1	Revision 1 "An assessment of the reliability of melt inclusions as recorders of the
2	pre-eruptive volatile content of magmas"
3	ROSARIO ESPOSITO ^{1,2} *, JERRY HUNTER ³ , JAMES D. SCHIFFBAUER ⁴ ,
4	NOBUMICHI SHIMIZU ⁵ AND ROBERT J. BODNAR ²
5	¹ Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli
6	Federico II, Napoli 80138, Italy
7	² Virginia Tech, Department of Geosciences, Blacksburg, Virginia 24061, USA
8	³ Nanoscale Characterization and Fabrication Laboratory, Virginia Tech, Blacksburg,
9	Virginia 24061, USA
10	⁴ University of Missouri, Department of Geological Sciences, Columbia, Missouri 65211
11	USA
12	⁵ Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, USA
13	*Corresponding author: rosario.esposito3@unina.it
14	ABSTRACT
15	Many studies have used melt inclusions (MI) to track the pre-eruptive volatile history
16	of magmas. Often, the volatile contents of the MI show wide variability, even for MI
17	hosted in the same phenocryst. This variability is usually interpreted to represent trapping
18	of a volatile-saturated melt over some range of pressures (depths) and these data are in
19	turn used to define a magma degassing path. In this study, groups of MI that were all
20	trapped at the same time (referred to as a Melt Inclusion Assemblage, or MIA) based on
21	petrographic evidence, were analyzed to test the consistency of the volatile contents of
22	MI that were all trapped simultaneously from the same melt.

23	MIA hosted in phenocrysts from White Island (WI) (New Zealand) and from the
24	Solchiaro eruption in the Island of Procida (Italy) were analyzed by Secondary Ion Mass
25	Spectrometry (SIMS). In most MIA, H ₂ O, F and Cl abundances for all MI within the
26	MIA are consistent (relative standard errors <27%, with the exception of two MIA),
27	indicating that the MI all trapped a melt with the same H ₂ O, F, and Cl concentrations and
28	that the composition was maintained during storage in the magma as well as during and
29	following eruption. In several MIA, S abundances are consistent (relative standard errors
30	<33%, with the exception of five out of 29 MIA). Conversely, CO ₂ (WI and Solchiaro
31	MIA) showed wide variability in several MIA. The result is that some MIA display a
32	wide range in CO ₂ content at approximately constant H ₂ O. Similar trends have previously
33	been interpreted to represent degassing paths, produced as volatile-saturated melts are
34	trapped over some significant pressure (depth) range in an ascending (or convecting)
35	magma body. However, the CO_2 vs H_2O trends obtained in this study cannot represent
36	degassing paths because the MI were all trapped at the same time (same MIA). This
37	requires that all of the MI within the MIA trapped a melt of the same composition
38	(including volatile content) and at the same temperature and pressure (depth). The cause
39	of the variable concentration of CO ₂ within some MIA is unknown, but may reflect
40	micrometer-scale heterogeneities within the melt during trapping, heterogeneities within
41	individual MI, post-entrapment crystallization within the MI, formation of a shrinkage
42	bubble associated with leakage/depressurization driven by cracks, or C-contamination
43	during sample preparation. These results suggest that trends showing variable CO_2 and
44	relatively uniform H ₂ O obtained from MI may not represent trapping of volatile-saturated

1/15

- 45 melts over a range of pressure, and care must be taken when interpreting volatile contents
- 46 of MI to infer magma degassing paths.
- 47 Results of this study have been used to estimate the uncertainties in volatile
- 48 concentrations of MI determined by SIMS analysis. The H₂O, F, and Cl contents have an
- 49 average estimated uncertainty of 11%, 9%, and 12 % respectively that is consistent with
- 50 the SIMS analytical error. In contrast, the S and CO₂ contents have an average estimated
- 51 uncertainty of 24% and 69% respectively that is not consistent with the SIMS analytical
- 52 error.
- 53
- 54 Keywords:
- 55 melt inclusions
- 56 Melt Inclusion Assemblage (MIA)
- 57 pre-eruptive volatile contents
- 58 magma degassing path
- 59 Secondary Ion Mass Spectrometry
- 60

INTRODUCTION

During the last several decades the number of publications describing the use of melt inclusions (MI) to determine the pre-eruptive volatile contents of magmas has increased significantly (Anderson et al., 1989; Audétat and Lowenstern, 2014; De Vivo and Bodnar, 2003; Lowenstern, 1995; Métrich and Wallace, 2008). In fact, MI provide the only direct method of determining the pre-eruptive volatile content of a magma. In many MI studies, the volatile contents of MI from the same sample (and sometimes from the same phenocryst) vary widely (Métrich and Wallace, 2008 and references therein).

1/15

68	Some workers have interpreted the variability in volatile concentration recorded by MI to
69	be the result of crystals growing under varying pressure (depth) conditions in a volatile-
70	saturated magma body that is ascending through the uppermost mantle or crust (Métrich
71	and Wallace, 2008 and references therein).

72	Among all the volatile species, CO ₂ contents generally show more variability
73	compared to other volatiles (e.g., H_2O , Cl, F, S) and these results have been commonly
74	interpreted as representing degassing of a CO2-rich magmatic vapor from an ascending
75	and crystallizing magma. This interpretation was first offered by Anderson et al. (1989),
76	and has subsequently been invoked in numerous studies of MI. An extensive review of
77	magma degassing systematics based on MI has been presented by Métrich and Wallace
78	(2008). The model presented by Anderson et al. (1989) n requires that the crystallizing
79	magma was volatile-saturated; thus, MI entrapped at greater depth are enriched in CO ₂
80	while MI trapped at shallower depths are relatively depleted in CO ₂ , owing to the strong
81	pressure effect on the solubility of CO ₂ in silicate melt. Importantly, MI have been
82	reported that not only show large variations in the CO ₂ concentration in the same sample,
83	but also in the same phenocryst (Anderson et al., 2000; Esposito et al., 2011; Hauri, 2002;
84	Helo et al., 2011; Wallace et al., 1999). For instance, Helo et al. (2011) reported CO ₂
85	contents of MI that range from 9,159 to 533 ppm (a range of 8,626 ppm) in MI hosted
86	within the same plagioclase crystal – this requires that the plagioclase crystal grew (and
87	trapped MI) over a pressure range of ~1,000 to <100 MPa, or a depth range of ~30-35 km
88	to ~3-4 km.

89

.

90	Similarly, Anderson et al. (2000) reported CO ₂ contents ranging from 209 to 761
91	ppm for MI within a single quartz phenocryst from the Bishop Tuff, with the higher CO_2
92	concentrations in MI near the phenocryst rim, i.e., the latest MI trapped (see their Fig. 3).
93	Based on the paragenesis consisting of MI with higher CO ₂ contents trapped later in the
94	growth history, Anderson et al. (2000) interpreted the CO ₂ variation to be the result of
95	crystal growth as the phenocrysts were sinking in the magma and trapping MI from a
96	volatile-saturated melt Peppard et al. (2001). Anderson et al. (2000) thus argued that the
97	inverted CO ₂ vs H ₂ O trend is due to crystal settling during phenocryst growth in a large,
98	convecting magma chamber, rather than the result of magma ascending through the crust.
99	Roberge et al. (2013) observed reversed trends in the variation in CO_2 contents of MI
100	from the Bishop tuff similar to those observed by Anderson et al. (2000). In contrast to
101	Anderson et al. (2000), Roberge et al. (2013) interpreted the trends to indicate that a later,
102	CO ₂ -rich (deep) magma invaded the shallower, CO ₂ -poor magma reservoir. This suggests
103	that less evolved deep magmas recharging shallow reservoirs may contribute to the range
104	in CO ₂ concentrations recorded by MI trapped within a single phenocryst. However, the
105	variations in CO ₂ content should correlate with variations in major and trace element
106	chemistry that are consistent with mixing of a less evolved magma with one that is more
107	evolved.
100	The use of MI to infer the velotile history of a magnetic based on the assumption

The use of MI to infer the volatile history of a magma is based on the assumption that MI trap a representative sample of the melt from which the phenocryst was growing, and that the MI preserve the composition after entrapment, and several studies have attempted to test these assumptions (Métrich and Wallace, 2008 and references therein). For example, the composition of the melt trapped in MI depends on the interplay of

113 diffusion of cations away from or towards the melt/crystal interface, and on crystal 114 growth rates (boundary layer effect). Some workers have documented that MI are 115 affected by boundary layer processes under some conditions and do not trap a 116 representative sample of the bulk melt. This assertion is based on the assumption that MI 117 are generally trapped during periods of rapid growth caused by abrupt changes in 118 temperature, pressure and volatile exsolution rate, as might occur during an eruptive 119 event (Roedder, 1979). The effect of growth rate on MI characteristics was studied by 120 Faure and Schiano (2005), who synthesizedolivine at different growth rates. These 121 workers found that MI hosted in polyhedral olivine recorded consistent major element 122 compositions, regardless of their size. Conversely, olivine showing skeletal and dendritic 123 morphology (produced by the most rapid growth rates) contained MI that were enriched 124 in Al_2O_3 , suggesting that the growth rate was sufficiently fast that Al could not diffuse 125 away from the growing crystal surface to maintain equilibrium with the bulk melt. 126 However, other studies show no enrichment of Al_2O_3 in MI, relative to the bulk rock 127 (Spilliaert et al., 2006; Vigouroux et al., 2008). Additionally, Luhr (2001) reported that 128 MI hosted in olivine that grew rapidly do not show Al₂O₃ enrichment similar to that 129 reported by Faure and Schiano (2005). Conversely, Baker (2008) showed that elements 130 that diffuse slowly (e.g., P_2O_5) can be enriched in a boundary layer melt that is trapped as 131 MI. Baker suggested that a good test of whether boundary layer processes were affecting 132 the MI composition was to examine the concentration ratios of slow diffusing elements to 133 fast diffusing elements (e.g., P_2O_5/Cl). Kent (2008) and Esposito et al. (2011) found no 134 correlation between concentrations of large cations (K, Ba, Pb) and MI size, indicating 135 that boundary layer effects have influenced the MI compositions. Similarly, Wardell et al.

