1	Revision 1
2	Effect of orientation on ion track formation in apatite and zircon
3	Weixing Li ^{1*} , Patrick Kluth ² , Daniel Schauries ² , Matias D. Rodriguez ² , Maik Lang ¹ ,
4 5	Fuxiang Zhang ¹ , Maxim Zdorovets ^{3,4} , Christina Trautmann ^{3,6} , and Rodney C. Ewing ^{1,7,8}
5 6	48109-1005, USA
7	² Department of Electronic Materials Engineering, Research School of Physics and
8	Engineering, The Australian National University, Canberra, ACT 0200, Australia
9	^{3,4} Institute of Nuclear Physics, and The L. N. Gumilyov Eurasian National University, Astana,
10	010008, Kazakhstan
11	^{5,6} GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, and Technische
12	Universität Darmstadt, Germany
13	^{7,8} Departments of Materials Science & Engineering, and Nuclear Engineering & Radiological
14 15	Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
15 16	
17	Abstract
18	Fission track (FT) thermochornology is essentially based on empirical fits to annealing data of
19	FTs revealed by chemical etching, because, until now, unetched, latent FTs could not be
20	examined analytically at the atomic-scale. The major challenge to such an analysis has been
21	the random orientation of FTs and their extremely small diameters. Here we use high-
22	energy ions (2.2 GeV Au or 80 MeV Xe) to simulate FT formation along specific
23	crystallographic orientations. By combining results from transmission electron microscopy
24	(TEM) of single tracks and small angle X-ray scattering (SAXS) for millions of tracks, a
25	precise picture of track morphology as a function of orientation is obtained. High-
26	resolution analysis reveals that orientation affects the shape of tracks in apatite and zircon
27	through the preferential creation of damage along directions with highest atomic density.
28	However, track radius does not depend on orientation, contradicting previous reports.
29	Independent of track orientation, track radii, as measured at each point along the entire
30	length of 80 MeV Xe ion tracks in apatite, can be understood using the thermal spike model
31	of Szenes. Thus, the well-known track annealing anisotropy of apatite is not due to track

radius anisotropy. The combination of ion-irradiations with TEM and SAXS analysis
provides a unique opportunity to understand and model track formation and annealing
under a variety of geologic conditions.
Keywords: ion tracks, fission tracks, apatite, zircon, orientation effects, thermal spike,
TEM, SAXS
* Corresponding author
E-mail address: wxli@umich.edu

66 Introduction 67 68 Swift heavy ions (SHIs) create a narrow track of damage in an irradiated solid along the 69 trajectory of the ion. Such SHI irradiations have widespread applications in 70 nanoengineering (Akcoltekin et al. 2007; Mara et al. 2004), and particle damage in 71 electronics (Dodd and Massengill 2003). More interestingly, SHI irradiations can be used to 72 simulate the formation of fission tracks (FTs), damage trails that were caused by 73 spontaneous fission events of uranium impurities in minerals that have been widely used 74 for age dating and thermochronology (Donelick et al. 1999; Gleadow et al. 2002; 75 Jonckheere and Chadderton 2002; Yamada et al. 1995). Generally, tracks in transverse cross 76 section are circular, but in a few cases (Bursill and Braunshausen 1990; Hebert et al. 1998; 77 Paul and Fitzgerald 1992; Vetter et al. 1994), they have a tendency to facet along specific 78 crystallographic directions, with an important indication that orientation may play a role in 79 track formation. However, details of how orientation affects track formation remain 80 elusive, because there are very few systematic studies of the shape and radius of latent, 81 unetched tracks as a function of orientation at the atomic-scale. According to a highly cited 82 transmission electron microscopy (TEM) study (Paul and Fitzgerald 1992), the mean 83 radius (~4.5 ± 3.7 nm) of latent FTs || c (or the c axis) of the hexagonal apatite 84 $[Ca_{10}(PO_4)_6F_2]$ is significantly larger than that (~2.5 ± 2.8 nm) of FTs $\perp c$. The anisotropy of 85 track radii in apatite has gained general acceptance (Carlson 1993; Jaskierowicz et al. 2004; 86 Rabone et al. 2008; Schouwink et al. 2010), and has been used to explain (Carlson 1993; 87 Paul and Fitzgerald 1992) the well-known track annealing anisotropy (Donelick et al. 1999; 88 Gleadow et al. 2002; Green and Durrani 1977), i.e., tracks || c anneal more slowly than

