G., Polyakov, V.O., Shcherbakova, E.P., H U. and Shearer, C.K. (2005) Makarochkinite, Ca ₂ Fe ²⁺ ₄ Fe ³⁺ TiSi ₄ BeAlO ₂₀ , a new beryllosilicate member of the aenigmatite-sapphirine-surinamite group from the II'me Mountains (southern Urals), Russia. American Mineralogist, 90, 1402-1412.	ålenius, en
Grew, E.S., Yates, M.G., Shearer, C.K., Hagerty, J.J., Sheraton, J.W., and Sandiford, M. (Beryllium and other trace elements in paragneisses and anatectic veins of the ultrahig temperature Napier Complex, Enderby Land, East Antarctica: The role of sapphirine. Journal of Petrology, 47, 859-882.	2006) h-
Grew, E.S., Barbier, J., Britten, J.F., Hålenius, U. and Shearer, C.K. (2007) The crystal ch of welshite a non-centrosymmetric (<i>P</i> 1) aenigmatite-sapphirine-surinamite group mi	emistry neral

1071 American Mineralogist, 92, 80-90.

1054

1055

1056 1057

1058

1059 1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

- Grice, J.D. (2010) The role of beryllium in beryllosilicate mineral structures and zeolite
 formation. Canadian Mineralogist, 48, 1493-1518.
- Grice, J.D. and Kristiansen, R. (2013) Hydrogen in the gugiaite structure. Geological Association
 of Canada, Mineralogical Association of Canada, Joint Annual Meeting, Winnipeg,
 Manitoba.
 http://gaa.asd.mun.co/gaa.2013/gaarah.abs/gub.program.asp2gaas=08.8form=10.8cbb.no=1
- 1077 http://gac.esd.mun.ca/gac_2013/search_abs/sub_program.asp?sess=98&form=10&abs_no=1
 1078 2
- Grice, J.D. and Robinson, G.W. (1984) Jeffreyite, (Ca,Na)₂(Be,Al)Si₂(O,OH)₇, a new mineral
 species and its relation to the melilite group. Canadian Mineralogist, 22, 443-446.
- Grice, J.D., Peacor, D. R., Robinson, G.W., van Velthuizen, J., Roberts, W.L., Campbell, T.J.
 and Dunn, P.J. (1985) Tiptopite (Li,K,Na,Ca,)₈Be₆(PO₄))₆(OH)₄, a new mineral species
 from the Black Hills, South Dakota. Canadian Mineralogist, 23, 43-46.
- Grice, J.D., Rowe, R., Poirier, G., Pratt, A. and Francis, J. (2009) Bussyite-(Ce), a new beryllium
 silicate mineral species from Mont Saint-Hilaire, Quebec. Canadian Mineralogist, 47, 193204.
- Grigor'yev, N.A. (1963) Glucine—a new beryllium mineral. Zapiski Vsesoyuznogo
 Mineralogicheskogo Obshchestva, 92, 691-696 (in Russian).

1089 1090 1091	Grundmann, G., and Morteani, G. (1989) Emerald mineralization during regional metamorphism: the Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) deposits. Economic Geology, 84, 1835-1849.
1092 1093	Guastoni, A., Demartin, F., and Pezzotta, F (2004): Mineralogische Neuigkeiten aus Zomba, Malawi (2003). Lapis 29 (1), 37-38, 58.
1094 1095 1096	Guastoni, A., Diella, V. and Pezzotta, F. (2008) Vigezzite and associated oxides of Nb–Ta from emerald-bearing pegmatites of the Vigezzo Valley, western Alps. Italy. Canadian Mineralogist, 46, 619-633.
1097 1098 1099	Gusarov, V.V. and Semin, Ye.G. (1992) A diagram of the state of the subsolidus domain of the BeAl ₂ O ₄ –[BeFe ₂ O ₄] quasi-binary system. Zhurnal Neorganicheskoy Khimii, 37, 2092-2096 (in Russian).
1100 1101	Habel, A. and Habel, M. (2009) Minasgeraisit-(Y) aus dem Krennbruch in Matzersdorf/Tittling. MineralienWelt, 20(5), 51-53.
1102 1103	Hahn, T. (1953) Modellbeziehungen zwischen Silikaten und Fluoberyllaten. Neues Jahrbuch für Mineralogie Abhandlungen, 86, 1-65.
1104 1105 1106	Harlow, G.E. and Hawthorne, F.C. (2008) Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany. American Mineralogist, 93, 1545–1549.
1107 1108 1109	Harris, P.D., Robb, L.J. and Tompkinson, M.J. (1995) The nature and structural setting of rare- element pegmatites along the northern flank of the Barberton greenstone belt, South Africa. South African Journal of Geology, 98(1), 82-94.
1110 1111 1112	Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining a new mineral species and heterovalent substitutions in complex minerals. Canadian Mineralogist, 40, 699-710.
1113 1114	Hawthorne, F.C. (2013) MSA Roebling Medal Lecture: Toward a basis for theoretical mineralogy. Geological Society of America Abstracts with Programs, 45(7), 625.
1115 1116	Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Reviews in Mineralogy and Geochemistry, 50, 333-403.
1117 1118 1119 1120	Hawthorne, F.C., Cooper, M.A., Simmons, W.B., Falster, S.U., Laurs, B.M., Armbruster, T., Rossman, G.R., Peretti, A., Günter, D., and Grobéty, B. (2004) Pezzottaite, Cs(Be ₂ Li)Al ₂ Si ₆ O ₁₈ , a spectacular new beryl-group mineral from the Sakavalana Pegmatite, Fianarantsoa Province, Madagascar. Mineralogical Record, 35, 369-378.
1121 1122	Hazen, R. M., and Eldredge, N. (2010): Themes and variations in complex systems. Elements 6, 43-46.

- Hazen, R. M., and Ferry, J. M. (2010): Mineral evolution: Mineralogy in the fourth dimension.
 Elements 6, 9-12.
- Hazen, R. M., Papineau, D., Bleeker, W., Downs, R. T., Ferry, J. M., McCoy, T. J., Sverjensky,
 D. A., and Yang, H. (2008): Mineral evolution: American Mineralogist 93, 1693-1720.
- Hazen, R. M., Ewing, R. C., & Sverjensky, D. A. (2009): Evolution of uranium and thorium
 minerals: American Mineralogist 94, 1293-1311.
- Hazen, R. M., Bekker, A., Bish, D. L., Bleeker, W., Downs, R. T., Farquhar, J., Ferry, J. M.,
 Grew E. S., Knoll, A. H., Papineau, D. F., Ralph, J. P., Sverjensky, D. A., and Valley, J. W.
 (2011): Needs and opportunities in mineral evolution research: American Mineralogist, 96,
 953-963.
- Hazen, R. M., Golden, J., Downs, R. T., Hystad, G., Grew, E. S., Azzolini, D., and Sverjensky,
 D. A. (2012) Mercury (Hg) mineral evolution: A mineralogical record of supercontinent
 assembly, changing ocean geochemistry, and the emerging terrestrial biosphere: American
 Mineralogist 97, 1013-1042.
- Heeremans, M., Larsen, B.T. and Stel, H. (1996) Paleostress reconstruction from kinematic
 indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting.
 Tectonophysics, 266, 55-79.
- Heeremans, M., Faleide, J.I. and Larsen, B.T. (2004) Late Carboniferous–Permian of NW
 Europe: an introduction to a new regional map. In Wilson, M., Neumann, E.-R., Davies,
 G.R., Timmerman, M.J., Heeremans, M. and Larsen, B.T. (eds). Permian-Carboniferous
 Magmatism and Rifting in Europe. Geological Society of London, Special Publications, 223,
 75-88..
- Hoffman, P.F. (1997) Tectonic genealogy of North America. In van der Pluijm, B.A., and
 Marshak, S., eds., Earth Structure: An Introduction to Structural Geology and Tectonics:
 New York, McGraw-Hill, p. 459–464.
- Hokada, T. and Harley, S.L. (2004) Zircon growth in UHT leucosome: constraints from zircongarnet rare earth elements (REE) relations in Napier Complex, East Antarctica. Journal of
 Mineralogical and Petrological Sciences, 99, 180-190.
- Holtstam, D. and Andersson, U.B. (2007) The REE minerals of the Bastnäs-type deposits, south central Sweden. Canadian Mineralogist, 45, 1073-1114.
- Holtstam, D. and Langhof, J., eds. (2007): Långban The Mines, their Minerals, Geology and
 Explorers. Swedish Museum of Natural History, Raster Förlag.
- Horváth, L. and Horváth-Pfenninger, E. (2000) Die Mineralien des Mont Saint-Hilaire. Lapis, 25
 (7-8), 23-61.

- Huang, Y., Du, S. and Zhou, X. (1988) Hsianghualing rocks, mineral deposits and minerals.
 Beijing Science and Technology Publishing Bureau, Beijing (in Chinese with English summary)
- Huminicki, D.M.C. and Hawthorne, F.C. (2000) Refinement of the crystal structure of
 väyrynenite. Canadian Mineralogist, 38, 1425-1432.
- Hurlbut, C.S., Jr. (1937) Aminoffite, a new mineral from Långban. Geol Fören Förhandl 59, 290292.
- Husdal, T. (2008) The minerals of the pegmatites within the Tysfjord granite, northern Norway.
 Norsk Bergverksmuseum, Skrift, 38, 5-28.
- 1166 Husdal, T. (2011): Tysfjordgranittens pegmatitter. Stein **38**(4), 4-35 (in Norwegian).
- Jacobson, M.I., Calderwood, M.A. and Grguric, B.A. (2007) Guidebook to the Pegmatites of
 Western Australia. Hesperian Press, Carlisle, Western Australia.

Johnson, S.P., De Waele, B. & Liyungu, K.A. (2006): U/Pb sensitive high-resolution ion
microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia; terrane
subdivision of the Mesoproterozoic southern Irumide Belt. Tectonics 25, TC6004,
DOI:10.1029/2006TC001977.

- Jonsson, E. (2004): Fissure-hosted mineral formation and metallogenesis in the Långban Fe-Mn (Ba-As-Pb-Sb...) deposit, Bergslagen, Sweden. Meddelanden från Stockholms Universitets
 Institution för Geologi och Geokemi 318.
- Juve, G. and Bergstøl, S. (1988) Cesian bazzite in granite pegmatite in Tørdal, Telemark,
 Norway. Mineralogy and Petrology, 43, 131-136.
- Kalsbeek, N. and Rønsbo, J.G. (1992) Refinement of the vinogradovite structure, positioning of
 Be and excess Na. Zeitschrift für Kristallographie 200, 237-245
- Kampf, A.R., Dunn, P.J. and Foord, E.E. (1992) Parafransoletite, a new dimorph of fransoletite
 from the Tip Top Pegmatite, Custer, South Dakota. American Mineralogist, 77, 843-847.
- King, V.T. and Foord, E.E. (1994) Mineralogy of Maine. Volume 1: Descriptive Mineralogy.
 Maine Geological Survey, Augusta, Maine
- Konev, A.A, Vorob'yev, Ye.I., Sapozhnikov, A.N., Piskunova, L.F. and Ushchapovskaya, Z.F.
 (1995) Odintsovite K₂Na₄Ca₃Ti₂Be₄Si₁₂O₃₈ a new mineral (Murunskiy Massif) Zapiski
- 1186 Vserossiiskogo Mineralogicheskogo Obshchestva 124(5), 92-96 (in Russian)
- Kopchenova, Ye.V. and Sidorenko, G.A. (1962) Bearsite—the arsenic analogue of moraesite.
 Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 91, 442-446 (in Russian).
- Kristiansen, R. (1994) Two new minerals for Norway- manganokolumbite and hingganite-(Yb).
 Stein 21(2), 88-93 (in Norwegian)