1/15

136 (2001) found no correlation between volatile concentrations and MI size, suggesting that 137 boundary layer processes did not affect volatile concentrations of MI from White Island. 138 Some workers note that MI could be trapped during dissolution-reaction-mixing when a 139 basaltic magma interacts with a colder plagioclase-bearing mush zone (Danyushevsky et 140 al., 2004; Esposito et al., 2011). These MI, which usually represent only a small fraction 141 of the total MI population, show anomalous compositions and are usually ignored during 142 reconstruction of magma chemistry. 143 Several studies have focused on processes that may have modified MI after 144 trapping (Danyushevsky et al., 2002; Gaetani et al., 2012; Roedder, 1979; Severs et al., 145 2007; Steele-MacInnis et al., 2011). For example, it is well known that some 146 crystallization may (must?) occur at the MI/host interface if the temperature decreases 147 after the MI is trapped and before it is naturally ejected and quenched. This phenomenon 148 is known in the literature as post-entrapment crystallization (PEC). Steele-MacInnis et al. 149 (2011) developed a thermodynamic model to predict the evolution of CO_2 and H_2O 150 contents of the melt (glass) as a result of PEC. These workers demonstrated that, with 151 relatively small amounts of PEC (<10%), most of the CO₂ originally dissolved in the 152 trapped melt would exsolve from the melt during PEC and reside in the vapor bubble. In 153 agreement with the results of Steele-MacInnis et al. (2011), Esposito et al. (2011) found 154 that 64% of the CO₂ in the original melt that was trapped as an inclusion was contained 155 in the vapor bubble of a MI from the Solchiaro eruption on the Island of Procida, Italy. 156 Other researchers have reported that the CO₂ contents of glasses in bubble-bearing MI 157 likely provide a minimum estimate of the original CO₂ content of the melt trapped in the 158 MI. For instance, Kamenetsky et al. (2007) detected C in MI in the form of a CO₂

1/15

159	gaseous phase as well as a carbonate phase. Anderson and Brown (1993) reported that
160	inclusions 100 μ m in diameter trapped in olivine from the 1959 Kilauea Iki eruption
161	contain CO_2 gas and liquid with a bulk density of at least 0.3 g/cm ³ . Anderson and Brown
162	(1993) corrected the trapping pressure of the MI by adding back into the melt (glass)
163	phase the CO_2 amount that would be contained in a bubble occupying 0.5 volume % of
164	the MI at the trapping conditions. Finally, Moore et al. (2013) detected CO_2 in the vapor
165	bubble in most of the MI from Kilauea Iki that they analyzed, and estimated that ~ 10 to
166	>90% of all of the CO ₂ in the MI is contained in the vapor bubble.
167	While it is sometimes possible to correct for the effect of PEC on volatile contents
168	of MI, for some host phases these corrections are complicated by post-entrapment
169	diffusion of elements into or out of MI (Danyushevsky et al., 2002; Gaetani et al., 2012).
170	For instance, Gaetani et al. (2012) have shown that H can diffuse out of the MI and
171	through the olivine host in a relatively short time if there is a $P_{\rm H2O}$ gradient with the
172	surrounding melt (H_2O -degassed melt). Thus, depending on where MI occur relative to
173	the core and rim of the host, the volatile contents of MI in the same phenocryst may be
174	affected to different extents. This, in turn, could lead to widely variable volatile contents
175	in MI that originally all had the same concentrations.
176	Several models have been developed to correct the compositions of MI that show
177	disequilibrium with the host (Danyushevsky et al., 2002; Gaetani and Watson, 2002;
178	Kress and Ghiorso, 2004). These models can be applied to correct MI major element
179	compositions of well-studied silicate melt/crystal systems (e.g., olivine/silicate melts). It
180	is important to note that both (1) modification of volatile contents of MI due to diffusion
181	and (2) modification of volatile concentrations due to PEC and formation of a vapor

1/15

bubble can produce H₂O-CO₂ trends similar to those produced by trapping of MI during

ascent-driven magma degassing.

184 Based on the many factors described above that may alter the original volatile 185 contents of MI, it is important to test the reliability of volatile contents obtained by 186 analysis of MI. In fluid inclusion (FI) research, a well-defined and tested protocol has 187 been developed that allows researchers to be confident that the data obtained from FI 188 record the physical and chemical conditions of the fluid at the time of trapping. As such, 189 a group of FI that were all trapped at the same time (i.e., all trapped a fluid of the same 190 composition, and at the same PT conditions) is defined as a Fluid Inclusion Assemblage, 191 or FIA (Bodnar, 2003; Goldstein and Reynolds, 1994). If the FI all trapped a single 192 homogeneous phase and have not reequilibrated (compositionally or volumetrically) 193 following entrapment, all inclusions in the FIA should show identical compositions and 194 microthermometric behavior when studied in the lab. For FI, evidence of 195 contemporaneous trapping is provided when several inclusions occur along a crystal 196 growth surface or along a healed fracture. Bodnar and Student (2006) described a similar 197 methodology to study MI, and proposed the term *Melt Inclusion Assemblage* (MIA) to 198 define a group of MI that were all trapped at the same time. In practical terms, an MIA is 199 represented by a group of MI that occur along the same growth zone in a phenocryst, or 200 in a three-dimensional cluster within the crystal, because MI are less commonly trapped 201 along healed fractures, compared to fluid inclusions. The accepted methodology in FI 202 studies is to only collect data from FIAs. In contrast, MIA are rarely studied in MI studies 203 because MIA are generally less common than FIAs, with many phenocrysts containing 204 only one or perhaps a few MI. Moreover, the methods used to study MI (especially the

205	volatile contents) require that the MI be exposed on one surface (SIMS and Raman) or on
206	two surfaces (FTIR), and it is challenging to simultaneously expose more than one MI
207	from the same crystal. Finally, because analysis by FTIR requires that the MI be exposed
208	on both surfaces of the host phenocryst (however, see Lowenstern and Pitcher, 2013),
209	most of the phenocryst (and its contained MI) is destroyed during polishing to expose the
210	MI on both the top and bottom surfaces, and this reduces the likelihood that more than
211	one MI in each crystal will be available for analysis.
212	In this study, we present results of volatile (CO ₂ , H ₂ O, F, S, and Cl) analyses of MI
213	from several different MIA to test the fidelity of the MI technique for recording the
214	volatile history of an evolving magma. The examined MIA are hosted in phenocrysts
215	from the active White Island volcano in New Zealand and from the Solchiaro volcano on
216	the Island of Procida (southern Italy). Major and trace element contents of MI from
217	White Island samples have been reported by Rapien et al. (2003), Severs et al. (2009) and
218	Wardell et al. (2001), while major/trace element and volatile contents of MI from
219	Solchiaro were presented by Esposito et al. (2011) and Mormone et al. (2011).
220	Importantly, Rapien et al. (2003) and Severs et al. (2009) reported that major and trace
221	element compositions of MI within MIA from White Island do not show significant
222	variations, suggesting that the MI all trapped the same melt and have not reequilibrated
223	following entrapment.
224	

GEOLOGICAL BACKGROUND

225

Samples analyzed in this study are from two recent eruptions (1986 and 1988; Rapien
et al., 2003) at White Island, New Zealand and from the Solchiaro eruption on Procida

Island, Italy that occurred between 19.6 and 14.3 Ka (Alessio et al., 1989; Lirer et al.,

229 1991). Below we summarize the petrological and geochemical data for the samples

considered in this study.

231 White Island, New Zealand

232 White Island is an active volcano located on the active margin between the Australian

233 plate and the Pacific plate (Isacks et al., 1968). White Island is located at the northern end

of the Taupo Volcanic Zone (TVZ) in the Bay of Plenty, and has been active since Late

235 Pleistocene (Graham et al., 1995). Two of the more recent eruptive cycles are the 1976–

- 236 1982 and 1986–1992 events during which the eruptive style alternated between
- phreatomagmatic and strombolian. On July 27th, 2000 the most recent eruption blanketed

the island with scoriae. The 1976–1982 and 1986–1992 activity has been associated with

a large magma body (approximately 10^6 m^3) that ponded at around 0.5 km depth (Clark

and Cole, 1989). The samples studied here are ejected scoriae and were collected by Dr.