89	tracks $\perp c$, however, a molecular dynamics simulation concluded that track size was
90	insensitive to orientation (Rabone et al. 2008). Because of the random orientation of FTs,
91	TEM imaging of the track radius requires considerable effort to accurately determine the
92	orientation of any individual track that is measured, essentially requiring the alignment of
93	the electron beam parallel to major zone axes of the grain. In this study, we overcome this
94	problem by investigating parallel tracks produced by the irradiations of SHIs (2.2 GeV Au
95	or 80 MeV Xe) along known zone axes of apatite ($P6_3/m$) and zircon (ZrSiO ₄ : $I4_1/amd$), two
96	minerals that have anisotropic structures and figure prominently in FT thermochronology.
97	By combining the results from TEM analysis of single tracks and small angle X-ray
98	scattering (SAXS) for millions of tracks (Afra et al. 2011), a precise picture of track
99	morphology as a function of orientation is obtained. High-resolution TEM analysis reveals
100	how orientation affects track shape and size at the atomic-scale. Using the microtome
101	cutting method and the thermal spike model, we compare variations in radius at each point
102	along the entire length of 80 MeV Xe ions in apatite c and $\perp c$.
103	
104	Experimental methods
105	Two types of SHIs were used in this study. For the 2.2 GeV Au ion irradiation
107	experiments, the ion range is ${\sim}70$ and 85 μm , as calculated by the SRIM code (SRIM 2012),
108	for zircon and apatite, respectively (Fig. 1). The electronic energy loss per unit length, or
109	stopping power, $(-dE/dx)e = S_e$, as a function of target depth was calculated by SRIM simulation
110	with the function of Calculate Quick Range Table. The densities of apatite and zircon were set as
111	3.2 and 4.52 g/cm ³ , respectively. The total number of runs (or ions) was set 10,000 to calculate
112	ion distribution and damage along the ion trajectories. The SRIM simulation shows that the 4

113 angle of each track deviated from the original trajectory for the 2.2 GeV Au ion is negligibly 114 small, especially at the lower target depths ($< 40 \,\mu m$). The samples were pre-polished to a 115 thickness $\sim 40 \,\mu\text{m}$ to ensure that the GeV projectiles completely penetrate the sample 116 thickness, inducing an approximately uniform energy deposition, -dE/dx, and producing a 117 nearly constant track radius throughout the entire sample thickness (Li et al. 2013). In 118 contrast, as the 80 MeV Xe ions, which have a typical mass and energy of fission fragments, 119 slow down, -dE/dx decreases (Fig. 1), resulting in a significantly smaller track radius in 120 apatite toward the end of the track (Li et al. 2012). Variations in radius along the entire 121 length (up to 8.1 μ m) of ion tracks along the *c*-axis of apatite were first obtained by the 122 microtome method (Li et al. 2012). For a fission fragment (e.g. 80 MeV Xe ion), the track 123 range that can be observed by TEM is $\sim 2 \mu m$ (Li et al. 2012) less than the ion range because 124 the energy at its very end falls below the energy threshold required to produce an 125 observable track. Although the energy of 2.2 GeV Au is significantly larger than that of a 126 typical fission fragment, the difference in -dE/dx is small at the point of impact (for apatite: 127 ~27 keV/nm for 2.2 GeV Au vs. ~16 keV/nm for 80 MeV Xe) (Fig. 1). More importantly, this 128 difference in -dE/dx does not result in significant differences in the track morphology (Li et 129 al. 2010).

130

131 Tracks (|| c or $\perp c$) were produced in bulk samples ~40 µm thick by exposing (0001) and 132 $(5\overline{140})$ surfaces of Durango fluorapatite, and (001) and (100) surfaces of synthesized 133 single crystal zircon, respectively, to 2.2 GeV Au ions in 5×10¹⁰ ions/cm² at normal 134 incidence at the UNILAC accelerator, GSI, Damstady, Germany. Without further preparation, 135 bulk samples were investigated after irradiation using transmission SAXS at the Australian

