
   1

 Insights into the crystal chemistry of earth materials rendered by electron density distributions: 1 
Pauling’s rules revisited 2 

G.V. Gibbs*, Nancy.L. Ross*, David.F. Cox‡ and Kevin.M. Rosso+ 3 
*Department of Geosciences, ‡Department of Chemical Engineering, Virginia Tech, Blacksburg, 4 
Virginia 24061, +Physical Sciences Division, Pacific Northwest National Laboratories, Richland, 5 

WA 99352 6 
 7 

                     Only one thing is certain: that nothing is certain. Michael de Montaigne   8 
 9 

Abstract 10 
Experimental and calculated electron density distributions determined for oxide and silicate crystals 11 
and siloxane molecules provide a new basis for addressing the classic foundation of the crystal 12 
chemistry of silicates, including atomic/ionic radii, the radius ratio rule and the nexus between the 13 
Pauling bond strength, resonance bond number and bond length. The distributions indicate that the 14 
charge density of a bonded oxygen atom is highly distorted with its bonded radius decreasing 15 
systematically from ~1.50 Å when bonded to highly electropositive atoms like sodium to ~ 0.65 Å 16 
when bonded to highly electronegative atoms like nitrogen. Rather than a single radius, the atom has 17 
as many bonded radii as it has bonded interactions. Bonded radii determined for the metal atoms 18 
match the Shannon effective ionic radii for the more electropositive atoms, but they depart and 19 
increase systematically for the more electronegative atoms. Pauling’s first rule is considered to be 20 
irrelevant given the asphericity and the range of the bonded radii displayed by the O atom.  21 
A power law regression expression is formulated between the average M-O bond lengths, <R(M-22 
O)>, and the average value of the electron density, <ρ(rc)> = r (1.41/<R(M-O)>)4.76, at the bond 23 
critical point, rc, between pairs of bonded M-O atoms. The expression applies to a host of crystals 24 
and molecules comprising atoms for all rows, r, of the periodic table. The <ρ(rc)> values correlate 25 
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with bond strength and resonance bond strength for the M-O bonded interactions on a one-to-one 26 
basis, demonstrating that bond strength is a direct measure of the electron density involved in a 27 
bonded interaction and the accumulation of the electron density between the bonded pair. The 28 
widespread applications of  the Brown-Shannon bond valence model in the Earth sciences and 29 
material science owes much of its success to the direct connection that exists between bond strength 30 
and the quantum mechanical observable, the electron density distribution. Compelling evidence is 31 
presented that supports the argument that the Si-O bonded interactions within siloxane molecules 32 
and silicate crystals are fundamentally the same, and that the local Si-O bonded interactions 33 
comprising molecules are, at the very core and equivalent to the Si-O bonded interactions observed 34 
in silicate crystals. Bond paths between the O atoms comprising shared polyhedral edges are 35 
consistent with Pauling’s third rule, the shorter the O-O shared edges, the greater the accumulation 36 
of the electron density between the O atoms, the  greater the stabilization  of the shared edges. 37 

Evolution of Atomic Radii 38 
Toward the end of the 19th century, geologists’ interests had tapered off from goniometric studies of 39 
the outer faces of crystals and their interfacial angles focusing instead on the inner arrangements of 40 
the atoms within, with the amateur geologist William Barlow (1883; 1898) speculating that the 41 
atoms in a cube of rock salt are not only spherical, but they are arranged in a periodic chessboard 42 
pattern in 3D-space. Barlow's insightful conjecture that the atoms are arranged in a periodic three-43 
dimensional pattern was verified thirty years later by the famous X-ray diffraction patterns recorded 44 
for zincblende crystals (Friedrich et al., 1912).  Sir Lawrence Bragg and his father Sir William .H 45 
Bragg were quick to recognize the significance of Barlow’s conjecture and the X-ray patterns. 46 
Primed with the knowledge that the atoms in crystals are arranged in periodic patterns in 3-space, 47 
and that the dimensions of the atoms are comparable with the wavelength of an X-ray beam, the 48 
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younger Bragg (1914) built a single crystal diffractometer and recorded a set of diffraction data for a 49 
cube of rock salt that confirmed Barlow's brilliant speculations. 50 
But, contrary to Barlow's speculations and Bragg's results, the majority of the chemists and 51 
physicists at the time were of the mindset that rock salt is a molecular crystal, composed of discrete 52 
diatomic Na-Cl molecules bonded by long-range van der Waals’ forces. The famous chemist H. E. 53 
Armstrong was so incensed with Bragg’s chessboard description of the structure that he wrote, 54 
“Professor Bragg asserts that in sodium chloride there appear to be no molecules represented by Na-55 
Cl. The equality in the number of the sodium and chlorine atoms is arrived at by a chessboard 56 
pattern of atoms; it is a result of geometry and not a pairing-off of the atoms. This statement is more 57 
repugnant to common sense. Chemistry is neither chess nor geometry, whatever the X-ray physics 58 
may be.” Despite Armstrong's strong rebuke of Bragg’s work, the idea that crystals like the alkali 59 
halides consist of molecular groups was supplanted shortly thereafter with Bragg’s chessboard 60 
pattern interpretation of the structures. Indeed, Dalton's idea that all crystals consist of small discrete 61 
molecules finally gave way to the realization that the atoms in many crystals are bonded together as 62 
giant molecules of visible dimensions rather than ones of microscopic dimensions.  63 
Without a doubt, the determination of the structure of rock salt was a fundamental breakthrough in 64 
our understanding of the structures of crystals as periodic arrays of bonded atoms in 3-space, a 65 
discovery that not only launched the new field of crystal chemistry but also provided a basis for the 66 
framing of Pauling's rules.  The structure determination of rock salt set Bragg (1913) junior on a 67 
whirlwind determination of a number of crystal structures of minerals , and in a very short time he 68 
managed to determine the structures of cubic fluorite (CaF2), pyrite (FeS2), cuprite (Cu2O), 69 
sphalerite (ZnS2), and spinel (Mg2AlO4) (Bragg, 1937), together with those for other minerals like 70 
diamond (Bragg and Bragg, 1913). In addition to determining the atomic arrangements, attention 71 
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was focused on unearthing and understanding the underlying the bonded interactions that govern the 72 
formation of the structures themselves (Bragg, 1920). Despite the general belief at the time that 73 
many of the minerals that the Braggs studied consist of electrostatically bonded cations and anions, 74 
the direction that the younger Bragg took in his studies indicate that he believed the contrary. Indeed, 75 
it is apparent that he believed that the forces in minerals are largely atomic in nature, and that the 76 
atoms in these materials behave, to a first approximation, as hard largely neutral spheres such that 77 
the sum of the radii for a bonded pair of atoms closely matches the interatomic separation between 78 
the pair, and that the additive sum of radii applied to a wide variety of materials regardless of the 79 
type of bonded interactions. 80 
With his hard sphere atomic consensus and a knowledge of the crystal structures, Bragg (1920) 81 
undertook the task of compiling of a set of atomic radii. He made the simple yet reasonable 82 
assumption that the radius of the sulfur atom, r(S) = 1.02 Å is equal to one half the S-S bond length, 83 
R(S-S) = 2.05 Å, that he had found in his structural determination of pyrite. He next determined the 84 
radius of the zinc atom, r(Zn) = 1.33 Å, by  subtracting r(S) from the Zn-S bond length, R(Zn-S) = 85 
2.35 Å, that he had determined in his structural analysis of zincblende. The radius for the oxygen 86 
atom, r(O) = 0.65 Å, was found by subtracting r(Zn) from the Zn-O bond length R(Zn-O) = 1.97 Å 87 
observed in zincite.  He concluded that the radii were internally consistent when he found, for 88 
example, that 2×r(Zn) = 2.66 Å, which matched the average separation, 2.65 Å, that he had observed 89 
between the bonded pairs of Zn atoms in crystals of zinc, and that 2×r(O) = 1.30 Å, which  is 90 
comparable with the O-O separation, 1.20 Å, observed in the O2 molecule. Continuing in this 91 
fashion, he generated a set of atomic radii for more than 40 atoms that reproduced the experimental 92 
bond lengths typically within 0.06 Å, determined for oxides, sulfides, halides and metals.  The 93 
success of Bragg’s radii in the reproduction of the bond lengths for such a wide variety of materials 94 
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indicated, contrary to the ionic lattice energy calculations of Sherman (1932), that the bonded 95 
interactions for the materials that he studied have a substantial component of atomic character. It 96 
also convinced Bragg and later workers that the atoms in many crystals behave, to a first 97 
approximation, as rigid spheres each with a given radius, and that by simply adding the radii of a 98 
bonded pair, a reasonable and simple estimate can be made of the length of a bonded interaction.  99 
Nearly half a century after Bragg published his radii, the famous solid state physicist J.C. Slater 100 
(1964) used Bragg's consensus that bonded atoms behave as rigid spheres in the compilation of the 101 
atomic radii for more than 85 elements and found that the resulting radii reproduce more than 1200 102 
bond lengths for a wide range of crystalline and molecular materials,  including oxides, nitrides, 103 
sulfides, halides, intermetallic compounds and metals, to within 0.12 Å, on average. He also found 104 
that the atomic radii correlated with the radii of the outermost valence shell of electrons for the 105 
atoms as calculated by relativistic self-consistent field quantum mechanical methods. Slater 106 
considered his radii together with Bragg's to be global in their application in that they reproduce 107 
bond lengths for all materials reasonably well, particularly considering that the radii, unlike the ones 108 
determined later, were not modified to correct for such factors as coordination number, electronic 109 
spin, oxidation state, covalency, repulsive forces and polyhedral distortion., electronic spin state 110 