241 C. Peter Wood of the Institute of Geological and Nuclear Sciences, Wairakei, New

242 Zealand. These same White Island samples have been described in detail by Rapien et al.

243 (2003), Rapien (1998), and Severs et al. (2009).

244 Volcanic products at White Island range from mafic andesite to dacite and activity

can be divided into 5 cycles (Cole et al., 2000). Each cycle starts with more mafic

246 compositions and ends with dacitic products. Lavas erupted at White Island are medium-

247 K, calc-alkaline in composition (Cole et al., 2000; Graham and Cole, 1991; Graham et al.,

248 1995). Whole rock analyses reported by Graham et al. (1995), Cole et al. (2000) and

Graham and Cole (1991) are from the 1977 eruption and, to our knowledge, no whole-

250 rock data are available for the later erupted material (younger than 1977). The studied

1/15

251	samples are vescicular porphyritic andesite-dacite and contain plagioclase, clinopyroxene
252	and orthopyroxene as the major phenocryst phases from 50 to 70 volume percent of the
253	rock (Rapien, 1998; Rapien et al., 2003; Severs et al., 2009). Compositions of
254	representative phenocrysts from the 1977, 1986, 1988, and 1991 eruptions have been
255	reported by several researchers (Graham and Cole, 1991; Rapien, 1998; Rapien et al.,
256	2003; Severs et al., 2009; Wardell et al., 2001). Rapien (1998) and Rapien et al. (2003)
257	reported that the anorthite content of plagioclase phenocrysts ranges from An_{68} and An_{62} ,
258	while plagioclase inclusions in orthopyroxene and clinopyroxene show a wider range of
259	anorthite content, from An_{74} to An_{62} (1977, 1888, 1989, 1991 WI eruptions). Severs et al.
260	(2009) reported an average anorthite composition of $An_{67}Ab_{31}Or_2$ for the 1988 WI
261	eruption. Wardell et al. (2001) reported similar plagioclase compositions (An ₆₃ Ab ₃₅ Or ₂).
262	Rapien (1998) and Rapien et al. (2003) reported pyroxene compositions of $En_{69-72}Fs_{23}$.
263	$_{26}Wo_{3\text{-}5}$ for orthopyroxene, and $En_{45\text{-}46}Fs_{14\text{-}16}Wo_{38\text{-}40}$ for clinopyroxene. Wardell et al.
264	(2001) reported similar orthopyroxene (En ₇₀ Fs ₂₆ Wo ₄) and clinopyroxene (En ₄₆ Fs ₁₆ Wo ₃₈)
265	compositions for the 1989 eruption. Severs et al. (2009) reported average compositions
266	of $En_{71}Fs_{27}Wo_2$ for orthopyroxene, and $En_{47}Fs_{13}Wo_{40}$ for clinopyroxene. Graham and
267	Cole (1991) studied mafic-andesite blocks and bombs erupted in 1977 and reported more
268	primitive compositions of $En_{68-78}Fs_{18-28}Wo_4$ for orthopyroxene, and $En_{47-51}Fs_{10-15}Wo_{38-39}$
269	for clinopyroxene, with anorthite contents of plagioclase up to An ₇₅ . Plagioclase and
270	pyroxenes show slight reverse zoning, and some plagioclase phenocrysts from the 1989
271	eruption show cores with patchy zonation (Wardell et al., 2001). Rapien (1998) and
272	Rapien et al. (2003) found no zoning in phenocrysts from the 1977, 1986, 1988, 1989,
273	and 1991 eruptions when observed using back-scatter electron imaging, but chemical

274	zonation in plagioclase was revealed by differential interference contrast microscopy
275	after etching in fluoboric acid (Figure 3 in Rapien, 1998). Rapien (1998) noted that MI
276	and mineral inclusions are trapped along bands defined by fluoboric acid etching. MI in
277	the same growth zone within a single phenocryst show a narrow range in major element
278	concentrations (Figure 12 in Rapien, 1998), trapped along growth zones represent an
279	MIA, i.e., were all trapped at the same time, and from the same melt. Using the software
280	MELTS (Asimow and Ghiorso, 1998; Ghiorso and Sack, 1995), Severs et al. (2009)
281	calculated that the dacitic melts produced at White Island resulted from 50% fractional
282	crystallization of the less evolved andesite at White Island. The compositions of
283	clinopyroxene and orthopyroxene predicted by MELTS are consistent with that of White
284	Island dacitic samples, but the predicted plagioclase composition is slightly less anorthitic
285	than that found in White Island dacitic samples (An_{60} vs. An_{67}).
286	Several studies have reported the occurrence of MI along growth zones in
287	phenocrysts from recent eruptions of White Island (Cole et al., 2000; Rapien, 1998;
288	Rapien et al., 2003; Severs et al., 2009; Wardell et al., 2001). And, MI occurring along
289	growth zones in plagioclase and in pyroxenes show consistent major and trace element
290	concentrations (Fig. 1). The uniformity in major and trace element contents of MI in a
291	given growth zone, i.e., MI that were all trapped at the same time, provides strong
292	evidence that the MI composition represents the composition of the melt that the
293	phenocryst was precipitating from, without modification from boundary layer processes
294	or later post-entrapment modifications. In light of the fidelity of MI in recording the
295	composition of the bulk melt that was precipitating the phenocrysts, (Severs et al., 2009)
296	calculated partition coefficients between dacitic melt and plagioclase and between dacitic

297	melt and pyroxene based on data from 87 MI from the 1988 eruption, and found no
298	significant variation in major and trace elements composition as a function of host
299	mineral. For instance, MI hosted in clinopyroxene phenocrysts show the same CaO
300	concentration as MI hosted in orthopyroxene (Fig. 1f), suggesting that boundary layer
301	processes did not affect MI compositions. If boundary layer processes had affected the
302	MI compositions, one would expect the CaO content of MI in clinopyroxene to be
303	depleted relative to that of MI in orthopyroxene because Ca is compatible in
304	clinopyroxene but incompatible in orthopyroxene. The same logic applies to MgO or
305	FeO _{tot} contents of MI hosted in plagioclase vs. MgO or FeO _{tot} of MI hosted in
306	clino/orthopyroxene; the average concentrations of MI in all three phases are the same,
307	within analytical error (Fig. 1b, d, f). If boundary layer processes significantly affected
308	the MI compositions, one should expect FeO and MgO concentrations of MI hosted in
309	plagioclase to be enriched relative to concentrations of MI hosted in the pyroxenes. We
310	note that Wardell et al. (2001) reported that variations in major element abundances of
311	MI versus SiO_2 content are consistent with fractional crystallization. Wardell et al. (2001)
312	did, however, report more variability in composition, relative to compositions reported by
313	Rapien (1998) and Severs et al. (2009). MI from White Island show FeO concentrations
314	that are consistent with geochemical trends defined by bulk rocks from White Island (Fig.
315	1a and b), suggesting that post-entrapment Fe-loss or gain did not occur. It is important to
316	note that all MI from White Island that were analyzed show low H_2O (< 1 wt%) and low
317	S concentrations (often \leq 200 ppm) (Rapien, 1998; Wardell et al., 2001).
318	

319 Solchiaro eruption, Procida Island, Italy

320	Solchiaro is an inactive volcano well-documented volcanic history (Cecchetti, 2001;
321	D'Antonio et al., 1999; De Astis et al., 2004; Di Girolamo et al., 1984; Esposito et al.,
322	2011; Mormone et al., 2011). The Solchiaro vulcanites are part of the potassic rock series
323	that outcrops in the Island of Procida (Phlegrean Volcanic District, Campanian magmatic
324	province). De Astis et al. (2004) subdivided the Solchiaro deposits into three units, and
325	the eruptive style changed during the eruption from phreatomagmatic (represented by
326	unit I deposits) to increasingly strombolian products in units II and III. The composition
327	of Solchiaro products varies from trachybasalt (unit I) to shoshonite (unit II and III).
328	Esposito et al. (2011) studied the geochemical evolution of products associated with unit
329	I of the Solchiaro eruption, based on MI data. In contrast to MI from the recent eruptions
330	at White Island, MI from Solchiaro show a wide range in major and trace element
331	concentrations, even within a single crystal (Esposito et al., 2011; Mormone et al., 2011).
332	Also, the forsterite content of olivine shows a wide variation, from Fo_{81} to Fo_{90} (Esposito
333	et al., 2011) or from Fo ₈₅ to Fo ₉₀ (Mormone et al., 2011), and some olivines show
334	chemical zoning. Esposito et al. (2011) also found anomalous MI that they referred to as
335	"Sr-rich" MI and "Enriched" MI. The anomalous MI were interpreted to have been
336	trapped during olivine growth in a plagioclase-bearing mush zone where dissolution
337	reaction - mixing occurred. It is important to note that only 12 out of 109 MI studied had
338	anomalous compositions. Some MI also show post-entrapment modifications, including
339	Fe-loss due to diffusion and PEC, as evidenced by a negative trend in Fo mole% vs.
340	FeO _{tot} (Fig.3a in Esposito et al., 2011). On the other hand, Mormone et al. (2011)
341	reported some MI showing FeO _{tot} concentrations much higher than concentrations

342	obtained from whole rock analysis. Volatile concentrations of MI show significant
343	variation, especially for CO ₂ , and it has been interpreted to be the result of olivine
344	crystallization from an ascending H ₂ O-CO ₂ saturated magma (Esposito et al., 2011;
345	Mormone et al., 2011). Esposito et al. (2011) reported that bubble-free MI in one sample
346	(RESC5) show a good correlation for CO ₂ vs. crystallization indicators (Fig. 2),
347	consistent with this interpretation. In addition, Esposito et al. (2011) have analyzed two
348	MI trapped along a growth zone and, thus, within the same MIA. These two MI (RESC5-
349	O21-MA and ME) show the same major and trace elements and volatile composition
350	considering the analytical errors (Table 1 and Fig. 2b).
351	The two samples used in the present study (RESC2 and RESC5) are gray tuffs from
352	Solchiaro unit I that have been described by Esposito et al. (2011).

