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ABSTRACT 10 

Beryllium is a quintessential upper crustal element, being enriched in the upper crust by a 11 

factor of 30 relative to primitive mantle, 2.1 ppm vs. 0.07 ppm. Most of the 112 minerals with Be 12 

as an essential element are found in granitic pegmatites and alkalic rocks or in hydrothermal 13 

deposits associated with volcanic and shallow-level plutonic rocks and skarns. Because of the 14 

extensive differentiation needed to enrich rocks sufficiently in beryllium for beryllium minerals 15 

to form, these minerals are relative late comers in the geologic record: the oldest known is beryl 16 

in pegmatites associated with the Sinceni pluton, Swaziland (3000 Ma). In general beryllium 17 

mineral diversity reflects the diversity in the chemical elements available for incorporation in the 18 

minerals and increases with the passage of geologic time. Furthermore, the increase is episodic; 19 

that is, steep increases at specific times are separated by longer time intervals with little or no 20 

increase in diversity. Nonetheless, a closer examination of the record suggests that at about 1700 21 

Ma, the rate of increase in diversity decreases and eventually levels off at ~35species formed in a 22 

given 50 Ma time interval between 1125 and 475 Ma, then increases to 39 species at 125 Ma 23 

(except for four spikes), before dropping off to ~30 species for the last 100 Ma. These features 24 

appear to reflect several trends at work: (1) diversifications at 2475 Ma, 1775 Ma, and 525 Ma, 25 

which are associated with highly fractionated rare-element granitic pegmatites and with skarns at 26 
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Långban and similar deposits in the Bergslagen ore region of central Sweden, and which are 27 

inferred to correspond to the collisional phases of the supercontinents Kenorland, Nuna, and 28 

Gondwana, respectively; (2) diversification at 1175 Ma due to the rich assemblage of beryllium 29 

minerals in the Ilímaussaq peralkaline complex, Gardar Province, West Greenland in an 30 

extensional environment; (3) diversification at 275 Ma, which is largely attributable to granitic 31 

pegmatites (Appalachian Mountains, USA and Urals, Russia) and the Larvik alkalic complex, 32 

Norway, but nonetheless related to continental collision and (4) limited exhumation of 33 

environments where beryllium minerals could have formed in the last 100 Ma. That the 34 

maximum diversity of Be minerals in any one geologic environment could be finite is suggested 35 

by the marked slowing of the increase in the number of species formed in a given 50 Ma time 36 

interval, whereas the drop off at 100 Ma could be due to 100 Myr being too short a time interval 37 

to exhume the deep-seated occurrences where many Be minerals had formed. The relative roles 38 

of chance versus necessity in complex evolving systems has been a matter of considerable 39 

debate, one equally applicable to what extent the temporal distribution of beryllium minerals is a 40 

matter of contingency. On the one hand, the appearance of the most abundant Be minerals, such 41 

as beryl and phenakite, early in the history of Be mineralization appears to be a deterministic 42 

aspect since these minerals only require the abundant cations Al and Si and crystallize at 43 

relatively low concentrations of Be in aqueous solution or granitic magmas. On the other hand, it 44 

could be argued that the very existence of most other Be minerals, as well as the temporal 45 

sequence of their appearance, is a matter of chance since 55 of the 112 approved Be minerals are 46 

known from a single locality and many of these phases require an unusual combination of 47 

relatively rare elements. Consequently, we cannot exclude the possibility that other equally rare 48 

and thus contingent potential Be minerals await discovery in as yet unexposed subsurface 49 
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deposits on Earth, and we suggest that details of Be mineral evolution on other Earth-like planets 50 

could differ significantly from those on Earth. 51 

Keywords: mineral age, beryllium, mineral evolution, granitic pegmatites, peralkaline 52 

complexes, supercontinent cycle, crystal structure, beryl 53 

INTRODUCTION 54 

Minerals are conventionally thought to be time-independent – it has been tacitly assumed 55 

that the minerals found on Earth and other planetary bodies or meteorites could have formed at 56 

any time in the history of the solar system. Mineral evolution challenges this assumption: it 57 

cannot be taken for granted that the minerals found today have always been present. This 58 

approach to mineralogy is concerned with the first appearance of minerals in the geological 59 

record and the relationship between the first appearances and events such as the assembly and 60 

break-up of supercontinents, major changes in the composition of the atmosphere, and 61 

colonization of dry land. Although Hazen et al. (2008, 2011, 2012) have developed and 62 

quantified the mineral evolution paradigm to a far greater extent than before, and Krivovichev 63 

(2013) has extended it to the complexity of crystal structures, several important concepts in 64 

mineral evolution were anticipated up to nearly 50 years earlier. Compiling data from all over the 65 

world, Gastil (1960) found a pronounced cyclicity in mineral dates. Zhabin (1979, 1981) 66 

articulated the concept of stages of mineral evolution and duration of a mineral’s presence, 67 

contrasting common rock-forming minerals like quartz and zircon that have been present 68 

throughout geologic time beginning with meteorites with rarities such as welshite (Fig. 1), which 69 

has been reported only from a single locality. Yushkin (1982) discussed the increasing 70 

mineralogical complexity, which he related to increasing entropy through geologic time, 71 

emphasizing that these changes were concentrated in the upper parts of Earth’s crust and on its 72 
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surface. Mineral evolution was also anticipated in the ore geology literature (Nash et al. 1981; 73 

Meyer 1981, 1985; Rundkvist 1982; Stowe 1994; see also Krivovichev 2013 for a history of 74 

mineral evolution). 75 

Minerals containing Be as an essential constituent appear to be relatively late comers on 76 

Earth, none having been reported in extraterrestrial rocks (Shearer 2002) or in terrestrial rocks 77 

older than ca. 3000 Ma (Grew and Hazen 2009, 2010b, 2013), after 1500 Ma years of Earth’s 78 

existence. This delayed appearance of Be minerals is no accident, as Be is the least abundant 79 

element lighter than Fe in the solar system (Lodders 2010; Lauretta 2011). Beryllium is highly 80 

enriched in the upper continental crust compared to other reservoirs, i.e., 2.1 parts per million vs. 81 

1.4 parts per million in the lower crust and 0.07 parts per million in primitive mantle (Rudnick 82 

and Gao 2005; Palme and O’Neill 2004). However, less than 10 parts per million are rarely 83 

sufficient to stabilize a mineral of which Be is an essential constituent (e.g., Grew 2002b). 84 

Normally, further enrichment by at least an order of magnitude is necessary for the more 85 

common Be minerals, notably beryl, to appear, for example, 70 parts per million in granitic 86 

pegmatites (Evensen and London 2002; London and Evensen 2002). 87 

The minerals of Be can add a different perspective on mineral evolution from the minerals 88 

of mercury, the first element to be treated in detail (Hazen et al. 2012). Both elements are rare, 89 

but their cosmochemical behavior differs because Hg has a much lower 50% condensation 90 

temperature for a solar-system composition gas: 252 °C for Hg in troilite vs. 1179 °C for Be in 91 

melilite (Lauretta and Lodders 1997; Lodders 2003). Their geochemical behavior also is 92 

markedly different, as Be is a lithophile elements showing only one valence (2+) in geologic 93 

systems, whereas Hg is chalcophile and shows three valence states (0, 1+, and 2+), so that the 94 

redox conditions that play a large role in Hg mineral evolution would have had relatively little 95 
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impact on Be mineral evolution. Another major distinction is that mercury mineralization was 96 

enhanced by interactions with organic matter (Hazen et al. 2012), whereas organic materials 97 

played a minimal role in the diversification of Be minerals. 98 

In the present paper, we review the occurrences of the 112 species containing essential 99 

beryllium, with particular emphasis on the first and last reports in the geologic record and the 100 

frequency with which the minerals have been reported over geologic time. Broadly speaking 101 

there is an increase in mineral diversity with time. As reported by Hazen et al. (2012) for 102 

mercury minerals, spurts in species diversification of beryllium minerals appear to be related to 103 

the supercontinent cycle. However, the tendency for increased diversification with time does not 104 

give the full story of Be mineral evolution, and so our paper will also discuss influences that 105 

could have constrained increases in mineral diversity. 106 

THE MINERALS OF BERYLLIUM – OUR DATABASE 107 

Table 1 lists in alphabetical order the 112 minerals containing essential Be that are 108 

considered valid by the Commission on New Minerals, Nomenclature and Classification of the 109 

International Mineralogical Association (CNMNC IMA), together with their formulae, which are 110 

largely taken from the 2012 CNMNC IMA list (the list can be downloaded from the CNMNC 111 

IMA website, http://pubsites.uws.edu.au/ima-cnmnc/IMA_Master_List_%282013-08%29.pdf, or 112 

the RRUFF website, http://rruff.info/ima/). Group assignment is based largely on Back and 113 

Mandarino (2008) and Mills et al. (2009); other relationships are taken from Hawthorne and 114 

Huminicki (2002) and Grice (2010).  115 

We question the validity of two of the approved species, and thus we have not included them 116 

in our count. Bohseite, Ca4Be3AlSi9O25(OH)3, may not be distinct from bavenite, 117 

Ca4Be2Al2Si9O26(OH)2, given the results reported by Lussier and Hawthorne (2011). 118 
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Krivovichev et al. (2004) found that clinobarylite could be considered the 1O-polytype of 119 

BaBe2Si2O7, for which barylite is the 2O-polytype, in which case these minerals are not distinct 120 

species, but polytypes of a single species. Vinogradovite had also been listed by the CNMNC 121 

IMA as a valid mineral containing essential Be, (Na,Ca,K)5(Ti,Nb)4(Si6BeAl)O26·3H2O. 122 

However, Be is not an essential constituent of vinogradovite, because there is no evidence for 123 

significant Be in the type material (Semenov et al. 1956). Significant Be substitutes for Si and Al 124 

at the Si(2) site in several samples of vinogradovite from the Ilímaussaq complex (Greenland), 125 

but it is not dominant at this site, i.e., Si ≈ 6, Al ≈ 1.2, and Be ≈ 0.8 out of 8 atoms total at the 126 

Si(2) site (Kalsbeek and Rønsbo 1992), and thus the Ilímaussaq vinogradovite would not qualify 127 

as a mineral species distinct from type vinogradovite. Consequently, vinogradovite is no longer 128 

listed as a Be mineral in the CNMNC IMA list. 129 

A third controversial species, the gadolinite-datolite group mineral calcybeborosilite-(Y), 130 

(Y,REE,Ca)(B,Be)2(SiO4)2(OH,O)2 (e.g., Pekov et al. 2000), could be a valid species although 131 

listed as “questionable” in the list at the CNMNC IMA website. Our question is whether Be is an 132 

essential constituent. Strunz and Nickel (2001) gave the end-member formula as 133 

(CaY) (BBe)[OH|SiO4]2, but this is not a proper end member because there are two cations at 134 

two sites (Hawthorne 2002). Grew (2002a) gave the end member as Y2 (Si2O8)O2, i.e., natural 135 

calcybeborosilite-(Y) could be a solid solution of Y2 B2(Si2O8)O2 with Ca2 B2(Si2O8) (OH)2 136 

(datolite), Y2FeBe2(Si2O8)O2 (gadolinite-(Y)) and Y2 Be2(Si2O8) (OH)2 (hingganite-(Y)). 137 

Further discussion of the status of calcybeborosilite-(Y) is beyond the scope of this paper; 138 

sufficient for our purposes is the absence of evidence that Be is an essential constituent of 139 

calcybeborosilite-(Y), and thus we have not included it as a Be mineral (Table 1). 140 
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None of the valid unnamed minerals (Smith and Nickel 2007) in their list updated in 2011, 141 

which is also available at the CNMNC IMA website, appears to be distinct from an approved 142 

mineral. However, there are two additional minerals included in Table 1, bringing the total to 143 

112 valid Be minerals. Pršek et al. (2010) reported a hingganite in which Nd is dominant among 144 

the rare earth elements + yttrium, which is potentially a new species, hingganite-(Nd). 145 

Hawthorne (2002) suggested that yttrian milarite approaching the end-member 146 

K(CaY)Be3Si12O30 in composition (Černý et al. 1991; Nysten 1996) could be a distinct mineral.  147 

Even for valid species, not all reported occurrences are well documented. For example, 148 

minasgeraisite-(Y) has been reported from the Krenn quarry, Matzensdorf/Tittling, Germany 149 

(Habel and Habel 2009) and Vlastějovice region, Czech Republic (Novák et al. 2013), but in 150 

neither case does the reported composition correspond to the ideal minasgeraisite-(Y) end-151 

member CaY2Be2Si2O10, and other data such as powder X-ray diffraction are either not given or 152 

only mentioned without specifics. Consequently, we have not accepted such reports, and 153 

minasgeraisite-(Y) is listed as a mineral occurring only at the type locality. 154 

Complex solid solutions, most notably the roscherite group, required special attention; we 155 

accepted as valid only those reports of a given mineral species in which the identification was 156 

substantiated by chemical analysis, and, if necessary, symmetry. Rhodizite and its Cs-dominant 157 

analogue londonite posed a particular problem. “Rhodizite” has been reported from several 158 

localities in the Urals and Madagascar and from one locality in Wisconsin and the United 159 

Kingdom, but K-dominant material, i.e. rhodizite sensu stricto, has been confirmed only from 160 

two localities in Madagascar (Pring et al. 1986; Simmons et al. 2001). Re-examination of 161 

“rhodizite” specimens from the Urals turned up londonite (Pekov et al. 2010), whereas the single 162 

published analysis of “rhodizite” from the Animikie Red Ace pegmatite in Wisconsin, 163 
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characterized as a “representative” analysis, gave K 0.393 and Cs 0.407 per formula unit (Falster 164 

et al. 2001a), i.e., londonite. No analysis is available for rhodizite reported by A.W.R. Kingsbury 165 

from Meldon, Devon, U.K. (Embrey 1978); indeed the report needs confirmation (A. Tindle, 166 