- 12/30
- Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing
 in the mineral world. Mineralogical Magazine, 77, 275-326.
- Krivovichev, S.V., Yakovenchuk, V.N., Armbruster, T., Mikhailova, Y. and Pakhomovsky, Ya.
 K. (2004) Clinobarylite, BaBe₂Si₂O₇: structure refinement, and revision of symmetry and physical properties.. Neues Jahrbuch für Mineralogie Monatshefte, 2004, 373-384..
- Krogstad, E.J. and Walker, R.J. (1994) High closure temperatures of the U-Pb system in large
 apatites from the Tin Mountain pegmatite, Black Hills, South Dakota, USA. Geochimica et
 Cosmochimica Acta, 58, 3845-3853.
- Krumrei, T.V., Villa, I.M., Marks, M.A.W. & Markl, G. (2006): A ⁴⁰Ar/³⁹Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: Implications for the ⁴⁰K decay constant and for the duration of magmatic activity in a peralkaline complex. Chemical Geology 227, 258-273.
- Lahti, S.I. (1989) The granitoids and pegmatites of the Eräjärvi area. In, Lahti, S.I., ed.
 Excursion C1, Late orogenic and synorogenic Svecofennian granitoids and associated
 pegmatites of southern Finland. Opas Geologian Tutkimuskeskus, 26, 26-36.
- Langhof, J., Holtstam, D. and Gustafsson, L. (2000) Chiavennite and zoned genthelvite-helvite
 as late-stage minerals of the Proterozoic LCT pegmatites at Utö, Stockholm, Sweden. GFF,
 1208 122(2), 207-212.
- Larsen, A.O., editor (2010) The Langesundfjord. History · Geology · Pegmatites · Minerals.
 Bode Verlag, Salzhemmendorf, Germany.
- Larsen, A.O., Kolitsch, U., Gault, R.A. and Geister, G. (2010) Eirikite, a new mineral species of
 the leifite group from the Langesundsfjord district, Norway. European Journal of
 Mineralogy, 22, 875-880.
- Larsen, B.T., Olauseen, S., Sundvoll, B. and Heeremans, M. (2008) The Permo-Carboniferous
 Oslo Rift through six stages and 65 million years. Episodes, 31(1), 52-58.
- 1216 Lauretta, D.S. (2011) A cosmochemical view of the solar system. Elements, 7, 11-16.
- Lauretta, D.S. and Lodders, K. (1997) The cosmochemical behavior of beryllium and boron.
 Earth and Planetary Science Letters, 146, 315-327.
- Laurs, B.M., Dilles, J.H., Wairrach, Y., Kausar, A.B. & Snee, L.W. (1998): Geological setting
 and petrogenesis of symmetrically zoned, miarolitic granitic pegmatites at Stak Nala, Nanga
 Parbat-Haramosh Massif, northern Pakistan.Canadian Mineralogist 36, 1-47.
- 1222Lengauer, C.L., Hrauda, N., Kolitsch, U., Krickl, R. & Tillmanns, E. (2009): Friedrichbeckeite,1223K ($\Box_{0.5}Na_{0.5}$)₂ (Mg_{0.8}Mn_{0.1}Fe_{0.1})₂(Be_{0.6} Mg_{0.4})₃ [Si₁₂O₃₀], a new milarite-type mineral from1224the Bellerberg volcano, Eifel area, Germany. Mineralogy and Petrology **96**, 221-232.

- Lin, J.-C. and Guggenheim, S. (1983) The crystal structure of a Li,Be-rich brittle mica: a dioctahedral-trioctahedral intermediate. American Mineralogist, 68, 130-142.
- Lindberg, M.L. and Murata, K.J. (1953) Faheyite, a new phosphate mineral from the Sapucaia
 pegmatite mine, Minas Gerais, Brazil. American Mineralogist, 38, 263-270.
- Lindroos, A., Romer, R.L. Ehlers, C. and Alviola, R. (1996) Late-orogenic Svecofennian
 deformation in SW Finland constrained by pegmatite emplacement ages. Terra Nova, 8,
 567-574.
- Lindsey, D.A. (1977) Epithermal beryllium deposits in water-laid tuff, western Utah. Economic
 Geology, 72, 219-232.
- Lodders, K. (2003) Solar system abundances and condensation temperatures of the elements.
 Astrophysical Journal, 591, 1220-1247.
- Lodders, K. (2010) Solar system abundances of the elements. In: A. Goswami and B.E. Reddy
 (eds.), Principles and Perspectives in Cosmochemistry. Astrophysics and Space Science
 Proceedings. Springer-Verlag, Berlin Heidelberg, p. 379-417.
- London, D. and Evensen, J.M. (2002): Beryllium in silicic magmas and the origin of berylbearing pegmatites. Reviews in Mineralogy and Geochemistry, 50, 445-486.
- Loomis, T.A. and Campbell, T.J. (2002) The Tip Top pegmatite: A historical review and
 mineralogical update. Matrix, 10(3), 138-146.
- Lussier, A.J. and Hawthorne, F.C. (2011) Short-range constraints on chemical and structural
 variations in bavenite. Mineralogical Magazine, 75, 213-239.
- Lyalina, L.M., Savchenko, Ye. E., Selivanova, E.A. and Zozulya, D.R. (2009) Behoite and
 mimetite from the Sakharyok alkalic massif (Kola Peninsula). Zapiski Rossiykogo
 Mineralogicheskogo Obshchestvo, 138, 118-126 [in Russian; English abstract].
- Magnusson, N.H. (1930) The iron and manganese ores of the Långban district. Sveriges Geol
 Undersökning Avhandlingar och Uppsatser, Series Ca, no. 23, 1-111 (in Swedish with
 extended English summary).
- Mahler, D.L., Ingram, T., Revell, L.J. and Losos, J.B. (2013) Exceptional convergence on the
 macroevolutionary landscape in island lizard radiations. Science, 341-292-295.
- Maphalala, R.M. and Kröner, A. Pb-Pb single zircon ages for the younger Archaean granitoids of
 Swaziland, southern Africa. 16th International Colloquium on African Geology, Extended
 Abstracts, 14-16 September, 1993, 2, 201-206.
- Markl, G. (2001) Stability of Na-Be minerals in late-magmatic fluids of the Ilímaussaq alkaline
 complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 145-158.

1258 1259 1260 1261	McCreath, J.A., Finch, A.A., Simonsen, Donaldson, C.H. and Armour-Brown, A. (2012) Independent ages of magmatic and hydrothermal activity in alkaline igneous rocks: The Motzfeldt Centre, Gardar Province, South Greenland. Contributions to Mineralogy and Petrology, 163, 967–982.
1262 1263 1264	McLemore, V.T., Lueth, V.W., Pease, T.C. and Guilinger, J.R. (1996) Petrology and mineral resources of the Wind Mountain laccolith, Cornudas Mountains, New Mexico and Texas. Canadian Mineralogist, 34, 335-347.
1265 1266	Mereiter, K., Niedermayr, G. and Walter, F. (1994) Uralolite, Ca ₂ Be ₄ (P0 ₄) ₃ (OH) ₃ ·5H ₂ O: new data and crystal structure. European Journal of Mineralogy, 6, 887-896.
1267 1268	Meyer, C. (1981) Ore-forming processes in the geologic history of the Earth. Economic Geology 75th Anniversary Volume, 6-41.
1269	Meyer, C. (1985) Ore metals through geologic history. Science, 227, 1421-1428.
1270 1271 1272 1273	Mihajlović T, Lengauer CL, Ntaflos T, Kolitsch U, Tillmanns E (2004) Two new minerals, rondorfite, Ca ₈ Mg[SiO ₄] ₄ Cl ₂ , and almarudite, K(□, Na) ₂ (Mn,Fe,Mg) ₂ (Be,Al) ₃ [Si ₁₂ O ₃₀], and a study on iron-rich wadalite, Ca ₁₂ [(Al ₈ Si ₄ Fe ₂)O ₃₂]Cl ₆ , from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie Abhandlungen 179, 265–294
1274 1275 1276	Miller, R.R., Heaman, L.M. and Birkett, T.C. (1997) U–Pb zircon age of the Strange Lake peralkaline complex: implications for Mesoproterozoic peralkaline magmatism in north-central Labrador. Precambrian Research, 81, 67-82.
1277 1278 1279	Mills, S.J., Hatert, F., Nickel, E.H., & Ferraris, G. (2009) The standardization of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy 21, 1073-1080.
1280 1281 1282	Minakawa, T. and Yoshimoto, Y. (1998) Gugiaite from the Yuge Island, Ehime Prefecture. Abstracts of the Annual Meeting of the Mineralogical Society of Japan 1997, Mineralogical Journal, 20(1), 27-28.
1283 1284 1285 1286	Miyawaki, R., Matsubara, S., Yokoyama, K. and Okamoto, A. (2007) Hingganite-(Ce) and hingganite-(Y) from Tahara, Hirukawa mura, Gifu Prefecture, Japan: The description on a new mineral species of the Ce-analogue of hingganite-(Y) with a refinement of the crystal structure of hingganite-(Y). Journal of Mineralogical and Petrological Sciences, 102, 1-7.
1287 1288 1289	Montoya, J.W., Baur, G.S. and Wilson, S.R. (1964) Mineralogical investigation of beryllium- bearing tuff, Honeycomb Hills, Juab County, Utah. U. S. Bureau of Mines Report of Investigations, 6408, 1-11
1290 1291 1292	Moore, P.B., Araki, T. Steele, I.M., Swihart, G.H. and Kampf, A.R. (1983) Gainesite, sodium zirconium, beryllophosphate; a new mineral and its crystal structure. American Mineralogist, 68, 1022-1028.

- Morra, G., Seton, M., Quevedo, L. and Müller, R.D. (2013) Organization of the tectonic plates in
 the last 200 Myr. Earth and Planetary Science Letters, 373, 93–101.
- Morteani, G., Preinfalk, C. & Horn, A.H. (2000): Classification and mineralization potential of
 the pegmatites of the eastern Brazilian pegmatite province. Mineralium Deposita 35, 638 655.
- Mullis, J., Dubessy, J., Poty, B. and O'Neil, J. (1994) Fluid regimes during late stages of
 continental collision; physical, chemical, and stable isotope measurements of fluid
 inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland.
 Geochimica et Cosmochimica Acta, 58, 2239-2267.
- Nash, J.T., Granger, H.C., and Adams, S.S. (1981) Geology and concepts of genesis of important
 types of uranium deposits. Economic Geology, 75th Anniversary Volume, 63-116.
- Nazarova, A.S., Solntseva, L.S. and Yurkina, K.V. (1975) Babefphite. Trudy Mineral Muz Akad
 Nauk SSSR, 24, 191-195 (in Russian).
- Nefedov, Ye.I. (1967) Berborite, a new mineral. Doklady Akademii Nauk SSSR Earth Science
 Sections, 174, 114-117.
- Nizamoff, J.W., Falster, A.U., Francis, C.A., Lange, D.E., Menezes, L. and Simmons, W.B.
 (2006) New Data on Roscherite-Group Minerals from New England and South Dakota,
 USA and Brazil. The MP² Research Group Abstracts.
 http://pegmatology.uno.edu/abstract/abstniz.html
- Normand, C. and Williams, A.E. (2007) Physicochemical conditions and timing of rodingite
 formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine,
 Asbestos, Québec. Geochemical Transactions, 8: 11. doi:10.1186/1467-4866-8-11
- Norton, J.J. and Redden, J.A. (1990): Relations of zoned pegmatites to other pegmatites, granite,
 and metamorphic rocks in the southern Black Hills, South Dakota. American Mineralogist
 75, 631-655.
- Novák, M., Burns, P.C. and Morgan, G.B. VI (1998) Fluorine variation in hambergite from
 granitic pegmatites. Canadian Mineralogist, 36, 441-446.
- Novák, M., Kadlec, T. and Gadas, P. (2013) Geological position, mineral assemblages and
 contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples
 from the Vlastějovice region. Journal of Geosciences, 58, 21–47.
- Nysten, P. (1996) Paragenetic setting and crystal chemistry of milarites from Proterozoic granitic
 pegmatites in Sweden. Neues Jahrbuch für Mineralogie Monatshefte, 1996, 564-576.
- Nysten, P. and Gustafsson, L. (1993) Beryllium phosphates from the Proterozoic granitic
 pegmatite at Norro, southern Stockholm Archipelago, Sweden. Source:Geologiska
 Föreningens i Stockholm Förhandlingar, 115, 159-164