353

354 SAMPLE PREPARATION AND ANALYTICAL METHODS

Most of the phenocrysts from White Island and Solchiaro were prepared as described by Esposito et al. (2011).

357 Only MIA in which the MI were $> 20 \,\mu\text{m}$ in diameter were selected, owing to the 358 minimum spot size required for Secondary Ion Mass Spectroscopy (SIMS) analyses. 359 After an MIA was identified petrographically, the crystal containing the MIA was 360 mounted on a glass bar or in a one-inch epoxy mount to expose as many of the MI within 361 the MIA as possible. After one (or more) MI was exposed, the phenocryst was removed 362 from the glass rod/epoxy and mounted in a round, one-inch diameter indium microprobe 363 mount. Indium was used to mount the crystals for SIMS analysis because, at the high 364 vacuum of the SIMS, epoxy can outgas and contaminate the sample with H, C and O.

Following analysis of the exposed MI(s), if the MIA contained additional MI that were deeper in the sample, i.e., not exposed at the surface, the crystal hosting the MIA was removed from the indium mount and polished again to expose additional MI in the same MIA. The same crystal was then remounted in indium and the newly exposed MI were analyzed. This process was repeated until all suitable MI (i.e., glassy MI >20 μ m) within the MIA had been analyzed.

371 Before SIMS analysis, all exposed MI were examined with the SEM as described in 372 Esposito et al. (2011) to test for chemical homogeneity. For SEM analysis, a gold coating 373 was used, rather than a carbon coating, to avoid possible carbon contamination that could 374 lead to incorrect values for CO₂ during SIMS analysis. We did not analyze major or trace 375 elements in the MI because other workers have extensively studied the major and trace 376 element chemistry of these samples, as summarized above (Esposito et al., 2011; Rapien 377 et al., 2003; Severs et al., 2009). Before analysis of MI in plagioclase by SIMS, the 378 sample was placed into the sample cell of a laser ablation - inductively coupled - plasma 379 mass spectrometer (LA-ICP-MS) and the laser was used to ablate (drill) small holes around each MI (Fig.3). These holes were placed strategically around the MI and a 380 381 photograph was made of each MI and its "locator holes" - this was necessary to locate 382 the MI during SIMS analysis because the glass and host plagioclase are similar in 383 reflected light. In the absence of the ablation pits, it was often not possible to locate MI 384 hosted in plagioclase using the viewing optics on the SIMS. 385 Volatile concentrations (CO₂, H₂O, F, S, and Cl) of MI were obtained in two different 386 SIMS facilities, using the IMS 7f-GEO at Virginia Tech and the Cameca IMS 1280 at the 387 Woods Hole Oceanographic Institution (WHOI). Data were collected during eight

388	working sessions: May 2008, December 2008, March 2010, December 2010, February
389	2011, October 2011, March 2012, and January 2013. The Cameca IMS 1280 at WHOI
390	was used only for the February 2011 and January 2013 working sessions. We note that
391	one of the anonymous reviewers of an earlier version of this manuscript raised concerns
392	about our use of two different SIMS laboratories in this study, suggesting that we would
393	have observed less variation if the same laboratory and instrument had been used for all
394	analyses. While our results may have been more precise had we used a single laboratory,
395	in this study we are interested not only in the precision of the measurements but also in
396	the accuracy. Thus, if both laboratories are producing results of comparable accuracy, it
397	should not matter if two labs are used. And, by using two separate laboratories, we are
398	able to determine with reasonable certainty that the variations observed are not
399	instrument (or laboratory) specific or artifacts but of the sample preparation and analysis
400	methods are, in fact, real.
401	During earlier working sessions (May 2008, December 2008, March 2010), acetone
402	was used during sample preparation. During later working sessions (December 2010,
403	February 2011, October 2011, March 2012, and January 2013), acetone was not used to
404	avoid potential C deposition in microfractures, especially at the MI/host interface. It is
405	important to note that CO ₂ variability within a single MI does not correlate with working
406	session, i.e., is independent of whether acetone was or was not used during sample
407	preparation.
408	Before SIMS analysis at Virginia Tech, the indium mounts were cleaned in deionized
409	water in an ultrasonic bath and were dried in a vacuum-oven for 12 hours. Each sample
	· · · · · · · · · · · · · · · · · · ·

410 was gold-coated (sputter coating) and the thickness of the coating was \sim 300 Å for the

18

1/15

411	SIMS analysis. Working sessions at Virginia Tech used Cs as the primary ion source with
412	a beam current between 1 and 1.6 nA. Each analytical spot was pre-sputtered for 290 s to
413	clean the surface before analysis. The rastered area was 30 μ m by 30 μ m for each
414	analysis, and a 15 μm by 15 μm spot within the rastered area was analyzed 10 to 15 times
415	in depth profile mode. Masses ¹⁶ O ¹ H, ¹² C, ¹⁹ F, ³² S, or ³⁵ Cl and ³⁰ Si were measured, and
416	concentrations were related to the ratio of each mass of interest to ³⁰ Si. Five standard
417	glasses were used to calibrate the instrument for H ₂ O, CO ₂ , F, S, and Cl (Appendix Table
418	1 Deposit Item-01). The standards represent natural basaltic and basaltic-andesitic
419	glasses. Additional information on the glass standards can be found in Helo et al. (2011).
420	In some cases, the standard glasses were measured multiple times. For instance, the
421	standard glass GL07-D52-5 (CO ₂ = 88 ppm) was analyzed 10 different times (five times
422	before MI analysis and five times after MI analysis) and the relative 1 sigma error was
423	22% (Appendix Table 1).
424	To test for systematic variations in CO ₂ distribution within MI, we performed depth
425	profiling in some of the MI during the March 2012 working session. During this working

426 session, the analytical settings were modified to optimize the depth resolution for the C

427 isotope. Specifically, the ¹²C and ³⁰Si (used as reference) secondary ions were detected

428 using 15kV ¹³³Cs+ primary ion bombardment at a 24° incident angle using 20 nA current.

429 To avoid undesired signal from the edge of the raster, the primary beam was rastered over

430 an area 75 µm by 75, µm and a detected area of 16 µm by 16 µm was used. A normal

431 incidence electron beam was used to compensate for positive charging of the sample

- 432 surface. A mass resolving power of 2000 m/dm was used to resolve possible interferences
- 433 with the ¹²C signal. At the conditions used, we estimated a sputtering rate of $\sim 1 \mu m$ per

434	1000 second, or 1nm per second. For the SIMS at Virginia Tech, the 1 sigma errors based
435	on the slope of each calibration line are 12% relative for CO_2 , 20% for H_2O , 12% for F,
436	9% for S, and 11% for Cl over a period of almost four years. During SIMS analysis, each
437	MI was monitored using the time-resolved "ion response screen" to test for anomalous
438	ion distribution. In some cases we noted heterogeneity in the distribution of C in the MI.
439	These anomalous screen responses sometimes result in unrealistically high concentrations
440	(e.g. up to 5 wt % of CO_2), and we observed that MI showing this behavior also often
441	showed fractures that apparently were introduced during polishing. We further note that a
442	heterogeneous distribution is sometimes observed when the probe spot is not well
443	centered in the MI (analytical area close to the wall of the MI or including some of the
444	surrounding host phase). Therefore, we excluded all analyses that showed heterogeneity
445	in the ion-response during the SIMS analysis because we interpreted this behavior as
446	being due to contamination and/or improper beam placement. This interpretation must be
447	treated with caution because it is possible that the variable and elevated CO_2
448	concentration might be real and represent anomalous (and unexplained) concentrations of
449	CO ₂ in MI, as discussed below.
450	The analytical conditions used for the working sessions at WHOI (February 2011 and
451	January 2013) were similar of those used at Virginia Tech, and are described in more
452	detail by Helo et al. (2011). Four standard glasses were used during the February 2011
453	session, and three of these were analyzed multiple times (see Appendix Table 1 and
454	Deposit Items-01). The standard glasses used for the calibrations are basalt and andesitic
455	basalt composition; further details can be found in Helo et al. (2011). Based on four
456	analyses on one of the standard glasses (GL07 D52-5), the 1-sigma reproducibility is 6%