136	Synchrotron in Melbourne, Australia. See Kluth et al (2008) and Li et al. (2013) for details
137	of the SAXS measurements. TEM studies were completed with a JEOL 3011 electron
138	microscope. The irradiated bulk samples were crushed and suspended on a carbon film
139	supported by Cu grid for the TEM studies. To simulate FTs, tracks $ c \text{ or } \perp c \text{ of apatite were}$
140	produced by irradiating a single crystal ${\sim}200~\mu m$ thick with 80 MeV Xe ions to a fluence of
141	$5 imes 10^{10}$ ions/cm² at the Cyclotron DC-60 at the National Nuclear Centre in Kazakhstan.
142	Cross-sectional TEM specimens containing parallel tracks were prepared by cutting the
143	irradiated sample along their ion trajectories (c or $\perp c$) with a diamond knife in a
144	microtome to show variations in track radius along the entire track. See Li et al. (2012) for
145	details of the microtome method.
146	
147 148	2.2 GeV Au Ions
140	
149	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse
149	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed
149 150 151	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis (c or $\perp c$), which is parallel to the tracks in this case, to the
149 150 151 152	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis ($ c \text{ or } \perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright
149 150 151 152 153	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis ($ c \text{ or } \perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright contrast as the free space (Figs. 2a,2b and 3a), indicating the highly porous nature of tracks,
149 150 151 152 153 154	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis ($ c \text{ or } \perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright contrast as the free space (Figs. 2a,2b and 3a), indicating the highly porous nature of tracks, as has been discussed in detail in (Li et al. 2010). This is significantly different from the
149 150 151 152 153 154 155	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis (c or $\perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright contrast as the free space (Figs. 2a,2b and 3a), indicating the highly porous nature of tracks, as has been discussed in detail in (Li et al. 2010). This is significantly different from the amorphous core region of tracks in zircon (Figs. 2c, 2d, and 3b). For each track c of
149 150 151 152 153 154 155 156	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis (c or $\perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright contrast as the free space (Figs. 2a,2b and 3a), indicating the highly porous nature of tracks, as has been discussed in detail in (Li et al. 2010). This is significantly different from the amorphous core region of tracks in zircon (Figs. 2c, 2d, and 3b). For each track c of apatite, there is clear hexagonal faceting (Fig. 2a) (Paul and Fitzgerald 1992), as compared
149 150 151 152 153 154 155 156 157	High resolution TEM (HRTEM) analysis of 2.2 GeV Au tracks was obtained in transverse cross section, i.e., tracks are parallel to electron beam, by carefully tilting a crushed specimen to align its zone axis (c or $\perp c$), which is parallel to the tracks in this case, to the incident electron beam. In apatite, the central core region of the tracks has the same bright contrast as the free space (Figs. 2a,2b and 3a), indicating the highly porous nature of tracks, as has been discussed in detail in (Li et al. 2010). This is significantly different from the amorphous core region of tracks in zircon (Figs. 2c, 2d, and 3b). For each track c of apatite, there is clear hexagonal faceting (Fig. 2a) (Paul and Fitzgerald 1992), as compared with the circular tracks $\perp c$ (here along $[5\overline{140}]$)(Figs. 2b and 3a). In a fast Fourier

159 the corresponding crystal direction in the imaging plane. Thus, the preferential faceting 160 directions in Fig. 2a can be determined as the six equivalent, close packed 161 $<11\overline{2}0>$ directions, which are parallel to the six diagonals of a hexagonal projection onto 162 (0001) for etched tracks || c (Jonckheere and VandenHaute 1996; Paul and Fitzgerald 163 1992). In zircon, tracks along [001] appear to be approximately square in shape (Fig. 2c) 164 with the diagonals parallel to the four equivalent <100> directions, as this tendency can be 165 further confirmed in a low magnification image (Fig. 3b), which shows multiple square 166 tracks with the diagonals pointing in the same directions. Within the (001) plane, the 167 atomic density is highest along the <100> directions, similar to the case in the close packed 168 directions. Tracks along [100] of zircon appear to be elliptical with the long axis in the 169 <001> direction, which have the highest atomic density within the (100) plane (Fig. 2d). 170 The ratio (1.106) of the long axes to the short axes (7.8 nm vs. 7.1 nm) in Fig. 2d 171 corresponds to the reciprocal ratio of the unit cell constants (a/c = 1.105), as well as the 172 corresponding *d* spacings (d_{200}/d_{002} =1.105). This is similar to the case for GeS, where the 173 long axis of the elliptical tracks are parallel to the close packed <001> direction (Vetter et 174 al. 1994). Thus, the atomic-scale resolution reveals that the shape of tracks in apatite and 175 zircon depends on track orientation in the crystal as a result of preferential creation of 176 radiation damage along the directions with highest atomic density. 177