Evolution of ionic radii 111 
In 1926, the Bragg School (Bragg, 1937) undertook the heroic task of solving the crystal structures 112 
of the rock-forming silicates. Among other things, Bragg found that the O atoms of forsterite, 113 
Mg2SiO4, are arranged in a hexagonal close-packed pattern with the Si and Mg atoms tucked away, 114 
respectively, in the available tetrahedral and the octahedral voids of the array. On the basis of this 115 
observation it was concluded that the oxygen atoms are actually in contact and closest-packed, and 116 
that they are substantially larger in size than the Si and Mg atoms. With this finding, he concluded 117 



   6

that the diameter of the O atom must equal half of the average O-O distance, between the adjacent O 118 
atoms, 2.70 Å, resulting in a radius of 1.35 Å, a value notably different from his previously 119 
determined atomic radius of 0.65 Å.  Given his incredible objectivity, Bragg rejected his own atomic 120 
radii out of hand in favor of an ionic model with large oxide O2- anions and relatively small Si4+and 121 
Mg2+ cations, despite the fact that his earlier determined atomic radii reproduce bond lengths 122 
typically within 0.06 Å of their experimentally measured values. 123 
Bragg's atomic radii were revised shortly after they were published to conform with the popular 124 
ionic model proposed by Wasasjerna (1923), who partitioned experimentally determined bond  125 
distances into cationic and anionic parts, based on the molar ionic refractivities of the bonded cations 126 
and anions. On the basis of this partitioning, a set of ionic radii was determined that resulted in a 127 
radius of 1.32 Å for the oxide anion, which was generally accepted as satisfactory given that it 128 
agreed with the average separations between the O atoms observed in a number of oxides, including 129 
forsterite. The famous geochemist V.M. Goldschmidt (1954) followed Bragg's strategy where it was 130 
assumed that bonded cations and anions behave as rigid spheres, each with a unique radius. By 131 
systematically subtracting the radius of the oxide anion (1.32 Å) from the M-O bond lengths 132 
determined for a number of oxides, a popular set of ionic radii for oxides, sulfides and selenides was 133 
ultimately determined that bore Goldschmidt’s name, radii that were used well into the 1960s. 134 
Recognizing that anions are substantially more polarizable than cations (Fajans, 1931), Goldschmidt 135 
(1954) expressed concern about the extent to which the polarizing power of the bonded cations 136 
might impact on the radius of the oxide anion, but because at the time little was known as to how to 137 
correct ionic radii for the effects of polarization, he had little or no choice but to discount the effect. 138 
As his radii were found to be additive and to reproduce the bond lengths for a wide range of 139 
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materials, it was assumed that polarization must have some sort of compensating effect that did not 140 
impact the bond lengths. 141 
In addition to determining ionic radii and evaluating the impact of cation substitution on the crystal 142 
chemistry of minerals, the Goldschmidt School focused its attention on determining the principles 143 
that govern the crystal structures of simpler materials, crystal form, isomorphism and polymorphism, 144 
in terms of the ionic model; they were also interested in determining what factors govern the 145 
coordination numbers of cations. The Bragg School had similar and complementary aspirations, but 146 
with the goal of determining and  understanding the more complicated structures adopted by the rock 147 
forming silicates such as forsterite, diopside (CaMgSi2O6) (Warren and Bragg, 1928), and tremolite 148 
(Ca2Mg5(Si4O11)2(OH)2) (Warren, 1929). Based on the relative sizes of the ions and the structural 149 
details, the structures determined for both diopside, and tremolite were described as close-packed 150 
structures built from polyhedra with the smaller Si cations coordinated by four oxide anions disposed 151 
at the corners of tetrahedra and comprising chains of indefinite extent, with the larger Mg cations 152 
coordinated between the chains of tetrahedra by six anions at the corners of octahedra. The even 153 
larger Ca cations were found to be coordinated by eight anions disposed at the corners of larger and 154 
more irregular polyhedra at the edges of the chains. The H cation in tremolite was assumed to be 155 
bonded to an oxide anion, forming an OH anion, which was incorporated as part of the large close-156 
packed assembly of anions. The anions were considered to be so large that their packing, together 157 
with the incorporated cations, was thought to govern the structures adopted by the silicates (Bragg, 158 
1937). Goldschmidt and his colleagues were quick to grasp the importance of describing a crystal 159 
structure in terms of close-packed large anions disposed in coordination polyhedra, with the smaller 160 
cations residing in the voids between the polyhedra and constrained by the local charge balance 161 
provided by the anions. On the basis of the ionic radii, the Goldschmidt School concluded that the 162 
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coordination numbers adopted by the cations are determined in large part by radius ratio 163 
considerations of the bonded cations and closest-packed anions, as proposed earlier by Hüttig 164 
(1920), who observed that the smaller the ratio, the smaller the expected coordination number of the 165 
cation. It was within this context that Goldschmidt showed that his radii serve to predict bond 166 
lengths and cation substitutions, thus providing a basis for understanding isomorphism, and that the 167 
radius ratio of a cation and anion could be used to predict the coordination numbers adopted by the 168 
cation. It was with these ideas and concepts that Pauling (1929) formulated his first rule that defined 169 
the nexus between the ionic radii, the bond lengths, the radius ratio and the properties of the 170 
coordination polyhedra of anions housing the cations required for the creation of a stable crystal: 171 
'A coordinated polyhedron of anions is formed about each cation, the cation-anion distance being 172 

determined by the radius sum and the coordination number of the cation by the radius ratio.' 173 
Since the advent of this rule, a variety of evermore comprehensive and precise sets of ionic radii 174 
were  determined based on various atomic properties, for example, the effective nuclear charge and 175 
the implications of the Born-Landé equation (Pauling, 1927), the ionization potential (Ahrens, 1952), 176 
experimental isothermal compressibility, thermal expansion data and cohesive energies for the 177 
bonded atoms (Tosi, 1964; Tosi and Fumi, 1964). For a comprehensive review of the strategies 178 
followed by workers in determining ionic radii, see the excellent account by Shannon and Prewitt 179 
(S&P) (1969).  180 
As of today, the most precise and comprehensive sets of effective ionic and crystal radii for oxide 181 
crystals were compiled by S&P and later revised by Shannon (1976), using more than a 1000 182 
experimentally determined accurate M-O bond lengths. In deriving the radii, a preliminary estimate 183 
of the effective ionic radius for each cation was first obtained by subtracting an assumed radius (1.40 184 
Å) for the oxide anion from the experimental M-O distance which, in turn, was then corrected for the 185 
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coordination numbers of both the oxide anion and the bonded cations and other factors that were 186 
deemed to impact the bonded interactions. A similar strategy was employed in the derivation of a 187 
second set of tailor-made radii referred to as crystal radii, derived by assuming a smaller radius for 188 
the anion, 1.24 Å. The second set of radii was derived because the assumption of the larger 1.40 Å 189 
radius for the anion resulted in unrealistic negative effective ionic radii for several of the more 190 
electronegative cations. By dint of the negative radii, workers were urged to use crystal radii when 191 
considering the properties of crystals with close-packed anions, and modeling processes such as 192 
cation diffusion in minerals and melts (Zhang and Cherniak, 2010). Despite this caveat, both sets of 193 
radii have been used with considerable success to date as they reproduce within 0.01Å the average 194 
experimental bond lengths for a wide variety of coordinated oxide polyhedra within crystals and 195 
molecules. In addition to the unsatisfactory negative effective ionic radii encountered by S&P (1969), 196 
there were a number of cases  in which there was disagreement between the experimentally 197 
determined coordination numbers adopted by the cations in crystals and those predicted from radius 198 
ratio considerations. On the other hand, when the crystal radii were employed the agreement with 199 
experimentally determined coordination numbers was more satisfactory, supporting their preferred 200 
use.  201 
Despite the negative radii and the radius ratio discrepancies, both sets of radii have found 202 
widespread use in almost all branches of science, having been cited more than an astounding 30,000 203 
times and have thus advanced our understanding and modeling of material properties. In addition to 204 
reproducing bond lengths to within ~ 0.01 Å of the experimental values, the radii have proven to be 205 
of considerable use in advancing the understanding of crystal chemistry when used, for example, in 206 
the construction of ‘stability field’ diagrams that delineate the relative stability of a structure in terms 207 
of the radii of the substituent atoms, as done, for example, for the spinels,  the olivines, the phencites 208 
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and related structures  (Muller and Roy, 1974) and the silicate garnets (Novak and Gibbs, 1971). 209 
They have also found substantial use in the modeling of the conductivity of ions, defects, site 210 
preferences, ion diffusion in minerals and melts, chemical zoning, size discrimination and leaching, 211 
and modeling of trace elements and distribution coefficients among coexisting phases.   212 
In a study of bond type, Fyfe (1954), asserted that too much emphasis has been placed on the actual 213 
radii of atoms in terms of their capabilities to reproduce bond lengths. He posited that the radius of 214 
an atom is unlikely to be fixed; particularly when one is mindful that radii of atoms in ionic, atomic, 215 
metallic and van der Waals materials are typically assigned different values. In addition, prior to 216 
Shannon’s (1976) publication of his revised radii, Johnson (1973) reported that the radii of anions 217 
like O and S atoms are not fixed, but that they are highly dependent on the polarizing power of the 218 
bonded M atoms, with the radii of both ions decreasing systematically with decreasing bond length 219 
as the polarizing power of the bonded atoms increase. On the contrary, Pyykko (2012 and references 220 
therein) recently compiled a precise set of covalent radii for a variety single-, double- and triple-221 
bonded M-S interactions within a large number of sulfide molecules, and reported little or no 222 
evidence that the radius of the S atom is impacted by the bonded interactions. Not only do the 223 
covalent radii reproduce the bond lengths for molecules, but they also reproduce to within 0.01 Å the 224 
bond lengths observed for binary crystals like ZnS, ternary crystals like CuInS2 and quaternary 225 
crystals like Cu2ZnSnS4 (see also Cahen, 1988). But, Pyykko’s radius for the S atom (1.04 Å) is 226 
smaller than the crystal radius (1.70 Å) assumed by Shannon (1981) in the derivation of his crystal 227 
radii for sulfide crystals. With these two different sets of radii, one covalent and the other crystal, it 228 
is clear that the two different, yet consistent, sets of radii for sulfides can be generated by assuming 229 
two different radii for the S atom, both capable of reproducing sulfide bond lengths, bearing out 230 
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Fyfe’s contention that too much stock has been placed on the actual values assumed for the radii of 231 
atoms.  232 
 233 