457	for S and F, 14% for Cl, and 16% for CO_2 and H_2O . The standard glasses used at Virginia
458	Tech are from the same set used at the WHOI. For the January 2013 working session,
459	nine standard glasses were used and the calibration data are reported in Appendix Table 1
460	and Deposit Item-01. The more interesting feature of the calibration data for the January
461	2013 session is that a CO ₂ -rich standard glass (3154 ppm, NS1) and an H_2O -rich standard
462	glass (2.49 wt%, JDH 17H) were included. The CO ₂ -rich and the H ₂ O-rich standard glass
463	data are consistent with the calibration curves obtained in previous working sessions
464	(Deposit Item-01). For the January 2013 session, a standard glass (ALV 519-4-1, see
465	Appendix Table 1) was measured multiple times during the MI analysis. The 1-sigma
466	errors of volatile concentrations measured on this glass standard are all $< 5\%$.
467	During all working sessions, the concentrations of CO ₂ measured in a quartz blank
468	(mounted with standard glasses) and in plagioclase, clinopyroxene and olivine (adjacent
469	to MI) were always lower than those measured in the MI glass (see Appendix Table 1).
470	After SIMS analysis, all samples were examined under the optical microscope to confirm
471	that the beam had been completely within the MI during the analysis. If the beam was not
472	completely contained within the MI, the data were discarded. Note, however, that it was
473	usually not possible to determine how close the bottom of the analytical pit was to the
474	MI/host interface at depth.
475	Focused Ion Beam Electron Microscopy (FIB-EM) was used to study the morphology
476	of a few MI in three dimensions. A beam current between 0.043 and 1.4 nA and voltage
477	of 5 kv was used for imaging the MI. The sample was tilted 52° before the images were
478	captured as described by Schiffbauer and Xiao (2009) and (2011).
479	

480

RESULTS

481 **Petrography**

482 Phenocrysts (clinopyroxene, plagioclase, and orthopyroxene in increasing order of 483 abundance) from the White Island samples were separated from vesicular porphyritic 484 andesitic scoria. The phenocryst size ranges from 0.5 to 3 mm and the habit is 485 predominantly euhedral (Fig. 4). SEM images of the phenocrysts show no evidence of 486 chemical zoning with exception of one plagioclase phenocryst. Rapien et al. (2003) 487 reported that etching in fluoboric acid reveals that, although zoning is not usually 488 recognized during normal petrographic examination, plagioclase phenocrysts are zoned 489 and that MI occur along zones defined by the etching. Wardell et al. (2001) reported that 490 cores of some plagioclase phenocrysts from the 1989 scoriae show spongy textures when 491 observed with backscattered electron imaging. In particular, MI hosted in the cores of 492 plagioclase phenocrysts from the 1989 scoriae show less evolved major element 493 compositions compared to MI at the rims of the same plagioclase phenocrysts (Wardell et 494 al., 2001). In contrast, Rapien (1998) found no correlation between MI position within 495 phenocrysts and MI composition in scoriae from the 1977, 1986, 1988, and 1989 White 496 Island eruptions. In most phenocrysts, solid and melt inclusions coexist and are aligned 497 along crystal growth faces (Fig. 3 and 4). Clinopyroxene phenocrysts contain plagioclase 498 and orthopyroxene mineral inclusions, orthopyroxene phenocrysts contain clinopyroxene 499 and plagioclase inclusions, and plagioclase phenocrysts contain clinopyroxene inclusions. 500 We did not observe orthopyroxene inclusions in plagioclase, but Rapien et al. (2003) 501 reported rare orthopyroxene inclusions in plagioclase. These occurrences suggest that the 502 clinopyroxene, plagioclase and orthopyroxene were co-crystallizing and were likely in

1/15

503	equilibrium during crystallization of the White Island magma, as was also noted by
504	Rapien et al. (2003) and by Severs et al. (2009). Apatite inclusions are common in all
505	three phenocrysts. Magnetite was observed occasionally as inclusions in clinopyroxene,
506	as also reported by Rapien et al. (2003).
507	MI are ubiquitous in clinopyroxene, plagioclase and orthopyroxene phenocrysts. Four
508	main types of MI were recognized: (1) MI containing only glass are referred to here as
509	type 1 MI, (2) MI containing glass plus one or more trapped minerals are referred to here
510	as type 2 MI, (3) MI containing glass plus a vapor bubble or a vapor bubble plus one or
511	more trapped minerals are referred to here as type 3 MI, (4) MI containing a sulfide
512	globule (originally an immiscible sulfide melt?) or a sulfide globule plus a vapor bubble
513	are referred to here as type 4 MI. The mineral inclusions in type 2 MI are not considered
514	to be daughter crystals because the area (volume) ratios between the mineral and the glass
515	range from ~0.1 to 1, suggesting trapping of various proportions of melt and crystals.
516	Crystallized MI or partially crystallized MI were not observed in the samples studied.
517	The presence of bubbles in some MI (type 3) suggests that they were either trapped along
518	with the mineral and melt, or the bubbles nucleated due to PEC or as a result of cooling
519	during eruption. Sulfide-bearing MI (type 4) are observed in clinopyroxene and
520	orthopyroxene but not in plagioclase, and they are found only in the cores of these
521	phenocrysts.
522	Most of the MI shape includes negative-crystal shaped or ovoid to spherical shapes,
523	but some MI show irregular shape. In order to better characterize the 3-dimensional
524	geometry of MI, vertical sections were excavated through or adjacent to a few MI using
525	the Focused Ion Beam Electron Microscope (FIB-EM). The excavations range from ~5 to

526	\sim 15 µm in depth and MI shape was observed to vary from ovoid to prismatic (Fig. 5).
527	The MI geometry in three dimensions can only be approximated because only one cross-
528	section through each MI was available from the FIB-EM analysis.
529	In most cases, MI of all types occur along growth zones or in the cores of phenocrysts
530	(Fig. 3 and 4). MI entrapped along growth zones are referred to as <i>zonal</i> MI and are
531	interpreted by Sobolev and Kostyuk (1976) to be primary MI trapped during growth of
532	the phenocryst. MI clustered in the cores of phenocrysts are defined as azonal MI and are
533	also interpreted to be primary by the same workers. In two cases, we noted trails of MI
534	with elongated shape and assume that these were trapped when two phenocrysts of the
535	same mineral joined together during continued growth (pseudo-secondary MI, Deposit
536	Item-02).
537	In this study, groups of MI trapped along the same growth zone (zonal MI) or
538	clustered in the core (azonal MI) are interpreted to represent MIAs, that is, groups of MI
539	that were all trapped at approximately the same time (see Appendix Table 2). While MI
540	in both zonal and azonal occurrences are interpreted to have been trapped "at the same
541	time", the length of time required to trap azonal MIA may have been longer than that
542	required for zonal MIA formation. In the White Island phenocrysts, some MIA are
543	composed only of type 1 MI (MI containing only glass), other MIA are composed only of
544	type 2 MI (MI containing glass plus one or more crystals), and some other MIA can
545	contain all types of MI (Appendix Table 2). It is important to note that the different types
546	of zonal MIA can alternate in the same phenocryst as is commonly observed in

- 547 plagioclase (Fig. 3). Azonal MIA often include more than one type of MI, while zonal
- 548 MIA are mostly represented by only one type of MI (type 1 or type 2 MI). Classifications

of individual (types 1, 2, 3 or 4, and shapes) and MIA (zonal or azonal) studied are listedin Appendix Table 2.

551 MI from the Solchiaro samples contain naturally quenched glass and were previously 552 described by Esposito et al. (2011). Five of the phenocrysts previously analyzed by 553 Esposito et al. (2011) were selected for analysis of additional MI in the same MIAs. The 554 MI shape is variable and includes irregular, negative-crystal shaped and sometimes ovoid 555 to spherical shapes. FIB-SEM examination of one MI hosted in olivine shows an irregular 556 MI/host interface (Fig. 6). In most cases, MIA are defined by MI that range from 3 to 10 557 µm and are thus too small to be analyzed with the SIMS. However, we did identify six 558 MIA containing MI that were large enough for SIMS analysis. In most cases, only two 559 MI were analyzed from the same MIA because MI are less abundant in the Solchiaro 560 samples relative to the White Island samples, and the Solchiaro MI are generally smaller. 561 MIA hosted in olivine are either of type 1 (MI containing only glass), type 2 (MI 562 containing glass plus one or more crystals), and type 3 (MI containing glass plus a vapor 563 bubble or plus a vapor bubble and one or more trapped minerals). All of the MIA occur 564 along growth zones or clustered in the core, as in the White Island phenocrysts.

565 Volatile Contents of White Island MI

566 We analyzed 124 MI represented by 29 MIA from White Island: 11 MIA are hosted

567 in clinopyroxene, 13 MIA are hosted in plagioclase, and 5 are hosted in orthopyroxene.