- Orlova, M.P. (1987) Recent findings on the geology of the Malyy Murun alkalic pluton.
 International Geology Review, 30, 945-953.
- Palme, H and O'Neill, H. St. C. (2005): Cosmochemical estimates of mantle composition. In:
 Carlson, R.W., ed., The Mantle and Core, Vol. 2, Holland, H.D. & Turekian, K.K., eds.,
 Treatise on Geochemistry, p. 1-38. Elsevier-Pergamon, Oxford.
- Paque, J.M., Burnett, D.S. and Chaussidon, M. (2003) USNM 3515: An Allende CAI with Li
 isotopic variations. Abstracts of Papers Submitted to the Lunar and Planetary Science
 Conference, 2003, Vol. 34, no. 1401, 2 pages.
- Pautov, L.A., Popov, M.P., Yerokhin, Yu.V., Khiller, V.V. and Karpenko, V.Yu. (2012)
 Mariinskite BeCr2O4 a new mineral, the chromium analogue of chrysoberyl. Zapiski
 Rossiiskogo Mineralogicheskogo Obshchesva, 141(6), 43-62 (in Russian).
- Peacor, D.R., Dunn, P.J., Roberts, W.L., Campbell, T.J. and Newbury, D. (1983) Fransoletite, a
 new calcium beryllium phosphate from the Tip Top Pegmatite, Custer, South Dakota.
 Bulletin de Minéralogie, 106, 499-503.
- Pedrosa-Soares, A.C., de Campos, C.P., Noce, C., Silva, L.C., Novo, T., Roncato, J., Medeiros,
 S., Castañeda, C., Queiroga, G., Dantas, E., Dussin, I., and Alkmim, F. (2011) Late
 Neoproterozoic-Cambrian granitic magmatism in the Aracuai Orogen (Brazil), the Eastern
 Brazilian pegmatite province and related mineral resources. In Sial, A.N., Bettencourt, J.S.,
 de Campos, C.P. and Ferreira, V.P. (editors) Granite-related ore deposits. Geological
 Society Special Publications, 350, 25-51.
- Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union.
 Ocean Pictures, Moscow
- Pekov, I.V. (2000) Lovozero Massif: History, Pegmatites, Minerals. Ocean Pictures Ltd.,
 Moscow.
- Pekov, I.V., Chukanov, N.V., Larsen, A.O., Merlino, S., Pasero, M., Pushcharovsky, D.Yu.,
 Ivaldi, G., Zadov, A.E., Grishin, V.G., Åsheim, A.,, Taftø, J., and Chistyakova, N.I. (2003)
 Sphaerobertrandite, Be₃SiO₄(OH)₂: new data, crystal structure and genesis. European
 Journal of Mineralogy, 15, 157-166.
- Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Agakhanov, A.A., Belakovskiy, D.I., Horváth, L.,
 Filinchuk, Y.E., Gobechiya, E.R., Pushcharovsky, D.Yu., and Rabadanov, M.Kh. (2008)
 Niveolanite, the first natural beryllium carbonate, a mineral species from Mont Saint-
- 1359 Hilaire, Quebec. Canadian Mineralogist, 46, 1343-1354.
- Pekov, I.V., Voloshin, A.V., Pushcharovskii, D.Yu., Rastsvetaeva, R.K, Chukanov, N.V. and
 Belakovskii, D.I. (2000) New data on calcybeborosilite-(Y)
- 1362 (REE,Ca)₂(B,Be)₂[SiO₄]2(OH,O)₂, Moscow University Geology Bulletin, 55(2), 62-70.

12/30

Pekov, I.V., Yakubovich, O.V., Massa, W., Chukanov, N.V., Kononkova, N.N., Agakhanov, 1363 1364 A.A. and Karpenko, V.Yu. (2010) Londonite from the Urals, and new aspects of the crystal 1365 chemistry of the rhodizite-londonite series. Canadian Mineralogist, 48, 241-254. 1366 Petersen, O.V. and Secher, K. (1993): The minerals of Greenland. Mineralogical Record 24, 1-1367 88. 1368 Petersen, O.V., Gault, R.A. and Balić-Žunić, T. (2001) Odintsovite from the Ilímaussag alkaline 1369 complex, South Greenland. Neues Jahrbuch für Mineralogie Monatshefte, 2001(5), 35-240 1370 Petersen, O.V., Niedermayr, G., Johnsen, O., Gault, R.A. and Brandstätter, F. (2002a) Lovdarite 1371 from the Ilímaussag alkaline complex, South Greenland. Neues Jahrbuch für Mineralogie 1372 Monatshefte, 2002(1), 23-30 1373 Petersen, O.V., Giester, G., Brandstätter, F. and Niedermayr G (2002b) Nabesite, 1374 Na₂BeSi₄O₁₀·4H₂O, a new mineral from the Ilímaussag alkaline complex. South Greenland. 1375 Canadian Mineralogist, 40, 173-181. 1376 Pezzotta, F., Diella, V. and Guastoni (1999) Chemical and paragenetic data on gadolinite-group 1377 minerals from Baveno and Cuasso al Monte, southern Alps, Italy. American Mineralogist, 84, 782-789. 1378 1379 Piper, J.D.A. (1982) The Precambrian palaeomagnetic record: the case for the Proterozoic 1380 Supercontinent. Earth and Planetary Science Letters, 59, 61 – 89. 1381 Piper, J.D.A. (2010) Palaeopangaea in Meso-Neoproterozoic times: The palaeomagnetic 1382 evidence and implications to continental integrity, supercontinent form and Eocambrian 1383 break-up. Journal of Geodynamics, 50, 191-223. 1384 Pokrovskiy, P.V., Grigor'yev, N.A. and Potashko, K.A. (1965) Secondary beryllium phosphates 1385 and their distribution in the weathering crust on mica-fluorite greisens. Trudy Instituta 1386 Geologii, Ural'skiy Filial, Akademiya Nauk SSSR, 70, 205-209 (in Russian). Poujol, M. (2001) U-Pb isotopic evidence for episodic granitoid emplacement in the Murchison 1387 1388 greenstone belt, South Africa. Journal of African Earth Sciences, 33, 155-163. 1389 Pring, A., Din, V.K., Jefferson, D.A. and Thomas, J.M. (1986) The crystal chemistry of 1390 rhodizite: a re-examination. Mineralogical Magazine, 50, 163-172. 1391 Pršek, J., Ondrejka, M., Bačík, P., Budzyń, B. & Uher, P. (2010): Metamorphic-hydrothermal 1392 REE minerals in the Bacúch magnetite deposit, Western Carpathians, Slovakia: (Sr, S)-rich 1393 monazite-(Ce) and Nd-dominant hingganite. Canadian Mineralogist 48, 81-94. 1394 Raade, G. and Balić-Žuni, T. (2006) The crystal structure of $(Be, \Box)(V, Ti)_{3}O_{6}$, a mineral related 1395 to kyzylkumite. Canadian Mineralogist, 44, 1147-1158. 1396 Raade, G., Balić-Žuni, T. and Stanley, C.J. (2013) IMA 2013-045. CNMNC Newsletter No. 17, 1397 October 2013, page 3000, Mineralogical Magazine, 77, 2997-3005.

- Raade, G., Bernhard, F. and Ottolini, L. (2004) Replacement textures involving four scandium
 silicate minerals in the Heftetjern granitic pegmatite, Norway. European Journal of
 Mineralogy, 16, 945-950.
- Ramaty, R., Kozlovsky, B. and Lingenfelter, R.E. (1996) Light isotopes, extinct radioisotopes,
 and gamma-ray lines from low-energy cosmic-ray interactions. Astrophysical Journal, 456,
 525-540.
- Ramaty, R., Kozlovsky, B., Lingenfelter, R.E. and Reeves, H. (1997) Light elements and cosmic
 rays in the early galaxy. Astrophysical Journal, 488, 730-748.
- Rao, C., Wang, R.C., Hu, H. & Zhang, W.L. (2009): Complex internal textures in oxide minerals
 from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China.
 Canadian Mineralogist 47, 1195-1212.
- Rao, C., Hatert, F., Wang, R.C., Gu, X.P., Dal, B.F. and Dong, C.W. (2013a) Minjuanite, IMA
 2013-021. CNMNC Newsletter No. 16, August 2013, page 2705; Mineralogical Magazine,
 77, 2695-2709.
- Rao, C., Wang, R., Hatert, F., Gu, X., Ottolini, L., Hu, H., Dong, C., Dal Bo, F., Baijot, M.
 (2013b) Strontiohurlbutite, SrBe₂(PO₄)₂, a new mineral from Nanping No. 31 pegmatite, Fujian Province, Southeastern China. American Mineralogist (in press)
- Redden, J.A., Peterman, Z.E., Zartman, R.E. and DeWitt, E. (1990) U-Th-Pb geochronology and
 preliminary interpretation of Precambrian tectonic events in the Black Hills, South Dakota.
 Special Paper Geological Association of Canada, 37, 229-251.
- 1418Reeves, H. (1994) On the origin of the light elements (Z < 6). Reviews of Modern Physics, 66,1419193-216.
- Reeves, H., Fowler, W.A. and Hoyle, F. (1970) Galactic cosmic ray origin of Li, Be and B in
 stars. Nature, 226, 727-729.
- Rivers, T. (2008) Assembly and preservation of lower, mid, and upper orogenic crust in the
 Grenville Province—Implications for the evolution of large hot long-duration orogens.
 Precambrian Research, 167, 237–259.
- Robinson, G.W., Grice, J.D. and Van Velthuizen, J. (1985) Ehrleite, a new calcium beryllium
 zinc phosphate hydrate from the Tip Top Pegmatite, Custer, South Dakota. Canadian
 Mineralogist, 23, 507-510.
- Robinson, G.W., King, V.T., Asselborn, E., Cureton, F., Tschernich, R. and Sielecki, R. (1992)
 What's new in minerals? Annual world summary of mineral discoveries covering April
 1430 1991 through April 1992. Mineralogical Record, 23, 423-437.
- Robb, L. J., and Robb, V. M. (1986) Archean pegmatite deposits in the northeastern Transvaal.
 In C. R. Anhaeusser & S. Maske, editors, Mineral Deposits of Southern Africa, Geological
 Society of South Africa, v. 1, p. 437-450.

- Rogers, J.J.W. and Santosh, M. (2002) Configuration of Columbia, a Mesoproterozoic
 supercontinent. Gondwana Research, 5, 5-22.
- Romer, R.L. and Smeds, S.-A. (1994) Implications of U-Pb ages of columbite-tantalites from
 granitic pegmatites for the Palaeoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the
 Baltic Shield. Precambrian Research, 67, 141-158.
- Romer, R.L. and Smeds, S.-A. (1996) U-Pb columbite ages of pegmatites from Sveconorwegian
 terranes in southwestern Sweden. Precambrian Research, 76, 15-30.
- Romer, R.L. and Smeds, S.-A. (1996) U-Pb columbite chronology of post-kinematic
 Palaeoproterozoic pegmatites in Sweden. Precambrian Research, 82, 85-99.
- 1443 Ross, M. (1964) Crystal chemistry of beryllium. U.S. Geological Survey Professional Paper 468,
 1444 30 p.
- Rossi, P., Bellatreccia, F., Caprilli, E., Parodi, G.C., Della Ventura, G. and Mottana, A. (1995) A
 new occurrence of rare minerals in an ejectum in the pyroclastics of Vico Volcano, Roman
 Comagmatic Region, Italy. Atti della Accademia Nazionale dei Lincei. Classe di Scienze
 Fisiche, Matematiche e Naturali. Rendiconti Lincei. Scienze Fisiche e Naturali, Series 9, 6,
 1449
- Rouse, R.C., Peacor, D.R., Dunn, P.J., Campbell, T.J., Roberts, W.L., Wicks, F. J. and Newbury,
 D. (1987) Pahasapaite; a beryllophosphate zeolite related to synthetic zeolite rho, from the
 Tip Top Pegmatite of South Dakota. Neues Jahrbuch für Mineralogie. Monatshefte, 1987,
 433-440.
- Rouse, R.C., Peacor, D.R., Dunn, P.J., Su, S.-C., Chi, P.H. and Yeates, H. (1994) Samfowlerite,
 a new Ca Mn Zn beryllosilicate mineral from Franklin, New Jersey: Its characterization and
 crystal structure. Canadian Mineralogist, 32, 43-53.
- Rudnik, R.L. and Gao, S. (2005) Composition of the continental crust. In Rudnick, R.L. (ed.)
 The Crust, volume 3 of Holland, H.D. and Turekian, K.K. (eds.) Treatise on Geochemistry,
 p. 1-64. Elsevier-Pergamon, Oxford.
- Rundkvist, D.V. (1982) Application of laws in the development of mineral formations with time
 during investigations and prognosis of metallogenesis. Zapiski Vsesoyuznogo
 Mineralogicheskogo Obshchestva, 111, 407-421 (in Russian).
- Ryback, G., Clark, A.M. and Stanley, C.J. (1998) Re-examination of the A.W.R. Kingsbury
 collection of British minerals at the Natural History Museum, London. Geological Curator,
 6, 317-322.
- Ryback, G., Hart, A.D. and Stanley, C.J. (2001) A.W.G. Kingsbury's specimens of British
 minerals. Part 1: Some examples of falsified localities. Journal of the Russell Society, 7(2),
 51-69.