Introduction to bonded radii and evaluation of Pauling first rule  234 
In an examination of whether the electron density distribution (ED) of the O atom is largely 235 
unaffected by its bonded interactions, such that it retains the distribution of an isolated atom with a 236 
fixed radius (Bohórquez and Boyd, 2009) or whether,  as reported by Johnson (1973), it  is distorted  237 
to some degree by the bonded interactions, Gibbs et al., (2013a) undertook a determination of the 238 
bonded radii of the atoms comprising a relatively large number silicates and oxides. The goal was to 239 
assess the extent to which the ED distribution of a bonded O atom departs, if at all, from the 240 
distribution of an isolated atom. It was also of interest to learn how the radii of the metal atoms, 241 
estimated from the ED distributions, correspond with the S&P radii, and how they vary with the 242 
coordination number and the row number of the atoms. We note that we follow Pauling (1960, 243 
section 2-9) and other quantum chemists and consider Li, Be, B..., as first row atoms and Na, Mg, 244 
Al,... , as second row atoms and so on. 245 
 It is mindful that the ED distribution of a material is not only a quantum mechanical observable, but 246 
that it is a robust property that contains all the information that that can be measured for a material, 247 
including its potential, kinetic and total energies (Parr and Yang, 1989). In a stable crystal free of 248 
defects, the distribution, together with the nuclei of the atoms, are distributed in a periodic pattern in 249 
3-space such that the total energy of the resulting configuration of the bonded atoms is minimized 250 
and the force on each atom is zero (Feynman, 1939).  251 
The efforts of the renowned quantum chemist Professor Richard F. W. Bader (1990) and his 252 
coworkers has resulted in a basis, founded on the ED distributions, for determining whether or not a 253 
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pair of atoms is bonded. A pair is considered to be bonded only if there exists a continuous pathway 254 
of maximum ED (denoted as the bond path) that connects the nuclei of the pair (Bader, 2009). Along 255 
the path there exist one, and only one, point where the ED distribution adopts a local minimum 256 
value, denoted as the bond critical point, rc , of the bonded interaction. As. the position of the point is 257 
well-defined, the accumulation of the ED at rc is taken as a unique measure of the strength of a 258 
bonded interaction: typically, the greater the accumulation and the concentration of ED at rc, the 259 
shorter the bonded interaction. Furthermore, as the bonded atoms in a structure are connected by 260 
bond paths, the total number of bond paths that radiate from a given atom to the other atoms to 261 
which it is bonded serves to define uniquely the coordination number of the atom. 262 
As asserted by the Nobel prize winning chemical physicist Robert Mulliken, ‘the concept of ‘the 263 
chemical bond is not so simple as some people think.’ Indeed, as a chemical bond is not even a 264 
quantum mechanical observable, given that there is no known non-arbitrary linear Hermitian 265 
operator that contains a complete set of eigenfunctions that can be associated with a chemical bond,  266 
Bader (2009) pointed out that a chemical bond cannot be identified by either a bond path or a bonded 267 
interaction. More than half a century ago, the famous mathematician-chemist Charles A. Coulson 268 
(1955) asserted that "A chemical bond is not a real thing: it does not exist, no one has ever seen it, no 269 
one ever can. It is a figment of our imagination." Well aware of this assertion, Bader pointed out that 270 
‘There are no bonds between pairs of atoms, only bonded interactions’ (2009). Hoffmann (1988) 271 
went on to say ‘Physicists do not see bonds, they only see bands.’ Given these inconvenient truths, 272 
Cremer and Kraka (1984) reiterated that ‘There is no way to measure a bond or a bond property.’ 273 
They continued by asserting that a bonded interaction can only be defined within the framework of a 274 
model like Bader’s topological model of the ED distribution, which provides a unique basis for 275 
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defining a bonded interaction, bond strength and the bonded radii for atoms in molecules and 276 
crystals. 277 
As the bond critical point between a pair of bonded atoms is uniquely defined, the properties of the 278 
ED at rc have been used by a large number of workers to characterize bonded atom pairs (cf. Gatti, 279 
2005). The bonded radii for a bonded pair of M and O atoms, denoted rb(M) and rb(O), are defined as 280 
the distances between the nuclei of the pair and rc, respectively (Bader, 1990). As observed above, 281 
the accumulation of the ED at rc, ρ(rc), is taken as a measure of the relative strength of a bonded 282 
interaction, as observed above, typically the larger the value of ρ(rc) the stronger the bonded 283 
interaction and shorter bond length. The negative curvatures of the ED at rc along two mutually 284 
perpendicular directions that lay perpendicular to the bond path, denoted as λ1 and λ2, measure the 285 
extent to which ρ(r) is locally concentrated at rc, perpendicular to the bond path. The positive 286 
curvature of ρ(r) parallel to the bond path at rc, denoted λ3, serves as a measure of the extent to 287 
which the ED is locally concentrated parallel to the bond path at rc in the directions of the bonded 288 
atoms, in effect, serving to shield the nuclei of the bonded pair. The Laplacian of ρ(r) at rc, denoted 289 
∇2ρ(rc), not only serves to measure the extent to which the ED is locally concentrated at rc, but it has 290 
also been used to assess the character of a bonded interaction in an assessment of whether it is shared 291 
a covalent, polar covalent, or closed shell ionic bonded interactions (Bader and Essen, 1984; Bader, 292 
1990).  293 
 The bond critical point (bcp) properties for the Si-O bonded interactions, calculated for more than 294 
50 silicate crystals and siloxane molecules, are displayed in Figure 1 in terms of their experimental 295 
Si-O bond lengths, R(Si-O) (Gibbs et al., 2001). In the calculations, the Gaussian basis wave 296 
functions and the energies for the crystals were calculated within the density functional theory 297 
framework with the software CRYSTAL98 (Saunders et al., 1998). The local energy density 298 
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properties together with the other bcp properties for the bonded interactions were calculated with 299 
TOPOND (Gatti, 1997). The geometry optimized structures for the molecules were calculated with 300 
Gaussian 90, and the bcp properties were calculated with software EXTREME, which was kindly 301 
supplied by Professor Bader. As evinced by Figure 1a, as ρ(rc) increases in value, the experimental 302 
Si-O bond lengths decrease systematically, with the shorter bond lengths tending to involve larger 303 
values of ρ(rc). The two negative curvatures, λ1 and λ2, of ρ(rc) for the bonded interactions were 304 
averaged and the averaged magnitudes for the pair,  λ1,2  =  ½ |(λ1+ λ2)|, are plotted in Figure 2b in 305 
terms of R(Si-O). As λ1,2 increases, R(Si-O) decreases in tandem, demonstrating that ρ(r) is 306 
progressively concentrated in the internuclear region as a result of the progressive contractions of the 307 
ED toward the bond path (Bader, 1990). For all of the Si-O bonded interactions used to prepare 308 
Figure 1, λ1 and λ2 are virtually identical in value, an observation that shows that the ED distributions 309 
perpendicular to the bond path at rc of the Si-O bonded interactions are largely circular in cross 310 
section, as observed for diatomic molecules. As noted above, the curvature of the ED at rc, 311 
determined parallel to the bond path (denoted λ3), measures the extent to which the ED is locally 312 
concentrated toward the Si and O atoms, with an increase in λ3, resulting in a greater shielding of the 313 
Si and O atoms with decreasing bond length. As indicated by Figures 1b and 1c, the contraction of 314 
ED away from the bcp along the Si-O bond path is greater than the contraction perpendicular to the 315 
bond path. As ∇2ρ(rc) = λ1 + λ2 + λ3 (Bader, 1990) and as λ3 > 2λ1,2 , ∇2ρ(rc) is necessarily positive. 316 
The magnitude of  ∇2ρ(rc) indicates that the shared polar covalent character of the Si-O bond 317 
increases as the Si-O bond length decreases for reasons associated with the connection between the 318 
Laplacian and the local kinetic and potential energies of the  Si-O bonded interactions, as discussed 319 
elsewhere (Gibbs et al., 2012). 320 
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The bcp properties determined experimentally for the Si-O bonded interactions for the two silica 321 