568 In most of the MIA, we analyzed < 5 MI, but 8 MI were analyzed from one MIA and 12

569 MI in another MIA, both in plagioclase (Table 2 and Appendix Table 2).

570 Below we first describe the complete range in volatile concentrations, considering all

of the MI analyzed, and then we consider the results from individual MIA. Of the 124 MI

analyzed, 109 MI are associated with MIA and 15 MI are single MI (only one MI was
measured in a single MIA). Of the 109 MI associated with MIA, 101 MI contain only
glass (type1), seven MI contain glass plus one or more trapped minerals (type 2), and one
MI contain glass plus a sulfide globule (type 4) (Table 2 and Appendix Table 2). It is
important to note that 11 MI out of these 109 MI analyzed show irregular shape. H_2O
contents range from 0.20 to 0.59 wt% (average = 0.37 wt%). One MI contains only 0.13
wt% H_2O and this is interpreted to be a degassed (decrepitated?) MI or that the SIMS
analysis included both MI (glass) plus a mineral inclusion that, was not recognized during
petrographic examination. H ₂ O concentrations from this study are comparable to those
obtained in earlier studies [0.27-0.89 wt% by Rapien et al. (2003), and 0.4-0.8 wt% by
Wardell et al. (2001)].
Fluorine concentrations range from 163 to 619 ppm (average = 323 ppm) and are
generally lower than the 400-800 ppm reported by Rapien et al. (2003).
Chlorine concentrations range from 416 to 2,010 ppm (average = 1,020 ppm), a range
that is somewhat greaterthan the 500-1,000 ppm reported by Rapien et al. (2003) and
comparable to the 1,010-1,770 ppm reported by Wardell et al. (2001). MI hosted in
clinopyroxene show the highest Cl content (Fig. 7).
Sulfur contents range from 30 to 384 ppm (average = 92 ppm). MI hosted in
plagioclase always show S concentrations < 100 ppm, consistent with the absence of
sulfide globules in MI hosted in plagioclase, and in agreement with Rapien et al. (2003)
and Wardell et al. (2001), who reported S abundances of \leq 100 ppm in all MI analyzed. It
should be noted that White Island is a sulfur-rich volcano, and SO ₂ emission rates during
recent volcanic activity were relatively high (Rose et al., 1986; Wardell et al., 2001). If

595	phenocrysts formed during degassing events of the White Island volcano, it is likely that
596	MI could have recorded S degassing, and would be recognized by variations in sulfur
597	contents of MI. However, we did not observe any correlation between H_2O and S
598	contents, suggesting that other processes, in addition to degassing, likely controlled S
599	abundance in melts trapped by MI.
600	CO ₂ contents show a wide range (from 39 to 3,508 ppm), with most of the MI having
601	CO ₂ concentrations <200 ppm. It should be noted that CO ₂ -rich fumaroles were present in
602	the White Island crater during the 1982-1998 activity (Giggenbach and Matsuo, 1991;
603	Giggenbach and Sheppard, 1989; Marty and Giggenbach, 1990; Rose et al., 1986;
604	Tedesco and Toutain, 1991; Wardell et al., 2001), suggesting degassing of a CO ₂ -rich
605	volatile phase from the magma at some unknown depth.
606	For the MIA statistical analysis we have considered only MI that contain only glass
607	(type 1). Additionally, we have not included MI showing irregular shape because
608	irregularly shaped inclusions could represent reentrants, embayments or hourglass MI
609	that became fully enclosed during a later stage of their evolution (Humphreys et al.,
610	2008a; Humphreys et al., 2008b; Welsch et al., 2013). In most of the MIA, H_2O contents
611	are consistent, suggesting that measured H_2O contents are representative of the H_2O
612	content of the melt at the time of the trapping (Fig. 7). Most of the MIA show relative
613	standard deviations (RSD) of $< 24\%$, with the exception of one MIA with a somewhat
614	larger RSD of 77% (MIA-27; Table 3 and Appendix Table 2). MIA hosted in
615	orthopyroxene and plagioclase show a narrower range in H ₂ O contents relative to those
616	hosted in clinopyroxene. For MIA hosted in plagioclase, only one MI (RE-WI-29-E,
617	Table 2) shows an H ₂ O concentration (0.13 wt%) inconsistent with the other MI in the

618	same MIA (MIA-27, Table 2 and Appendix Table 2). It is worth noting that MIA-27 is an
619	azonal MIA and that the MI may have been trapped over a slightly longer period of time,
620	compared to those in zonal MIAs.
621	Fluorine shows consistent results within all MIA (Fig. 7, Table 3 and Appendix Table
622	2). All MIA show RSD < 24% for F, and several MIA show RSD < 5%. As for H ₂ O, we
623	infer that F concentrations likely represent the F concentration of the melt at the moment
624	of MI trapping.
625	Chlorine contents within all MIA from White Island are also consistent (Fig. 7),
626	suggesting that Cl contents of MI are representative of the melt from which the host
627	phenocrysts were crystallizing. Relative standard deviation for Cl is \leq 27%, with the
628	exception of one MIA that shows RSD 35% (MIA04; Table 3 and Appendix Table2).
629	Carbon dioxide concentrations were determined for 18 MIA. Ten of the MIA (3
630	hosted in clinopyroxene, 4 hosted in orthopyroxene, and 3 hosted in plagioclase), the
631	RSD was < 50%, and the average concentrations of these eleven MIA is \leq 200 ppm (Fig.
632	8 Table 3 and Appendix Table 2). Seven of the MIA show much wider variability in CO_2
633	content, with RSD of > 100%. MI in these MIA also show higher average CO_2 contents
634	compared to MIA with consistent CO_2 contents. Both the zonal and the azonal MIAs
635	show similarly large CO ₂ variability (Fig. 8).
636	Sulfur contents were determined for 26 MIA, and 22 of these show RSD of <33%
637	(Fig. 8, Table 3 and Appendix Table 2). The other 4 MIA show RSD up to 84% and all of
638	these are hosted in clinopyroxene. Sulfur concentrations are generally < 100 ppm for
639	MIA hosted in plagioclase. In one MIA (MIA15, Table2) hosted in clinopyroxene, one
640	type 4 MI (MI containing a sulfide globule, MIA15-I) shows 375 ppm S and the other

type 1 (only-glass MI) MI show S concentration as low as 50 ppm (MIA15-D),

642 suggesting that the elevated S contents are due to trapping of immiscible sulfide globules. 643 It is also likely that other MI contain sulfide globules that are either too small to resolve 644 optically, or are obscured by other features in the MI, leading to the relatively wide range 645 in S concentrations obtained by SIMS analysis. 646 In summary, 26 MIA were analyzed for H₂O, F, and Cl, and all 26 MIA generally 647 show consistent behavior for these three volatile components. Only one MI in one MIA 648 hosted in plagioclase (MIA-27) shows an H₂O concentration that is inconsistent with the 649 other MI in the MIA. This MI has probably been degassed before or during entrapment 650 because all five of the volatile species measured in this MI have concentrations that are 651 lower relative to the other MI in this MIA. In contrast to H₂O, F, and Cl, S concentrations 652 show wide variability in a few MIA, and CO₂ concentrations show wide variability in 653 many MIA (Fig. 8). It is important to note that the CO₂-H₂O systematics of MI trapped in 654 the same MIA and analyzed here fit trends that are similar to magma degassing paths 655 (Fig. 9). However, MI entrapped in the same MIA (i.e., at the same time and presumably 656 at the same depth or pressure) cannot record a degassing trend because the MIA would 657 have to have formed over a wide range of pressure, which is highly unlikely, if not 658 impossible, based on the petrographic association of the MI in the MIA.

659

660 Volatile Contents of Solchiaro MIA

As for the White Island sample, we have considered only MI containing only glass
(type 1 MI) and showing regular shape. Two MIA hosted in olivine (Table 3 and
Appendix Table 2) from Solchiaro were analyzed as part of this study. Three of the MI

664	contained in these two MIA were described previously by Esposito et al. (2011) and
665	eleven new analyses were added to this earlier dataset (Table 2 and Appendix Table 2).
666	Two MI were analyzed several times during different working sessions and in different
667	laboratories (WHOI and Virginia Tech) (Table 2 and 4). As shown in Table 3, the RSD
668	(1 sigma) of one MI (RESC2-O27-MF) that was measured four times is 21% for CO_2
669	(718, 529, 501 and 447 ppm), 27% for H_2O (0.99, 1.24, 1.18 and 1.81 wt %; Deposit
670	Item-03), 18% for F, 20% for S, 34% for Cl. It is important to note that the data from the
671	February 2011 session at WHOI are slightly inconsistent with respect to the other
672	measurements on the same MI (RESC2-O27-MF), especially for CO_2 and Cl. In
673	particular, the CO_2 concentration associated with the WHOI session is higher and H_2O , F,
674	S, and Cl are lower relative to the concentrations determined at Virginia Tech (Table 4).
675	We believe this behavior is because the analytical volume for the analysis at WHOI was
676	located closer to the MI/host interface. The different calibration curves used to calculate
677	the concentration of CO_2 cannot be the cause of this discrepancy, as is demonstrated by
678	inspection of the calibrations equations listed in Deposit Item-01. Each time the MI was
679	analyzed the SIMS spot was positioned at a different location within the MI, and
680	phenocrysts were polished to remove 1-2 μ m of material before each analytical session.
681	These two factors may explain the inconsistency of the data, if the volatiles are
682	distributed heterogeneously within the MI. The other MI that was analyzed three times
683	shows relative 1-sigma errors of 16%, 10%, 3%, 11%, and 24% for CO_2 , H_2O , F, S, and
684	Cl, respectively. These results suggest that the variability observed in some MIA, which
685	is significantly larger than the variability demonstrated by repeated analysis of the same

686 MI, is not the result of the MI being analyzed in different laboratories or during different 687 analytical sessions.