- Sacerdoti, M., Parodi, G.C., Mottana, A., Maras, A. and Della Ventura, G.A. (1993) Asbecasite:
 crystal structure refinement and crystal chemistry. Mineralogical Magazine, 57, 315-322.
- Sarazin, G. and Forestier, H. (1959) Étude de la substitution d'ions V³⁺ aux ions Al³⁺ dans
 chrysobéryl. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences,
 Paris, 248(15), 2208-2210.
- Schmetzer, K. (1983) Crystal chemistry of natural Be-Mg-Al oxides: taaffeite, taprobanite,
 musgravite. Neues Jahrbuch für Mineralogie Abhandlungen, 146:15-28.
- Schmetzer, K., Kiefert, L. and Bernhardt, H.-J. (2000) Purple to purplish red chromium-bearing
 taaffeites. Gems & Gemology, 36(1), 50–59.
- Schmincke, H.-U. (2007). The Quaternary volcanic fields of the east and west Eifel (Germany).
 In: Ritter, J. R. R. & Christensen, U.R. (eds) Mantle Plumes. A Multidisciplinary Approach.
 Berlin: Springer, pp. 241-322.
- Semenov, E I., Bohnshtedt-Kupletskaya, E.M., Moleva, V.A. and Sludskaya, N.N. (1956)
 Vinogradovite a new mineral, Doklady Akademii Nauk SSSR 109, 617-620 (in Russian)
- Shearer, C.K. (2002) Behavior of beryllium during solar system and planetary evolution:
 Evidence from planetary materials. Reviews in Mineralogy and Geochemistry, 50, 77-120.
- Shibata, K. and Ishihara, S. (1979) Rb-Sr whole-rock and K-Ar mineral ages of granitic rocks in
 Japan. Geochemical Journal, 13, 113-119.
- Simmons, W.B., Pezzotta, F., Falster, A.U. and Webber, K.L. (2001) Londonite, a new mineral
 species; the Cs-dominant analogue of rhodizite from the Antandrokomby granitic pegmatite,
 Madagascar. Canadian Mineralogist, 39, 747-755.
- Sirbescu, M.-L. and Nabelek, P.I. (2003) Crystallization conditions and evolution of magmatic
 fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—
 Evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 67, 2443–2465.
- Sirbescu, M.-L. C., Hartwick, E.E. and Student, J.J. (2008) Rapid crystallization of the Animikie
 Red Ace Pegmatite, Florence county, northeastern Wisconsin: inclusion microthermometry
 and conductive-cooling modeling. Contributions to Mineralogy and Petrology, 156, 289–
 305.
- Skår, Ø. (2002) U–Pb geochronology and geochemistry of early Proterozoic rocks of the tectonic
 basement windows in central Nordland, Caledonides of north-central Norway. Precambrian
 Research, 116, 265-283.
- Smith, D.G.W. & Nickel, E.H. (2007): A system of codification for unnamed minerals: Report of
 the SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals,
 Nomenclature and Classification. Canadian Mineralogist 45, 983-1055.

- Stilling, A., Černý, P. and Vanstone, P.J. (2006) The Tanco pegmatite at Bernic Lake, Manitoba.
 XVI. Zonal and bulk compositions and their petrogenetic significance. Canadian
 Mineralogist, 44, 599-623.
- Stowe, C.W. (1994) Compositions and settings of chromium deposits through time. EconomicGeology, 89, 528-546.
- Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical-Structural Mineral
 Classification System, Ninth edition, 870 p. E. Schweizerbart'sche Verlagsbuchhandlung,
 Stuttgart.
- Sundvoll, B., Neumann, E.-R., Larsen, B.T. and Tuen, E. (1990) Age relations among Oslo Rift
 magmatic rocks: implications for tectonic and magmatic modelling. Tectonophysics, 178,
 67-87.
- Sviridenko, L.P. and Ivashchenko, V.I. (2000) Ore-bearing granites of Karelia, Russia. In
 Kremenetsky, A.A., Lehmann, ___ and Seltmann, ___ (eds) Ore-bearing Granites of Russia
 and Adjacent Countries, p. 281-294. INTAS-93-1783 Project, IGCP-373 Project, Moscow.
- Swanson, S.E. (2012) Mineralogy of spodumene pegmatites and related rocks in the tinspodumene belt of North Carolina and South Carolina, USA. The Canadian Mineralogist,
 50, 1589-1608.
- Sweetapple, M.T. and Collins, P.L.F. (2002): Genetic framework for the classification and
 distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western
 Australia. Economic Geology, 97, 873-895.
- Takahashi, T., Tanaka, K. and Kawabe, I. (2007) Lanthanide tetrad effect of Naegi granitepegmatite suite, central Japan:Convex tetrad effect by fractional loss of fluid from hydrous
 felsic melt. Journal of Earth and Planetary Sciences, Nagoya University, 54, 13-35.
- 1529 Themelis, T. (2008) Gems & Mines of Mogôk. T. Themelis, ISBN 0940965-30-5.

Thöni, M. and Miller, C. (2000) Permo-Triassic pegmatites in the eo-Alpine eclogite-facies
Koralpe Complex, Austria; age and magma source constraints from mineral chemical, Rb-Sr
and Sm-Nd isotope data. Schweizerische Mineralogische und Petrographische Mitteilungen,
80, 169-186.

Tkachev, A.V. (2011) Evolution of metallogeny of granitic pegmatites associated with orogens
throughout geological time. In Bettencourt, A.N., De Campos, C.P. and Ferreira, V.P. (eds.)
Granite-Related Ore Deposits. Geological Society, London, Special Publications, 350, 7-23.

1537 1538 1539	Tomascak, P.B., Krogstad, Eirik J., Walker and Richard J. (1996) U-Pb monazite geochronology of granitic rocks from Maine; implications for late Paleozoic tectonics in the Northern Appalachians. Journal of Geology, 104, 185-195.
1540 1541 1542	Tropper, P., Harlov, D., Krenn, E., Finge r, F., Rhede , D. and Bernhard, F. (2007): Zr-bearing minerals as indicators for the polymetamorphic evolution of the eastern, lower Austroalpine nappes (Stubenberg Granite contact aureole, Styria, Eastern Alps, Austria). Lithos 95, 72-86.
1543 1544 1545	Trumbull, R.B. (1993) A petrological and Rb–Sr isotopic study of an early Archean fertile granite–pegmatite system: the Sinceni Pluton in Swaziland. Precambrian Research 61, 89-116.
1546 1547 1548	Upton, B.G.J., Emeleus, C.H., Hearman, L.M., Goodenough, K.M. and Finch, A.A. (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos, 68, 43-65.
1549 1550	Vidal, P., Lasnier, B. and Poirot, JP. (1992) Dtermination of the age and origin of emeralds using rubidium-strontium analyses. Journal of Gemmology, 23(4), 198-200.
1551 1552 1553	Voice, P.J., Kowalewski, M., and Eriksson, K.A. (2011) Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains: The Journal of Geology, 119, 109–126.
1554 1555 1556 1557	Volkert, R.A., Zartman, R.E. and Moore, P.B. (2005) U–Pb zircon geochronology of Mesoproterozoic postorogenic rocks and implications for post-Ottawan magmatism and metallogenesis, New Jersey Highlands and contiguous areas, USA. Precambrian Research, 139, 1-19.
1558 1559 1560	Voloshin, A.V., Pakhomovskiy, Ya.A., Rogachev, D.L., Tyusheva, F.N. and Shishkin, N.M. (1986) Ginzburgite—a new calcium-beryllium silicate from desilicated pegmatites. Mineralogicheskiy Zhurnal 8(4), 85-90 (in Russian).
1561 1562 1563	 Voloshin, A.V., Pakhomovskiy, Ya.A., Rogachev, D.L., Nadezhnina, T.N., Pushcharovskiy, D.Yu. and Bakhchisaraytsev, A.Yu. (1989) Clinobehoite—a new natural modification of Be(OH)₂ from desilicated pegmatites. Mineralogicheskiy Zhurnal, 11(5), 88-95 (in Russian)
1564 1565 1566	Von Blanckenburg, F. (1992) Combined high-precision chronometry and geochemical tracing using accessory minerals; applied to the Central-Alpine Bergell Intrusion (Central Europe). Chemical Geology, 100, 19-40.
1567 1568	Walter, F. (1992) Weinebeneite, CaBe ₃ (PO ₄) ₂ (OH) ₂ · 4H ₂ O, a new mineral species: mineral data and crystal structure. European Journal of Mineralogy, 4, 1275-1283.
1569 1570 1571	Wang, S., Ye, N., Li, Wei and Zhao, D. (2010) Alkaline beryllium borate NaBeB ₃ O ₆ and ABe ₂ B ₃ O ₇ (A = K, Rb) as UV nonlinear optical crystals. Journal of the American Chemical Society, 132, 8779–8786

- Weibel, M., Graeser, S., Oberholzer, W.F., Stalder, H.-A. and Gabriel, W. (1990) Die Mineralien
 der Schweiz. Ein mineralogischer Führer. Fifth edition. Birkhäuser Verlag, Berlin.
- Wise, M.A. and Brown, C.D. (2010) Mineral chemistry, petrology and geochemistry of the
 Sebago granite-pegmatite system, southern Maine, USA. Journal of Geosciences, 55, 3-26
- Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomobskiy and Men'shikov, Yu.P. (1999) Minerals of
 the Khibiny Massif. Zemlya, Moscow.
- Yang, Z., Ding K., de Fourestier, J., Mao Q. and Li, H. (2012) Ferrotaaffeite-2N'2S, a new
 mineral species, and the crystal structure of Fe (super ²⁺) -rich magnesiotaaffeite-2N'2S from
 the Xianghualing tin-polymetallic ore field, Hunan Province, China. Canadian Mineralogist,
 50, 21-29.
- Yuan, S., Peng, J., Hu, R., Li, H., Shen, N. and Zhang, D. (2008) A precise U–Pb age on
 cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China).
 Mineralium Deposita, 43, 375-382.
- Yushkin, N.P. (1982) Evolutionary ideas in modern mineralogy. Zapiski Vsesoyuznogo
 Mineralogicheskogo Obshchestva, 116, 432-442 (in Russian).
- 1587 Zhabin, A.G. (1979): Is there evolution of mineral speciation on Earth? Doklady Akademii Nauk
 1588 247, 199-202 (in Russian)
- Zhabin, A.G. (1981): Is there evolution of mineral speciation on Earth? Doklady Earth Science
 Sections 247, 142-144 [translation of Zhabin 1979]
- Zozulya, D.R., Bayanova, T.B. and Eby, G.N. (2005): Geology and Age of the Late Archean
 Keivy Alkaline Province, Northeastern Baltic Shield. Journal of Geology, 113, 601-608.