2008, http://www.mindat.org/mesg-7-92300.html; cf. Ryback et al. 1998, 2001 for other 167 

minerals). Consequently, rhodizite is considered to be found at one locality (as defined below), 168 

whereas londonite has been verified from 3 localities by this definition. 169 

In terms of mineral class (Strunz and Nickel 2001), the Be minerals that we consider valid 170 

include 66 silicates (e.g., Fig. 1a,c,d,e,i), 28 phosphates (e.g., Fig. 1b), 1 arsenite, 2 arsenates, 11 171 

oxides (Fig.1h) and hydroxides, 1 carbonate (Fig. 1g), and 4 borates (e.g., Fig. 1c). 172 

DETERMINING THE AGES FOR CRYSTALLIZATION OF BERYLLIUM MINERALS 173 

The database for determining the evolution of Be minerals is presented in Tables 2 and 3, 174 

which are compilations of the earliest and latest reported occurrences of Be minerals in the 175 

geologic record, respectively, together with the reported number of localities. The first column of 176 

references in each table gives the best source for information of the occurrence of the mineral at 177 

the specified locality. The second column of references in each table gives the best source of 178 

information for dating the crystallization of the mineral, which is the same reference in some 179 

cases. The listed references either give all the necessary information or cite other work that we 180 

consulted for compiling the table. The age assignments range widely in quality – in some cases, 181 

the age is well constrained, in many others, much less so because we must infer that the rock 182 

containing a Be mineral is coeval with the dated rock, and this date could be problematic (see 183 

below). We also checked whenever feasible the ages of other localities in order to be sure that we 184 

had found the earliest and latest reported occurrences. 185 
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The number of localities worldwide for a given mineral is specified only if the number does 186 

not exceed 10. Closely spaced localities having identical ages, e.g., pegmatites associated with 187 

Larvik plutonic complex in the Langesundsfjord area south of Oslo, Norway (Larsen 2010), are 188 

considered to constitute a single locality in Table 3. We made extensive use of the compilations 189 

in Grew (2000a, b) and at http://www.mindat.org. However, we verified the occurrences listed at 190 

http://www.mindat.org for minerals reported from <10 localities to be sure that the cited 191 

occurrences were sufficiently substantiated to be considered valid, e.g., minasgeraisite-(Y) 192 

above. Of the 112 species of Be minerals, 55 are reported from only one locality – i.e., 193 

“monochronous” (Zhabin 1979, 1981). In contrast, only 23 minerals have been reported from 194 

more than 10 localities worldwide. In terms of Zhabin’s (1979, 1981) classification, these 195 

minerals can be considered either “panchronous”, i.e., formed continuously from the beginning 196 

until the present time (bertrandite, beryl, helvite, and phenakite come closest to meeting these 197 

criteria, Table 3) or “polychronous”, i.e., formed many times (e.g., genthelvite, leucophanite, and 198 

moraesite, Table 3). Beryl is the most widespread Be mineral by far; the locality list at 199 

http://www.mindat.org includes 4776 items as of October 18, 2013, but this list is undoubtedly 200 

incomplete. In compiling and interpreting our dataset, we had to take into account the 201 

deficiencies in the geologic record and the difficulties in dating beryllium minerals. 202 

Imperfections in the geologic record 203 

The geologic record is incomplete. A significant proportion of the upper continental crust, 204 

which hosts all the Be minerals discovered to date, has been lost to subduction, erosion, and 205 

metamorphism, or is covered by sedimentary or volcanic rocks, by ice, or by water.  As pointed 206 

out by Barton and Young (2002), some deposits of Be minerals formed on or near Earth’s 207 

surface and could be lost to erosion; possible examples are the four minerals (e.g., almarudite, 208 
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Table 2) reported in Pliocene and Pleistocene volcanic rocks in the Eifel district, Germany 209 

(Schminke 2007) and the Roman comagmatic region, Italy (Della Ventura et al. 1992). These 210 

four Be minerals might have appeared earlier in the geologic record, but did not survive. 211 

Mineral investigations are not evenly distributed over the planet, but are largely limited to 212 

bedrock or sediments on or near Earth’s surface, and are concentrated in areas that have received 213 

the most attention from geologists, mineralogists, and collectors. For example, the presence of 214 

numerous centers of mineralogical research and mining activity in Scandinavia undoubtedly 215 

played a role in stimulating the many discoveries of Be minerals in the Långban-type deposits, 216 

granite pegmatites of the Svecofennian province and northern Norway, Neoproterozoic 217 

pegmatites in Norway, and alkalic pegmatites in the Oslo rift (e.g., Magnussan 1930; Holtstam 218 

and Langhof  2007; Nysten and Gustafsson 1993; Langhof et al. 2000; Husdal 2008, 2011; 219 

Bergstøl and Juve 1988; Larsen 2010). Similarly it is no accident that the pegmatites in the 220 

Superior Province of North America are reported to be the oldest occurrences of a fair number of 221 

species given the proximity to the University of Manitoba, which is famous for its mineralogists 222 

(e.g., Černý 2005). 223 

The ambiguities of dating crystallization of beryllium minerals 224 

Dating the formation of Be minerals can be problematic, and not only because 225 

geochronological data themselves are associated with significant uncertainties. Emerald is the 226 

only Be mineral that has been dated directly, namely by the Rb–Sr method (Vidal et al. 1992); an 227 

attempt with the 40Ar/39Ar method gave a meaningless age of 6665 Ma due to excess argon 228 

(Cheillitz et al. 1993). In principle, any Be mineral containing K could be dated by the K–Ar and 229 

40Ar/39Ar methods (e.g., rhodizite, Giuliani et al. 1995) as could gadolinite containing Th and U, 230 

such as the gadolinite-(Y) from Vico Lake in the Roman comagmatic province, Italy (Cámara et 231 
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al. 2008).  In the great majority of cases, ages of Be minerals must be inferred from ages 232 

obtained on associated minerals, i.e., 40Ar/39Ar method on biotite and muscovite with emerald 233 

(Cheilletz et al. 1993) and U-Pb method on columbite-tantalite associated with Be minerals in 234 

pegmatite (e.g., Romer and Smeds 1994; Breaks et al. 2005), or from circumstantial evidence 235 

such as an age for the deposit in which the minerals are found. Not uncommonly, Be minerals 236 

appear to be younger than the host rocks, e.g., metamorphic or in veins and fracture fillings, 237 

introducing even more ambiguity into their ages. 238 

The Tip Top pegmatite associated with Harney Peak granite in the Black Hills, South 239 

Dakota (Norton and Redden 1990) is a good example for which a fairly reliable age is possible 240 

because both the mineralogy and the geochronology have been well studied. The unique suite of 241 

secondary Be phosphates in the Tip Top pegmatite formed from the hydrothermal alteration of 242 

triphylite and beryl by meteoric water or residual aqueous fluid at temperatures between 300 and 243 

25 °C (Campbell and Roberts 1986; Loomis and Campbell 2002). Emplacement of the Harney 244 

Peak granite is dated at 1715 ± 3 Ma (U-Pb monazite age, Redden et al., 1990). On the basis of 245 

mica 40Ar/39Ar cooling ages, Dahl et al. (2005) calculated that the Harney Peak granite was not 246 

uplifted until ca. 1480–1330 Ma, at which point it had cooled to ca. 300–350 °C, i.e., it is 247 

doubtful the Be minerals would be older than 1300 Ma. However, another approach would give 248 

an age of ~1700 Ma. On the basis of fluid inclusions from the Tin Mountain pegmatite, which is 249 

also associated with the Harney Peak granite, Sirbescu and Nabelek (2003) estimated a 250 

crystallization temperature of 340 °C (at 2.7 kbar) for this pegmatite, which is dated at 1702.4 ± 251 

2.5 Ma (U-Pb apatite age, Krogstad and Walker 1994). Assuming a comparable temperature for 252 

the Tip Top pegmatite and a residual, rather than meteoric, origin of the hydrothermal fluids, we 253 
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think that a formation age of ca. 1700 Ma is a more reasonable estimate for the secondary Be 254 

minerals in the Tip Top pegmatite. 255 

There are no proper constraints on the ages of bearsite and glucine. Both are supergene 256 

minerals, i.e., bearsite formed in the oxidized zone of an arsenic-bearing deposit at a depth of 15 257 

m below Earth’s surface (Kopchenova and Sidorenko 1962), whereas glucine formed in greisens 258 

subjected to weathering along faults at depths up to 40 m, e.g., 34 m in one deposit (Pokrovskaya 259 

et al. 1965; Ginzberg and Shatskaya 1966). The glucine reported from Mount Mica, Paris, Maine 260 

(King and Foord 1994; A. Falster, in preparation) could also have a supergene origin, and 261 

consequently, it is unlikely that ages of the deposits in which bearsite and glucine occur would 262 

give even an approximate age of formation of these two Be minerals.  263 

Significance of the diversity diagrams 264 

Figures 2a and 2b present two complementary aspects of the increase of Be mineral 265 

diversity with time. Cumulative diversity (Fig. 2a) shows the increase in the total number of 266 

species that are reported to have formed by a given time in Earth’s history, and is based on the 267 

reported first occurrences in the geological record. At the present time, the cumulative diversity 268 

is 112 species, i.e., the totality of species that have appeared on Earth at one time or another, that 269 

have been preserved in the geologic record, and that have been discovered. However, this 270 

number is not the number of species that could be forming now or within the last 50-100 Ma, 271 

which Figure 2b gives as about 30 species. More generally, Figure 2b shows our estimate of the 272 

diversity of Be minerals at a given time in Earth’s history, i.e., the number of species inferred to 273 

have formed during a given 50 Ma interval. The number of species in these intervals was 274 

estimated from three types of information: (1) reported first occurrences, (2) reported last 275 

occurrences and (3) frequency of reported occurrences in the geologic record. That is, Figure 2b 276 
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is based on a larger dataset than Figure 2a, but still one that is relatively small, comprising 110 277 

species and a few hundred localities. It is three orders of magnitude smaller than the number of 278 

dated detrital zircon grains (Fig. 2c). Thus, interpretation of the variations in the number of 279 

species from one 50-Ma interval to the next must be mindful of the poor statistics; differences of 280 

5 species or less are probably not statistically significant. 281 

Supercontinent cycles 282 

In our discussion relating mineral diversity to supercontinental cycles, we have adopted the 283 

names for supercontinents proposed by Hoffman (1997), rather than the alternatives 284 

Superia/Sclavia (Bleeker 2003; Cawood et al. 2013) and Columbia (Rogers and Santosh 2002) 285 

for the two oldest supercontinents, respectively, and Pannotia in lieu of Gondwana (cf. Hazen et 286 

al. 2012). The names of the older continents are not interchangeable, because each implies a 287 

different interpretation of the extent to which continental fragments had aggregated, i.e., 288 

Kenorland is viewed as single supercontinent comprising most of the cratons, including Slave 289 

(Sclavia) and Superior (Superia). Nuna comprised North America (including Greenland) and 290 

Baltica, but Hoffman (1997) considered connections of Nuna to Siberia and Australia to be 291 

tenuous. In contrast, Rogers and Santosh (2002, Fig. 1) showed Nuna and Siberia to constitute 292 

one fragment of Columbia; other fragments comprised Australia and the other continents which 293 

eventually regrouped to form Gondwana. Our choice of Kenorland and Nuna makes sense for 294 

considering Be minerals, because Be minerals have been found in the Archean Eon in several 295 

cratons other than Superia and Sclavia, whereas Paleoproterozoic Be minerals are found only in 296 

North America and Baltica (Table 2; Fig. 2a). 297 

 298 

BERYLLIUM IN METEORITES AND THE SOLAR SYSTEM 299 
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Reeves et al. (1970) formulated the hypothesis that Be formed by high-energy processes 300 

involving cosmic rays acting on the interstellar medium, a hypothesis that explains the cosmic 301 

abundance of 9Be (e.g., Reeves 1994; Ramaty et al. 1996, 1997). Because of the small electric 302 

charge (+ 4) and small binding energy of its nucleus, Be is a “fragile” element that is destroyed 303 

by the heat in stellar interiors (Reeves 1994; Lodders 2010). For these reasons Be has a much 304 

lower abundance than C, N, and O in the solar system. Beryllium abundance in chondrites, 305 

achondrites, stony irons, and irons is reported to range from 0 to 400 ppb Be, but reaches 560 306 

ppb in calcium-aluminum-rich inclusions (CAIs), with the maximum concentration in melilite 307 

and alteration phases in the CAIs, 649 ppb and ~1 ppm, respectively (Lauretta and Lodders 308 

1997; Shearer 2002; Paque et al. 2003). The affinity of Be for melilite is attributed to its being 309 

isostructural with gugaite, Ca2BeSi2O7.  310 

BERYLLIUM MINERALS IN THE ARCHEAN EON (4000 TO 2500 MILLION YEARS) 311 

Pegmatites are the primary sources of Be minerals found in Archean rocks. The oldest 312 

differentiated pegmatites, ca. 3100 Ma, are reported from the Barberton Mountain Land, South 313 

Africa (Tkachev 2011); these deposits include the 3040 Ma New Consort pegmatites (Harris et 314 

al. 1995). Although sufficiently differentiated to contain spodumene and up to 39 ppm Be, these 315 

pegmatites are reported to be devoid of Be minerals. The two oldest reported Be minerals are 316 

beryl and phenakite from southern Africa. Beryl is reported in pegmatites coeval with the 317 

Sinceni pluton, Swaziland, and thus dated at 3000 ± 100 Ma using Rb-Sr isotopes (Trumbull 318 

1993); a more precise date for the Sinceni Pluton is given by a 3074 ± 4 Ma 207Pb/206Pb zircon 319 

evaporation age (Maphalala and Kröner 1993), but its accuracy needs confirmation (Trumbull 320 

1993). 321 
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Emerald (Fig 1a) and phenakite occur in biotite schist associated with “albitite pegmatoid” 322 

and phenakite is found in the pegmatoid in the Gravelotte emerald deposit, Murchison 323 

greenstone belt, South Africa (Robb and Robb 1986; Grundmann and Morteani 1989), for which 324 

the zircon age of 2969 ± 17 Ma on the Discovery Granite (Poujol 2001) probably best dates 325 

crystallization of this “pegmatoid.” Granitic pegmatites ranging in age from 2850 to 2550 million 326 

years associated with greenstone belts in the Pilbara (Fig. 2a) and Yilgarn Cratons, Western 327 