688 Of the two MIA from Solchiaro described here, one MIA contain 2 MI and one MIA 689 contains 3 MI (Table 2 and Appendix Table 2). As was the case for White Island, H_2O , F 690 and Cl contents within an MIA are consistent (Fig. 10) and show RSD < 14% for all MIA 691 (Table 3 and Appendix Table 2). S concentrations also show RSD <4% in all MIA. One

MIA shows RSD 32% and the other MIA shows RSD 18% for CO_2 .

693

694

DISCUSSION

695 The following discussion is based on the assumption that all of the MI within an MIA

696 were trapped at the *same* time, that is, under the same physical and chemical conditions.

697 Most of the MI analyzed here occur along growth zones (zonal MIA) and represent

698 clearly-defined MIA consisting of primary MI (Bodnar and Student, 2006). It is therefore

highly unlikely that the melt that was trapped in the different MI in the zonal MIA could

700 have had different volatile abundances, , unless volatiles were heterogeneously

701 distributed in the bulk melt in the vicinity of the growing crystals.

We recognize that melt embayments can develop during crystal growth and

subsequently be fully enclosed (e.g., to produce MI) as the crystal continues to grow, as

discussed in detail by Welsch et al. (2013) and by Humphreys et al. (2008a) and (2008b).

705 In particular, Humphreys et al. (2008a) state that "...Inclusions trapped during simple

rystal growth are typically euhedral (or "negative-crystal" shaped) whereas inclusions

trapped in old, corroded cores of partially dissolved crystals are typically highly

regular", suggesting that only irregularly shaped inclusions could represent reentrants,

709	embayments or hourglass MI that became fully enclosed during a later stage of their
710	evolution. While we disagree with this relatively simplistic correlation between MI shape
711	and origin (see, for example, Bodnar et al., 1989), in recognition of the observations by
712	Welsch et al. (2013) and Humphreys et al. (2008a and 2008b), we have restricted our
713	discussion to MIA containing type 1 MI (containing only glass) and showing ovoid,
714	spherical, and negative crystal shape in an attempt to exclude from the dataset any MI
715	that originated as reentrants, embayments or hourglass MI (Appendix Table 2).
716	Establishing the time required to trap MI along a growth zone or in the core of a
717	phenocryst is relevant to the interpretation of data presented here. Bodnar and Student
718	(2006) reported that the amount of time required to trap a 10- μ m MI could range from
719	$\sim 10^{-7}$ (~5 sec) to $\sim 10^3$ years, based on crystal growth rates in magmas reported by several
720	workers (Bacon, 1989; Dowty, 1980; Tomiya and Takahashi, 2005). Jambon et al. (1992)
721	reported olivine crystal growth rates ranging from 10^{-7} to 10^{-6} cm s ⁻¹ for skeletal and
722	dendritic morphology, indicating that a 10- μ m MI could be trapped in olivine in ~17
723	minutes to ~ 3 hours ($\sim 10^{-5}$ to $\sim 10^{-4}$ years).
724	We also assume here that the volatile content of the melt maintains equilibrium with
725	the surrounding PT environment during crystal growth. If the crystal is growing from a
726	volatile-saturated melt, the melt must become super-saturated during crystal growth as
727	non-volatile components are removed from the melt and incorporated into the growing
728	crystal. In the following discussion, we assume that the melt continuously maintains
729	equilibrium, i.e., remains volatile-saturated (but not super-saturated) and, thus, the
730	variability in volatile contents in MIA is not due to trapping of a volatile over-saturated

731 melt during rapid crystal growth, perhaps driven by fast emplacement of deeper, volatile-

732	rich magmas. We note, however, that if the melt does become super-saturated and MI
733	trap aliquots of the super-saturated melt, the CO2-H2O systematics of the MIA would
734	likely define a trend represented by relatively large variation of H ₂ O vs. a relatively
735	narrow range of CO ₂ , owing to the faster diffusion of H (e.g., H ₂ O and OH ⁻) relative to C
736	(e.g., CO_2 and CO_3^{2-}) in silicate melts (Zhang and Ni, 2010).
737	In this study, we found that concentrations of H ₂ O, F, and Cl are in most cases
738	consistent within a single MIA, whereas S and especially CO ₂ contents show much more
739	variability. Thus, the volatile concentrations of the majority of the MIA analyzed in this
740	study are consistent, within analytical uncertainty, and likely represent the volatile budget
741	of the melt from which the phenocrysts were precipitating. Below we discuss the low
742	H ₂ O concentration of MIA hosted in phenocrysts from White Island and consider
743	possible explanations for those MIA that do not show consistent behavior for CO ₂ .

744

745 Water content of White Island MI

746 At first glance, the low water contents (~0.37 wt.%) determined for MI from White 747 Island might be cause for concern as these values are somewhat less than would be 748 expected in arc volcano magmas, which typically range from ~1 to 6 wt% H₂O (Wallace, 749 2005). We consider whether the relatively consistent H₂O contents of MIA examined 750 here represent the H₂O content of the trapped melt, or if they could have been modified 751 after trapping and still show consistent concentrations within an MIA. It is well known 752 that various post-entrapment processes can affect the volatile concentrations of MI. For 753 instance, Gaetani et al. (2012) reported that H in MI in olivine can re-equilibrate with the 754 surrounding environment in a few hours (see Figure 2 in their study), owing to the fast

755	diffusion of H through olivine at magmatic temperatures. More recently, Bucholz et al.
756	(2013) reported that volatile-rich MI hosted in olivine undergo re-equilibration with the
757	surrounding melt in ~10 hours at 1250°C and in a few days at 1100°C. As reported above,
758	H ₂ O-loss from MI produces a CO ₂ -H ₂ O trend similar to the trend produced by magma
759	degassing. In fact, H ₂ O loss decreases the internal pressure in the MI, leading to the
760	formation or expansion of a vapor bubble, and concomitant decrease in the $\rm CO_2$
761	concentration in the melt (Bucholz et al., 2013; Gaetani et al., 2012). Similarly, Severs et
762	al. (2007) reported that, while MI hosted in quartz do not experience significant water
763	loss after 12 hours of reheating, after 63 days at 800°C the MI may lose as much as 75%
764	of the H ₂ O that was in the melt at the time of trapping. Both of these processes would
765	likely produce MIA with inconsistent H ₂ O contents, depending on the location of the MI
766	within the phenocryst (relative to the rim) and the MI size.
767	Low water content melts associated with subduction zone magmatism, such as those
768	found in this study (0.37 wt% average), are rare (Sisson and Bronto, 1998; Sisson and
769	Layne, 1993; Wallace, 2005). In order to assess whether the low water contents are
770	consistent with the magma chemistry, we performed calculations using the plagioclase-
771	melt hygrometers developed by Putirka (2005) and Lange et al. (2009). For the
772	calculations, we used the average composition of plagioclase reported by Rapien et al.
773	(2003), and average composition of White Island MI from the 1986 eruption reported by
774	Rapien et al. (2003). For the Lange et al. (2009) hygrometer, the input temperature
775	ranged from 1043°C to 1210°C, based on the two-pyroxene thermometer (Brey and
776	Köhler, 1990; Putirka, 2008) and MI homogenization temperatures (Rapien et al, 2003),
777	respectively. The average H ₂ O concentration of White Island MI from this study is 0.37

778	wt% and is consistent with results predicted by the plagioclase-melt hygrometer of
779	Putirka (2005) and Lange et al. (2009). In particular, the plagioclase-melt hygrometer of
780	Lange et al. (2009) predicts that the H_2O content of the melt would be 0.37 wt% at
781	1190°C and 200 MPa, or at 1167°C and 10 MPa. The measured low H_2O contents are
782	thus consistent with the plagioclase-silicate melt system at the temperature obtained from
783	heating experiments of MI. However, the temperature range that is consistent with an
784	H_2O content of 0.37 wt.% is significantly higher than the temperature obtained using the
785	two-pyroxene thermometer.
786	The plagioclase-melt hygrometer of Putirka (2005) predicts that the melt would
787	contain 0.37 wt% H_2O at 1088°C and 200 MPa. This temperature is close to the
788	temperature predicted by the two-pyroxene thermometer (but less than the measured MI
789	homogenization temperatures or the temperatures predicted by the model of Lange et al.
790	(2009)). The water content of White Island melts predicted by the plagioclase-silicate
791	melt hygrometer suggests that the low H_2O contents (~ 0.37 wt%) obtained are not
792	unrealistic, and the temperature and pressure conditions required for this water content
793	are within a reasonable range for the White Island system.
794	If the melt that was trapped as MI was H ₂ O saturated, the low-H ₂ O concentrations
795	indicate that the MI were trapped at low pressure (i.e., in a shallow magma chamber).
796	This is in agreement with geophysical data that indicate that the 1977 eruption at White
797	Island originated from a very shallow level (<2 km) (Clark and Otway, 1989; Houghton
798	and Nairn, 1989; Sherburn et al., 1998). In fact, at volatile saturation, the pressure
799	estimated from the volatile data from consistent MIA is \leq 32 MPa, calculated using the
800	H_2O-CO_2 -silicate melt solubility model by Papale et al. (2006), with FeO = 0.8 x FeO _{tot} ,

801	1100 °C, and the average MI major element composition reported by Rapien et al. (2003).
802	Inferred depths of formation based on the calculated pressures are in agreement with
803	geophysical data (Clark and Cole, 1989). Considering the MIA showing the least
804	variability for CO ₂ (MIA-33, RSD 7%), the calculated pressures of formation range from
805	21.5 to 25.0 MPa using the Papale et al. model and the parameters listed above. We thus
806	conclude that the H_2O concentrations of White island MI, while less than those of most
807	arc-related magmas, are consistent with other geochemical and geophysical data and
808	representative of the melt at the moment of trapping.