1593 Figure Captions

1594	Figure 1. Photographs of minerals containing essential beryllium. A. Emerald in mica
1595	schist matrix from Murchison greenstone belt, South Africa; 90 x 75 mm. © Peter
1596	Lyckberg, and published with permission courtesy of Peter Lyckberg. This specimen is in
1597	the collection of Peter Lyckberg. Sinkankas's painting of this specimen was published as
1598	Figure 5 of the colored section in Sinkankas (1981) B. Beryllonite, NaBe(PO ₄), in
1599	columnar aggregate from Kunar Province, Afghanistan and in glassy fragments from the
1600	type locality of Stoneham, Maine, U.S.A. Coin diameter is ~1 cm. E.S. Grew samples
1601	and photo. C. Sørensenite, Na ₄ Be ₂ Sn(Si ₃ O ₉) ₂ ·2H ₂ O, pink, columnar masses from
1602	Kvanefjeld, Ilímaussaq complex, West Greenland. Coin diameter is ~1 cm. E.S. Grew
1603	sample (gift of Ted Johnson) and photo. D. Pezzottaite, CsLiBe ₂ Al ₂ Si ₆ O ₁₈ . Ambatovita,
1604	Mandrosonoro area, Fianarantsoa Province, Madagascar. R060583 reproduced with
1605	permission from the RRUFF Project (Downs 2006). E. Welshite,
1606	$Ca_4[Mg_9(Sb^{5+})_3]O_4[Si_6Be_3Al(Fe^{3+})_2O_{36}], \ crystal \ 3.5x2 \ mm, \ from \ Långban, \ Sweden.$
1607	Photograph by Erik Jonnson. Reproduced with permission courtesy of the Swedish
1608	Museum of Natural History. F. Rhodizite, KBe ₄ Al ₄ (B ₁₁ Be)O ₂₈ , pale yellow crystal with
1609	pink tourmaline (rubellite) from Manjaka, Sahatany Pegmatite Field, Antananarivo
1610	Province, Madagascar. Coin diameter is ~1 cm. E.S. Grew sample (gift of François
1611	Fontan) and photo. G. Niveolanite, NaBeCO ₃ (OH)·2H ₂ O, as a fibrous aggregate 1.5 cm
1612	across, part of type specimen, from Mont Saint-Hilaire, Rouville, Montérégie, Québec,
1613	Canada. Horváth Collection HC11128. Photo © László Horváth. Reproduced with
1614	permission courtesy of László Horváth. H. Chrysoberyl, Be ₂ AlO ₄ , Twinned crystals from
1615	the Ratnapura district, Sri Lanka. Photograph of sample R100130 reproduced with

59

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4675

1616 permission from the RRUFF Project (Downs 2006). I. Bertrandite, Be₄Si₂O₇(OH)₂, in 1617 pseudohexagonal prisms from the Golconda mine, Governador Valadares, Minas Gerais, 1618 Brazil. Photograph of sample R060800 reproduced with permission from the RRUFF 1619 Project (Downs 2006). 1620 1621 Figure 2. A Diagram showing cumulative diversity based on the reported earliest 1622 occurrences of 110 Be minerals in the geologic record (Table 2). The diagram is 1623 cumulative in that each reported new occurrence is added to the number of minerals that 1624 had been reported from older rocks, i.e., the y-axis indicates the number of new minerals 1625 that are reported to have appeared by a certain time, but not the number of minerals 1626 forming at that time (updated from Hazen et al. 2012 and Grew and Hazen 2013). B. 1627 Histogram showing our estimates of the number of minerals that formed in a given 50 Ma

1628 interval based on the reported earliest (Table 2), latest (Table 3) and intermediate

1629 occurrences (generally if 4-5 or fewer occurrences; if more than 4-5 occurrences, we have

assumed the mineral formed in all the 50-Ma intervals between the earliest and latest

1631 occurrences). The number of localities does not include all the localities for minerals

1632 reported at 10 or more localities ("many" in Table 3). C. Histogram of U-Pb

1633 crystallization ages for 100,445 detrital zircon analyses at 20 Ma bin intervals (modified

1634 from Voice et al. 2011, Fig. 1c and A3). Yellow boxes are based on the time periods for

supercontinent assembly, where the period for Kenorland is taken from that for

1636 Superia/Sclavia (Cawood et al. (2013).

1637

1638	Figure 3. Diagram showing structural complexity (total information content as bits per
1639	unit cell) based on Table 1 from the data compiled by Krivovichev (2013) as a function
1640	of the first reported occurrence of beryllium minerals in the geologic record (Table 2).
1641	The degree of complexity (total information content) is based on Krivovichev (2013).
1642	
1643	Figure 4. Photographs of minerals from the Himalaya orogenic belt, Gilgit District,
1644	northern Pakistan. A. Väyrynenite from the Shengus pegmatite, Nanga Parbat-Haramosh
1645	massif. Age is estimated to be 5 Ma (Laurs et al. 1998). Photograph of sample R050590
1646	reproduced with permission from the RRUFF Project (Downs 2006). B. Aquamarine with
1647	muscovite from Fikar (Fiqhar), Hunza River area. Age is estimated to not exceed 9 Ma
1648	(Fraser et al. 2001). The prism faces are 1 cm wide. E.S. Grew sample and photographs.
1649	

Figure 2

Figure 3

R050590

<u>5 mm</u>

Number	Mineral name	Formula	Class (Strunz	Supergroup or	Complexity,
			and Nickel	Group	$I_{G, total}$
			(2001)	_	
Be1	Alflarsenite	NaCa ₂ Be ₃ Si ₄ O ₁₃ (OH)·2H ₂ O	Silicate		579
Be2	Almarudite	$K(\Box, Na)_2(Mn, Fe, Mg)_2[(Be, Al)_3Si_{12}]O_{30}$	Silicate	Milarite	258
Be3	Aminoffite	Ca ₃ (BeOH) ₂ Si ₃ O ₁₀	Silicate		312
Be4	Asbecasite	$Ca_3TiAs_6Be_2Si_2O_{20}$	Arsenite		200
Be5	Atencioite	$Ca_2(Fe^{2+})_3Mg_2Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Phosphate	Roscherite	271 ^a
Be6	Babefphite	BaBePO ₄ F	Phosphate		64
Be7	Barylite	BaBe ₂ Si ₂ O ₇	Silicate		172
Be8	Bavenite	$Ca_4Be_2Al_2Si_9O_{26}(OH)_2$	Silicate		335
Be9	Bazzite	$Be_3(Sc,Fe^{3+},Mg)_2Si_6O_{18}\cdot Na_x\cdot nH_2O$	Silicate	Beryl	146
Be10	Bearsite	$Be_2(AsO_4)(OH) \cdot 4H_2O$	Arsenate	Cf. moreasite	369
Be11	Behoite	Be(OH) ₂	Hydroxide		19
Be12	Berborite	Be ₂ (BO ₃)(OH)·H ₂ O	Borate		39 ^b
Be13	Bergslagite	CaBeAsO ₄ (OH)	Arsenate	Herderite	96
Be14	Bertrandite	Be ₄ Si ₂ O ₇ (OH) ₂	Silicate		115
Be15	Beryl	Be ₃ Al ₂ Si ₆ O ₁₈	Silicate	Beryl	133
Be16	Beryllite	Be ₃ (SiO ₄)(OH) ₂ ·H ₂ O	Silicate		
Be17	Beryllonite	NaBe(PO ₄)	Phosphate	Cf. trimerite	369
Be18	Bityite	CaLiAl ₂ (Si ₂ BeAl)O ₁₀ (OH) ₂	Silicate	Mica	с
	Bohseite	Ca ₄ Be ₃ AlSi ₉ O ₂₅ (OH) ₃		Cf. bavenite	
Be19	Bromellite	BeO	Oxide		4
Be20	Bussyite-(Ce)	(Ce,REE) ₃ (Na,H ₂ O) ₆ MnSi ₉ Be ₅ (O,OH) ₃₀ F ₄	Silicate		622
	Calcybeborosilite (V)	$(\mathbf{V} \mathbf{P} \mathbf{F} \mathbf{F} \mathbf{C}_2)(\mathbf{P} \mathbf{B}_2) \cdot (\mathbf{S} \mathbf{O}_1) \cdot (\mathbf{O} \mathbf{H} \mathbf{O})$		Gadolinite-	
		(1, KEE, Ca)(D, De) ₂ (5104) ₂ (011, 0) ₂		Datolite	
Be21	Chiavennite	$CaMn^{2+}(BeOH)_2Si_5O_{13}\cdot 2H_2O$	Silicate	Zeolite	409
Be22	Chkalovite	Na ₂ BeSi ₂ O ₆	Silicate	Cf. liberite	277
Be23	Chrysoberyl	BeAl ₂ O ₄	Oxide	Cf. forsterite	71
	Clinobarylite	BaBe ₂ Si ₂ O ₇		Cf. barylite	
Be24	Clinobehoite	Be(OH) ₂	Hydroxide		294

Table 1. List of beryllium minerals (as of October, 2013)

Bo25	Danalita	$Be_{2}(Fe^{2+}) (SiO_{2}) S$	Silicate	Cancrinite-	
De25	Dallante	De3(1'e)4(3104)35		Sodalite	87
Be26	Ehrleite	$Ca_2ZnBe(PO_4)_2(PO_3OH) \cdot 4H_2O$	Phosphate		220
Be27	Eirikite	$KNa_6Be_2(Si_{15}Al_3)O_{39}F_2$	Silicate	Leifite	226
Be28	Epididymite	$Na_2Be_3Si_6O_{15}$ ·H ₂ O	Silicate		426
Be29	Euclase	BeAlSiO ₄ (OH)	Silicate		96
Be30	Eudidymite	Na ₂ Be ₃ Si ₆ O ₁₅ ·H ₂ O	Silicate		217
Be31	Faheyite	$Be_2Mn^{2+}(Fe^{3+})_2(PO_4)_4 \cdot 6H_2O$	Phosphate		
Be32	Ferrochiavennite ^e	$Ca_{1} {}_{2}Fe[(Si,Al,Be)_{5}Be_{2}O_{13}(OH)_{2}] \cdot 2H_{2}O$	Silicate	Zeolite	775 ^a
Be33	Ferrotaaffeite-2N'2S	$Be(Fe^{2+})_{3}Al_{8}O_{16}$	Oxide	Högbomite	
Be34	Ferrotaaffeite-6N'3S	$\mathrm{Be}(\mathrm{Fe}^{2+})_{2}\mathrm{Al}_{6}\mathrm{O}_{12}$	Oxide	Högbomite	
Be35	Footemineite	$Ca_2(Mn^{2+})_5Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Phosphate	Roscherite	222
Be36	Fransoletite	$Ca_3Be_2(PO_4)_2(PO_3OH)_2 \cdot 4H_2O$	Phosphate		336
Be37	Friedrichbeckeite	$K(\Box Na)Mg_2(Be_2Al)Si_{12}O_{30}$	Silicate	Milarite	258
Do29	Gadolinite-(Ce)	$Ce_2Fe^{2+}Be_2O_2(SiO_4)_2$	Silicate	Gadolinite-	
Безо				Datolite	
D ₂ 20	Gadalinita (V)	$\mathbf{V} \mathbf{E} \mathbf{e}^{2+} \mathbf{P} \mathbf{e} \mathbf{O} (\mathbf{S}; \mathbf{O})$	Silicate	Gadolinite-	
De39	Gadoninite-(1)	1_{2} 1_{2		Datolite	107
Be40	Gainesite	$Na_2(Be,Li)(Zr,Zn)_2(PO_4)_4 \cdot 1.5H_2O$	Phosphate	Gainesite	84
Ba/1	Genthelvite	$Be_7n_1(SiO_1)$ -S	Silicate	Cancrinite-	
DC+1	Ochuleivite	DC3Z114(5104)35		Sodalite	87
Be42	Glucine	$CaBe_4(PO_4)_2(OH)_4 \cdot 0.5H_2O$	Phosphate		
Be43	Greifensteinite	$Ca_2(Fe^{2+})_5Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Phosphate	Roscherite	221
Be44	Gugiaite	Ca ₂ BeSi ₂ O ₇	Silicate	Melilite	58
Be45	Guimarãesite	$Ca_2Zn_5Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Phosphate	Roscherite	
Be46	Hambergite	Be ₂ BO ₃ (OH)	Borate		192
Be47	Harstigite	$Ca_6Be_4Mn^{2+}(SiO_4)_2(Si_2O_7)_2(OH)_2$	Silicate		786
Be/18	Helvite	$Be_2(Mn^{2+})/(SiO_2)$	Silicate	Cancrinite-	
DC+0	TICIVILE			Sodalite	87
Be49	Herderite	CaBePO ₄ (F,OH)	Phosphate	Herderite	96
Be50	Hingganite-(Ce)	$\operatorname{Hingganite}_{(Ce)}$ BeCe(SiO ₄)OH	Silicate	Gadolinite-	
Бези		eso mingganne-(Ce) DeCe(SIO ₄)OH			Datolite