As the scale bar can be precisely calibrated by the known *d* spacings (Fig. 2), the mean

179 track radius can be measured reliably: 4.0 ± 0.2 nm for tracks || *c vs.* 3.9 ± 0.4 nm for tracks

180 $\perp c$ in apatite; 3.8 ± 0.4 nm for tracks || *c vs.* 3.7 ± 0.4 nm for tracks $\perp c$ in zircon, which is

181 consistent with a previous HRTEM measured radius (~4 nm) for 2.9 GeV Pb ion induced

182tracks $\perp c$ of zircon (Bursill and Braunshausen 1990). The mean radius was determined by183averaging the radii of approximately 5 tracks for each orientation ($|| c \text{ or } \perp c$) in apatite and184zircon. Within the errors, the HRTEM measured track radii are actually indistinguishable for185the different orientations. However, the track shape changes significantly for the different186orientations.

187 188 In addition to the images of tracks in transverse cross section, the structure and 189 morphology of tracks can be viewed in longitudinal cross section, i.e., tracks are 190 perpendicular to the electron beam by the under focus low magnification images (Fig. 4). 191 For apatite, the average radius of tracks || c and $\perp c$ is 4.6 ± 0.4 nm and 4.6 ± 0.5 nm, 192 respectively. For zircon, the average radius is 4.3 ± 0.4 nm || *c*, close to 4.1 ± 0.5 nm for $\perp c$. 193 Ten tracks were measured for each orientation. Thus, the mean values of the track radii are 194 insensitive to orientation, which is consistent with the HRTEM measurements. 195 196 As compared with the limited number of tracks in a localized area as observed by TEM, 197 the strong scattering oscillations, as detected by SAXS from a very large number of well 198 aligned, identical tracks in a bulk sample, provide an extremely reliable means for 199 determining the mean track radius. The scattering intensities of tracks and corresponding 200 analytical fits to the hard cylinder model (Afra et al. 2011; Li et al. 2013) are shown in Fig. 201 5. The GeV Au ions induce tracks || *c* of apatite with a mean radius of 4.81 ± 0.03 nm, which 202 is slightly larger than that (4.72 \pm 0.03 nm) of tracks \perp c. In zircon, the mean track radius || 203 *c* is 4.43 \pm 0.03 nm, slightly larger than that (4.32 \pm 0.03 nm) of tracks \perp *c*. The SAXS

204 measurements are consistent with the TEM measurements in that the mean radii of tracks 205 || *c* are very close to those of tracks $\perp c$.

206

207 80 MeV Xe Ions

208 In addition to the GeV ions, the influence of track orientation on track radius was 209 investigated by TEM comparing the damage at each point along latent tracks created by 80 210 MeV Xe ions $|| c \text{ or } \perp c \text{ of apatite (Fig. 6)}$. Using the microtome method (Li et al. 2012), the 211 track profile was obtained by taking a series of images along the ion paths (Figs. 6a-6d). 212 Three examples of under focus TEM images of tracks $\perp c$ measured at different depths (x = 213 0, 3, and 6.7 μ m) from the ion-irradiated surface are shown in Figs. 6a-6c. Approximately 214 10 tracks were measured at each target depth. The changes of track radii along the ion 215 paths || *c* and \perp *c* in apatite are plotted in Fig. 6e. Within experimental error, the mean radii 216 for tracks $\perp c$ are very close to the radii of tracks $\mid\mid c$ at almost all the depths. This provides 217 direct evidence that latent ion tracks in apatite do not have different sized radii as a 218 function of orientation, in constrast to the previous observation of significantly larger FTs 219 || c than those $\perp c$ in apatite (Paul and Fitzgerald 1992). This discrepancy is due to the 220 difficulty of determining the precise orientation of any individual track [of the total 293 221 randomly orientated FTs that were measured (Paul and Fitzgerald 1992)]. For complex 222 materials (e.g., apatite) where different zones may have similar diffraction patterns, the 223 incorrect indexing of the zone axis of a grain is possible. Furthermore, because it is 224 impossible to determine the target depth of a randomly orientated FT by TEM, the decrease 225 in radius along a FT, as clearly shown in Fig. 6, could not be considered, resulting in 226 significantly larger errors.