polymorphs, coesite (Gibbs et al., 2003) and stishovite (Kirfel et al., 2001), are added to Figure 1 for 322 
sake of comparison with values calculated for the silicate crystals and siloxane molecules (Gibbs et 323 
al., 2004). The agreement between the two is generally good, with the experimental values following 324 
the general trend of calculated data, demonstrating that the precision of the calculated bcp properties 325 
is comparable with experimental properties determined for both coesite and stishovite. This bodes 326 
well for the future employment of calculated bcp properties for modeling the properties and bonded 327 
interactions of crystals and giving a faithful representation of the properties. 328 
Figure 1e shows that the calculated and experimental bonded radii for the O atoms, rb(O), bonded to 329 
Si atoms are not fixed, but that they decreases linearly from ~ 1.1 Å to ~ 0.9 Å as R(Si-O) decreases 330 
by a comparable amount from ~1.8 Å to ~1.6 Å. This result demonstrates the impact that the  331 
polarizing power of the bonded Si atoms has on the radius and charge distribution of the O atom, 332 
similar to a finding made by Johnson (1973).  His study revealed that the radius of the O atom is not 333 
fixed but decreases systematically from ~1.40 Å when bonded to K (with an effective polarizing 334 
power of 0.87) to ~1.0 Å when bonded to Be (with an effective polarizing power of 1.44).  Shannon 335 
and Prewitt (1969) anticipated the potential polarizing impact of the bonded cations on the ED 336 
distribution and radius of the oxide anion, but had no satisfactory way of reckoning with the 337 
problem. But, as their radii are additive and to reproduce the bond lengths for a wide range of 338 
materials, it is likely that they assumed, as done earlier by Goldschmidt, that the impact of the 339 
polarization must have had some sort of compensating effect that had little or no affect on the bond 340 
lengths. 341 
The distribution of the individual bonded radii for the O atom and the associated experimental bond 342 
lengths for the M-O bonded interactions, comprising the silicates and oxide crystals, is displayed in 343 
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Figure 2 (Gibbs et al., 2001). Consistent with the linear  trend displayed in Figure 1e, well-developed 344 
trends are observed between the bond lengths and the bonded radii of the O atom, with rb(O) 345 
decreasing linearly along parallel trends for the bulk of the bonded interaction with decreasing bond 346 
length, R(M-O.) In contradiction with the assumption that the radius of the oxide anion is largely 347 
fixed, rb(O) displays a wide range of values from ~1.50 Å when bonded to the electropositive Na 348 
atom to 0.65 Å when bonded to the electronegative  N atom. The smaller value is identical with 349 
Bragg’s (1920) atomic radius for the O atom, while the larger is comparable to Pauling’s (1927) 350 
ionic radius of 1.40 Å. It is also evident that the greater the electronegativity of a bonded M atom 351 
(for a given row of the periodic table), the shorter the M-O bond length and the smaller the bonded 352 
radius of the O atom. The bonded radius of the O atom associated with the Be-O bonded 353 
interactions, for example, ranges between 1.01 and 1.10 Å with an average value of 1.07 Å, in 354 
agreement with the value of 1.0 Å reported by Johnson (1973). In the case of the Mg-O bonded 355 
interactions, the value of rb(O) displays an even wider range of values, and changes from1.07 Å to 356 
1.31 Å as R(Mg-O) increases from 1.91 Å to 2.27 Å,  with an average radius of 1.2 Å, a value that 357 
again is in agreement with the value found by Johnson (1973). 358 
The average radii for the O atoms, <rb(O)>, together with the average bonded radii for the first, 359 
second and third row metal atoms, <rb(M)>, determined for a large number of different M-O bonded 360 
interactions, including  silicate and oxide crystals and molecules,  are given in Table 1, along with 361 
the corresponding Shannon (1976) crystal, rc(M) and effective ionic, ri(M), radii for the bonded M 362 
cations. The systematic increase of R(Mg-O) with increasing rb(O) (Table 1, Figure 2) is ascribed to 363 
a systematic increase in both rb(Mg) and rb(O), with R(Mg-O) increasing systematically with 364 
increasing coordination number for the Mg atom as <rb(O)> increases likewise. Surprisingly, the 365 
increase in the bonded radius of the O atom is almost twice that of the increase in the Mg radius as 366 
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the coordination number of Mg increases from 4 to 8. In effect, the increase in R(Mg-O) is due more 367 
to the increase in <rb(O)> than  to the increase in <rb(Mg)>, contrary to the assumption that the 368 
increase in coordination number results only in the increase of the Mg atom radius. The bonded radii 369 
in Table 1 show that the increase in the M-O bond lengths with increasing coordination number for 370 
the M atoms is generally due to a greater increase in <rb(O)> than <rb(M)>. Rather than being 371 
dependent entirely on the increase rb(M)  with increasing coordination number, the increase in the 372 
bond lengths (Figure 2) can be ascribed to a combined increase of both <rb(O)> and <rb(M)>, with 373 
the bulk of the increase due to the increase in <rb(O)>. 374 
Associated with the progressive increase in <rb(O)> with increasing bond length, the bonded radii 375 
for the M atoms (Table 1) are typically larger than the S&P effective ionic radii, ri(M), particularly 376 
for the more electronegative M atoms (Table 1). It is clear that if a smaller radius had been assumed 377 
for the oxide anion, negative cation radii (e.g. H, IIIC and IIIN) would never have been realized. For 378 
example, when S&P assumed a radius of 1.24 Å for the oxide anion, only the hydrogen cation has 379 
negative crystal radius. 380 
The averaged bonded radii for the metal atoms, <rb(M)>, are plotted  in Figure 3 in terms of their 381 
averaged bond lengths, <R(M-O)>. As the bond lengths decrease, the radii for row 1, 2 and 3 M 382 
atoms scatter along three distinct and roughly parallel trends, a feature that is most apparent  for the 383 
row 2 and 3 atoms (Gibbs et al., 2013a). The trends are also comparable with that found when the 384 
radii of the maximum radial charge density distributions of the outermost shells for the M atoms and 385 
Slater’s empirical radii are plotted   relative to the atomic number of the atoms (Slater, 1965). These 386 
trends in rows are consistent with <R(M-O)> and ρ(rc) trends reported for silicate and oxide crystals 387 
(Gibbs et al., 2013a). 388 
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 Unlike the bulk of the metal atoms, the bonded radius of first row IIIN atom actually increases with 389 
decreasing bond length. The radius of the IIIC atom also departs from the first row trend but, unlike 390 
IIIN, its radius is much less dependent on the bond length. These observations are ascribed to the 391 
relatively large contraction of ED distribution of the O atom by the highly polarizing impact of IIIC 392 
and particularly IIIN. The end result is a substantial contraction of the ED distribution of the O atom 393 
along the N-O bond path, an increase in the value of ρ(rc),  together with a displacement of the bcp 394 
toward the O atom, a substantial  increase in the bonded radius of the N atom, and a decrease in the 395 
bonded radius of the O atom. In effect, the displacement results in a decrease in bonded radius of the 396 
O atom with a concomitant increase in the bonded radius of IIIN. The IIIC-O bonded interaction 397 
displays a hint of the same trend with the rb(C) and C-O bond length, with the radius of the 398 
electronegative C atom tending to follow the same trend displayed by the IIIN atom. Given that the O 399 
atom is much more polarizable that than the nitrogen atom (Johnson et al., 1983; Shannon and 400 
Fischer, 2006), the substantial increase in the bonded radius of the N atom and the substantial 401 
decrease in the radius of the O atom may be expected. 402 
As the electronegativities of the M atoms bonded to the O atoms decrease and the M-O bond lengths 403 
increase, the average bonded radius of the O increases systematically: 0.65 Å when bonded to IIIN, 404 
0.83 Å when bonded to IIIC, 0.89 Å when bonded to IVS, 0.95 Å when bonded to IVSi, 1.00 Å when 405 
bonded to IVAl, 1.20 Å when bonded to VIMg, 1.35 Å when bonded to VINa, and 1.43 Å when 406 
bonded to VIK. It is apparent that the highly electropositive potassium atom has little or no impact on 407 
the ED distribution of the O atom as its bonded radius closely matches Pauling's 'unpolarized radius' 408 
for the oxide anion, 1.40 Å. 409 
Concomitant with the decrease in <rb(O)> and M-O bond length with increasing electronegativity of 410 
the bonded M atom,  the effective ionic radii, ri(M), of the M cations decrease in tandem with 411 