Be51	"Hingganite (Nd)"	BeNd(SiO.)OH	Silicate	Gadolinite-	
Dest	Thinggainte-(INU)	Berva(5104)011		Datolite	
Be52	Llinggonita (V)	B-W(S:O)OH	Silicate	Gadolinite-	
Desz	Thinggainte-(T)	Be 1 (5104)011		Datolite	107
P o52	Uinggonita (Vh)	Boyh(SiO.)OU	Silicate	Gadolinite-	
Dess	Thinggainte-(10)	Be 1 0(3104)011		Datolite	107
Be54	Høgtuvaite	$Ca_4[(Fe^{2+})_6(Fe^{3+})_6]O_4[Si_8Be_2Al_2O_{36}]$	Silicate	Sapphirine	348
Be55	Hsianghualite	$Li_2Ca_3Be_3(SiO_4)_3F_2$	Silicate	Zeolite	343
Be56	Hurlbutite	$CaBe_2(PO_4)_2$	Phosphate		192
Be57	Hyalotekite	$(Pb,Ba,K)_4(Ca,Y)_2(B,Be)_2(Si,B)_2Si_8O_{28}F$	Silicate		215
Be58	Hydroxylherderite	CaBePO ₄ (OH)	Phosphate	Herderite	96
Be59	Jeffreyite	(Ca,Na) ₂ (Be,Al)Si ₂ (O,OH) ₇	Silicate		
Be60	Joesmithite	$Pb^{2+}Ca_2(Mg_3Fe^{3+}_2)(Si_6Be_2)O_{22}(OH)_2$	Silicate	Amphibole	362
Be61	Khmaralite	$Mg_4(Mg_3Al_9)O_4[Si_5Be_2Al_5O_{36}]$	Silicate	Sapphirine	1656
Be62	Leifite	Na ₇ Be ₂ (Si ₁₅ Al ₃)O ₃₉ (F,OH) ₂	Silicate	Leifite	226
Be63	Leucophanite	NaCaBeSi ₂ O ₆ F	Silicate		172
Be64	Liberite	Li ₂ BeSiO ₄	Silicate	Cf. chkalovite	48^{f}
Be65	Londonite	$CsBe_4Al_4(B_{11}Be)O_{28}$	Borate		122
Be66	Lovdarite	$K_2Na_6Be_4Si_{14}O_{36}\cdot 9H_2O$	Silicate		741
Be67	Mg-taaffeite-2N'2S	BeMg ₃ Al ₈ O ₁₆	Oxide	Högbomite	212
Be68	Mg-taaffeite-6N'3S	BeMg ₂ Al ₆ O ₁₂	Oxide	Högbomite	146
Be69	Makarochkinite	$Ca_4[(Fe^{2+})_8(Fe^{3+})_2Ti_2]O_4[Si_8Be_2Al_2O_{36}]$	Silicate	Sapphirine	348
Be70	Mariinskite	BeCr ₂ O ₄	Oxide		71 ^{a,d}
Be71	Mccrillisite	NaCs(Be,Li)Zr ₂ (PO ₄) ₄ ·1-2H ₂ O	Phosphate	Gainesite	
Be72	Meliphanite	$Ca_4(Na,Ca)_4Be_4AlSi_7O_{24}(F,O)_4$	Silicate		178
Be73	Milarite	KCa ₂ (Be ₂ AlSi ₁₂)O ₃₀ ·H ₂ O	Silicate	Milarite	258
D.74	Minaganaigita (V)	CaBa V Si O	Silicate	Gadolinite-	
De/4	Minasgeraisite-(Y)	$Cabe_2 r_2 S r_2 O_{10}$		datolite	
Be75	Minjiangite	$Ba[Be_2P_2O_8]$	Phosphate		
Be76	Moraesite	$Be_2(PO_4)(OH) \cdot 4H_2O$	Phosphate	Cf. bearsite	66
Be77	Mottanaite-(Ce)	$Ca_4(CeCa)AlBe_2(Si_4B_4O_{22})O_2$	Silicate	Hellandite	363
Be78	Nabesite	Na ₂ BeSi ₄ O ₁₀ ·4H ₂ O	Silicate	Zeolite	514

Be79	Niveolanite	NaBeCO ₃ (OH)·2H ₂ O	Carbonate		176
Be80	Odintsovite	$K_2Na_4Ca_3Ti_2Be_4Si_{12}O_{38}$	Silicate		543
Be81	Oftedalite ^g	K(CaSc)Be ₃ Si ₁₂ O ₃₀	Silicate	Milarite	234 ^a
Be82	Pahasapaite	$Li_8(Ca,Li,K)_{10}Be_{24}(PO_4)_{24} \cdot 38H_2O$	Phosphate	Zeolite	3920
Be83	Parafransoletite	$Ca_3Be_2(PO_4)_2(PO_3OH)_2 \cdot 4H_2O$	Phosphate		168
Be84	Pezzottaite	CsLiBe ₂ Al ₂ Si ₆ O ₁₈	Silicate	Beryl	941
Be85	Phenakite	Be ₂ SiO ₄	Silicate	Willemite	118
Be86	Rhodizite	$KBe_4Al_4(B_{11}Be)O_{28}$	Borate		122
Be87	Roggianite	$Ca_2BeAl_2Si_4O_{13}(OH)_2 \cdot nH_2O (n < 2.5)$	Silicate	Zeolite	402
Be88	Roscherite	$Ca_2(Mn^{2+})_5Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Phosphate	Roscherite	242
Be89	Ruifrancoite	Ca_2 (\Box ,Mn ²⁺) ₂ (Fe ³⁺ ,Mn ²⁺ ,Mg) ₄ -	Phosphate	Roscherite	
DC 07	rumunconc	$Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$		Rosenerite	
Be90	Samfowlerite	$Ca_{14}(Mn^{3+})_3Zn_3Be_2Be_6Si_{14}O_{52}(OH)_6$	Silicate		1202
Be91	Selwynite	NaKBeZr ₂ (PO ₄) ₄ ·2H ₂ O	Phosphate	Gainesite	
Be92	Semenovite-(Ce)	$(Na,Ca)_9Fe^{2+}Ce_2(Si,Be)_{20}(O,OH,F)_{48}$	Silicate		771
Be93	Sørensenite	$Na_4Be_2Sn(Si_3O_9)_2 \cdot 2H_2O$	Silicate		318
Be94	Sphaerobertrandite	Be ₃ SiO ₄ (OH) ₂	Silicate		133
Be95	Stoppaniite	$Fe^{3+}_{2}Be_{3}Si_{6}O_{18}\cdot H_{2}O$	Silicate	Beryl	146
Be96	Strontiohurlbutite	$SrBe_2(PO_4)_2$	Phosphate		
Be97	Surinamite	Mg ₃ Al ₃ O(Si ₃ BeAlO ₁₅)	Silicate	Sapphirine	526
Be98	Sverigeite	$NaBe_2(Mn^{2+})_2SnSi_3O_{12}(OH)$	Silicate		144
Be99	Swedenborgite	NaBe ₄ Sb ⁵⁺ O ₇	Oxide		68
Be100	Telyushenkoite	$C_sNa_6Be_2(Si_{15}Al_3)O_{39}F_2$	Silicate	Leifite	226
De101			Phosphate	Cancrinite-	
Belui	Прюрне	$K_2(L1, Na, Ca)_6(Be_6P_6)O_{24}(OH)_2 \cdot 1.5H_2O$		Sodalite	142
Be102	Trimarita	$C_{2}Be_{2}(Mp^{2+})_{2}(SiO_{2})_{2}$	Silicate	Cf.	
De102		CaDe ₃ (IVIII) ₂ (SIO ₄) ₃		beryllonite	369
Be103	Tugtunite	gtupite Na ₄ BeAlSi ₄ O ₁₂ Cl	Silicate	Cancrinite-	
De103	rugtupite			Sodalite	64
Be104	Tvedalite	$Ca_4Be_3Si_6O_{17}(OH)_4 \cdot 3H_2O$	Silicate		
Be105	Unnamed-1	$K(CaY)Be_3Si_{12}O_{30}$	Silicate	Milarite	
Be106	Unnamed-2 (IMA No.	$(Be,\Box)(V^{3+},Ti)_{3}O_{6}$	Oxide	Cf.	109 ^a

	2013-045)		kyzylkumite,	
			tivanite ^h	
Be107	Uralolite	$Ca_2Be_4(PO_4)_3(OH)_3 \cdot 5H_2O$		564
Be108	Väyrynenite	BeMn ²⁺ PO ₄ (OH)		133
	Vinogradovite	Not a Be mineral – see text		
Be109	Wawayandaite	$Ca_6Be_9(Mn^{2+})_2BSi_6O_{23}(OH,Cl)_{15}$		
Be110	Weinebeneite	$CaBe_3(PO_4)_2(OH)_2 \cdot 4H_2O$	Zeolite	173
Be111	Welshite	$Ca_4[Mg_9(Sb^{5+})_3]O_4[Si_6Be_3Al(Fe^{3+})_2O_{36}]$	Sapphirine	414 ^a
Be112	Zanazziite	$Ca_2Mg_5Be_4(PO_4)_6(OH)_4 \cdot 6H_2O$	Roscherite	

Notes: Complexity is given in terms of total structural information content as bits per unit cell (Krivovichev 2013, Supplementary Information). ^aKrivovichev (personal communication) ^bValue for berborite-1T, space group *P*3, which is the polytype reported from both Lupikko and Larvik (Giuseppetti et al. 1990). ^cTwo values are given for a bityite-margarite intermediate (Lin and Guggenheim 1983), one each for a different space group. ^dFrom the synthetic analogue (Frazer et al. 1969).). ^eWe give the general formula reported by Grice et al (2013) instead of the ideal end-member formula Ca₁ $_2$ FeSi₅Be₂O₁₃(OH)₂·2H₂O, which is not balanced in charge. ^fThe complexity for liberite has not been plotted because of an error in reported structure (Hawthorne and Huminicki 2002). ^gFormula from end-member composition given in Cooper and Hawthorne (2006). ^hRaade et al. (2013)

Mineral name Age (Ma) Locality ^aTuften guarry, Tvedalen, Larvik, Vestfold, Norway Alflarsenite 294 ^aBellerberg volcano, Ettringen, Eifel, Rhineland-Palatinate, Germany Almarudite 0.4 ^aLångban deposit, Filipstad, Värmland, Sweden Aminoffite 1000 Asbecasite 370 Tennvatn pegmatite, Sørfold, Nordland, Norway ^aLinópolis, Divino das Laranjeiras, Minas Gerais State, Brazil Atencioite 582 ^{a,b}Aunik fluorite deposit. Burvativa, Transbaikal, Russia 250 Babefphite Barylite 1825 Långban deposit, Filipstad, Värmland, Sweden Bavenite 2550 Londonderry pegmatite, Coolgardie, Western Australia, Australia 967 Heftetjern pegmatite, Tørdal, Telemark, Norway Bazzite Sc ^{a,b}Bota-Burum deposit, Chu-Ili Mountains, Balkash Region, Kazakhstan Bearsite Sakharijok massif, Kola Peninsula, Russia Behoite 2680 ^bLupikko deposit, Pitkäranta, Lake Ladoga region, Karelia, Russia Berborite 1538 Bergslagite Långban deposit, Filipstad, Värmland, Sweden 1825 2835 Bertrandite Mount Francisco pegmatites, East Pilbara, Western Australia, Australia 3000 Beryl Sinceni pluton area, central Swaziland 1160 Ilímaussag complex, Narsag, West Greenland Beryllite 2670 Beryllonite BEP pegmatite, Bird River Greenstone Belt, Manitoba, Canada 2590 Rothsay pegmatite, Rothsay, Western Australia, Australia Bityite **Bromellite** 1825 Långban deposit, Filipstad, Värmland, Sweden ^aMont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada 124 Bussyite-(Ce) Chiavennite 1820 Utö, Södermanland, Sweden Ilímaussag complex, Narsag, West Greenland Chkalovite 1160 Chrysoberyl 2665 Mavis Lake pegmatite group, Dryden Field, Superior Province, Manitoba, Canada ^aIzumrudnye Kopi, Tokovaya River, Middle Urals, Russia Clinobehoite 250 2550 Barbara gold mine pegmatites, Coolgardie, Western Australia, Australia Danalite ^aTip Top mine, Fourmile guadrangle, Custer County, South Dakota, U.S.A. Ehrleite 1702 Eirikite 1160 Ilímaussag complex, Narsag, West Greenland Epididymite 1267 Igaliko complex, Narsag, West Greenland Euclase 2590 Dalgaranga pegmatite, near Mount Magnet, Western Australia, Australia Eudidymite 1267 Igaliko complex, Narsaq, West Greenland 1702 Faheyite Roosevelt mine, Custer County, South Dakota, U.S.A.