1/8

227	For both track directions, the decrease in track radius per unit depth, $-dR/dx$, is relatively
228	low at shallower depths ($0 \le x \le 3.5 \mu m$). The track radii at shallower depths (Figs. 6a and
229	6b) can be described by a relation of $R \sim S_e^{1/2}$ (Fig. 6e), as this relation was applied to tracks
230	in Y ₃ Fe ₅ O _{12²²} . However, at greater depths ($x \ge 3.5 \mu m$) (Fig. 6c), <i>R</i> falls below the curve of
231	$R \sim S_e^{1/2}$, as the -d R /d x is obviously higher than that at the shallower depths (Fig. 6e). The -
232	dE/dx as a function of target depth x was simulated by the SRIM code (2012), and R was
233	measured at different depths by TEM (Fig. 6e). Therefore, R as a function of $-dE/dx$ for both
234	directions can be obtained, and these values are plotted in Fig. 6f. These data were
235	compared with the theoretical prediction from the thermal spike model of Szenes (1995).
236	Depending on the value of S_e , the track radius R (the maximum radius of the melt during
237	the heating-cooling process) can be determined by two different expressions (Szenes
238	1995). For $S_e \ge 2.7S_{et}$, the melted zone expands and reaches its maximum,
239 240	$R^{2} = [(a(0)^{2}/2.7)](S_{e}/S_{et}), \qquad (1)$
240 241	where S_{et} is the threshold energy for the production of continuous tracks. $a(0)$ relates to
242	thermal diffusivities, but it can be determined by fitting. This expression is consistent with
243	our analysis shown in Fig. 6e that $R \sim S_e^{1/2}$ for tracks at shallower depths. For $2.7 \ge S_e/S_{et} \ge 1$,
244	the melted zone shrinks with time, and it has the maximum radius at $t = 0$ when the cooling
245	spike begins,
246	$R^{2}=a(0)^{2}\ln(S_{e}/S_{et}).$ (2)
247	This regime (2.7 $\geq S_e/S_{et} \geq 1$) corresponds to tracks at greater depths where the values of S_e
249	are smaller (Fig. 6c). There is a smooth transition from the logarithmic to linear regimes, as
250	both Eqs. 1 and 2 provide the same R^2 at $S_e=2.7S_{et}$. In this study, the transition point is at x
251	~3.5 μ m in Fig. 6e. Thus, the corresponding two parameters for the fits ($R = a(0) = 3.6$ nm,

252	$S_e = 2.7S_{et} = 1065 \text{ eV/Å}$) can be directly determined from the transition point in Fig. 6e. As
253	shown in Fig. 6f, all experimental data for 80 MeV Xe ions follow a single curve as a good
254	approximation in both the logarithmic and linear regimes. The data for the 2.2 GeV Au
255	induced tracks (measured from Figs. 4a-4b) are below the curve (Fig. 6f). This is due to the
256	velocity effect (Meftah et al. 1993), which describes the decrease of track radius with the
257	ion speed at certain high energy regimes.
258	
259 260	Remarks
261	The hexagonal apatite has an open anion channel $ c$ (Calderin et al. 2003). The exact details
262	of how structural anisotropy affects anisotropic annealing behavior remain unclear, although
263	there is certainly a connection between the two types of anisotropy (Gleadow et al. 2002;
264	Green and Durrani 1977). As mentioned above, the slower annealing rate of tracks <i>c</i> was
265	attributed to the larger tracks c (Paul and Fitzgerald 1992). Besides the weaker
266	intermolecular bonds along the <i>c</i> -axis (Paul and Fitzgerald 1992), smaller dielectric
267	constants <i>c</i> were used to explain the larger tracks along this direction (Rabone et al.
268	2008). In this study, except for the orientation-related difference in track shape as
269	discussed above, the detailed TEM and SAXS experimental evidence on parallel tracks with
270	well-defined orientations in the structure clearly demonstrates that the track radii have no
271	apparent dependence on track direction in apatite, which is in agreement with a previous
272	molecular dynamics simulation (Rabone et al. 2008). Based on the direct observation of <i>in</i>
273	situ thermal annealing of unetched FTs in apatite (Li et al. 2011), the annealing anisotropy
274	as observed in chemically-etched tracks can be attributed to the preferential motion of FT

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4669

275 segments || c during annealing. Similarly, no obvious track radius anisotropy was detected 276 in zircon by the TEM and SAXS measurements, although zircon is structurally anisotropic 277 with a chain of alternating edge-sharing SiO₄ tetrahedra and ZrO₈ triangular dodecahedra 278 extending || c (Robinson et al. 1971).