Australia (e.g., Sweetapple and Collins 2002; Jacobson et al. 2007) and the Superior Province, 328 

Ontario and Manitoba, Canada (e.g., Breaks et al. 2005; Černý 2005) contain 7 silicate and 3 329 

phosphate Be minerals – evidence that the differentiation of granitic melts was more than 330 

sufficient to enrich resulting pegmatites in Be (e.g. 170  ppm, Tanco pegmatite, Manitoba, 331 

Canada, Stilling 2006) and give a diverse suite of Be minerals in Archean orogenic belts. The 332 

increase of diversity is coeval with the two peaks in the number of zircon grains associated with 333 

the assembly of Kenorland (Superia/Sclavia, Cawood et al. 2013; Fig. 2c). 334 

Peralkaline rocks are very rare in Archean complexes, and there are only two reports of Be 335 

minerals in peralkaline rocks of that era – meliphanite and behoite as metasomatic minerals 336 

associated with nepheline syenite of the Sakharjok complex, Keivy Alkaline Field, Kola 337 

Peninsula, Russia (Bel’kov and Denisov 1968; Batiyeva and Bel’kov 1984; Lyalina et al. 2009), 338 

which was dated at 2682 ± 10 Ma (Zozulya et al. 2005).  339 

Metamorphic Be minerals are also reported from just one locality in strictly Archean rocks: 340 

chrysoberyl in a granulite-facies plagioclase-biotite-quartz gneiss 2640 - 2649 million years in 341 

age, Yilgarn craton, Australia (Downes and Bevan 2002). However, two Be silicates and one Be 342 

oxide are found in granulite-facies anatectic veins of earliest Paleoproterozoic age (2485 million 343 
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years) in the Archean Napier complex: khmaralite, surinamite, and magnesiotaaffeite-6N’3S 344 

(Grew et al. 2000, 2006). 345 

Based on reported occurrences, by the earliest Paleoproterozoic Era there were 18 Be 346 

minerals (Figs. 2a,b), representing 16% of the total known.  347 

BERYLLIUM MINERALS IN THE PROTEROZOIC EON (2500 TO 542 MILLION YEARS) 348 

Paleoproterozoic (2500 Ma to 1600 Ma). 349 

During the second half of the Paleoproterozoic, i.e., beginning in 2050 Ma after a 435 m.y. 350 

period during which no new species have been documented, there was a marked increase Be 351 

mineral diversity (Fig. 2a,b) in both metamorphic and pegmatitic environments, which is coeval 352 

with the peaks in number of zircon grains coincident with assembly of the supercontinent Nuna 353 

(Fig. 2c). A remarkable diversity is found at Långban and similar deposits in the Bergslagen ore 354 

region of central Sweden (Magnusson 1930; Holtstam and Langhof 1999; Jonsson 2004): 10 Be 355 

species, mostly as skarn minerals at the peak of metamorphism or in related cavities and vugs at 356 

ca. 1825 Ma (periods B and C of Magnusson 1930). The history of the Långban-type deposits 357 

began with submarine volcanic-hydrothermal exhalation and precipitation in a back-arc setting at 358 

1890 Ma followed first by regional amphibolite-facies metamorphism and vein formation 359 

through remobilization at about 1850-1800 Ma (Svecofennian event) and then by brittle 360 

deformation possibly at about 1000 Ma (period D of Magnusson 1930). Multiple reworking of an 361 

unusual mix of constituents in an oxidizing environment where the chalcophile elements Pb, Sb, 362 

As, and Sn combined with Be in oxides and silicates resulted in 10 minerals, e.g., welshite (Fig. 363 

1e), swedenborgite, and the amphibole joesmithite, which are “monochronous” minerals (Zhabin 364 

1979, 1981) unique to Långban and similar deposits – not yet reported outside the Bergslagen 365 

ore region.  366 
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Granite pegmatites were the other major contributor of mineral diversity during the second 367 

half of the Paleoproterozoic, but over a narrower time span: between ca. 1850 Ma and 1700 Ma. 368 

Four areas yielded 17 of the 28 species of Be minerals reported to first appear in the geologic 369 

record at this time: (1) pegmatites approximately coeval with metamorphism of Långban-type 370 

deposits  between ~ 1800 and ~1850 Ma in age (Lahti 1989; Lindroos et al. 1996; Romer and 371 

Smeds 1994; 1996; 1997) in the Svecofennian province of Sweden and Finland; (2) pegmatites 372 

associated with the Tysfjord granite, 1742 ± 46 Ma, Nordland, Norway (Andresen and Tull 373 

1986; Husdal 2008); (3) pegmatites associated with Harney granite, Black Hills, South Dakota, 374 

USA, ca. 1700 Ma (see above); and (4)  the Animikie Red Ace pegmatite, Penokean Orogen, 375 

Wisconsin, USA, 1760 Ma (e.g., Falster et al. 2001a,b; Sirbescu et al. 2008). Many of these 376 

pegmatitic minerals are “monochronous” – one-time occurrences (Zhabin 1979, 1981), which 377 

contribute to two spikes that stand out against an overall increase in diversity between 1875 Ma 378 

and 1675 Ma (Fig. 2b). Even more of these minerals are secondary phases, which are derived 379 

from the alteration of primary Be minerals, in most cases, beryl, i.e. 4 of the new Be minerals 380 

from Sweden (Nysten & Gustafsson 1993; Langhof et al. 2000) and all 8 new Be minerals from 381 

the Black Hills, South Dakota (Campbell and Roberts 1986; Loomis and Campbell 1992). 382 

Diversity could be the result not just of mixing of constituents from different sources by late, 383 

low-temperature hydrothermal fluids, e.g., triphylite for phosphate and beryl for Be in the Tip 384 

Top pegmatite (Campbell and Roberts 1986; Loomis and Campbell 1992). At low temperatures, 385 

hydroxyl and molecular water are incorporated in minerals, resulting in complex crystal 386 

structures, which increase the potential for diversity. 387 

Mesoproterozoic and Neoproterozoic (1600 Ma to 542 Ma). 388 
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The second half of the Proterozoic Eon is marked by a continuation of the overall increase in 389 

diversity up until about 950 Ma, e.g., the two Be minerals in the 1538 Ma skarns of the 390 

Pitkaranta ore field, Karelia, Russia (Amelin et al. 1997; Sviridenko and Ivashchenko 2000; 391 

Stein et al. 2003; Ramo 2005). The latter part of the increase overlaps assembly of the 392 

supercontinent Rodinia (1300-950 Ma, Cawood et al. 2013), but not all the Be occurrences 393 

during this time can be related to the phase of supercontinent assembly, for example, the 1267 394 

Ma Igaliko and 1160 Ma Ilímaussaq peralkaline complexes (see below). Other contributors to the 395 

increase in diversity are granitic pegmatites, a zinc deposit, metamorphic rocks and skarns, and 396 

hydrothermal supergene alteration. Minerals in granitic pegmatites include secondary Sc-Be 397 

minerals bazzite and oftedalite from the Heftetjern pegmatite, renowned for its diversity in Sc 398 

minerals (e.g., Raade et al. 2004; Bergstøl and Juve 1988; Juve and Bergstøl 1990). The 399 

Heftejern pegmatite is related to the Tørdal granite (Bergstøl and Juve 1988; Cooper et al. 2006), 400 

which is coeval with 967±4 Ma (U-Pb zircon) post-orogenic Vrådal granite in Telemark, Norway 401 

(Bergstøl and Juve 1988; Andersen et al. 2007). Bergstøl and Juve (1988) attributed most of the 402 

Sc enrichment of the pegmatite to contamination with mafic volcanogenic rocks through which 403 

the pegmatites passed, i.e., mineral diversity (new Be-Sc minerals) resulted from mixing of 404 

constituents from two different sources. Metamorphic, skarn, hydrothermal, and supergene 405 

minerals include two minerals from ca. 1000 Ma rocks in the zinc deposits of the Franklin 406 

Marble, New Jersey in the Grenville Province of North America. Aminoffite (Hurlbut 1937) is 407 

the only mineral containing either B or Be that could belong to the fissure mineralization at 408 

Långban, Sweden (period D of Magnusson 1930), which is attributed to hydrothermal activity at 409 

1000 Ma, over 800 Ma later than the skarn and vug minerals of periods B and C (Jonsson 2004; 410 

personal communication, 2009).  411 
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The large spike at 1160 Ma is due to the Ilímaussaq peralkaline complex, in the Gardar 412 

Province, southwest Greenland (e.g., Peterson and Secher 1993; Krumrei et al. 2006; McCreath 413 

et al. 2012). Together with the nearby Igaliko complex, it constitutes one of the world’s premier 414 

localities for Be minerals, both in species appearing for the first time in the geologic record (9 415 

minerals in the Ilímaussaq complex, e.g., sørensenite, Fig. 1c, Table 4) and in overall diversity 416 

(Engell 1971; Markl 2001). However, in contrast to the mineral species found in the Långban-417 

type deposits, few of the minerals in the Igaliko and  Ilímaussaq complexes are “monochronous” 418 

(Zhabin 1979, 1981), such as sørensenite; many of these unusual minerals, e.g., tugtupite, are 419 

also found in younger peralkaline complexes (Table 4), notably Khibiny and Lovozero on the 420 

Kola Peninsula, Russia (362 Ma, Pekov 2000; Yakovenchuk et al. 1999; Arzamastsev et al. 421 

2007); Larvik complex, Norway (294 Ma, Larsen 2010); Mont Saint-Hilaire, Quebec, Canada 422 

(124 Ma, Eby 1984; Currie et al 1986; Gilbert and Foland 1986); and Zomba-Malosa, Malawi 423 

(113 Ma, Eby et al. 1995). 424 

The overall increase in diversity until about 950 Ma was followed first by a leveling off at 425 

35-38 species per 50-Ma interval (Fig. 2b), and then a spike of 41-42 species at 575-525 Ma. 426 

This spike in Be mineral diversification extends beyond the Proterozoic Eon into the Cambrian 427 

Period, coeval with the assembly of the supercontinent Gondwana (700-500 Ma, Cawood et al. 428 

2013). Of the nine Be minerals new to the geologic record between 585 and 500 Ma, six are 429 

secondary, including four phosphates of the roscherite group, in pegmatites associated with the 430 

Late Neoproteroterozoic-Cambrian Brasiliano orogeny, Minas Gerais, Brazil, 585-500 Ma (e.g., 431 

Atencio 2000; Morteani et al 2000; Pedrosa-Soares et al. 2011). 432 

In summary, we see a recurring theme – the major contributions to Be mineral diversity are 433 

suites of secondary, low-temperature minerals containing components generally not occurring 434 
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together in great abundance. These minerals have complex crystal structures incorporating 435 

significant amounts of OH and H2O, which can add considerably to structural complexity in 436 

some cases (Table 1 and Krivovichev 2013). 437 

BERYLLIUM MINERALS IN THE PHANEROZOIC EON (542 MILLION YEARS TO THE PRESENT)  438 

The most salient feature in the Paleozoic is a prominent spike of 54 species at 275 Ma 439 

superimposed on a modest increase from 35 at 475 Ma to 39 species at 125 Ma. An example of 440 

increased diversity in the early Paleozoic is formation of høgtuvaite during Caledonian 441 

metamorphism (414 Ma) of an 1800 Ma Be deposit (Grauch et al. 1994; Skår 2002). Granitic 442 

pegmatites in the Urals (e.g., makarochkinite at 265 Ma, roggianite at 250 Ma, Table 2) and 443 

Appalachians (e.g., gainesite at 293 Ma, Table 2; also Bradley et al. 2013), together with alkalic 444 

pegmatites associated with Larvik plutonic complex at 294 Ma in the Oslo rift, Norway (Larsen 445 

2010) contributed to the 275 Ma spike, which is coeval with one of the peaks in the number of 446 

zircon grains and assembly of Pangea (Fig. 2b,c). 447 

The youngest feature in Figure 2b is a drop off from 39 to about 30 species during the last 448 

100 Ma, despite the appearance of four beryllium minerals in the Pleistocene volcanic rocks in 449 

the Eifel district, Germany (Schminke 2007) and the Plio-Pleistocene Roman comagmatic region 450 

or Roman perpotassic province (e.g., Della Ventura et al. 1992), e.g., almarudite and stoppaniite, 451 

respectively. Other examples of very young volcanic occurrences are behoite at Honeycomb 452 

Hills, Juab County, Utah (Table 3), as well as beryl and bertrandite at Spor Mountain, about 35 453 

km distant (younger than 21 Ma, possibly younger than 6-7 Ma, Lindsey 1977).  454 

DISCUSSION 455 

Figures 2a and 2b show that very broadly beryllium mineral diversity increases with the 456 

passage of geologic time and the increase is episodic, i.e., spikes of markedly increased diversity 457 
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separated by longer time intervals with much less increase; indeed none between 2450 and 1950 458 

Ma. After 1700 Ma, the rate of overall diversity increase slackens and eventually tops off at ~40 459 

species present in a given 50 Ma time interval except for a prominent spike at 275 Ma, before 460 

dropping off to ~30 species for the last 100 Ma. These features appear to reflect several trends at 461 

work: (1) episodic and uneven diversification related to overall evolution of the continental crust, 462 

(2) finiteness in the maximum mineralogical diversity in a given geological environment, and (3) 463 

limited exposure of environments where beryllium minerals could be forming now, geologically 464 

speaking (last 5-10 Ma). 465 

Beryllium minerals and supercontinent cycles 466 

The spikes in diversity shown in Figure 2b, namely, 2475 Ma (break in the steady diversity 467 

increase), 1775 Ma (paired spikes), 1175 Ma, 550 Ma (paired spikes), and 275 Ma, overlap peaks 468 

in numbers of dated detrital zircon grains in the compilation of Voice et al. (2011), which was 469 

used by Cawood et al. (2013), and is reproduced as Figure 2c. That is, these diversity spikes 470 

could correspond to the collisional phases of the supercontinental cycles of Kenorland, Nuna, 471 