   19

<rb(M)>, but at a faster  rate as the bond lengths decrease, resulting in unrealistic negative effective 412 
ionic radii for IIIC, IIIN and H. The crystal radii also decrease with decreasing bond length, but as 413 
they were derived assuming a small radius for the oxide anion, only the H cation has a negative 414 
crystal radius. Unlike the ionic and crystal radii, the bonded radii for the metal atoms necessarily 415 
remain positive, and become progressively larger than the ionic radii with decreasing bond length, 416 
with the bonded radii exceeding the ionic radii by as much 0.70 Å in the case of the nitrogen atom.  417 
Given the assorted field strengths of the metal atoms and the different M-O bond lengths, the ED of 418 
the O atom is rarely, if ever, spherical as traditionally assumed, but as observed above, it often 419 
displays several different radii when bonded to different M atoms. Such differences in the radius of 420 
the O atom are particularly noticeable when it is bonded to metal atoms with substantially different 421 
electronegativities (O'Keeffe and Hyde, 1981). As a case in point, the OAl oxygen atom of the 422 
tetrahedral framework of the alkali feldspar maximum microcline, KAlSi3O8, is bonded to a IVSi 423 
atom (Si-O bond length = 1.61 Å), an  IVAl atom (Al-O bond length = 1.76 Å), and two  VIK atoms 424 
(average K-O bond lengths = 2.85 Å). The bonded radius of the O atom along the bond vectors for 425 
these four bonded interactions decreases systematically from 1.43 Å along each of the two K-O bond 426 
vectors, to 1.01 Å along the Al-O bond vector, to 0.95 Å along the Si-O bond vector. As expected,  427 
the electronegativities for the three atoms increase from 2.42 eV for K, to 3.23 eV for Al, and to 4.77 428 
eV for Si (Table F.1, Parr and Yang, 1989) as the associated bond lengths and bonded radii decrease. 429 
With the different electronegativities and bond lengths of the bonded interactions, the resulting ED 430 
distribution of the O atom is highly aspherical with its dimensions being undefined in all other 431 
directions, except along the VIK-O, IVAl-O and IVSi-O bond vectors. Given the relatively large range 432 
in the bonded radii and the asphericity of the ED distribution of the O atom, it is questionable 433 
whether the word ‘radius’ has  meaning in this context, as pointed out by O'Keeffe and Hyde (1981).  434 
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Not only is the radius undefined in this context, but the radius of OA1 and the radius ratio of the 435 
bonded atoms are undefined as well, primarily because of the different bonded radii observed along 436 
the bond vectors of the bonded atoms.  437 
As observed above, the coordination number of an atom can be found, regardless of whether or not 438 
the radii of the atoms are known, simply by counting the number of bond paths that radiate from the 439 
atom. In the case of microcline, there are nine nearest neighbor O atoms that encroach upon the K 440 
atom at distances ranging from 2.75 Å to 3.13 Å (Downs et al., 1996).  Given that the effective ionic 441 
radii for K+ and O2- are practically the same, one may conclude from radius ratio considerations that 442 
the coordination number of the K cation is either eight or possibly twelve. But an evaluation of the 443 
bcp properties for the feldspar shows that there are only six bond paths that radiate from the K atom 444 
to six of the nearest O atoms. Accordingly, on the basis of the ED distribution, the coordination 445 
number of the potassium is six, much smaller than twelve as specified by the radius ratio. 446 
Given the asphericity and the range in the bonded radii displayed by the OA1 atom, one questions 447 
‘Whether Pauling's first rule is useful  and applicable or whether it should it be completely 448 
abandoned with no alternative?’ Coupled with the observation that the bonded radius of the O atom 449 
highly is dependent on its bonded interactions, we believe that these contradictions are sufficient to 450 
abandon the rule.  451 
With these contradictions, we question 'Why have crystal and effective ionic radii been so successful 452 
in modeling such properties as chemical zoning, ion conductivity, defects, size discrimination, 453 
among other things, predicting coordination numbers when the bonded radius of the O atom varies 454 
substantially from 0.64 Å when bonded to IIIN and 1.43 Å when bonded to VIK, values that depart 455 
substantially from the values of ri(O) and rc(O)?’ The main reason for the successful use of the radii 456 
is that they are highly correlated, on a one to one basis, with the average experimental M-O bond 457 
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lengths used in their determination so that any property that correlates with and depends on the 458 
cation radius will necessarily correlate with and depend on the bond length involving the cation and 459 
vice versa. After all, it is the bond lengths that were determined experimentally and that depend on 460 
the energetics of the bonded interaction, not the ionic radii (Gibbs et al., 2008b). It is important to 461 
note that no matter what choice is made for the radius of the O atom (within reason) used in the 462 
determination of a set of radii from a set of average experimental bond lengths, a set of metal radii 463 
will necessarily result which when added to that of the O atom will necessarily reproduce the bond 464 
lengths. As a case in point, S&P assumed a radius of 1.40 Å for the oxide anion in the derivation of 465 
their ionic radii and a radius of 1.24 Å in the derivation of their crystal radii. As expected, despite the 466 
assumption of different radii for the oxide anion, the resulting sets of radii resulted in sets of 467 
calculated bond lengths that match the experimental bond lengths to within 0.01 Å, on average. 468 

Pauling's second rule 469 
Pauling’s second rule was obtained in part from a comprehensive knowledge of the crystal structures 470 
of minerals and other materials known prior 1929, from Born's early work on crystal energy, and 471 
likely from Pauling's knowledge of resonance theory for the bonded interactions in molecules. It is 472 
important to realize that the rule was considered to be neither rigorous nor global in its application, 473 
but as pointed out by Pauling (1939), it has been successfully used to verify crystal structures. As 474 
asserted by Bragg (1937), the rule seems to be manifest in the condition of a system of low potential 475 
energy and, accordingly, high stability. He also observed that although the rule appears to be simple, 476 
it imposes rigorous constraints on the topology of the bonded interactions within a structure.  Pauling 477 
(1960) was well aware that his rules may well have significance for molecules, for which he 478 
associated the bonded interactions with resonating bond numbers as representing the strengths of the 479 
bonded interactions. As minerals and related materials were considered by many at the time to 480 
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consist of spherical ions bonded together by long range electrostatic isotropic bonded interactions, he 481 
defined the strength of each bonded interaction to be s = z/ν where z is the number of electrons 482 
involved in the bonded interaction, ze is the electrical charge of the cation, and ν its coordination 483 
number. With these definitions, he postulated that: 484 
In a stable ionic structure the valence of each anion, with changed sign, is exactly or nearly equal to 485 
the sum of the strengths of the electrostatic bonds reaching it from adjacent cations where – ζe is the 486 
electric charge of the anion and the summation is taken over the cations at the centers of all the 487 
polyhedra of which the anion forms a corner; that is 488 

 489 
the summation being taken over the bonded cations at the centers of all the polyhedra of which the 490 
anion forms a corner. 491 
Despite its simplicity, the rule has been used extensively in the rationalization of the bonded 492 
interactions in crystals in terms of the nexus between the bond strength and bond length. 493 
Furthermore, the definition of bond strength closely resembles Pauling's definition of resonance 494 
bond number used to rank the resonating C-C bonded interactions in molecules and crystals; the 495 
larger the resonating bond number the greater the strength and the shorter the C-C bonded 496 
interaction (Pauling, 1960). In a related study, resonance bond numbers, n, were generated for the 497 
M-O experimental bonded interactions comprising ten silicates, assumed to consist of charge neutral 498 
atoms. The resulting bond numbers serve to rank the experimental bond length in terms of the power 499 
law regression expression 500 

R(M-O) = 1.39(n/r)-0.22 Eq. (1) 501 

ζ = si
i
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 where r is the row number of the M atom (Boisen et al., 1988). This expression is comparable with 502 
an exponential expression used to rank the lengths of the C-C, C=C and C≡C bonded interactions 503 
within hydrocarbon molecules in terms of their resonance bond numbers and the number of electrons 504 
used in the bonded interactions. 505 
 506 

A search for a nexus between the Pauling bond strength and the electron density between 507 
bonded pairs of atoms 508 

With the perfection of the single crystal diffractometer, starting in the 1950’s, together with the 509 
advent of the high speed computer and the coding of software for the recording of precise single 510 
crystal diffraction data for solving and refining crystal structures, it became apparent that 511 
connections exist between the bond lengths in a structure and the bond strengths and the bond 512 
strength sums, ζ, reaching the oxide anions for the associated bonded interactions. The world 513 
renowned mineralogist J.V. Smith (1953) was one of the first to discover that a connection exists 514 
between  the ζ–values for the oxide anions in the mineral melilite and the lengths of the Si-O bonded 515 
interactions involving these anions. The experimental Si-O bond lengths, R(Si-O), in melilite were 516 
observed to increase progressively from 1.59 Å to 1.65 Å as the sum of the bond strengths, ζ,  517 
reaching the O atoms increases from 1.45 v.u. to 2.9 v.u. Shortly thereafter,  Baur (1956) reported a 518 
similar correlation between ζ and bond lengths for a variety of different M-O bonded interactions, 519 
and established linear plots and expressions, based on ∆ζ values and individual mean bond lengths, 520 
that he used to reproduce the bond lengths for a number of bonded interactions for a variety of 521 
oxides. Zachariasen (1963; 1954) followed by Zachariasen and Plettinger (1959) found comparable 522 
trends between R(B3+-O) and R(U6+-O) bond lengths and bond strength sums. In a crystal chemical 523 
study of eight clinopyroxenes, Clark et al. (1969) showed that the R(B-O) values determined by 524 
Zachariasen (1963) decrease linearly with increasing bond strength, s, of the bonded interactions, 525 
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while the R(Si-O) values observed for pyroxenes were found to decrease quadratically with 526 
increasing s. 527 
An empirical bond length, R(M-O),  bond valence, so, power-law regression relationship, 528 