279 Currently, FT thermochornology is based almost entirely on empirical fits to annealing 280 data of FTs revealed by chemical etching. One of the main obstacles to quantitative modeling 281 of FT behavior has been the need to investigate the morphology of latent tracks as a 282 function of temperature and time. For a single track created by a fission fragment pair, the 283 radius is largest near the midpoint of track where the fission event occurs, and decreases toward each end as the S_e decreases, as shown in Fig. 1. At elevated temperatures, the 284 285 etchable track length is gradually reduced from each end of a FT towards the midpoint 286 because the track ends have much smaller radii, and anneal much more rapidly, which was observed by in situ TEM (Li et al. 2012). As a result, only the sections with smaller S_e (as 287 well as *R*) near each end of the FT make a major contribution for the length measurements 288 289 of etched tracks and mathematical fitting [see Ref. (Li et al. 2012) for details]. Therefore, 290 the description of the two different regimes with a single curve, especially the description 291 of the regime with smaller S_e by a simple logarithmic equation (i.e., Eq. 2), provides an 292 important physical form that has long been recognized as needed (Carlson 1990; Gleadow 293 et al. 2002; Jonckheere and Chadderton 2002) for the development of physical models of 294 FT formation and annealing. Besides the precise picture of morphologies of FTs, as 295 demonstrated in this study, the combination of ion-irradiation with TEM and SAXS can be 296 readily used in order to obtain a deeper understanding of the gradual recovery of radiation 297 damage during annealing at the atomic-scale.

12

1/8

298 299	Acknowledgments
300 301	The funding for this study was provided by the Office of Basic Energy Sciences of the
302	USDOE (DE-FG02-97ER45656). Part of this research was undertaken on the SAXS/WAXS
303	beam line at the Australian Synchrotron, Victoria, Australia. P.K. acknowledges the
304	Australian Research Council for financial support. This paper was improved substantially
305	by reviews and suggestions from Dr. R. Jonckheere and an anonymous reviewer.
306	
307 308	References cited
309 310 311	Afra, B., Lang, M., Rodriguez, M.D., Zhang, J., Giulian, R., Kirby, N., Ewing, R.C., Trautmann, C., Toulemonde, M., and Kluth, P. (2011) Annealing kinetics of latent particle tracks in Durango apatite. Physical Review B, 83(6), 064116.
312 313 314	Akcoltekin, E., Peters, T., Meyer, R., Duvenbeck, A., Klusmann, M., Monnet, I., Lebius, H., and Schleberger, M. (2007) Creation of multiple nanodots by single ions. Nature Nanotechnology, 2(5), 290-294.
315 316 317	Bursill, L.A., and Braunshausen, G. (1990) Heavy-ion irradiation tracks in zircon. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, 62(4), 395-420.
318 319	Calderin, L., Stott, M.J., and Rubio, A. (2003) Electronic and crystallographic structure of apatites. Physical Review B, 67(13).
320 321	Carlson, W.D. (1990) Mechanisms and kinetics of apatite fission-track annealing. American Mineralogist, 75, 1120-1139.
322 323	Carlson, W.D. (1993) Mechanisms and kinetics of apatite fission -track annealing - reply. American Mineralogist, 78(3-4), 446-449.
324 325	Dodd, P.E., and Massengill, L.W. (2003) Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Transactions on Nuclear Science, 50, 583.
326 327	Donelick, R.A., Ketcham, R.A., and Carlson, W.D. (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist,
328 329	84(9), 1224-1234. Gleadow, A.J.W., Belton, D.X., Kohn, B.P., and Brown, R.W. (2002) Fission track dating of
330 331	phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry, 48, 579-630.
332 333	Green, P.F., and Durrani, S.A. (1977) Annealing studies of tracks in crystals. Nuclear Track Detection, 1(1), 33-39.
334 335	Hebert, S., Hervieu, M., Hardy, V., Aouaroun, T., Simon, C., Provost, J., Milani, E., Aruta, C., and Balestrino, G. (1998) Pillar defects, a new type of track in Pb-irradiated Bi-2212 thin