Rodinia, Gondwana, and Pangea, respectively. Cawood et al. (2013) emphasized that the peak in 472 

zircon numbers probably does not represent episodic spurts of continental growth, but rather the 473 

greater potential for preservation of rocks formed during the later stages of ocean closure and 474 

continental collision, a similar conclusion was reached by Condie et al. (2011). The 475 

correspondences are noteworthy in that preservation plays a different role. The zircons are 476 

detrital grains from metasedimentary and sedimentary rocks ranging in age from Archean to 477 

Recent (Voice et al. 2011), and thus could have been preserved in many cases without their 478 

source rocks in the continental crust being preserved, whereas the beryllium minerals were found 479 
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in situ, i.e., the segment of continental crust containing the beryllium minerals must be preserved 480 

in order for the beryllium minerals to be preserved. 481 

Nonetheless, there are several complications in relating the diversity spikes to 482 

supercontinent cycles. The spikes in species diversity relate to three distinct geologic 483 

environments: (1) metamorphic and metasomatic complexes, (2) granitic pegmatites, and (3) 484 

alkalic and peralkaline intrusive complexes. Regional metamorphic rocks and most granitic 485 

pegmatites (the main exception being pegmatites in the NYF family, e.g., Černýand Ercit 2005) 486 

are characteristic of collisional orogeny (e.g., rare-element pegmatites, Bradley et al. 2012, 2013) 487 

and thus relating the spikes resulting from diversification in these two environments, i.e., 2475 488 

Ma, 1775 Ma and 525 Ma, could correspond to the collisional phases of Kenorland, Nuna, and 489 

Gondwana, respectively, as suggested above. The last correspondence is not surprising as all the 490 

reported species are found in Brazil (plus one in Madagascar). In addition, minerals formed in 491 

the zinc deposit at Franklin, New Jersey during the Grenville orogeny at ca. 1000 Ma could be 492 

related to assembly of Rodinia.  493 

Granitic pegmatites and related rocks in the Urals and Appalachians, together with 494 

pegmatites associated with the Larvik plutonic complex, contribute to the large spike in diversity 495 

at 275 Ma. This spike is roughly coeval with a late phase of collision of Pangea (Appalachians, 496 

Bradley et al. 2013), whereas the Larvik pegmatites are associated with passive rifting in the 497 

Oslo Graben, possibly related to the rotation of the Pangea supercontinent during a late stage of 498 

the Hercynian/Variscan orogeny (Heersemans et al. 1996; 2004; Larsen et al. 2008). 499 

Linking mineral diversification to supercontinent evolution is less obvious for the spike 500 

centered at 1175 Ma and the diversity increase beginning at about 1300 Ma (Figs. 2a, b). These 501 

increases in diversity are due to minerals found in the peralkalic Igaliko and Ilímaussaq 502 
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complexes of the Gardar Province in West Greenland. Upton et al. (2003) associated rifting in 503 

the province with the break-up of the supercontinent Paleopangea, but only stated this 504 

association in the abstract and did not explore or develop it further in the paper. We are not 505 

aware of another paper in which rifting in the Gardar Province is tied to supercontinent breakup. 506 

For example, J.D.A. Piper (e.g., Piper 1982, 2010), who developed the concept of a Paleopangea 507 

supercontinent that lasted from at least 1300 Ma to its breakup extending from 600 to 500 Ma, 508 

did not mention such a relationship. Goodenough et al. (2002) suggested that magmas in the 509 

Gardar Province originated in subcontinental lithospheric mantle metasomatized by subduction-510 

related fluids or melts during the Ketilidian orogeny at about 1800 Ma, an interpretation 511 

extended by Goodenough et al. (2013) to include enrichment of rare earth elements, Nb and Ta. 512 

Taken a step further, we suggest that Be was also introduced with these elements, but this leaves 513 

unanswered the question concerning the relationship to supercontinent assembly and break up. 514 

One might conjecture that rifting in the Gardar Province bears a relationship to the older events 515 

recorded in accreted terranes (1140-1250 Ma, Rivers 2008) in the Grenville belt analogous to 516 

that of far field rifting in the Oslo Graben to the Variscan/Hercynian orogeny.  517 

Structural and chemical complexity of beryllium minerals 518 

Krivovichev (2013) summarized mineral evolution as involving both increasing diversity of 519 

mineral species and increasing crystal structural complexity, which is a measure of both size- 520 

and symmetry-sensitive aspects and can be calculated according to a modified Shannon formula. 521 

On the basis of 3949 structure reports on minerals extracted from the Inorganic Crystal Structure 522 

Database, Krivovichev (2013) classified structures in terms of total structural information 523 

content (bits per unit cell) into very simple (0-20 bits), simple (20-100 bits), intermediate (100-524 

500 bits), complex (500-1000 bits), and very complex (> 1000 bits), respectively, 15%, 28%, 525 
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46%, 8% and 3%, and the proportions reported for 92 beryllium mineral structures in 526 

Krivovichev’s (2013) database are not very different (Table 1; Fig. 3). 527 

There is little, if any, increase in complexity of Be mineral structures with time. Although 528 

none of the minerals reported to first appear in the Archean (>2500 Ma) have complex structures, 529 

their absence could simply be due to the proportion of complex and very complex structures 530 

being only 14% among beryllium minerals.  531 

Chemical composition played a more important role in the diversification of beryllium 532 

minerals than crystal structure. For example, minerals in the beryl and gadolinite-datolite group 533 

illustrate the limitations of relying on structural complexity as a measure of mineral evolution. 534 

Beryl, bazzite, and stoppaniite give total structural complexities of 133-146 bits; only the Cs-Li 535 

beryl-group mineral pezzottaite is significantly higher at 941 bits (Table 1). These numbers belie 536 

the complexity of beryl composition, which incorporates significant Li, Na, and Cs in the most 537 

differentiated granitic pegmatites (Černý 2002). Mixing with Sc-bearing fluids resulted in the Sc-538 

dominant analogue, bazzite (Bergstøl and Juve 1988), whereas a combination of unusually 539 

oxidizing conditions and peralkalinity might explain the high Fe3+-and low Al content in 540 

stoppaniite (Černý 2002). Moreover, the rarer beryl-group species appear later in the geologic 541 

record than beryl (Table 2). Similarly, structural complexity of gadolinite and hingganite has a 542 

narrow range (107-114 bits, Table 1), yet the solid solutions of these minerals are highly 543 

complex with substitutions involving both light and heavy REE, Ca, and Fe at the the larger 544 

sites, Be and B at tetrahedral sites, and hydroxyl at O sites, all of which have confounded 545 

classification of this mineral group (e.g., Grew 2002a). Only gadolinite-(Y) is reported from 546 

Archean rocks, whereas two of the four hingganite species have not been found in Precambrian 547 

rocks (Table 2). In summary, the chemical variables that define mineral species in these two 548 
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groups constitute a more sensitive measure of increasing diversity with time than does structural 549 

complexity. 550 

Are there limits to beryllium mineral diversity? 551 

Figure 2a suggests that there is no limit to Be mineral diversity. However, this diagram gives 552 

cumulative diversity, which would correspond to actual diversity at any given time only if 553 

species formed earlier in Earth’s history continued to form up until the time in question, e.g., all 554 

112 Be minerals found in the geologic record were forming now. Figure 2b shows that this is not 555 

the case, and that there could be a limit to beryllium mineral diversity, at least in the more 556 

widespread geologic environments in the upper continental crust, e.g., granitic pegmatites, 557 

alkaline and peralkaline pegmatites, metamorphic rocks and skarns. Discounting the spikes 558 

discussed above, Figure 2b shows that between 1700 Ma and 100 Ma the number of species 559 

likely to have formed during a given 50 Ma time interval increases more slowly and eventually 560 

levels out at ~40 species. The spikes result from addition of up to 15 more species to a given 561 

time interval; many of these species are found only in one deposit (“monochronous” of Zhabin 562 

1979), e.g., six minerals at Långban, Sweden (1825 Ma). This unique diversity must reflect a 563 

one-time convergence of circumstances such as a unique mixing of constituents not generally 564 

enriched together. In other cases, the “monochronous” minerals are secondary phases, e.g., five 565 

of the secondary hydrated phosphates at the Tip Top mine, South Dakota (1702 Ma). 566 

Table 4 is also suggestive of an upper limit to diversity in alkalic pegmatites. Although the 567 

overall diversity of the Phanerozoic Larvik and Mont Saint-Hilaire alkalic complexes rivals or 568 

exceeds that of the Proterozoic Ilímaussaq complex, neither introduces as many minerals new to 569 

the geologic record as does Ilímaussaq. The proportion of Be minerals in any one of the 8 570 

complexes that are not found in the other 7 complexes does not exceed 20%; i.e., the beryllium 571 
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mineral assemblages among the 8 complexes differ much less than one might expect given the 572 

availability of a wide variety of rare elements, several of which are essential constituents of Be 573 

minerals (Table 4). 574 

A third example comprises 16 minerals reported in granitic pegmatites and alpine fissures in 575 

the Alpine-Himalayan belt (5-33 Ma, Table 3). None of these minerals is new to the geologic 576 

record; rather they are reported from granitic pegmatites as old as 3000 Ma (e.g., beryl Table 2). 577 

This situation suggests that even in an environment as conducive to extreme mineralogical 578 

diversity as a granitic pegmatite, there are limits to diversity; the exceptional diversity in 579 

secondary beryllium minerals at the Tip Top mine, Black Hills, S.D., is the exception, not the 580 

rule in granitic pegmatites. 581 

Why is there a decrease in diversity in the Upper Cretaceous and Cenozoic? 582 

The drop off in diversity from ~40 species to ~30 species in the last 100 Ma is unexpected, 583 

particularly as another five species were first reported in the geologic record in this time period, 584 

including four species in Pleistocene volcanic rocks at Earth’s surface (Eifel, Germany and 585 

Roman Comagmatic Province, Italy). This drop-off contrasts with the marked increase in 586 

diversity of Hg, Br, I, and B minerals in the last 100 million years, which Hazen et al. (2012) and 587 

Grew and Hazen (2010a) attributed to many of the minerals being soluble in aqueous fluids (e.g., 588 

halides and many borates) or volatile (e.g., native Hg), and thus ephemeral. None of the 110 Be 589 

minerals can be considered ephemeral in this sense, and thus preservation of Be mineral diversity 590 

is relatively little affected by stability of minerals at Earth’s surface. Thus, once a Be mineral 591 

forms it is more likely to be preserved unless it erodes away. Conversely, only a few Be 592 

minerals, such as bearsite, glucine, uralolite, and moraesite, are supergene, i.e., formed by 593 
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oxidation or weathering close to Earth’s surface (Kopchenova and Sidorenko 1962; Pokrovskaya 594 

et al. 1965; Ginzberg and Shatskaya 1966).  595 

The situation for Be minerals could be analogous to that for economically significant 596 

orogenic gold deposits, none of which are younger than 50 Ma (Goldfarb et al. 2001). Since such 597 

deposits typically formed at mid-crustal levels, Goldfarb et al. (2001) concluded that they are 598 

still being unroofed. Beryllium minerals might also be sensitive indicators of the rates of deep 599 

rock exposure and erosion. Even in geologic terms, 100 Myr is a relatively short time interval, 600 

one that could be insufficient for formation and exhumation of rocks containing a diverse 601 

assemblage of Be minerals. Herein lies a possible explanation for this paradox: perhaps 602 

additional Be mineral species have been forming at depth over the past 100 Ma, but there has not 603 

been sufficient time for certain geologic environments to be exhumed. For example, there are no 604 

Be-enriched plutonic alkalic complexes younger than 100 Ma, so the youngest ages reported for 605 

minerals characteristic of this environment exceed 100 Ma. Another example is surinamite, a 606 

metamorphic mineral restricted to relatively deep-seated rocks (typically P ≥ 8 kbar, T ≥ 800 °C, 607 

e.g., Grew 2002b) no younger than 1050 Ma (Chimwala, Chipata district, Zambia, de Roever and 608 

Vrána 1985; Johnson et al. 2006). Younger analogues of Precambrian upper-amphibolite to 609 

granulite-facies rocks are not often exhumed, and given the scarcity of surinamite (5 localities, 610 

worldwide, 7 if the 3 Antarctic localities are counted separately, Grew 2002b), the chances of 611 

finding surinamite in an exhumed terrane are slim indeed. In contrast, the more common Be 612 

minerals such as beryl and bertrandite have been found in relatively deep-seated complexes 613 

exhumed in the Alpine-Himalaya orogenic belt (e.g., Pakistan, Fig. 4), as well as in Neogene and 614 

Quaternary volcanic deposits.  615 

Mineral evolution: An accident of historical contingency? 616 
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The relative role of chance versus necessity in complex evolving systems has been a matter of 617 

considerable debate. For example, a dominant role for contingency was advanced for biological 618 

evolution by Stephen J. Gould, who “confronted our traditional view about progress and 619 

predictability in the history of life with the historian’s challenge of contingency—the ‘pageant’ 620 

of evolution as a staggeringly improbable series of events, sensible enough in retrospect and 621 

subject to rigorous explanation, but utterly unpredictable and quite unrepeatable” (Gould 1989, 622 

p. 14; see also Gould 2002). This conclusion arose in part from Gould’s interpretation of the 623 

“weird wonders” from the Middle Cambrian Burgess Shale of British Columbia—a soft-bodied 624 

fauna that features many unusual, if not unique, invertebrate morphologies. However, Conway-625 

Morris (1998) challenged Gould’s conclusions and countered that virtually all of the seemingly 626 

strange Burgess Shale fossils represent well-established arthropod anatomies, and thus do not 627 

support the hypothesis of contingency-dominated evolution. Mahler et al. (2013) also challenged 628 

Gould’s view of biological evolution, finding that many anatomical features in the speciation of 629 

Caribbean lizards are predictable.   630 

An analogous debate can inform studies of the evolution of Be minerals. To what extent is the 631 

temporal distribution of beryllium minerals a matter of chance versus necessity? On the one 632 

hand, the appearance of the most abundant Be minerals, including beryl, phenakite, and 633 

chrysoberyl, early in the history of Be mineralization appears to be a deterministic aspect of any 634 