Table 2. Reported earliest occurrences of beryllium minerals in the geologic record

Ferrochiavennite	294	^a Blåfjell, Langangen, Telemark and Tvedalen, Vestfold, Norway
Ferrotaaffeite-2N'2S	156	^a Xianghualing ore field, Linwu County, Hunan Province, China
Ferrotaaffeite-6N'3S	1805	^a Rosendal pegmatite, Kemiö Island, Southwestern Finland Region, Finland
Footemineite	345	^a Foote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A.
Fransoletite	1702	^a Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Friedrichbeckeite	0.4	^a Bellerberg volcano, Ettringen, Eifel, Rhineland-Palatinate, Germany
Gadolinite-(Ce)	1850	Bastnäs mine, Skinnskatteberg District, Västmanland, Sweden
Gadolinite-(Y)	2847	Cooglegong pegmatites, East Pilbara, Western Australia, Australia
Gainesite	293	^a Nevel quarry, Newry, Oxford County, Maine, U.S.A.
Genthelvite	1820	Utö, Södermanland, Sweden
Glucine	S ^c	^{a,b} Boevskoye deposit, Kamensk-Ural'skii, Chelyabinsk Oblast', Russia
Greifensteinite	1702	Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Gugiaite	294	Larvik plutonic complex, Norway
Guimarãesite	515	^a Piauí valley, Taquaral, Itinga, Minas Gerais State, Brazil
Hambergite	1760	Animikie Red Ace pegmatite, Florence County, Wisconsin, USA
Harstigite	1825	^a Harstigen Mine, Pajsberg, Persberg district, Värmland, Sweden
Helvite	2835	Mount Francisco pegmatites, East Pilbara, Western Australia, Australia
Herderite	500	Brazil: specific locality unknown
Hingganite-(Ce)	294	Arent quarry, Tvedalen, Larvik, Vestfold, Norway
"Hingganite-(Nd)"	100	^a Bacúch deposit, western Carpathian Mountains, Slovakia
Hingganite-(Y)	1742	Hundholmen, Tysfjord, Nordland, Norway
Hingganite-(Yb)	1682	^b Mount Ploskaya, western Keivy Massif, Kola Peninsula, Russia
Høgtuvaite	414	^a Høgtuva, near Mo i Rana, Nordland, Norway
Hsianghualite	156	^a Xianghualing ore field, Linwu County, Hunan Province, China
Hurlbutite	1820	Norrö, Södermanland, Sweden
Hyalotekite	1825	Långban deposit, Filipstad, Värmland, Sweden
Hydroxylherderite	2670	BEP pegmatite, Bird River Greenstone Belt, Manitoba, Canada
Jeffreyite	440	^a Jeffrey mine, Asbestos, Quebec, Canada
Joesmithite	1825	^a Långban deposit, Filipstad, Värmland, Sweden
Khmaralite	2485	^a Khmara Bay, Enderby Land, East Antarctica
Leifite	1267	Igaliko complex, Narsaq, West Greenland
Leucophanite	1267	Igaliko complex, Narsaq, West Greenland
Liberite	156	^a Xianghualing ore field, Linwu County, Hunan Province, China
--------------------	------	---
Londonite	1760	^d Animikie Red Ace pegmatite, Florence County, Wisconsin, USA
Lovdarite	1160	Ilímaussaq complex, Narsaq, West Greenland
Mg-taaffeite-2N'2S	1538	Lupikko deposit, Pitkäranta, Lake Ladoga region, Karelia, Russia
Mg-taaffeite-6N'3S	2485	Khmara Bay, Enderby Land, East Antarctica
Makarochkinite	265	^a Pit 400 near Lake Ishkul', Il'men Mountains (southern Urals), Russia
Mariinskite	250	^a Mariinskoye emerald deposit, Malysheva, Sverdlovskaya Oblast', Russia
Mccrillisite	293	^a Mount Mica quarry, South Paris, Oxford County, Maine, U.S.A.
Meliphanite	2680	Sakharijok massif, Kola Peninsula, Russia
Milarite	1820	Utö, Södermanland, Sweden
Minasgeraisite-(Y)	580	^a Lavra de Sr. José Pinto, Jaguaraçu, Minas Gerais, Brazil
Minjiangite	300	^a Nanping No. 31 pegmatite, Fujian Province, China
Moraesite	2550	Londonderry pegmatite, Coolgardie, Western Australia, Australia
Mottanaite-(Ce)	0.4	^a Monte Cavalluccio, Roman Comagmatic Province, Latium, Italy
Nabesite	1160	^a llímaussaq complex, Narsaq, West Greenland
Niveolanite	124	^a Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada
Odintsovite	1160	Ilímaussaq complex, Narsaq, West Greenland
Oftedalite	967	^a Heftetjern pegmatite, Tørdal, Telemark, Norway
Pahasapaite	1702	^a Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Parafransoletite	1702	^a Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Pezzottaite	500	Sakavalana pegmatite, Ambatovita, Amoron'I Mania Region, Madagascar
Phenakite	2969	Gravelotte, Murchison greenstone belt, South Africa
Rhodizite	500	^a Ambatofinandrahana, Ankarata Mountains, Madagascar
Roggianite	250	Izumrudnye Kopi, Tokovaya River, Middle Urals, Russia
Roscherite	1702	Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Ruifrancoite	582	^a Sapucaia mine, Galiléia County, Minas Gerais, Brazil
Samfowlerite	940	^a Franklin mine, Franklin, Sussex County, New Jersey, U.S.A.
Selwynite	385	^a Wycheproof quarry, Wycheproof, Victoria, Australia
Semenovite-(Ce)	1160	^a llímaussaq complex, Narsaq, West Greenland
Sørensenite	1160	^a llímaussaq complex, Narsaq, West Greenland
Sphaerobertrandite	1160	Ilímaussaq complex, Narsaq, West Greenland

Stoppaniite	0.4	^a Vico Lake, Roman Comagmatic Province, Latium, Italy
Strontiohurlbutite	300	^a Nanping No. 31 pegmatite, Fujian Province, China
Surinamite	2485	Khmara Bay, Enderby Land, East Antarctica
Sverigeite	1825	^a Långban deposit, Filipstad, Värmland, Sweden
Swedenborgite	1825	^a Långban deposit, Filipstad, Värmland, Sweden
Telyushenkoite	170	^a Darai-Pioz Glacier, Alai Range, Tien Shan Mountains Tajikistan
Tiptopite	1702	^a Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.
Trimerite	1825	^a Långban deposit, Filipstad, Värmland, Sweden
Tugtupite	1160	Ilímaussaq complex, Narsaq, West Greenland
Tvedalite	294	^a Vevja quarry, Tvedalen, Larvik, Vestfold, Norway
Unnamed (IMA 2013-045)	248	^a Byrud Emerald Mine, Minnesund, Eidsvoll, Akershus, Norway
Unnamed	1240	Strange Lake peralkaline complex, Quebec-Labrador, Canada
Uralolite	515	Piauí valley, Taquaral, Itinga, Minas Gerais State, Brazil
Väyrynenite	1820	Norrö, Södermanland, Sweden
Wawayandaite	940	^a Franklin mine, Franklin, Sussex County, New Jersey, U.S.A.
Weinebeneite	70	^a Weinebene Pass, Koralpe, Carinthia, Austria
Welshite	1825	^a Långban deposit, Filipstad, Värmland, Sweden
Zanazziite	582	Linópolis, Divino das Laranjeiras, Minas Gerais State, Brazil

Notes: ^aMineral is reported from only one locality.

^bLocality given in Pekov (1998), together with brief description of the mineral

^cSupergene, and the age cannot be determined

^dReported as rhodizite

n.d. - not determined

Reference for mineral	Reference for age	Single locality	
Raade et al. (2009)	Larsen (2010)		1
Mihajlović et al. (2004)	Schminke (2007)		1
Holtstam and Langhof (2007)	Jonsson (2004)		1
Husdal (2011)	Husdal (2008)		
Chuganov et al. (2006)	Pedrosa-Soares et al. (2011)		1
Nazarova et al. (1975	Bulnaev (2006)		1
Holtstam and Langhof (2007)	Jonsson (2004)		
Jacobson et al. (2007)	Jacobson et al. (2007)		
Bergstøl and Juve (1988)	Andersen et al. (2007)		
Kopchenova and Sidorenko (1962)	Kopchenova and Sidorenko (1962)		1
Lyalina et al. (2009)	Zozulya et al. (2007)		
Nefedov (1967)	Stein et al. (2003)		
Holtstam and Langhof (2007)	Jonsson (2004)		
Jacobson et al. (2007)	Jacobson et al. (2007)		
Trumbull (1993)	Trumbull (1993)		
Markl (2001)	Krumrei et al. (2006)		
Černa et al (2002)	Černý (2005)		
Jacobson et al. (2007)	Jacobson et al. (2007)		
Holtstam and Langhof (2007)	Jonsson (2004)		
Grice et al. (2009)	Gilbert and Foland (1986)		1
Langhof et al. (2000)	Romer and Smeds (1994)		
Markl (2001)	Krumrei et al. (2006)		
Breaks et al. (2005)	Breaks et al. (2005)		
Voloshin et al. (1989)	Fershtater et al. (2007)		1
Jacobson et al. (2007)	Jacobson et al. (2007)		
Robinson et al. (1985)	Dahl and Foland (2008)		1
Larsen et al. (2010)	Krumrei et al. (2006)		
Petersen and Secher (1993)	McCreath et al. (2012)		
Jacobson et al. (2007)	Jacobson et al. (2007)		
Petersen and Secher (1993)	McCreath et al. (2012)		
Robinson et al. (1992)	Dahl and Foland (2008)		

Grice et al. (2013)	Larsen (2010)	1
Yang et al. (2012)	Yuan et al. (2008)	1
Burke and Lustenhouwer (1981)	Lindroos et al. (1996)	1
Atencio et al. (2008)	Swanson (2012)	1
Peacor et al. (1983)	Dahl and Foland (2008)	1
Lengauer et al. (2009)	Schminke (2007)	1
Holtstam and Andersson (2007)	Allen et al. (1996)	
Jacobson et al. (2007)	Jacobson et al. (2007)	
Moore et al. (1983)	Wise and Brown (2010)	1
Langhof et al. (2000)	Romer and Smeds (1994)	
Grigor'yev (1963)	Ginzberg et al. (1966)	1
Nizamoff et al. (2006)	Dahl and Foland (2008)	
Grice and Kristiansen (2013)	Larsen (2010)	
Chuganov et al. (2007)	Pedrosa-Soares et al. (2011)	1
Falster et al. (1996)	Sirbescu et al. (2008)	
Flink (1917)	Jonsson (2004)	1
Jacobson et al. (2007)	Jacobson et al. (2007)	
Dunn and Wight (1976)	Pedrosa-Soares et al. (2011)	
Larsen (2010)	Larsen (2010)	
Pršek et al. (2010)	Pršek et al. (2010)	1
Husdal (2008)	Andresen and Tull (1986)	
Belolipetskii and Voloshin (1996)	Bayanova and Voloshin (1999)	
Grauch et al. (1994)	Skår (2002)	1
Huang et al. (1988)	Yuan et al. (2008)	1
Nysten and Gustafsson (1993)	Romer and Smeds (1994)	
Grew et al. (1994)	Jonsson (2004)	
Černá et al (2002)	Černý (2005)	
Grice and Robinson (1984)	Normand and Williams (2007)	1
Holtstam and Langhof (2007)	Jonsson (2004)	1
Barbier et al. (1999)	Hokada and Harley (2004)	1
Petersen and Secher (1993)	McCreath et al. (2012)	
Petersen and Secher (1993)	McCreath et al. (2012)	

Chao (1964)	Yuan et al. (2008)	1
Falster et al. (2001a)	Sirbescu et al. (2008)	
Petersen et al. (2002a)	Krumrei et al. (2006)	
Schmetzer (1983)	Stein et al. (2003)	
Grew et al. (2000)	Hokada and Harley (2004)	
Grew et al. (2005)	Grew et al. (2005)	1
Pautov et al. (2012)	Fershtater et al. (2007)	1
Foord et al. (1994)	Wise and Brown (2010)	1
Bel'kov and Denisov (1968)	Zozulya et al. (2007)	
Langhof et al. (2000)	Romer and Smeds (1994)	
Foord et al. (1986)	Pedrosa-Soares et al. (2011)	1
Rao et al. (2013a)	Rao et al. (2009)	1
Jacobson et al. (2007)	Jacobson et al. (2007)	
Della Ventura et al. (2002)	De Rita et al. (1983)	1
Petersen et al. (2002b)	Krumrei et al. (2006)	1
Pekov et al. (2008)	Gilbert and Foland (1986)	1
Petersen et al. (2001)	Krumrei et al. (2006)	
Cooper et al. (2006)	Andersen et al. (2007)	1
Rouse et al. (1987)	Dahl and Foland (2008)	1
Kampf et al. (1992)	Dahl and Foland (2008)	1
Hawthorne et al. (2004)	Fernandez et al. (2003)	
Grundmann and Morteani (1989)	Poujol (2001)	
Pring et al. (1986)	Fernandez et al. (2003)	1
Voloshin et al. (1986)	Fershtater et al. (2007)	
Campbell and Roberts (1986)	Dahl and Foland (2008)	
Atencio et al. (2007)	Pedrosa-Soares et al. (2011)	1
Rouse et al. (1994)	Volkert et al. (2005)	1
Birch et al. (1995)	Birch et al. (1995)	1
Petersen and Secher (1993)	Krumrei et al. (2006)	1
Petersen and Secher (1993)	Krumrei et al. (2006)	1
Pekov et al. (2003)	Krumrei et al. (2006)	