336	films: Nanostructural study and influence on the irreversibility line. Nuclear
330	Instruments & Methods in Physics Research Section B-Beam Interactions with
338	Materials and Atoms 142(3) 319-328
330	Jaskierowicz G. Dunlon A. and Jonckheere B. (2004) Track formation in fluoranatite
340	irradiated with energetic cluster ions. Nuclear Instruments & Methods in Physics
341	Research Section B-Beam Interactions with Materials and Atoms 222 213-227
341	Ioncheere R and VandenHaute P (1996) Observations on the geometry of etched fission
342	tracks in anatite: Implications for models of track revelation. American Mineralogist
344	81(11-12), 1476-1493.
345	Ionckheere, R.C., and Chadderton, L.T. (2002) Back to Basic? On track: The Newsletter of
346	the International Fission-Track Community, 12, p. 19.
347	Kluth, P., Schnohr, C.S., Pakarinen, O.H., Diurabekova, F., Sprouster, D.L., Giulian, R., Ridgway,
348	M.C., Byrne, A.P., Trautmann, C., Cookson, D.I., Nordlund, K., and Toulemonde, M.
349	(2008) Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO ₂ . Physical
350	Review Letters, 101(17), 175503.
351	Li, W.X., Lang, M., Gleadow, A.I.W., Zdorovets, M.V., and Ewing, R.C. (2012) Thermal
352	annealing of unetched fission tracks in apatite. Earth and Planetary Science Letters.
353	321. 121-127.
354	Li, W.X., Rodriguez, M.D., Kluth, P., Lang, M., Medvedev, N., Sorokin, M., Zhang, J., Afra, B.,
355	Bender, M., Severin, D., Trautmann, C., and Ewing, R.C. (2013) Effect of doping on the
356	radiation response of conductive Nb–SrTiO ₃ . Nuclear Instruments & Methods in
357	Physics Research Section B-Beam Interactions with Materials and Atoms, 302, 40–
358	47.
250	
333	Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing
360	Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science
360 361	Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235.
360 361 362	Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission
360 361 362 363	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109.
360 361 362 363 364	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer
360 361 362 363 364 365	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501.
360 361 362 363 364 365 366	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and
360 361 362 363 364 365 366 367	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross
360 361 362 363 364 365 366 366 367 368	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920.
360 361 362 363 364 365 366 366 367 368 369	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of
360 361 362 363 364 365 366 367 368 369 370	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344.
360 361 362 363 364 365 366 367 368 369 370 371	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of
360 361 362 363 364 365 366 367 368 369 370 371 372	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and
360 361 362 363 364 365 366 367 368 369 370 371 372 373	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with garnet. American Mineralogist, 56(5-6), 782-790.
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with garnet. American Mineralogist, 56(5-6), 782-790. Schouwink, P., Miletich, R., Ullrich, A., Glasmacher, U.A., Trautmann, C., Neumann, R., and
360 361 362 363 364 365 366 367 368 367 368 369 370 371 372 373 374 375 376 377	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with garnet. American Mineralogist, 56(5-6), 782-790. Schouwink, P., Miletich, R., Ullrich, A., Glasmacher, U.A., Trautmann, C., Neumann, R., and Kohn, B.P. (2010) Ion tracks in apatite at high pressures: the effect of
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with garnet. American Mineralogist, 56(5-6), 782-790. Schouwink, P., Miletich, R., Ullrich, A., Glasmacher, U.A., Trautmann, C., Neumann, R., and Kohn, B.P. (2010) Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under
360 361 362 363 364 365 366 367 368 367 368 369 370 371 372 373 374 375 376 377 378 379	 Li, W.X., Wang, L.M., Lang, M., Trautmann, C., and Ewing, R.C. (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth and Planetary Science Letters, 302, 227-235. Li, W.X., Wang, L.M., Sun, K., Lang, M., Trautmann, C., and Ewing, R.C. (2010) Porous fission fragment tracks in fluorapatite. Physical Review B, 82, 144109. Mara, A., Siwy, Z., Trautmann, C., Wan, J., and Kamme, F. (2004) An asymmetric polymer nanopore for single molecule detection. Nano Letters, 4, 497-501. Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M. (1993) Swift heavy ions in magnetic insulators: A damage cross section velocity effect. Physical Review B, 48, 920. Paul, T.A., and Fitzgerald, P.G. (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. American Mineralogist, 77, 336-344. Rabone, J.A.L., Carter, A., Hurford, A.J., and Leeuw, N.H.d. (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Physics and Chemistry of Minerals, 35, 583-596. Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Structure of zircon-comparsion with garnet. American Mineralogist, 56(5-6), 782-790. Schouwink, P., Miletich, R., Ullrich, A., Glasmacher, U.A., Trautmann, C., Neumann, R., and Kohn, B.P. (2010) Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Physics and Chemistry of Minerals, 37(6), 371-387.