Earth-like planet. These phases only require the abundant cations Al and Si, and they crystallize 635 

at relatively low concentrations of Be in aqueous solution or granitic magmas. Therefore, if a Be 636 

concentration mechanism exists on a terrestrial planet or moon, then these phases are likely to be 637 

among the first Be minerals to form. The likelihood that these phases would form and not others 638 



29 
 

in widespread geologic environments is also suggested by the limit to beryllium mineral 639 

diversity implicit in Figure 2b. 640 

On the other hand, it could be argued that the very existence of most other Be minerals, as 641 

well as the temporal sequence of their appearance, is a matter of chance. The fact that 55 of the 642 

112 approved Be minerals are known from only 1 locality (Table 1) points to the significant role 643 

of contingency in diversification. Most of these phases require an unusual combination of 644 

relatively rare elements (Be combined with Sc, Zn, Zr, or Sn, for example, Table 5). Several of 645 

these odd combinations yield different minerals in different environments, e.g., Be-Sn gives 646 

sørensenite in the alkalic Ilimaussaq complex, Greenland, but sverigite in the skarn complex at 647 

Långban, Sweden. Furthermore, these unusual chemical concatenations must be exposed at or 648 

near Earth’s surface and then must be recognized as sufficiently different from other minerals to 649 

warrant study. This realization, that chance plays a significant role in Earth’s mineral evolution 650 

and in our discovering the diversity resulting from this evolution, has important implications not 651 

only for the present paper, but also for other papers on mineral evolution (e.g., Zhabin 1979; 652 

Hazen et al. 2008, 2012).  653 

To what extent, therefore, does chance play a significant role in the evolution of Earth’s near-654 

surface environment? Would any planetary body of the same size and composition, the same 655 

location relative to a star similar in size to our Sun, and subjected to comparable meteoritic and 656 

cometary bombardment end up grossly similar to Earth? A full consideration of these questions 657 

is beyond the scope of the present paper, but some basic principles are worth exploring in the 658 

context of Be mineral evolution.  659 

First, we expect that the concentration of Be in such a planet as a whole would be comparable 660 

to that of Earth since Be is one of the sparsest elements in the cosmos due to its destruction in 661 
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stellar interiors (Reeves 1994; Lodders 2010); a planet enriched in Be such as Isaac Asimov’s 662 

(1954) fictional “Junior” in the novella “Sucker Bait” is not likely. Second, the volumetric 663 

distribution of major rock-forming minerals will certainly be similar to Earth. Basalt will 664 

dominate the crust, while derivative igneous rocks will also be abundant. Complex pegmatites 665 

and alkali rocks with suites of Be minerals will form as widespread, if volumetrically minor, 666 

deposits. Beryllium phases will also occur in hydrothermal zones associated with volcanic and 667 

shallow-level plutonic rocks and skarns. These types of deposits, which are volumetrically minor 668 

but widespread on Earth today, thus appear to be deterministic aspects of any Earth-like planet.  669 

Furthermore, the episodic appearance and relative timing of many Be minerals may also be 670 

deterministic. Morra et al. (2013) found regulatities in the size distributions of tectonic plates 671 

over the last 200 Ma, with the implication that timing of supercontinent assembly and break-up 672 

might not be a matter of chance, but rather is governed by the dynamics of the Earth system and 673 

thus in principle is predictable. To the extent that mineral formation and preservation is linked to 674 

the supercontinent cycle, Be mineral episodicity and sequence may be constrained. With 675 

increasing sophistication and quantification in studies such as Morra et al. (2013), it may be 676 

possible to evaluate the extent to which determinism is a dominant factor in the large-scale 677 

sweep of Earth history. 678 

On the other hand, many details of Earth’s Be mineral evolution story must be contingent on 679 

improbable events. The occurrence of many unique minerals with Be plus other rare elements 680 

depends initially on the chance juxtaposition of elements rarely found together in significant 681 

concentrations, coupled with the subsequent preservation and fortuitous exposure of the deposit. 682 

It is likely that the 55 approved Be minerals known from a single occurrence, as well as many of 683 
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the 10 Be minerals reported from two or three occurrences, i.e., 49-58% of the 112 Be minerals, 684 

represent chance finds that might well be absent on other similar planets. 685 

By this reasoning, we also cannot exclude the possibility that other equally rare and thus 686 

contingent potential Be minerals await discovery in as yet unexposed subsurface deposits, 687 

despite the apparent limit on mineral diversity implicit in Figure 2b. Furthermore, other plausible 688 

Be minerals, i.e., phases with a distinct composition and crystal structure that meet criteria of the 689 

the correspondence principle of Lewis acidity – Lewis basicity (Hawthorne 2013 and in 690 

preparation) and with a plausible pressure-temperature-composition stability range, may have 691 

never formed on Earth because such rare contingent events did not occur. Consider the 692 

distribution of minerals of Be and coexisting elements in Table 5. Geochemical affinity could 693 

play a role in predicting which rare combinations are more likely, for example, 2 of 16 known 694 

minerals of the lithophile element Sc and 4 of 17 known  minerals of the lithophile element Cs 695 

contain essential Be; all 6 minerals are from granitic or alkalic pegmatites, while there are no 696 

known Be minerals that incorporate the chalcophile element Cu or the siderophile elements Co 697 

and Ni—all relatively common mineral-forming elements, but ones that do not enjoy 698 

geochemical affinities with Be. Thus, it is not surprising that there are no Be minerals 699 

incorporating the less abundant chalcophile (e.g., Se, Ag, Te, Hg, Bi) or siderophile (Mo) 700 

elements. Nonetheless, there are counter examples to the influence of geochemical affinity, i.e., 701 

the presence of 15 Be minerals with the chalcophile elements S, Zn, As and Sb, and absence of 702 

Be minerals incorporating the lithophile elements Nb, Ta, Th and U, which, like Be, are 703 

commonly enriched in granitic or alkalic pegmatites. 704 

The recent discoveries of new species in the roscherite group, ferrochiavennite and of 705 

mariinskite, the Cr analogue of chrysoberyl, point to the possibility of discovering other 706 
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analogues of known Be minerals, particularly those analogues that have already been 707 

synthesized, at least as a subordinate constituent: 708 

1. Mn2+  Fe2+  Mg2+. Most plausible are Fe2+ analogues of Mn2+ phases such as 709 

väyrynenite and trimerite; 710 

2. Cr3+, V3+, Mn3+, Fe3+  Al3+. Possibilities include analogues of chrysoberyl and beryl, 711 

e.g. BeFe2O4 (up to about 45% in synthetic chrysoberyl; Gjessing et al. 1943; Gusarov and 712 

Semin 1992) and BeV2O4 (up to 70% in synthetic chrysoberyl, Sarazin and Forestier 713 

1959). Up to a few percent Be3V2Si6O18 or Be3Cr2Si6O18 have been reported in synthetic 714 

beryls (e.g., Franz and Morteani 2002). Frondel and Ito (1968) synthesized V-, Cr- and 715 

Mn-bearing bazzite from mixtures containing up to 50% Be3V2Si6O18, Be3Cr2Si6O18 and 716 

Be3Mn2Si6O18 in Be3Sc2Si6O18, but were unable to quantify the proportion of the V, Cr 717 

and Mn end members as the run products contained other phases. 718 

3. OH  F substitution. A natural F-dominant analogue of hambergite has been reported 719 

(53.7% of the F end member, Novák et al. 1998), but the F compound, Be2(BO3)F, is not 720 

isostructural with hambergite (Baidina et al. 1978; Burns et al. 1995). 721 

The great majority of the rare Be minerals are chemically complex silicates or phosphates, 722 

whereas other anionic complexes are much subordinant. Except for tugtupite, halogens occur 723 

only as substituants for hydroxyl. Nonetheless, the known 11 oxides and hydroxides, plus the 724 

single carbonate, have by no means exhausted the potential for Be minerals other than silicates, 725 

borates and phosphates. Examples of relatively simple compounds reported as synthetics include 726 

a carbonate BeCO3 • 4H2O; sulfates of which the tetrahydrate BeSO4•4H2O is most commonly 727 

encountered; halides BeF2 and BeCl2 and a sulfide, BeS (Ross 1964; Bell 1972; Everest 1973 728 

and references cited therein). Several of these compounds correspond in stoichiometry to well 729 
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known minerals of other elements in Group IIB, but differ markedly in crystal structure, e.g. BeS 730 

is isostructural with sphalerite; α-BeF2 and γ-BeF2 have the structures of β-cristobalite and 731 

quartz, respectively; and α-BeSO4 has the structure of low cristobalite. In general, the Be 732 

compounds are less stable than corresponding compounds of other Group IIB elements, e.g., the 733 

sulfate and carbonate break down at lower temperatures than other alkaline earth sulfates and 734 

carbonates, respectively, mainly due to the stronger polarizability of Be2+ (Everest 1973). The 735 

compounds discussed above by no means exhaust the possibilities for Be minerals, given the 736 

large number of other synthetic compounds, e.g., the oxides Be3Al2O6 and BeAl6O10 (Franz and 737 

Morteani 2002 and references cited therein), complex beryllium fluorides (e.g., Hahn 1953; Ross 738 

1964; Bell 1972) and alkali boratoberyllates such as NaBe2(BO3)F2 (Baidina et al. 1975) and 739 

NaBeB3O6 (Wang et al. 2010). Many of these synthetic compounds are highly soluble in water, 740 

so it is not surprising that they would not have been preserved except conceivably as yet 741 

undiscovered daughter crystals in fluid or melt inclusions. 742 

Implications 743 

The relative roles of determinism and contingency, together with the potential of other Be 744 

minerals implicit in the diversity of synthetic beryllium compounds, have implications regarding 745 

Earth’s potentially “missing” Be minerals, including the extinction of phases that once existed 746 

but are now eroded or dissolved away. It is, of course, more difficult to analyze what is missing 747 

from Earth’s complex historical record than what is present. Nevertheless, a fuller consideration 748 

of what we do not find, but conceivably could find, would add insight to the story of Earth’s 749 

evolution. And, given the number of potential rare and as yet unknown Be minerals, we suggest 750 

that details of Be mineral evolution on other Earth-like planets may differ significantly from 751 

those on Earth as a consequence of contingent events.  752 
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Figure Captions 1593 

Figure 1. Photographs of minerals containing essential beryllium. A. Emerald in mica 1594 

schist matrix from Murchison greenstone belt, South Africa; 90 x 75 mm. © Peter 1595 

Lyckberg, and published with permission courtesy of Peter Lyckberg. This specimen is in 1596 

the collection of Peter Lyckberg. Sinkankas’s painting of this specimen was published as 1597 

Figure 5 of the colored section in Sinkankas (1981) B. Beryllonite, NaBe(PO4), in 1598 

columnar aggregate from Kunar Province, Afghanistan and in glassy fragments from the 1599 

type locality of Stoneham, Maine, U.S.A. Coin diameter is ~1 cm. E.S. Grew samples 1600 

and photo. C. Sørensenite, Na4Be2Sn(Si3O9)2·2H2O, pink, columnar masses from 1601 

Kvanefjeld, Ilímaussaq complex, West Greenland. Coin diameter is ~1 cm. E.S. Grew 1602 

sample (gift of Ted Johnson) and photo. D. Pezzottaite, CsLiBe2Al2Si6O18.  Ambatovita, 1603 

Mandrosonoro area, Fianarantsoa Province, Madagascar. R060583 reproduced with 1604 

permission from the RRUFF Project (Downs 2006). E. Welshite, 1605 

Ca4[Mg9(Sb5+)3]O4[Si6Be3Al(Fe3+)2O36], crystal 3.5x2 mm, from Långban, Sweden. 1606 

Photograph by Erik Jonnson. Reproduced with permission courtesy of the Swedish 1607 

Museum of Natural History. F. Rhodizite, KBe4Al4(B11Be)O28, pale yellow crystal with 1608 

pink tourmaline (rubellite) from Manjaka, Sahatany Pegmatite Field, Antananarivo 1609 

Province, Madagascar. Coin diameter is ~1 cm. E.S. Grew sample (gift of François 1610 

Fontan) and photo. G. Niveolanite, NaBeCO3(OH)·2H2O, as a fibrous aggregate 1.5 cm 1611 

across, part of type specimen, from Mont Saint-Hilaire, Rouville, Montérégie, Québec, 1612 

Canada. Horváth Collection HC11128. Photo © László Horváth. Reproduced with 1613 

permission courtesy of László Horváth. H. Chrysoberyl, Be2AlO4, Twinned crystals from 1614 

the Ratnapura district, Sri Lanka. Photograph of sample R100130 reproduced with 1615 
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permission from the RRUFF Project (Downs 2006). I. Bertrandite, Be4Si2O7(OH)2, in 1616 

pseudohexagonal prisms from the Golconda mine, Governador Valadares, Minas Gerais, 1617 

Brazil. Photograph of sample R060800 reproduced with permission from the RRUFF 1618 

Project (Downs 2006). 1619 

 1620 

Figure 2. A Diagram showing cumulative diversity based on the reported earliest 1621 

occurrences of 110 Be minerals in the geologic record (Table 2). The diagram is 1622 

cumulative in that each reported new occurrence is added to the number of minerals that 1623 

had been reported from older rocks, i.e., the y-axis indicates the number of new minerals 1624 

that are reported to have appeared by a certain time, but not the number of minerals 1625 

forming at that time (updated from Hazen et al. 2012 and Grew and Hazen 2013). B. 1626 

Histogram showing our estimates of the number of minerals that formed in a given 50 Ma 1627 

interval based on the reported earliest (Table 2), latest (Table 3) and intermediate 1628 

occurrences (generally if 4-5 or fewer occurrences; if more than 4-5 occurrences, we have 1629 

assumed the mineral formed in all the 50-Ma intervals between the earliest and latest 1630 

occurrences). The number of localities does not include all the localities for minerals 1631 

reported at 10 or more localities (“many” in Table 3). C. Histogram of U-Pb 1632 

crystallization ages for 100,445 detrital zircon analyses at 20 Ma bin intervals (modified 1633 

from Voice et al. 2011, Fig. 1c and A3). Yellow boxes are based on the time periods for 1634 

supercontinent assembly, where the period for Kenorland is taken from that for 1635 