R(M-O) = (s/so
 )-1/N Eq. (2) 529 

was subsequently proposed by Brown and Shannon (1973), closely following the pioneering work of 530 
Donnay (1969) and Donnay and Allmann (1970). Starting with the experimental M-O bond lengths 531 
and bond strengths provided by the S&P (1969) tables, the parameters so and N were determined for 532 
more than 25 M-O individual bonded interactions where the ζ–value was constrained, by regression 533 
methods, in each case to match the valences of the cations., The sum of the resulting bond valences 534 
(bond strengths) for each of the M-O bonded interactions was found to match, on average within 5%, 535 
the formal values of the cations, attesting to the goodness of fit of the data.  536 
Upon undertaking a molecular orbital theory interpretation of the second rule, the Pauling bond 537 
strengths for bonded interactions were found to be highly correlated with the Mulliken bond overlap 538 
populations, n(M-O), calculated for a number of geometry optimized M-O bonded interactions. The 539 
greater the bond strength, the greater the Mulliken  population of the charge density associated with 540 
the bonded atoms, and the shorter the M-O bond lengths (Burdett and McLarnan, 1984; Gibbs, 541 
1982). On the basis of this connection, Gibbs equated the Pauling bond strength with the bond 542 
number, and considered the Donnay and Allmann (1970) and Brown and Shannon (1973) bond 543 
length-bond valence curves to have the same meaning and significance as the well-known C-C bond 544 
length bond-number curves determined for hydrocarbon molecules (Pauling, 1960). 545 
Following  Pauling’s (1960) assertion that his rules may be expected to hold for molecules, Gibbs et 546 
al. (1987) undertook a geometry optimization of the M-O bond lengths for more than 30 hydroxy 547 
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acid molecules. The averaged geometry optimized bond lengths, <R(M-O)>, were examined in 548 
terms of the averaged Pauling bond strengths, <s>, of the bonded interactions divided by the row 549 
numbers, r, of the  M atoms (Gibbs et al., 1987). The bond lengths were found to scatter along a 550 
single trend when plotted in terms of the normalized bond strength, <s>/r, defined by the power law 551 
regression expression 552 

<R(M-O)> = 1.39(<s>/r)-0.22                 Eq. (3) 553 
an expression that is identical in form with Eq. 1 that was found for the resonating bond number 554 
strengths for the experimental M-O bonded interactions in silicate crystals. The correspondence 555 
between s and n is consistent with Pauling's assertion that a rule equivalent to his electrostatic 556 
valence rule but involving resonance bond numbers instead of bond strengths would express the 557 
satisfaction of the valences for the nonmetal atoms for the silicates. Rewriting Eqs 1 and 3 in terms 558 
of n and <s>, respectively, n = r(1.39/R(M-O))4.54 and <s> = r(1.39/R(M-O))4.54, we see that n and 559 
<s> are numerically equal for a given bond length despite their different bases. If the ionic 560 
electrostatic bond strength, s, of a bonded interaction is defined as the electrostatic charge of a 561 
bonded cation divided by its coordination number, and if the resonance bond number strength, n, is 562 
defined as the number of valence electrons of a charge neutral metal atom involved in a bonded 563 
interaction, both divided by the coordination number, then s and n are exactly equal for a given bond 564 
length. Pauling (1939) was well aware of the connection between bond strength and resonance bond 565 
number when he wrote “ If the bonds resonate among alternate positions, the valence of a metal 566 
atom will tend to be divided equally among the bonds to the coordinating atoms, and a rule 567 
equivalent to the electrostatic valence rule  would express the satisfaction of the valences of the 568 
nonmetal atoms.’  569 
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  Extending the molecular orbital approach to the bonded interactions in crystals, Gibbs et al. (1987) 570 
found that the average experimental M-O bond lengths and bond strengths provided by the S&P 571 
(1969)  tables for a large number of oxide crystals can be modeled with a comparable expression 572 

<R(M-O)> = 1.43(<s>/r) -0.21                                           Eq.(4) 573 
for the M atoms for six rows of the periodic table. The similarity between this equation and Eq. 3 is 574 
compelling evidence that a close connection exists between bond lengths and bond strengths for both 575 
molecules and crystals, a result that is consistent with Pauling's assertion that his rules for crystals 576 
have significance for molecules. Further, in contrast with Eq. (2), which involves different sets of so 577 
and N parameters for each of the individual M-O bonded interaction, Eqs (3) and (4) are global in 578 
their application and hold for the bulk of M atoms in the periodic table when bonded to oxygen 579 
atoms. Brown (1981) carefully derived more than 150 different sets of parameters, a pair of 580 
parameters for each bonded pair, rather than a single parameter pair that would suffice globally for 581 
all bonded interactions. Despite the restricted application of the model, Bickmore et al. (2013) 582 
recently found that the model provides a fairly representative picture of the spatial distribution of the 583 
bonded interactions about an atom. On the basis of this representation, Brown (2013) was quick to 584 
point out that this advance may ultimately result in a basis for not only predicting bond angles but  585 
ultimately predicting crystal structures.      586 
As reported above, the power law relationships between <R(M-O> and <s>/r and n/r, respectively, 587 
suggest that <s> is a direct measure of the average electron density between a pair of M-O bonded 588 
interactions: the greater the value of <s>, the greater the value of n, the greater the value of <ρ(rc)>, 589 
and the shorter the M-O bond lengths for both molecules and crystals alike. In a preliminary study of 590 
this possibility, a regression analysis of the power law connection between <R(M-O)> and <ρ(rc)> 591 



   27

for a limited data set comprising an assortment of molecules and crystals (Gibbs et al., 2001), 592 
resulted in the expression 593 

<R(M-O> = 1.47(<ρ(rc)>/r)-0.18 Eq. (5) 594 
Although Eq. (5) is not identical to Eq. (4), it is similar in form. With the goal of establishing a more 595 
accurate expression based on a more accurate and comprehensive set of values,  ρ(rc)-values were 596 
calculated for a large number of  individual bonded interactions for three perovskite crystals, 597 
LaAlO3, CaSnO3 and YAlO3. The structures of these perovskites were geometry optimized within 598 
the framework of density functional theory over a wide range of pressures: from ambient conditions 599 
to 20 GPa for the first two perovskites, and up to 80 GPa for the third (Gibbs et al., 2012). A power 600 
law regression analysis of the combined geometry optimized Al-O, Ca-O, Sn-O, Y-O and La-O bond 601 
lengths and the ρ(rc)/r values, resulted in the power law equation 602 

R(M-O) = 1.41(ρ(rc)/r)-0.21 Eq, (6) 603 
an expression that is strikingly similar in form to Eq. (3). The similarity between the two expressions 604 
is further evidence for the existence of a one-to-one correspondence between the Pauling strength for 605 
a bonded interaction and the electron density at the bond critical points for bonded pairs of atoms in 606 
both molecules and crystals. Moreover, this correspondence applies for bonded interactions in 607 
crystals at both high pressures and under ambient conditions. Rewriting Eq. 3 in terms of <s> and 608 
Eq. 6 in terms of ρ(rc), we find that <s> = r(1.39/R(M-O))4.54 and ρ(rc) = r(1.41/R(M-O))4.76, a result 609 
that shows that <s> and  ρ(rc) display similar values, which typically agree to within ~ 5%, for a 610 
given bond length and r value. The widespread use of the Brown-Shannon bond valence model in 611 
mineralogy and material science owes much of its success to the direct connection that exists 612 
between bond strength and the quantum mechanical observable, the electron density distribution.  613 
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As observed above, the values of the electron density, ρ(rc), at rc between the bonded pairs of M and 614 
O atoms and the associated bcp properties were calculated (Gibbs et al., 2001; Gibbs et al., 2008c; 615 
Kirfel et al., 2005) for a large number of bonded interactions  measured for more than 55 oxide and 616 
silicate crystals containing non-transition and transition metal atoms from the first three rows of the 617 
periodic table. For each of the bonded interaction types, the experimental bond lengths were found to 618 
be highly correlated with ρ(rc):  the larger the accumulation of ED at rc, the greater the strength of 619 
the bonded interaction and, typically, the shorter the M-O bond length. To obtain representative 620 
estimates, consistent with the central limiting theorem of the value of the ED between the bonded 621 
atoms,  the individual values of ρ(rc)/r and the associated experimental bond lengths for each the 622 
bonded interactions were averaged in the same way that the experimental bond lengths were 623 
averaged by S&P (1969) when determining their effective ionic and crystal radii. The resulting 624 
averaged <R(M-O)> and <ρ(rc)/r>  values, together with the individual R(M-O) and ρ(rc)/r values 625 
determined for the perovskites studied,  are plotted in Figure 4. A regression analysis for the 626 
combined data sets resulted in the same power law regression equation determined above for the 627 
perovskites (Gibbs et al., 2012) 628 