Della Ventura et al. (2000)	Fornasera (1985)	1
Rao et al. (2013b)	Rao et al. (2009)	1
Grew et al. (2000)	Hokada and Harley (2004)	
Holtstam and Langhof (2007)	Jonsson (2004)	1
Holtstam and Langhof (2007)	Jonsson (2004)	1
Agakhanov et al. (2003)	Grew et al. (1993)	1
Grice et al. (1985)	Dahl and Foland (2008)	1
Holtstam and Langhof (2007)	Jonsson (2004)	1
Petersen and Secher (1993)	Krumrei et al. (2006)	
Larsen (2010)	Larsen (2010)	1
Raade and Balić-Žunić (2006)	Sundvoll et al. (1990)	1
Černý et al. (1991)	Miller et al. (1997)	
http://www.mindat.org/min-4099.html	Pedrosa-Soares et al. (2011)	
Nysten and Gustafsson (1993)	Romer and Smeds (1994)	
Dunn et al. (1990)	Volkert et al. (2005)	1
Walter (1992)	Thöni and Miller (2000)	1
Grew et al. (2007)	Jonsson (2004)	1
Atencio et al. (2005)	Pedrosa-Soares et al. (2011)	

Table 3. Reported latest occurrences and number of localities of be

Mineral name	No. of localities	Age (Ma)
Asbecasite	4	0.2
Barylite	many	113
Bavenite	many	17.5
Bazzite	many	17.5
Behoite	7	5
Berborite	2	294
Bergslagite	7	17.5
Bertrandite	many	5
Beryl	many	5
Beryllite	3	362
Beryllonite	many	5
Bityite	many	33
Bromellite	8	156
Chiavennite	4	30
Chkalovite	4	124
Chrysoberyl	many	20
Danalite	many	30
Eirikite	5	124
Epididymite	many	35
Euclase	many	17.5
Eudidymite	9	113
Faheyite	2	582
Gadolinite-(Ce)	3	294
Gadolinite-(Y)	many	0.4
Genthelvite	many	124
Greifensteinite	9	70
Gugiaite	5	90.5
Hambergite	many	5
Helvite	many	0.4
Herderite	4	20
Hingganite-(Ce)	5	67
Hingganite-(Y)	many	67

Hingganite-(Yb)	2	920
Hurlbutite	many	293
Hyalotekite	2	170
Hydroxylherderite	many	5
Leifite	5	124
Leucophanite	many	124
Londonite	3	250
Lovdarite	3	2
Mg-taaffeite-2N'2S	7	20
Mg-taaffeite-6N'3S	8	263
Meliphanite	5	33
Milarite	many	17.5
Moraesite	many	293
Odintsovite	2	118
Pezzottaite	3	20
Phenakite	many	6.8
Roggianite	2	33
Roscherite	5	70
Sphaerobertrandite	5	156
Surinamite	5	1050
Tugtupite	4	124
Uralite	6	70
Väyrynenite	many	5
Zanazziite	5	293

eryllium minerals in the geologic record

Locality	Reference for mineral
Tre Croci, Vico volcanic complex, Roman Comagmatic Province, Latium, Italy	Sacerdoti et al (1993)
Zomba–Malosa pluton, Chilwa Alkaline Province, southern Malawi	Demartin et al. (2003)
Alpine fissures Aar and Gotthard Massifs, Switzerland	Weibel et al. (1990)
Alpine fissures Aar and Gotthard Massifs, Switzerland	Weibel et al. (1990)
Honeycomb Hills, Juab County, Utah	Montoya et al. (1964)
Larvik plutonic complex, Langesundfjord-Porsgrunn area, Norway	Larsen (2010)
Alpine fissures, probably Gotthard Massif, Switzerland	Weibel et al. (1990)
Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan	Laurs et al. (1998)
Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan	Laurs et al. (1998)
Lovozero massif, Kola Peninsula, Russia	Pekov (2000)
Drot, Nanga Parbat - Haramosh massif, northern Pakistan	Laurs et al. (1998)
Vigezzo valley, Western Alps, Italy	Guastoni and Pezzotta (2008)
Xianghualing ore field, Linwu County, Hunan Province, China	Huang et al. (1988)
Chiavenna, Tanno, Sondrio, Lombardy, Italy	Bondi et al. (1983)
Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada	Horváth and Horváth-Pfenninger (2000)
Mogok gem mining area, Myanmar	Themelis (2008)
Pizzi dei Rossi, Forno, Bergell, Graubünden, Switerland	Weibel et al. (1990)
Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada	Larsen et al. (2010)
Wind Mountain, Cornudas Mountains, New Mexico	mindat; Horvath (pers. comm. 2013)
Alpine fissure, Pizzo Giubine (St Gotthard Pass), Switzerland	Demartin (1992)
Zomba–Malosa pluton, Chilwa Alkaline Province, southern Malawi	Gatta et al (2008)
Sapucaia mine, Galiléia County, Minas Gerais, Brazil	Lindberg and Murata (1953)
Larvik Intrusive Complex, Oslo	Larsen (2010)
Vico Lake, Roman Comagmatic Province, Latium, Italy	Camara et al (2008)
Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada	Horváth and Horváth-Pfenninger (2000)
Weinebene Pass, Koralpe, Carinthia, Austria	Chukanov et al. (2003)
Yuge Island, Ochigun, Ehime Prefecture, Japan	Minakawa and Yoshimoto (1998)
Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan	Laurs et al. (1998)
Vico Lake, Roman Comagmatic Province, Latium, Italy	Rossi et al. (1995)
Mogok gem mining area, Myanmar	Harlow and Hawthorne (2008)
Tahara, Hirukawa mura, Gifu Prefecture, Japan	Miyawaki et al. (2007)
Tahara, Hirukawa mura, Gifu Prefecture, Japan	Miyawaki et al. (2007)

Tangen-bruddet, Kragerø, Telemark, Norway Black Mtn guarries, Rumford, Maine Darai-Pioz Glacier, Alai Range, Tien Shan Mountains Tajikistan Drot, Nanga Parbat - Haramosh massif, northern Pakistan Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Murzinka and Rezh districts, central Urals, Russia Point of Rocks (formerly Peck's) Mesa, near Springer, Coalfax County, N.M. Mogok gem mining area, Myanmar Stubenberg am See, Styria, Austria Vigezzo valley, Western Alps, Italy Alpine fissures, mostly Aar massif Greenwood, Newry and Paris, Maine Malyy Murun alkalic pluton, Irkutsk Oblast, Russia Momeik, Mogok gem mining area, Myanmar Facciatoia pegmatite, Island of Elba, Italy Vigezzo valley, Western Alps, Italy Weinebene Pass, Koralpe, Carinthia, Austria Xianghualing ore field, Linwu County, Hunan Province, China Chimwala area near Chipata, Eastern Province, Zambia Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Weinebene Pass, Koralpe, Carinthia, Austria Sassi, Nanga Parbat - Haramosh massif, northern Pakistan Market Prospect, Newry, Maine

Kristiansen (1994) King and Foord (1994) Grew et al. (1994) Laurs et al. (1998) Larsen et al. (2010) Horváth and Horváth-Pfenninger (2000) Pekov et al. (2010) DeMark (1984, 1989) Schmetzer et al (2000) Bernhard et al. (2008) Guastoni and Pezzotta (2008) Weibel et al. (1990) King and Foord (1994) Konev et al. (1995) Devouard et al. (2007) Ceciliato (2007) Guastoni and Pezzotta (2008) Chukanov et al. (2003) Huang et al. (1988) De Roever and Vrána (1985) Horváth and Horváth-Pfenninger (2000) Mereiter et al. (1994) Huminicki and Hawthorne (2000) Nizamoff et al. (2006)

Reference for age Sacerdoti et al (1993) Eby et al. (1995) Mullis et al. (1994) Mullis et al. (1994) Lindsey (1977) Larsen (2010) Mullis et al. (1994) Laurs et al. (1998) Laurs et al. (1998) Pekov (2000) Laurs et al. (1998) Guastoni and Pezzotta (2008) Yuan et al. (2008) von Blanckenburg (1992) Gilbert and Foland (1986) Themelis (2008) von Blanckenburg (1992) Gilbert and Foland (1986) McLemore et al. (1996) Mullis et al. (1994) Eby et al. (1995) Pedrosa-Soares et al. (2011) Larsen (2010) Fornasera (1985) Gilbert and Foland (1986) Thöni and Miller (2000) Shibata and Ishihara (1979) Laurs et al. (1998) Fornasera (1985) Themelis (2008) Takahashi et al (2007) Takahashi et al (2007)

Andersen et al. (2002) Wise and Brown (2010) Grew et al. (1993) Laurs et al. (1998) Gilbert and Foland (1986) Gilbert and Foland (1986) Fershtater et al. (2007) Collins (1949) Themelis (2008) Tropper et al. (2007) Guastoni and Pezzotta (2008) Mullis et al. (1994) Wise and Brown (2010) Orlova (1987) Themelis (2008) Aurisicchio et al (2002) Guastoni and Pezzotta (2008) Thöni and Miller (2000) Yuan et al. (2008) Johnson et al. (2006) Gilbert and Foland (1986) Thöni and Miller (2000) Laurs et al. (1998) Wise and Brown (2010)

Complex	Age	Total	New	Species found only	Species not found	Other essential constituents in Be
	(Ma)	species	species ^a	in one complex	elsewhere	minerals ^b
Sakharijok	2680	2	2	0	0	-
Igaliko	1267	4	4	0	0	_
Ilímaussaq	1160	18	10	0	3	S, Cl, Ti, Mn, Zn, Sn, Ba, Ce
Khibiny	362	12	0	0	0	Cl, Ba, Ce
Lovozero	362	10	0	1	0	P, S, Zn
Larvik	294	26	3	4	3	B, S, Mn, Zn, Y, Ba, Ce
Saint-Hilaire	124	19	2	1	2	C, S, Cl, Mn, Zn, Y, Ba, Ce
Zomba-Malosa	113	7	0	1	0	S, Zn Y, Ba

Table 4. Beryllium minerals in alkalic complexes

Note: ^aFirst occurrence in the geologic record (Table 2). ^bExcluding Na, K, Ca, Al, Si, O, H and F. Y and Ce include heavy and light rare earth elements, respectively

Element	# minerals	# with Be	Element	#minerals	#with Be
Li	115	8	Se	115	0
В	263	7	Br	12	0
С	397	1	Rb	3	0
Ν	92	0	Sr	126	1
0	3957	112	Y	118	5
F	367	11	Zr	120	3
Na	919	28	Nb	142	0
Mg	626	12	Mo	60	0
Al	1009	28	Ag	167	0
Si	1434	66	Cd	28	0
Р	567	28	In	12	0
S	1006	3	Sn	89	2
Cl	357	2	Sb	245	2
Κ	434	13	Te	159	0
Ca	1195	48	Cs	17	4
Sc	16	2	Ba	220	4
Ti	334	4	La	45	0
V	207	1	Ce	146	5
Cr	93	1	Nd	26	1
Mn	519	14	Yb	5	1
Fe	1060	18	Та	58	0
Co	63	0	W	41	0
Ni	149	0	Hg	92	0
Cu	633	0	Pb	502	2
Zn	242	5	Bi	214	0
Ga	5	0	Th	33	0
Ge	29	0	U	245	0
As	562	3			

Table 5. Coexisting elements in Be minerals.

Note: For each element, the first column gives the number of approved mineral species for that element (based on the IMA master list at the RRUFF website,

http://rruff.info/ima/ as of October 18, 2013), whereas the second column gives the number of Be minerals that also incorporate that element (Table 1), e.g., there are 115 known lithium minerals, of which 8 incorporate Be.