Superia/Sclavia (Cawood et al. (2013). 1636 

 1637 
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Figure 3. Diagram showing structural complexity (total information content as bits per 1638 

unit cell) based on Table 1 from the data compiled by Krivovichev (2013) as a function 1639 

of the first reported occurrence of beryllium minerals in the geologic record (Table 2). 1640 

The degree of complexity (total information content) is based on Krivovichev (2013). 1641 

 1642 

Figure 4. Photographs of minerals from the Himalaya orogenic belt, Gilgit District, 1643 

northern Pakistan. A. Väyrynenite from the Shengus pegmatite, Nanga Parbat-Haramosh 1644 

massif. Age is estimated to be 5 Ma (Laurs et al. 1998). Photograph of sample R050590 1645 

reproduced with permission from the RRUFF Project (Downs 2006). B. Aquamarine with 1646 

muscovite from Fikar (Fiqhar), Hunza River area. Age is estimated to not exceed 9 Ma 1647 

(Fraser et al. 2001). The prism faces are 1 cm wide.  E.S. Grew sample and photographs.  1648 

  1649 
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Table 1. List of beryllium minerals (as of October, 2013) 
Number Mineral name Formula Class (Strunz 

and Nickel 
(2001) 

Supergroup or 
Group 

Complexity, 
IG, total 

Be1 Alflarsenite NaCa2Be3Si4O13(OH)·2H2O Silicate  579
Be2 Almarudite K(☐,Na)2(Mn,Fe,Mg)2[(Be,Al)3Si12]O30 Silicate Milarite 258
Be3 Aminoffite Ca3(BeOH)2Si3O10 Silicate  312
Be4 Asbecasite Ca3TiAs6Be2Si2O20 Arsenite  200
Be5 Atencioite Ca2(Fe2+)3Mg2Be4(PO4)6(OH)4·6H2O Phosphate Roscherite 271a

Be6 Babefphite BaBePO4F Phosphate  64
Be7 Barylite BaBe2Si2O7 Silicate  172
Be8 Bavenite Ca4Be2Al2Si9O26(OH)2 Silicate  335
Be9 Bazzite Be3(Sc,Fe3+,Mg)2Si6O18·Nax·nH2O Silicate Beryl 146
Be10 Bearsite Be2(AsO4)(OH)·4H2O Arsenate Cf. moreasite 369
Be11 Behoite Be(OH)2 Hydroxide  19
Be12 Berborite Be2(BO3)(OH)·H2O Borate  39b

Be13 Bergslagite CaBeAsO4(OH) Arsenate Herderite 96
Be14 Bertrandite Be4Si2O7(OH)2 Silicate  115
Be15 Beryl Be3Al2Si6O18 Silicate Beryl 133
Be16 Beryllite Be3(SiO4)(OH)2·H2O Silicate   
Be17 Beryllonite NaBe(PO4) Phosphate Cf. trimerite 369
Be18 Bityite  CaLiAl2(Si2BeAl)O10(OH)2 Silicate Mica � c

 Bohseite Ca4Be3AlSi9O25(OH)3  Cf. bavenite  
Be19 Bromellite BeO Oxide  4
Be20 Bussyite-(Ce) (Ce,REE)3(Na,H2O)6MnSi9Be5(O,OH)30F4 Silicate  622

 Calcybeborosilite-(Y) (Y,REE,Ca)(B,Be)2(SiO4)2(OH,O)2 
 Gadolinite-

Datolite 
Be21 Chiavennite CaMn2+(BeOH)2Si5O13·2H2O Silicate Zeolite 409
Be22 Chkalovite Na2BeSi2O6 Silicate Cf. liberite 277
Be23 Chrysoberyl BeAl2O4 Oxide Cf. forsterite 71

 Clinobarylite BaBe2Si2O7  Cf. barylite 
Be24 Clinobehoite Be(OH)2 Hydroxide  294



Be25 Danalite Be3(Fe2+)4(SiO4)3S Silicate Cancrinite-
Sodalite 87

Be26 Ehrleite Ca2ZnBe(PO4)2(PO3OH)·4H2O Phosphate  220
Be27 Eirikite KNa6Be2(Si15Al3)O39F2 Silicate Leifite 226
Be28 Epididymite Na2Be3Si6O15·H2O Silicate  426
Be29 Euclase BeAlSiO4(OH) Silicate  96
Be30 Eudidymite Na2Be3Si6O15·H2O Silicate  217
Be31 Faheyite Be2Mn2+(Fe3+)2(PO4)4·6H2O Phosphate   
Be32 Ferrochiavennitee Ca1�2Fe[(Si,Al,Be)5Be2O13(OH)2]·2H2O Silicate Zeolite 775a

Be33 Ferrotaaffeite-2N’2S Be(Fe2+)3Al8O16 Oxide Högbomite  
Be34 Ferrotaaffeite-6N’3S Be(Fe2+)2Al6O12 Oxide Högbomite  
Be35 Footemineite Ca2(Mn2+)5Be4(PO4)6(OH)4·6H2O Phosphate Roscherite 222
Be36 Fransoletite Ca3Be2(PO4)2(PO3OH)2·4H2O Phosphate  336
Be37 Friedrichbeckeite K(☐Na)Mg2(Be2Al)Si12O30 Silicate Milarite 258

Be38 Gadolinite-(Ce) Ce2Fe2+Be2O2(SiO4)2 
Silicate Gadolinite-

Datolite   

Be39 Gadolinite-(Y) Y2Fe2+Be2O2(SiO4)2 
Silicate Gadolinite-

Datolite 107
Be40 Gainesite Na2(Be,Li)(Zr,Zn)2(PO4)4·1.5H2O Phosphate Gainesite 84

Be41 Genthelvite Be3Zn4(SiO4)3S Silicate Cancrinite-
Sodalite 87

Be42 Glucine CaBe4(PO4)2(OH)4·0.5H2O Phosphate   
Be43 Greifensteinite Ca2(Fe2+)5Be4(PO4)6(OH)4·6H2O Phosphate Roscherite 221
Be44 Gugiaite Ca2BeSi2O7 Silicate Melilite 58
Be45 Guimarãesite Ca2Zn5Be4(PO4)6(OH)4·6H2O Phosphate Roscherite  
Be46 Hambergite Be2BO3(OH) Borate  192
Be47 Harstigite Ca6Be4Mn2+(SiO4)2(Si2O7)2(OH)2 Silicate  786

Be48 Helvite Be3(Mn2+)4(SiO4)3S Silicate Cancrinite-
Sodalite 87

Be49 Herderite CaBePO4(F,OH) Phosphate Herderite 96

Be50 Hingganite-(Ce) BeCe(SiO4)OH Silicate Gadolinite-
Datolite 114



Be51 “Hingganite-(Nd)” BeNd(SiO4)OH Silicate Gadolinite-
Datolite  

Be52 Hingganite-(Y) BeY(SiO4)OH Silicate Gadolinite-
Datolite  107

Be53 Hingganite-(Yb) BeYb(SiO4)OH Silicate Gadolinite-
Datolite 107

Be54 Høgtuvaite Ca4[(Fe2+)6(Fe3+)6]O4[Si8Be2Al2O36] Silicate Sapphirine 348
Be55 Hsianghualite Li2Ca3Be3(SiO4)3F2 Silicate Zeolite 343
Be56 Hurlbutite CaBe2(PO4)2 Phosphate  192
Be57 Hyalotekite (Pb,Ba,K)4(Ca,Y)2(B,Be)2(Si,B)2Si8O28F Silicate  215
Be58 Hydroxylherderite CaBePO4(OH) Phosphate Herderite 96
Be59 Jeffreyite (Ca,Na)2(Be,Al)Si2(O,OH)7 Silicate   
Be60 Joesmithite Pb2+Ca2(Mg3Fe3+

2)(Si6Be2)O22(OH)2 Silicate Amphibole 362
Be61 Khmaralite Mg4(Mg3Al9)O4[Si5Be2Al5O36] Silicate Sapphirine 1656
Be62 Leifite Na7Be2(Si15Al3)O39(F,OH)2 Silicate Leifite 226
Be63 Leucophanite NaCaBeSi2O6F Silicate  172
Be64 Liberite Li2BeSiO4 Silicate Cf. chkalovite 48f

Be65 Londonite CsBe4Al4(B11Be)O28 Borate  122
Be66 Lovdarite K2Na6Be4Si14O36·9H2O Silicate  741
Be67 Mg-taaffeite-2N’2S BeMg3Al8O16 Oxide Högbomite 212
Be68 Mg-taaffeite-6N’3S BeMg2Al6O12 Oxide Högbomite 146
Be69 Makarochkinite Ca4[(Fe2+)8(Fe3+)2Ti2]O4[Si8Be2Al2O36] Silicate Sapphirine 348
Be70 Mariinskite BeCr2O4 Oxide  71a,d

Be71 Mccrillisite NaCs(Be,Li)Zr2(PO4)4·1-2H2O Phosphate Gainesite  
Be72 Meliphanite Ca4(Na,Ca)4Be4AlSi7O24(F,O)4 Silicate  178
Be73 Milarite KCa2(Be2AlSi12)O30·H2O Silicate Milarite 258

Be74 Minasgeraisite-(Y)  CaBe2Y2Si2O10 
Silicate Gadolinite-

datolite 
 

Be75 Minjiangite Ba[Be2P2O8] Phosphate   
Be76 Moraesite Be2(PO4)(OH)·4H2O Phosphate Cf. bearsite 66
Be77 Mottanaite-(Ce) Ca4(CeCa)AlBe2(Si4B4O22)O2 Silicate Hellandite 363
Be78 Nabesite Na2BeSi4O10·4H2O Silicate Zeolite 514



Be79 Niveolanite NaBeCO3(OH)·2H2O Carbonate  176
Be80 Odintsovite K2Na4Ca3Ti2Be4Si12O38 Silicate  543
Be81 Oftedaliteg K(CaSc)Be3Si12O30 Silicate Milarite 234a

Be82 Pahasapaite Li8(Ca,Li,K)10Be24(PO4)24·38H2O Phosphate Zeolite 3920
Be83 Parafransoletite Ca3Be2(PO4)2(PO3OH)2·4H2O Phosphate  168
Be84 Pezzottaite CsLiBe2Al2Si6O18 Silicate Beryl 941
Be85 Phenakite Be2SiO4 Silicate Willemite 118
Be86 Rhodizite KBe4Al4(B11Be)O28 Borate  122
Be87 Roggianite Ca2BeAl2Si4O13(OH)2·nH2O (n < 2.5) Silicate Zeolite 402
Be88 Roscherite Ca2(Mn2+)5Be4(PO4)6(OH)4·6H2O Phosphate Roscherite 242

Be89 Ruifrancoite Ca2 (☐,Mn2+)2(Fe3+,Mn2+,Mg)4-
Be4(PO4)6(OH)4·6H2O 

Phosphate Roscherite  

Be90 Samfowlerite Ca14(Mn3+)3Zn3Be2Be6Si14O52(OH)6 Silicate  1202
Be91 Selwynite NaKBeZr2(PO4)4·2H2O Phosphate Gainesite  
Be92 Semenovite-(Ce) (Na,Ca)9Fe2+Ce2(Si,Be)20(O,OH,F)48 Silicate  771
Be93 Sørensenite Na4Be2Sn(Si3O9)2·2H2O Silicate  318
Be94 Sphaerobertrandite Be3SiO4(OH)2 Silicate  133
Be95 Stoppaniite Fe3+

2Be3Si6O18·H2O Silicate Beryl 146
Be96 Strontiohurlbutite SrBe2(PO4)2 Phosphate   
Be97 Surinamite Mg3Al3O(Si3BeAlO15) Silicate Sapphirine 526
Be98 Sverigeite NaBe2(Mn2+)2SnSi3O12(OH) Silicate  144
Be99 Swedenborgite NaBe4Sb5+O7 Oxide  68
Be100 Telyushenkoite CsNa6Be2(Si15Al3)O39F2 Silicate Leifite 226

Be101 Tiptopite K2(Li,Na,Ca)6(Be6P6)O24(OH)2·1.3H2O Phosphate Cancrinite-
Sodalite 142

Be102 Trimerite CaBe3(Mn2+)2(SiO4)3 
Silicate Cf. 

beryllonite 369

Be103 Tugtupite Na4BeAlSi4O12Cl Silicate Cancrinite-
Sodalite 64

Be104 Tvedalite Ca4Be3Si6O17(OH)4·3H2O Silicate   
Be105 Unnamed-1 K(CaY)Be3Si12O30 Silicate Milarite 
Be106 Unnamed-2 (IMA No. (Be, )(V3+, Ti)3O6 Oxide Cf. 109a



2013-045) kyzylkumite, 
tivaniteh 

Be107 Uralolite Ca2Be4(PO4)3(OH)3·5H2O   564
Be108 Väyrynenite BeMn2+PO4(OH)   133

 Vinogradovite Not a Be mineral – see text   
Be109 Wawayandaite Ca6Be9(Mn2+)2BSi6O23(OH,Cl)15    
Be110 Weinebeneite CaBe3(PO4)2(OH)2·4H2O  Zeolite 173
Be111 Welshite Ca4[Mg9(Sb5+)3]O4[Si6Be3Al(Fe3+)2O36]  Sapphirine 414a 
Be112 Zanazziite Ca2Mg5Be4(PO4)6(OH)4·6H2O  Roscherite  

Notes: Complexity is given in terms of total structural information content as bits per unit cell (Krivovichev 2013, Supplementary 
Information). aKrivovichev (personal communication) bValue for berborite-1T, space group P3, which is the polytype reported from 
both Lupikko and Larvik (Giuseppetti et al. 1990). cTwo values are given for a bityite-margarite intermediate (Lin and Guggenheim 
1983), one each for a different space group. dFrom the synthetic analogue (Frazer et al. 1969). ). eWe give the general formula reported 
by Grice et al (2013) instead of the ideal end-member formula Ca1�2FeSi5Be2O13(OH)2·2H2O, which is not balanced in charge. fThe 
complexity for liberite has not been plotted because of an error in reported structure (Hawthorne and Huminicki 2002). gFormula from 
end-member composition given in Cooper and Hawthorne (2006). hRaade et al. (2013) 
 