381 382 383 384 385 386 387 388 388	 Szenes, G. (1995) General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Physical Review B, 51, 8026. Vetter, J., Scholz, R., and Angert, N. (1994) Investigation of latent tracks from heavy-ions in GeS crystals by high-resolution TEM. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 91(1-4), 129-133. Yamada, R., Tagami, T., and Nishimura, S. (1995) Confined fission-track length measurement of zircon - assessment of factors affecting the paleo temperature estimate. Chemical Geology, 119(1-4), 293-306.
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	

408 **Figure Captions**

Figure 1. The electronic energy loss per unit length, $(-dE/dx)e = S_e$, as a function of target

- 410 depth, *x*, for the irradiations of 2.2 GeV Au ions in zircon, 2.2 GeV Au ions in apatite, and 80
- 411 MeV Xe ions in apatite, respectively.
- 412 **Figure 2.** Transverse cross section HRTEM images of tracks induced by exposure to 2.2
- 413 GeV Au ions || c or $\perp c$ of apatite and zircon. The track orientation (or the zone axis of the
- 414 target material) was determined by indexing the inset of fast Fourier transform image for
- 415 each figure.
- 416 **Figure 3.** Conventional transverse cross section TEM images (under focus and bright-field)
- show multiple tracks in (a) apatite and (b) zircon. The areal densities of the 2.2 GeV Au
- ions induced tracks for both materials are consistent well within the nominal ion density
- 419 $(5 \times 10^{10} \text{ ions/cm}^2)$. The track orientation (or the zone axis of the target material) was
- 420 determined by indexing the inset of diffraction pattern for each figure. A track in **b** marked
- 421 with the white arrows and square as a guide to the eye, is a representative of multiple
- 422 square tracks with diagonals pointing in the <100> directions.

423 Figure 4. Conventional TEM images (under focus and bright-field) show tracks (viewed in

- longitudinal cross section) induced by exposure to 2.2 GeV Au ions || c or $\perp c$ of apatite or
- 425 zircon, as marked in each image.
- 426 **Figure 5.** SAXS measurements showing scattering intensities of 2.2 GeV Au ion induced
- 427 tracks || *c* or \perp *c* of apatite and zircon as a function of the scattering vector *q*, and
- 428 corresponding fits with the hard cylinder model (solid lines). The errors of track radii
- 429 correspond to the uncertainty of the fitting.

430	Figure 6. A comparison of variations in radius at each point along the tracks induced by the
431	irradiation of 80 MeV Xe ions c and \perp c of apatite. (a) to (c) show three examples of
432	conventional TEM images (under focus and bright-field) of tracks \perp c , taken at different
433	depths from the ion irradiated surface along the whole length of a microtome section, as
434	marked in a lower magnification image (d) A thin layer of gold was deposited on the
435	irradiated surface as a surface marker. (\mathbf{e}) Mean track radii, R, almost overlap along the
436	tracks of the two directions. $R \sim S_e^{1/2}$ at smaller target depths. (f) Variations in track radius
437	versus S_e normalized to the threshold value of S_{et} can be understood in terms of the Szenes
438	Model.
439	
440	
441	
442	
443 444	
445 446	
447	
448	
449	
450 451	
452	
453	
454	
455	
456	
457	
458	
459	

Fig. 1

f

-