<R(M-O)> = 1.41(<ρ(rc)>/r)-0.21 Eq. (7) 629 
The data points in Figure 4 for bond lengths between 1.4 Å and 3.0 Å follow the trend defined by 630 
Eq. 7 for the M atoms from all five rows of the periodic table. However, for the shorter IVB-O, IIIB-631 
O, IIIC-O and IIIN-O bond lengths that involve the more electronegative first row atoms and are more 632 
shared covalent in nature, the <ρ(rc)>/r values fall systematically above the curve, revealing that 633 
their experimental bond lengths are systematically longer than the ones determined by Eq. 7. 634 
The ED distributions for the bonded interactions used to prepare Figure 4 resemble the procrystal 635 
representations of the ED distributions, denoted ρ(rc)pro , calculated for row 1 and 2 M atoms (Downs 636 
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et al., 2002). A procrystal distribution consists of the superposition of the ED distributions for non-637 
interacting, neutral ground state atoms with spherically averaged ED distributions, clamped at the 638 
experimental positions that they occupy in the crystal (Gibbs et al., 1992). This connection was 639 
explored by Gibbs et al., (2013a) and the ρ(rc)pro/r values for the row 1-2 M-O bonded interactions, 640 
plotted as open bullets in terms of <R(M-O)> in Figure 4. As displayed in the figure, the <ρ(rc)>pro/r 641 
values  follow the general trend defined  by the <ρ(rc)>/r and <R(M-O)> data sets, but as expected 642 
the <ρ(rc)>/r values are significantly larger than the <ρ(rc)>pro/r values,  particularly for the more 643 
shared covalent IIIN-O, IIIC-O and IIIB-O bonded interactions. For the more electropositive atoms, the 644 
two trends typically agree to within ~ 0.05 e/Å3 with the <ρ(rc)>pro/r values tending to be less than 645 
the <ρ(rc)>/r values for the Si-O, P-O and S-O bonded interactions. For the longer Ca-O, Sn-O, K-O, 646 
Y-O and La-O bonded interactions, <ρ(rc)>/r  ~  <ρ(rc)>pro/r.  In cases where   <ρ(rc)>/r and 647 
<ρ(rc)>pro/r are in close agreement, as in the case of the Si-O bond,  the ED between the bonded 648 
atoms is consistent with Pauling's (1948) claim that the atoms in crystals are largely devoid of 649 
charge, in effect being largely neutral and atomic. He pointed out, for example, that it has been 650 
customary to describe a cubic crystal like BaO as a checkerboard pattern of Ba2+ cations and O2- 651 
anions bonded together by electrostatic bonded interactions. But, according to his postulate of 652 
electrostatic neutrality, a description of the structure as consisting of an arrangement of electrostatic 653 
bonded highly charged Ba2+ and O2- ions would be a poorer description than one consisting of 654 
neutral Ba and O atoms, resulting in an ED distribution that would be classified as largely atomic. 655 
As this seems to be the case for the bonded interactions for oxides, then the electrostatic bond 656 
strength of a M-O bonded interaction serves as a direct measure of the resonance bond number as 657 
noted above. Accordingly, the greater the number of shared electrons in lieu of  M cation charge, the 658 
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greater the value of the resonance number, the greater the bond strength, and the shorter the bond 659 
length (cf. Figure 4 in Brown and Shannon, 1973). 660 
Given the nexus between resonance bond number and the number of shared electrons, the question 661 
that comes to mind is "How similar are the <ρ(rc)> values defined by Eq. 7 and the Pauling 662 
empirical bond strengths, s = z/ν,  for M-O bonded interactions of given lengths in the coordination 663 
polyhedron in a crystal?” Recasting Eq. 7 in terms of <ρ(rc)>,  we obtain 664 

<ρ(rc)> = r(1.41/<R(M-O>))4.76. Eq. (8) 665 
A calculation of <ρ(rc)> for the average Si-O bonded length, <R(Si-O)> = 1.623 Å, observed for the 666 
tetrahedral SiO4 oxyanions in silicates (Baur, 1981), results in <ρ(rc)> = 1.02 e/Å3, which is 667 
comparable with the Pauling bond strength of 1.0 v.u.  The average VISi-O bond length, 1.774 Å, 668 
observed in stishovite results in a <ρ(rc)> value of 0.67 e/Å3, which concurs with s = 0.67 v.u. 669 
(Kirfel et al., 2001). The agreement between <ρ(rc)> and s for these two Si-O bonded interactions 670 
may not be surprising, particularly given that the calculated bond lengths and ρ(rc) values were used 671 
in the derivation of Eq. 8. The agreement in these two cases is satisfactory, but the agreement is 672 
much less satisfactory for bonded interactions involving the much more electronegative first row 673 
atoms IIIN, IIIC and IIIB where the values of <ρ(rc)> are as much as 15 % larger than s.  674 
In an examination of the extent to which the <ρ(rc)> values generated with Eq. 8 agree with the 675 
individual s values for other bonded interactions, a set of reliable bond lengths is required. 676 
Convenient for this purposes is the set of reliable bond lengths that are obtained by  simply adding 677 
Shannon’s oxide anion crystal radius (1.24 Å) to the ‘reliable radii’ for  the M cations given in 678 
Shannon's (1976) Table 1. For example, in the case of the VIIIU+6- O bonded interaction, R(VIIIU+6- 679 
O) was estimated by adding  1.24 Å  to 1.14 Å, where 1.14 Å is the reliable radius for the eight-680 
coordinate U+4  cation i.e.  <R(VIIIU+4- O)> = 1.14 Å + 1.24 Å = 2.38 Å. According to Eq. 8, <ρ(rc)> 681 
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= 6(1.41/2.38)4.76 = 0.50 e/Å3 , which is comparable to the Pauling bond strength of s = 0.50 v.u.  The 682 
<s>-value calculated with the same bond length and Eq. 3 is 0.52, which is also in satisfactory 683 
agreement with s. The  agreement between <ρ(rc)> and s is likewise satisfactory  for  the IVP-O 684 
bonded interaction where <R(IVP-O)> = 1.55 Å,  <ρ(rc)> = 1.27 e/Å3  and s = 1.25 v.u., and for IVS-685 
O where <R(IVS-O)> = 1.50 Å, <ρ(rc)> = 1.49 e/Å3  and s = 1.50 v.u..  These values and those 686 
calculated with the reliable bond lengths generated with the remaining reliable radii in the Shannon 687 
Table, are compared in Figure 5 in terms of the individual Pauling bond strengths, s, for the M-O 688 
bonded interactions. Despite the relatively wide scatter of the resulting data set about the 45o line, a 689 
regression analysis of the data set reveals that more than ~ 95 % of the variation in <ρ(rc)> can be 690 
explained in terms of a linear dependence on the Pauling bond strength for the M-O bonded 691 
interactions (Gibbs et al., 2013a). As implausible as it may seem, the regression line is statistically 692 
identical with a one-to-one relationship between value of the ED at the bcp, <ρ(rc)>, and the classic 693 
individual Pauling bond strengths for the M-O bonded interactions in molecules and crystals. 694 
Furthermore, rewriting Eq. 4 in terms of s, s = r(1.43/R(M-O))4.76,  we see that  s ≈ ρ(rc) = 695 
r(1.41/R(M-O))4.76. This again demonstrates the remarkable relationship that exists between the 696 
Pauling bond strength, the experimental bond lengths and the electron density distribution between 697 
the bonded atoms. This is testament to Pauling's genius in choosing a simple parameter like bond 698 
strength as a measure of the strength of a bonded interaction. 699 
 Implications 700 
We have shown that the experimental and calculated ED distributions for siloxane molecules and 701 
silicate crystals have yielded important information about the sizes of atoms along bond vectors, 702 
results that show that the bonded radius of the O atom is strongly impacted by its bonded atoms. In 703 
particular, the greater the electronegativity of the bonded atom, the greater the impact on the 704 
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distribution along the bond vectors. We also found that the bcp properties of these two groups are 705 
virtually indistinguishable, implying that the local bonded interactions for the molecules are virtually 706 
same as those observed for silicates. The accumulation of the electron density between bonded pairs 707 
of M-O bonded interactions, ρ(rc) = r(1.41/R(M-O))4.76, correlates with the Pauling bond strengths of 708 
the individual bonded interactions on a one to one basis, implying that the bond strength is a direct 709 
measure of the accumulation of the ED between a bonded pair.  The nexuses established between the 710 
bond lengths and <s>/r values for nitride, fluoride and sulfide molecules and crystals (Bartelmehs et 711 
al., 1989; Buterakos et al., 1992; Nicoll et al., 1994; Pyykko, 2012) implies that a nexus may also 712 
hold for <ρ(rc)>.  713 
Further, a comprehensive study of the bonded interactions undertaken for thioarsenides and 714 
arsenates, cases involving long-range Lewis acid-base directed van der Waals bonded interactions 715 
(Gibbs et al., 2009; Gibbs et al., 2011), indicates that the molecules are bonded into molecular 716 
crystals by bond paths of ED that link and align the Lewis base-acid regions in a key-lock fashion. 717 
As such, the bonded interactions between the molecules classifying  as long range Lewis acid-base 718 
directed van der Waals intermolecular interactions.  The ED distribution comprising the bond paths 719 
is asserted to be fundamental to the understanding of the self-assembly of the molecules in the 720 
formation of the crystals. A self assembly mechanism is proposed for the molecular crystals 721 
condensed from aqueous species that maximizes the number of Lewis acid-base bonded interactions, 722 
with the resulting directed bond paths structuralizing the molecules as molecular crystals (Gibbs et 723 
al., 2011). With ab initio quantum computational methods capable of describing both short-range 724 
intramolecular and long range London dispersion interactions arising from electron correlation, 725 
analyses of the dimers of As4S4 and As4O6 molecules cut from the structures of realgar and 726 
arsenolite, respectively, reveal that the molecules adopt a configuration that is virtually identical 727 
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with that observed in the crystals. Decomposition of the interaction energies, using symmetry 728 
adapted perturbation theory, reveals that both model dimers feature significant stabilization from 729 
electrostatics forces as anticipated by the Lewis acid/Lewis base picture of the interactions.  730 
In an assessment of the role played by intermolecular forces in the self assembly of nanoparticle 731 
entities into large structures and materials, (Bishop et al., 2009) concluded that “The formation of 732 
most assemblies can be modeled and justified only a posteriori, and there are few examples in which 733 
the course of nanoscale self-assembly was predicted a priori from a knowledge of the individual 734 
interactions. In the study of the self-assembly of the arsenate and realgar molecules, a model was 735 
proposed based on directed, long ranged intermolecular interactions associated with the formation of 736 
Lewis acid-Lewis base complexes that not only serve as an a priori  basis for understanding how 737 
molecules self-assemble in the formation of molecular crystals but also serves as a model for 738 
predicting the self assembly of nanoparticles in the formation of oxide and sulfide Lewis acid-base 739 
complexes. 740 
The foregoing studies show promise of the things that will likely be rendered in the future about the 741 
properties of a material that are inherent in the ED distribution. As more and more such studies are 742 
undertaken and completed, our understanding of the properties and the bonded interactions is 743 
destined to enrich our understanding of the crystal chemistry of minerals. It is exciting to anticipate 744 
the new insights that will surely be forthcoming as the electron density distribution of minerals and 745 
related materials is explored in greater detail, such as the discovery of bond paths between the O 746 
atoms comprising the shared polyhedral edges of a crystal, the shorter the shared edges, the greater 747 
the values of ρ(rc) and the  greater the stabilization  of the shared O-O edges as embodied in 748 
Pauling’s third rule (Gibbs et al., 2008a). 749 
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Finally, the close connection between the bonded interactions in siloxane molecules and silicate 750 
crystals is consistent with the recent use of small molecular clusters in the study of mineral surfaces, 751 
studies that have provided new and important insights into the cleavage of bonded interactions, and 752 
the reactivity and hydrolytic reactions of surfaces at the atomic level (Casey and Rustad, 2007; 753 
Casey et al., 2009; Rosso, 2001; Rustad, 2001). Silica cluster calculations lend important insights 754 
into the hydrolysis of the Si-O-Si bonded linkages in the silica polymorph cristobalite 755 
(Pelmenschikov et al., 2001), the dissolution of silicate glass and mineral surfaces (Criscenti et al., 756 
2006; Tamada et al., 2012) and providing evidence for the role played by aqua ions in the hydrolysis 757 
of Si-O bonded interactions (Wallace et al., 2010).  The close connection established between the 758 
bonded interactions for sulfide crystals and molecules (Bartelmehs et al., 1989), also implies that the 759 
crystal-molecule nexus will be useful in the study of sulfide reactions. Indeed, recent advances in the 760 
development of theoretical tools to study sulfide surfaces, crystal growth, metal sulfide complexes, 761 
molecular clusters like oxides, have been used, not only to provided new insights into dissolution 762 
and surface reactions, but also to provide insights into crystal growth and the rapid self-assembly 763 
reactions at the atomic level that are involved in the formation of nanoparticles (cf. Rickard and 764 
Luther, 2006; Rosso and Vaughan, 2006a; Rosso and Vaughan, 2006b). 765 
In short, the strikingly similarity in the structures and electron density distributions displayed by 766 
siloxane molecules and silicate crystals has provided an important basis for understanding the Si-O 767 
bonded interactions and the crystal chemistry of  silicates at the atomic level. Likewise, the 768 
employment of small representative molecular clusters and related complexes has provided 769 
important insights into the reactions at mineral surfaces, the cleavage of bonded interactions at the 770 
atomic level, and crystal growth processes. The advances and insights provided by these studies 771 
together with their implications bring to mind the statement made by the brilliant crystal chemists 772 
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Michael O'Keeffe and Bruce Hyde (1981):  ‘The divorce of crystal chemistry (solid-state chemistry) 773 
from  molecular chemistry was a great mistake and has left both parties all the poorer.’ 774 
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 1020 
Table 1. Comparison of Bonded, rb, Crystal,rc, and Ionic Radii, ri. 1021 