Table 2. Reported earliest occurrences of beryllium minerals in the geologic record

Mineral name Age (Ma) Locality

Alflarsenite 294
a
Tuften quarry, Tvedalen, Larvik, Vestfold, Norway

Almarudite 0.4
aBellerberg volcano, Ettringen, Eifel, Rhineland-Palatinate, Germany

Aminoffite 1000
aLångban deposit, Filipstad, Värmland, Sweden

Asbecasite 370 Tennvatn pegmatite, Sørfold, Nordland, Norway

Atencioite 582
aLinópolis, Divino das Laranjeiras, Minas Gerais State, Brazil

Babefphite 250
a,bAunik fluorite deposit. Buryatiya, Transbaikal, Russia

Barylite 1825 Långban deposit, Filipstad, Värmland, Sweden

Bavenite 2550 Londonderry pegmatite, Coolgardie, Western Australia, Australia

Bazzite 967 Heftetjern pegmatite, Tørdal, Telemark, Norway

Bearsite S
c a,b

Bota-Burum deposit, Chu-Ili Mountains, Balkash Region, Kazakhstan

Behoite 2680 Sakharijok massif, Kola Peninsula, Russia

Berborite 1538
bLupikko deposit, Pitkäranta, Lake Ladoga region, Karelia, Russia

Bergslagite 1825 Långban deposit, Filipstad, Värmland, Sweden

Bertrandite 2835 Mount Francisco pegmatites, East Pilbara, Western Australia, Australia

Beryl 3000 Sinceni pluton area, central Swaziland

Beryllite 1160 Ilímaussaq complex, Narsaq, West Greenland

Beryllonite 2670 BEP pegmatite, Bird River Greenstone Belt, Manitoba, Canada

Bityite 2590 Rothsay pegmatite, Rothsay, Western Australia, Australia

Bromellite 1825 Långban deposit, Filipstad, Värmland, Sweden

Bussyite-(Ce) 124
aMont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada

Chiavennite 1820 Utö, Södermanland, Sweden

Chkalovite 1160 Ilímaussaq complex, Narsaq, West Greenland

Chrysoberyl 2665 Mavis Lake pegmatite group, Dryden Field, Superior Province, Manitoba, Canada

Clinobehoite 250
aIzumrudnye Kopi, Tokovaya River, Middle Urals, Russia

Danalite 2550 Barbara gold mine pegmatites, Coolgardie, Western Australia, Australia

Ehrleite 1702
a
Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Eirikite 1160 Ilímaussaq complex, Narsaq, West Greenland

Epididymite 1267 Igaliko complex, Narsaq, West Greenland

Euclase 2590 Dalgaranga pegmatite, near Mount Magnet, Western Australia, Australia

Eudidymite 1267 Igaliko complex, Narsaq, West Greenland

Faheyite 1702 Roosevelt mine, Custer County, South Dakota, U.S.A.



Ferrochiavennite 294
a
Blåfjell, Langangen, Telemark and Tvedalen, Vestfold, Norway

Ferrotaaffeite-2N ’2S 156
a
Xianghualing ore field, Linwu County, Hunan Province, China

Ferrotaaffeite-6N ’3S 1805
a
Rosendal pegmatite, Kemiö Island, Southwestern Finland Region, Finland

Footemineite 345
aFoote mine, Kings Mountain, Cleveland County, North Carolina, U.S.A.

Fransoletite 1702
aTip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Friedrichbeckeite 0.4
aBellerberg volcano, Ettringen, Eifel, Rhineland-Palatinate, Germany

Gadolinite-(Ce) 1850 Bastnäs mine, Skinnskatteberg District, Västmanland, Sweden

Gadolinite-(Y) 2847 Cooglegong pegmatites, East Pilbara, Western Australia, Australia

Gainesite 293
a
Nevel quarry, Newry, Oxford County, Maine, U.S.A.

Genthelvite 1820 Utö, Södermanland, Sweden

Glucine Sc a,bBoevskoye deposit, Kamensk-Ural'skii, Chelyabinsk Oblast', Russia

Greifensteinite 1702 Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Gugiaite 294 Larvik plutonic complex, Norway

Guimarãesite 515
aPiauí valley, Taquaral, Itinga, Minas Gerais State, Brazil

Hambergite 1760 Animikie Red Ace pegmatite, Florence County, Wisconsin, USA

Harstigite 1825
a
Harstigen Mine, Pajsberg, Persberg district, Värmland, Sweden

Helvite 2835 Mount Francisco pegmatites, East Pilbara, Western Australia, Australia

Herderite 500 Brazil: specific locality unknown

Hingganite-(Ce) 294 Arent quarry, Tvedalen, Larvik, Vestfold, Norway

"Hingganite-(Nd)" 100
aBacúch deposit, western Carpathian Mountains, Slovakia

Hingganite-(Y) 1742 Hundholmen, Tysfjord, Nordland, Norway

Hingganite-(Yb) 1682
b
Mount Ploskaya, western Keivy Massif, Kola Peninsula, Russia

Høgtuvaite 414
aHøgtuva, near Mo i Rana, Nordland, Norway

Hsianghualite 156
aXianghualing ore field, Linwu County, Hunan Province, China

Hurlbutite 1820 Norrö, Södermanland, Sweden

Hyalotekite 1825 Långban deposit, Filipstad, Värmland, Sweden

Hydroxylherderite 2670 BEP pegmatite, Bird River Greenstone Belt, Manitoba, Canada

Jeffreyite 440
a
Jeffrey mine, Asbestos, Quebec, Canada

Joesmithite 1825
aLångban deposit, Filipstad, Värmland, Sweden

Khmaralite 2485
aKhmara Bay, Enderby Land, East Antarctica

Leifite 1267 Igaliko complex, Narsaq, West Greenland

Leucophanite 1267 Igaliko complex, Narsaq, West Greenland



Liberite 156
a
Xianghualing ore field, Linwu County, Hunan Province, China

Londonite 1760
d
Animikie Red Ace pegmatite, Florence County, Wisconsin, USA

Lovdarite 1160 Ilímaussaq complex, Narsaq, West Greenland

Mg-taaffeite-2N’2S 1538 Lupikko deposit, Pitkäranta, Lake Ladoga region, Karelia, Russia

Mg-taaffeite-6N’3S 2485 Khmara Bay, Enderby Land, East Antarctica

Makarochkinite 265
a
Pit 400 near Lake Ishkul', Il'men Mountains (southern Urals), Russia

Mariinskite 250
aMariinskoye emerald deposit, Malysheva, Sverdlovskaya Oblast’, Russia

Mccrillisite 293
aMount Mica quarry, South Paris, Oxford County, Maine, U.S.A.

Meliphanite 2680 Sakharijok massif, Kola Peninsula, Russia

Milarite 1820 Utö, Södermanland, Sweden

Minasgeraisite-(Y) 580
aLavra de Sr. José Pinto,  Jaguaraçu, Minas Gerais, Brazil

Minjiangite 300
a
Nanping No. 31 pegmatite, Fujian Province, China

Moraesite 2550 Londonderry pegmatite, Coolgardie, Western Australia, Australia

Mottanaite-(Ce) 0.4
aMonte Cavalluccio, Roman Comagmatic Province, Latium, Italy

Nabesite 1160
aIlímaussaq complex, Narsaq, West Greenland

Niveolanite 124
a
Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada

Odintsovite 1160 Ilímaussaq complex, Narsaq, West Greenland

Oftedalite 967
a
Heftetjern pegmatite, Tørdal, Telemark, Norway

Pahasapaite 1702
a
Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Parafransoletite 1702
a
Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Pezzottaite 500 Sakavalana pegmatite, Ambatovita, Amoron'I Mania Region, Madagascar

Phenakite 2969 Gravelotte, Murchison greenstone belt, South Africa

Rhodizite 500
aAmbatofinandrahana, Ankarata Mountains, Madagascar

Roggianite 250 Izumrudnye Kopi, Tokovaya River, Middle Urals, Russia

Roscherite 1702 Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Ruifrancoite 582
aSapucaia mine, Galiléia County, Minas Gerais, Brazil

Samfowlerite 940
a
Franklin mine, Franklin, Sussex County, New Jersey, U.S.A.

Selwynite 385
a
Wycheproof quarry, Wycheproof, Victoria, Australia

Semenovite-(Ce) 1160
a
Ilímaussaq complex, Narsaq, West Greenland

Sørensenite 1160
aIlímaussaq complex, Narsaq, West Greenland

Sphaerobertrandite 1160 Ilímaussaq complex, Narsaq, West Greenland



Stoppaniite 0.4
a
Vico Lake, Roman Comagmatic Province, Latium, Italy

Strontiohurlbutite 300
a
Nanping No. 31 pegmatite, Fujian Province, China

Surinamite 2485 Khmara Bay, Enderby Land, East Antarctica

Sverigeite 1825
aLångban deposit, Filipstad, Värmland, Sweden

Swedenborgite 1825
aLångban deposit, Filipstad, Värmland, Sweden

Telyushenkoite 170
a
Darai-Pioz Glacier, Alai Range, Tien Shan Mountains Tajikistan

Tiptopite 1702
a
Tip Top mine, Fourmile quadrangle, Custer County, South Dakota, U.S.A.

Trimerite 1825
aLångban deposit, Filipstad, Värmland, Sweden

Tugtupite 1160 Ilímaussaq complex, Narsaq, West Greenland

Tvedalite 294
a
Vevja quarry, Tvedalen, Larvik, Vestfold, Norway

Unnamed (IMA 2013-045) 248
aByrud Emerald Mine, Minnesund, Eidsvoll, Akershus, Norway

Unnamed 1240 Strange Lake peralkaline complex, Quebec-Labrador, Canada

Uralolite 515 Piauí valley, Taquaral, Itinga, Minas Gerais State, Brazil

Väyrynenite 1820 Norrö, Södermanland, Sweden

Wawayandaite 940
aFranklin mine, Franklin, Sussex County, New Jersey, U.S.A.

Weinebeneite 70
a
Weinebene Pass, Koralpe, Carinthia, Austria

Welshite 1825
a
Långban deposit, Filipstad, Värmland, Sweden

Zanazziite 582 Linópolis, Divino das Laranjeiras, Minas Gerais State, Brazil

Notes: 
a
Mineral is reported from only one locality.

bLocality given in Pekov (1998), together with brief description of the mineral
cSupergene, and the age cannot be determined
d
Reported as rhodizite

n.d. - not determined



Reference for mineral Reference for age Single locality

Raade et al. (2009) Larsen (2010) 1

Mihajlović et al. (2004) Schminke (2007) 1

Holtstam and Langhof (2007) Jonsson (2004) 1

Husdal (2011) Husdal (2008)

Chuganov et al. (2006) Pedrosa-Soares et al. (2011) 1

Nazarova et al. (1975 Bulnaev (2006) 1

Holtstam and Langhof (2007) Jonsson (2004)

Jacobson et al. (2007) Jacobson et al. (2007)

Bergstøl and Juve (1988) Andersen et al. (2007)

Kopchenova and Sidorenko (1962) Kopchenova and Sidorenko (1962) 1

Lyalina et al. (2009) Zozulya et al. (2007)

Nefedov (1967) Stein et al. (2003)

Holtstam and Langhof (2007) Jonsson (2004)

Jacobson et al. (2007) Jacobson et al. (2007)

Trumbull (1993) Trumbull (1993)

Markl (2001) Krumrei et al. (2006)

Černa et al (2002) Černý (2005)

Jacobson et al. (2007) Jacobson et al. (2007)

Holtstam and Langhof (2007) Jonsson (2004)

Grice et al. (2009) Gilbert and Foland (1986) 1

Langhof et al. (2000) Romer and Smeds (1994)

Markl (2001) Krumrei et al. (2006)

Breaks et al. (2005) Breaks et al. (2005)

Voloshin et al. (1989) Fershtater et al. (2007) 1

Jacobson et al. (2007) Jacobson et al. (2007)

Robinson et al. (1985) Dahl and Foland (2008) 1

Larsen et al. (2010) Krumrei et al. (2006)

Petersen and Secher (1993) McCreath et al. (2012)

Jacobson et al. (2007) Jacobson et al. (2007)

Petersen and Secher (1993) McCreath et al. (2012)

Robinson et al. (1992) Dahl and Foland (2008)



Grice et al. (2013) Larsen (2010) 1

Yang et al. (2012) Yuan et al. (2008) 1

Burke and Lustenhouwer (1981) Lindroos et al. (1996) 1

Atencio et al. (2008) Swanson (2012) 1

Peacor et al. (1983) Dahl and Foland (2008) 1

Lengauer et al. (2009) Schminke (2007) 1

Holtstam and Andersson (2007) Allen et al. (1996)

Jacobson et al. (2007) Jacobson et al. (2007)

Moore et al. (1983) Wise and Brown (2010) 1

Langhof et al. (2000) Romer and Smeds (1994)

Grigor'yev (1963) Ginzberg et al. (1966) 1

Nizamoff et al. (2006) Dahl and Foland (2008)

Grice and Kristiansen (2013) Larsen (2010)

Chuganov et al. (2007) Pedrosa-Soares et al. (2011) 1

Falster et al. (1996) Sirbescu et al. (2008)

Flink (1917) Jonsson (2004) 1

Jacobson et al. (2007) Jacobson et al. (2007)

Dunn and Wight (1976) Pedrosa-Soares et al. (2011)

Larsen (2010) Larsen (2010)

Pršek et al. (2010) Pršek et al. (2010) 1

Husdal (2008) Andresen and Tull (1986)

Belolipetskii and Voloshin (1996) Bayanova and Voloshin (1999)

Grauch et al. (1994) Skår (2002) 1

Huang et al. (1988) Yuan et al. (2008) 1

Nysten and Gustafsson (1993) Romer and Smeds (1994)

Grew et al. (1994) Jonsson (2004)

Černá et al (2002) Černý (2005)