 1022 
  1023 

CNM <rb(M)> rc(M) ri(M) <rb(O)> CNM <rb(M)> rc(M) ri(M) <rb(O)> 
 

IVAl 0.74 0.53 0.39 1.00 VIK 1.44 1.52 1.38 1.43 
VAl 0.78 0.62 0.48 1.08 IH 0.19 -0.24 -0.38 0.79 
VIAl 0.80 0.68 0.54 1.12 VILi 0.82 0.90 0.76 1.39 

IIIAs3+ 0.87   0.92 IVMg 0.84 0.71 0.57 1.07 
IIIB 0.46 0.15 0.10 0.91 VMg 0.90 0.80 0.66 1.17 
IVB 0.49 0.25 0.11 0.99 VIMg 0.94 0.86 0.72 1.20 

IVBe 0.58 0.41 0.27 1.07 VIIIMg 0.96 1.03 0.89 1.31 
IIIC 0.46 0.06 -0.08 0.83 VIMn2+ 1.10 0.97 0.83 1.12 

VICa 1.18 1.14 1.00 1.18 VIIIMn2+ 1.15 1.10 0.96 1.18 
VIICa 1.22 1.20 1.06 1.23 IIIN 0.60 0.04 -0.10 0.64 
VIIICa 1.25 1.26 1.12 1.27 VNa 1.08 1.14 1.00 1.36 
IXCa 1.25 1.32 1.18 1.26 VINa 1.09 1.16 1.02 1.35 

VICo2+ 1.05 0.72 0.58 1.08 VIINa 1.12 1.26 1.12 1.40 
IVFe2+ 0.98 0.77 0.63 0.99 IVP 0.63 0.31 0.17 0.91 
VIFe2+ 1.08 0.92 0.78 1.10 IVS 0.58 0.26 0.12 0.89 

VIIIFe2+ 1.13 1.06 0.92 1.17 IVSi 0.67 0.40 0.26 0.95 
IVGe 0.83 0.53 0.39 0.91 VISi 0.72 0.54 0.40 1.06 
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FIGURE LEGENDS 1024 
 1025 
 1026 

Figure 1: Scatter diagrams of the experimental Si-O bond lengths, R(Si-O) Å, for a large number of 1027 
silicate and oxide crystal structures plotted as open diamonds in terms (a) the accumulation of the 1028 
electron density, ED, calculated at the bond critical point, rc, (b) λ1,2, the magnitude of the average 1029 
concentration of the ED calculated perpendicular to rc, (c) λ3, the concentration of the ED at rc 1030 
calculated along bond path toward  Si and O, (d) 2ρ(rc), the Laplacian of the ED calculated at rc 1031 
and (f) the bonded radius of the O atom, rb(O) bonded to Si. Superimposed on the figure are the bond 1032 
critical properties for the Si-O bonded interactions observed for coesite and stishovite, plotted as 1033 
solid triangles and squares, respectively (reproduced from Gibbs et al., 2004).  1034 
 1035 
Figure 2: Experimental M-O bond lengths, R(M-O) Å, plotted in terms of the bond radii, rb(O), of 1036 
the O atoms bonded to first row (Li, Be, B,···) and second row (Na, Mg, Al,···) atoms for the silicate 1037 
and oxide structures (reproduced from Gibbs et al., 2001). 1038 
 1039 
Figure 3: Averaged experimental M-O bond lengths, <R(M-O)> Å, plotted in terms of the averaged 1040 
bonded radii, rb(M), for the M atoms bonded to O for first, second and third row M atoms. 1041 
 1042 
Figure 4: Averaged experimental M-O bond lengths, <R(M-O)> Å, plotted in terms of the averaged 1043 
value of electron density, <ρ(rc)>/r,  accumulated at the bond critical point, rc, between bonded pairs 1044 
of M and O atoms for M atoms for five row of the periodic table. The open circle data are procrystal 1045 
data calculated for first and second row bonded interactions (Downs et al., 2002). The regression 1046 

∇
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equation, <R(M-O)> = 1.41(<ρ(rc)>/r)-0.21, fit to all of the data with the exception of the procrystal 1047 
data, is graphed as a solid curve on the figure.  (Reproduced from Gibbs et al., 2013b) 1048 
 1049 
Figure 5: Equation 7, <ρ(rc)> = (1.41/<R(M-O)>)4.76, plotted in terms of the average Pauling 1050 
strength, s,  for the M-O bonded interactions comprising M-atom containing coordination 1051 
polyhedron where the bond lengths <R(M-O)> were set equal to the sum of Shannon's (1976) most 1052 
reliable crystal radius  for a given M cation and the radius of the four-coordinated oxide anion, 1.24 1053 
Å.  1054 
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