Grice and Robinson (1984) Normand and Williams (2007) 1

Holtstam and Langhof (2007) Jonsson (2004) 1

Barbier et al. (1999) Hokada and Harley (2004) 1

Petersen and Secher (1993) McCreath et al. (2012)

Petersen and Secher (1993) McCreath et al. (2012)



Chao (1964) Yuan et al. (2008) 1

Falster et al. (2001a) Sirbescu et al. (2008)

Petersen et al. (2002a) Krumrei et al. (2006)

Schmetzer (1983) Stein et al. (2003)

Grew et al. (2000) Hokada and Harley (2004)

Grew et al. (2005) Grew et al. (2005) 1

Pautov et al. (2012) Fershtater et al. (2007) 1

Foord et al. (1994) Wise and Brown (2010) 1

Bel'kov and Denisov (1968) Zozulya et al. (2007)

Langhof et al. (2000) Romer and Smeds (1994)

Foord et al. (1986) Pedrosa-Soares et al. (2011) 1

Rao et al. (2013a) Rao et al. (2009) 1

Jacobson et al. (2007) Jacobson et al. (2007)

Della Ventura et al. (2002) De Rita et al. (1983) 1

Petersen et al. (2002b) Krumrei et al. (2006) 1

Pekov et al. (2008) Gilbert and Foland (1986) 1

Petersen et al. (2001) Krumrei et al. (2006)

Cooper et al. (2006) Andersen et al. (2007) 1

Rouse et al. (1987) Dahl and Foland (2008) 1

Kampf et al. (1992) Dahl and Foland (2008) 1

Hawthorne et al. (2004) Fernandez et al. (2003)

Grundmann and Morteani (1989) Poujol (2001)

Pring et al. (1986) Fernandez et al. (2003) 1

Voloshin et al. (1986) Fershtater et al. (2007)

Campbell and Roberts (1986) Dahl and Foland (2008)

Atencio et al. (2007) Pedrosa-Soares et al. (2011) 1

Rouse et al. (1994) Volkert et al. (2005) 1

Birch et al. (1995) Birch et al. (1995) 1

Petersen and Secher (1993) Krumrei et al. (2006) 1

Petersen and Secher (1993) Krumrei et al. (2006) 1

Pekov et al. (2003) Krumrei et al. (2006)



Della Ventura et al. (2000) Fornasera (1985) 1

Rao et al. (2013b) Rao et al. (2009) 1

Grew et al. (2000) Hokada and Harley (2004)

Holtstam and Langhof (2007) Jonsson (2004) 1

Holtstam and Langhof (2007) Jonsson (2004) 1

Agakhanov et al. (2003) Grew et al. (1993) 1

Grice et al. (1985) Dahl and Foland (2008) 1

Holtstam and Langhof (2007) Jonsson (2004) 1

Petersen and Secher (1993) Krumrei et al. (2006)

Larsen (2010) Larsen (2010) 1

Raade and Balić-Žunić (2006) Sundvoll et al. (1990) 1

Černý et al. (1991) Miller et al. (1997)

http://www.mindat.org/min-4099.html Pedrosa-Soares et al. (2011)

Nysten and Gustafsson (1993) Romer and Smeds (1994)

Dunn et al. (1990) Volkert et al. (2005) 1

Walter (1992) Thöni and Miller (2000) 1

Grew et al. (2007) Jonsson (2004) 1

Atencio et al. (2005) Pedrosa-Soares et al. (2011)
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Table 3. Reported latest occurrences and number of localities of beryllium minerals in the geologic record

Mineral name No. of  localities Age (Ma)

Asbecasite 4 0.2

Barylite many 113

Bavenite many 17.5

Bazzite many 17.5

Behoite 7 5

Berborite 2 294

Bergslagite 7 17.5

Bertrandite many 5

Beryl many 5

Beryllite 3 362

Beryllonite many 5

Bityite many 33

Bromellite 8 156

Chiavennite 4 30

Chkalovite 4 124

Chrysoberyl many 20

Danalite many 30

Eirikite 5 124

Epididymite many 35

Euclase many 17.5

Eudidymite 9 113

Faheyite 2 582

Gadolinite-(Ce) 3 294

Gadolinite-(Y) many 0.4

Genthelvite many 124

Greifensteinite 9 70

Gugiaite 5 90.5

Hambergite many 5

Helvite many 0.4

Herderite 4 20

Hingganite-(Ce) 5 67

Hingganite-(Y) many 67



Hingganite-(Yb) 2 920

Hurlbutite many 293

Hyalotekite 2 170

Hydroxylherderite many 5

Leifite 5 124

Leucophanite many 124

Londonite 3 250

Lovdarite 3 2

Mg-taaffeite-2N’2S 7 20

Mg-taaffeite-6N’3S 8 263

Meliphanite 5 33

Milarite many 17.5

Moraesite many 293

Odintsovite 2 118

Pezzottaite 3 20

Phenakite many 6.8

Roggianite 2 33

Roscherite 5 70

Sphaerobertrandite 5 156

Surinamite 5 1050

Tugtupite 4 124

Uralite 6 70

Väyrynenite many 5

Zanazziite 5 293



Table 3. Reported latest occurrences and number of localities of beryllium minerals in the geologic record

Locality Reference for mineral

Tre Croci, Vico volcanic complex, Roman Comagmatic Province, Latium, Italy Sacerdoti et al (1993)

Zomba–Malosa pluton, Chilwa Alkaline Province, southern Malawi Demartin et al. (2003)

Alpine fissures Aar and Gotthard Massifs, Switzerland Weibel et al. (1990)

Alpine fissures Aar and Gotthard Massifs, Switzerland Weibel et al. (1990)

Honeycomb Hills, Juab County, Utah Montoya et al. (1964) 

Larvik plutonic complex, Langesundfjord-Porsgrunn area,  Norway Larsen (2010)

Alpine fissures, probably Gotthard Massif, Switzerland Weibel et al. (1990)

Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan Laurs et al. (1998) 

Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan Laurs et al. (1998) 

Lovozero massif, Kola Peninsula, Russia Pekov (2000)

Drot, Nanga Parbat - Haramosh massif, northern Pakistan Laurs et al. (1998) 

Vigezzo valley, Western Alps, Italy Guastoni and Pezzotta (2008)

Xianghualing ore field, Linwu County, Hunan Province, China Huang et al. (1988)

Chiavenna, Tanno, Sondrio, Lombardy, Italy Bondi et al. (1983) 

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Horváth and Horváth-Pfenninger (2000)

Mogok gem mining area, Myanmar Themelis (2008)

Pizzi dei Rossi, Forno, Bergell, Graubünden, Switerland Weibel et al. (1990)

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Larsen et al. (2010)

Wind Mountain, Cornudas Mountains, New Mexico mindat; Horvath (pers. comm. 2013)

Alpine fissure, Pizzo Giubine (St Gotthard Pass), Switzerland Demartin (1992)

Zomba–Malosa pluton, Chilwa Alkaline Province, southern Malawi Gatta et al (2008)

Sapucaia mine, Galiléia County, Minas Gerais, Brazil Lindberg and Murata (1953)

Larvik Intrusive Complex, Oslo Larsen (2010)

Vico Lake, Roman Comagmatic Province, Latium, Italy Camara et al (2008)

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Horváth and Horváth-Pfenninger (2000)

Weinebene Pass, Koralpe, Carinthia, Austria Chukanov et al. (2003)

Yuge Island, Ochigun, Ehime Prefecture, Japan Minakawa and Yoshimoto (1998)

Stak Nala, Nanga Parbat - Haramosh massif, northern Pakistan Laurs et al. (1998) 

Vico Lake, Roman Comagmatic Province, Latium, Italy Rossi et al. (1995)

Mogok gem mining area, Myanmar Harlow and Hawthorne (2008)

Tahara, Hirukawa mura, Gifu Prefecture, Japan Miyawaki et al. (2007)

Tahara, Hirukawa mura, Gifu Prefecture, Japan Miyawaki et al. (2007)



Tangen-bruddet, Kragerø, Telemark, Norway Kristiansen (1994) 

Black Mtn quarries, Rumford, Maine King and Foord (1994)

Darai-Pioz Glacier, Alai Range, Tien Shan Mountains Tajikistan Grew et al. (1994)

Drot, Nanga Parbat - Haramosh massif, northern Pakistan Laurs et al. (1998) 

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Larsen et al. (2010)

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Horváth and Horváth-Pfenninger (2000)

Murzinka and Rezh districts, central Urals, Russia Pekov et al. (2010) 

Point of Rocks (formerly Peck's) Mesa, near Springer, Coalfax County, N.M. DeMark (1984, 1989)

Mogok gem mining area, Myanmar Schmetzer et al (2000)

Stubenberg am See, Styria, Austria Bernhard et al. (2008)

Vigezzo valley, Western Alps, Italy Guastoni and Pezzotta (2008)

Alpine fissures, mostly Aar massif Weibel et al. (1990)

Greenwood, Newry and Paris, Maine King and Foord (1994)

Malyy Murun alkalic pluton, Irkutsk Oblast, Russia Konev et al. (1995)

Momeik, Mogok gem mining area, Myanmar Devouard et al. (2007)

Facciatoia pegmatite, Island of Elba, Italy Ceciliato (2007) 

Vigezzo valley, Western Alps, Italy Guastoni and Pezzotta (2008)

Weinebene Pass, Koralpe, Carinthia, Austria Chukanov et al. (2003)

Xianghualing ore field, Linwu County, Hunan Province, China Huang et al. (1988)

Chimwala area near Chipata, Eastern Province, Zambia De Roever and Vrána (1985)

Mont Saint-Hilaire complex, Rouville RCM, Montérégie, Québec, Canada Horváth and Horváth-Pfenninger (2000)

Weinebene Pass, Koralpe, Carinthia, Austria Mereiter et al. (1994)

Sassi, Nanga Parbat - Haramosh massif,  northern Pakistan Huminicki and Hawthorne (2000)

Market Prospect, Newry, Maine Nizamoff et al. (2006)



Reference for age

Sacerdoti et al (1993)

Eby et al. (1995) 

Mullis et al. (1994)

Mullis et al. (1994)

Lindsey (1977) 

Larsen (2010)

Mullis et al. (1994)

Laurs et al. (1998) 

Laurs et al. (1998) 

Pekov (2000)

Laurs et al. (1998) 

Guastoni and Pezzotta (2008)

Yuan et al. (2008)

von Blanckenburg (1992) 

Gilbert and Foland (1986)

Themelis (2008)

von Blanckenburg (1992) 

Gilbert and Foland (1986)

McLemore et al. (1996) 

Mullis et al. (1994)

Eby et al. (1995) 

Pedrosa-Soares et al. (2011)

Larsen (2010)

Fornasera (1985)

Gilbert and Foland (1986)

Thöni and Miller (2000)

Shibata and Ishihara (1979)

Laurs et al. (1998) 

Fornasera (1985)

Themelis (2008)

Takahashi et al (2007) 

Takahashi et al (2007) 



Andersen et al. (2002)

Wise and Brown (2010)

Grew et al. (1993)

Laurs et al. (1998) 

Gilbert and Foland (1986)

Gilbert and Foland (1986)

Fershtater et al. (2007)

Collins (1949)

Themelis (2008)

Tropper et al. (2007) 

Guastoni and Pezzotta (2008)

Mullis et al. (1994)

Wise and Brown (2010)

Orlova (1987)

Themelis (2008)

Aurisicchio et al (2002)

Guastoni and Pezzotta (2008)

Thöni and Miller (2000)

Yuan et al. (2008)

Johnson et al. (2006)

Gilbert and Foland (1986)

Thöni and Miller (2000)

Laurs et al. (1998)

Wise and Brown (2010)



Table 4. Beryllium minerals in alkalic complexes 

Complex Age 

(Ma) 

Total 

species  

New 

speciesa 

Species found only 

in one complex 

Species not found 

elsewhere 

Other essential constituents in Be 

mineralsb 

Sakharijok 2680 2 2 0 0 – 

Igaliko 1267 4 4 0 0 – 

Ilímaussaq 1160 18 10 0 3 S, Cl, Ti, Mn, Zn, Sn, Ba, Ce 

Khibiny 362 12 0 0 0 Cl, Ba, Ce 

Lovozero 362 10 0 1 0 P, S, Zn 

Larvik 294 26 3 4 3 B, S, Mn, Zn, Y, Ba, Ce 

Saint-Hilaire 124 19 2 1 2 C, S, Cl, Mn, Zn, Y, Ba, Ce 

Zomba-Malosa 113 7 0 1 0 S, Zn Y, Ba 

Note: aFirst occurrence in the geologic record (Table 2).  bExcluding Na, K, Ca, Al, Si, O, H and F. Y and Ce include heavy and light 

rare earth elements, respectively 
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Table 5. Coexisting elements in Be minerals.  

Element # minerals # with Be Element #minerals #with Be 
Li 115 8 Se 115 0 
B 263 7 Br 12 0 
C 397 1 Rb 3 0 
N 92 0 Sr   126 1 
O 3957 112 Y 118 5 
F 367 11 Zr 120 3 
Na 919 28 Nb 142 0 
Mg 626 12 Mo 60 0 
Al 1009 28 Ag 167 0 
Si 1434 66 Cd 28 0 
P 567 28 In 12 0 
S 1006 3 Sn 89 2 
Cl 357 2 Sb 245 2 
K 434 13 Te 159 0 
Ca 1195 48 Cs 17 4 
Sc 16 2 Ba 220 4 
Ti 334 4 La 45 0 
V 207 1 Ce 146 5 
Cr 93 1 Nd 26 1 
Mn 519 14 Yb 5 1 
Fe 1060 18 Ta 58 0 
Co 63 0 W 41 0 
Ni 149 0 Hg 92 0 
Cu 633 0 Pb 502 2 
Zn 242 5 Bi 214 0 
Ga 5 0 Th 33 0 
Ge 29 0 U 245 0 
As 562 3  

Note: For each element, the first column gives the number of approved mineral species 

for that element (based on the IMA master list at the RRUFF website, 

http://rruff.info/ima/ as of October 18, 2013), whereas the second column gives the 

number of Be minerals that also incorporate that element (Table 1), e.g., there are 115 

known lithium minerals, of which 8 incorporate Be. 
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