810 Why does the concentration of carbon dioxide show large variability?

811 Of the five volatile components that were measured, the one that showed the least

812 consistency was CO₂, and the variability is most pronounced for MIA hosted in

813 plagioclase. Various processes may be responsible for the observed CO₂ variability

814 including (1) Carbon contamination of the sample, (2) MI within an MIA trapped a

volatile saturated melt over a wide pressure (depth) range, (3) CO₂ was heterogeneously

816 distributed in the melt before the MIA was trapped, (4) Post entrapment diffusive re-

817 equilibration, (5) Post-entrapment crystallization on the MI/host interface, and (6)

818 heterogeneous distribution of CO₂ in the MI. Below we consider each of these possible

819 explanations.

820 Carbon contamination

821 One possible explanation of the variable CO_2 concentrations of MI within an MIA is 822 carbon contamination on the surface of the sample or other analytical errors, as suggested

823 by the large standard deviations of some CO_2 analyses. In some cases, the CO_2
824	concentration significantly decreases from the beginning to the end of the analysis,
825	indicating that the near-surface material contains more CO ₂ (or carbon) compared to
826	material that is deeper beneath the surface. As stated in the Analytical Methods section,
827	we discarded those analyses showing real time C heterogeneity, possibly related to
828	particles on the surface of the sample. To test the likelihood that C contamination is the
829	cause of the widely variable CO ₂ contents observed for some MIA, we examined the
830	variability in CO ₂ contents of those MI that were analyzed multiple times (with additional
831	polishing between analyses to remove more surface material for some MI) (Fig. 11).
832	Only one MI out of 24 that were analyzed two or more times showed inconsistent CO_2
833	concentrations, suggesting that C contamination is not the cause of the relatively
834	widespread variability in CO ₂ concentrations observed in some MIA. As a further test,
835	we performed depth profiles to test for homogeneity of CO_2 with depth in an MI. As
836	shown on Fig. 12, the initial (shallow) part of the CO ₂ profile shows erratic behavior, and
837	is mainly characterized by elevated CO ₂ contents. It is important to note that this
838	anomalous behavior is more significant for MI hosted in plagioclase, which is consistent
839	with the more pronounced variability of CO_2 in MIA hosted in plagioclase. CO_2 depth
840	profiling of glass standards and MI hosted in pyroxene and olivine does not show such
841	strong enrichment of CO_2 in the initial (shallow) near-surface portion of the sample (Fig.
842	12). In plagioclase, we noticed that the erratic CO ₂ profile sometimes persists to $\sim 2 \ \mu m$
843	below the sample surface. Note that the depth at which the contamination signal
844	disappears does not necessarily correspond to the true depth in the case where C
845	contamination is due to particles residing on the sample surface. In fact, the sputtering
846	rate on C-rich particles can be as much as 10 times slower than the sputtering rate on

847	silicate glass. As such, the carbon signal will continue as sputtering of the underlying
848	silicate glass begins and continues. Moreover, the initial roughness of the sample surface
849	controls depth resolution using SIMS (Hunter, 2009). If the C contamination is mainly
850	due to sample preparation, it is remarkable that MI in plagioclase crystals are more
851	affected than MI in other host minerals. In fact, plagioclase, clinopyroxene,
852	orthopyroxene, and olivine were all mounted in the same indium mounts and the sample
853	preparation procedures were the same for each of these host phases. Also, glass standards
854	were mounted, prepared, and cleaned using the same method as for the last mount
855	analyzed for this study.
856	To test if carbon contamination is introduced by the sample preparation method used
857	at Virginia Tech, as collected (unprepared) crystals from White Island were prepared and
858	analyzed by coauthor Shimizu at WHOI. The crystals were mounted, polished and
859	analyzed following the WHOI procedure for volatile analysis of MI (Table 5). A depth
860	profile obtained on one of the MI (analyses 860210-MI-8 and MI-8-2 in MI-8) analyzed
861	at WHOI shows that the CO ₂ content of the MI obtained from the early (the shallowest
862	glass) part of the depth profile was 608 ppm, but the concentration obtained from the later
863	(the deepest glass) part of the depth profile in the same MI was 282 ppm (Deposit Item-
864	04). This variation in CO_2 content, observed in a single MI, is similar to the range in CO_2
865	content observed in other White Island MI. It is important to note that analyses 860210-
866	MI-8 and MI8-2 were done on the same spot and the spot was close to the MI/host
867	interface. The results obtained for 860210-MI-8 and MI8-2 are consistent with the
868	interpretation that C contamination is present at the MI/host interface, or that the glass
869	near the interface is naturally enriched in CO ₂ , but it is not possible to determine which of

these causes is more likely. During this analytical session at WHOI, only a single MI
from each MIA was analyzed, and MI were hosted in clinopyroxene or in orthopyroxene

- but not in plagioclase.
- 873 Trapping of volatile-saturated melt at various pressure

874 Various studies have invoked entrapment of MI over a wide range of pressure as a

result of sinking of crystals in a magma chamber (Anderson et al., 2000), or phenocrysts

growing at different depths in the magma plumbing system during the ascent of magma

- 877 batches (Métrich and Wallace, 2008 and references therein). The individual MI in a zonal
- 878 MIA studied here could not have been trapped over a significant range of pressure

because petrographic evidence documents that the MI were all trapped simultaneously.

880 Moreover, the homogeneous major element compositions of MI and the unzoned nature

- 881 of the clinopyroxenes do not support entrapment over a wide range of pressure because
- the composition of the melt and the phenocryst should reflect these changing P(T) growth
- conditions, and the melt and crystal compositions do not vary.

884 *Heterogeneous distribution of carbon dioxide in the bulk melt*

885 Another possible explanation for the range in CO₂ concentration is that the melt

surrounding the growing phenocryst is compositionally inhomogeneous. A melt in which

887 CO₂ is heterogeneously distributed could possibly be produced if a CO₂-rich magma

rapidly ascended to shallow depth, generating a CO₂ over-saturated melt. This process

- could lead to a wide range in CO_2 contents of the MI within an MIA in this case the
- 890 lowest CO₂ concentration would most closely represent the true composition of the

891 original melt at the depth of MI trapping, with all higher values representing the CO₂-

892 oversaturated melt. Studies on dynamics of bubble formation suggest that overpressure

893	required for bubble nucleation varies with melt composition (Mangan et al., 2004;
894	Sparks, 1978). In particular, Mangan et al. (2004) argued that supersaturation pressures
895	are much lower for dacitic melts (35 ± 5 MPa) than for rhyolitic melts (up to 350 MPa) in
896	crystal-free melts that do not have solid phases to serve as sites of bubble nucleation. The
897	composition of White Island MI considered in this study is dacitic and contained crystals
898	at the time of MI formation, and likely the melt was not.
899	Another possibility to explain the CO ₂ variability in an MIA is heterogeneous
900	distribution of CO ₂ within individual MI. As noted by Steele-MacInnis et al. (2011), if an
901	H ₂ O-CO ₂ -saturated melt inclusion experiences post-entrapment crystallization (PEC) on
902	the walls, CO_2 (and little H_2O) will be lost from the melt as crystallization proceeds.
903	Because crystallization necessarily occurs at the melt/crystal interface, a CO ₂ -enriched
904	zone may form at the interface if the CO_2 cannot diffuse into the vapor bubble before the
905	MI is quenched. The presence of a volatile-enriched rim in MI is supported by results
906	from Le Voyer et al. (2012), who analyzed volatile concentrations of MI by nano-SIMS
907	and observed that MI are zoned with respect to H and F abundances. Similarly, Helo et
908	al. (2011) reported that some MI in plagioclase show CO ₂ concentrations that vary with
909	depth in the MI (see Supplementary Figure S5 of their study). In addition, Mormone et al.
910	(2011) mapped the CO_2 and H_2O distribution in MI using Focal-Plane-Array applied to
911	Fourier Transform Infrared spectroscopy and documented that H ₂ O and CO ₂ can be
912	heterogeneously distributed within MI (see CO ₂ distribution close to the bubble in their
913	Fig. 4c). However, Mormone et al. (2011) argue that the depletion of CO_2 and H_2O at the
914	rim is an artifact of the MI geometry changing at the edge. In the present study, depth
915	profiling of unexposed MI in plagioclase by SIMS shows that CO ₂ is strongly enriched

40

916	near the host/MI interface (Fig. 13). The enrichment at host/MI interface can be due to C
917	contamination, as discussed above. But, because we have not exposed the MI on the
918	surface, we can rule out C contamination unless sub-microscopic fractures extend from
919	the surface to the MI at depth and provide conduits for C to enter the sample.
920	Results presented above suggest that the CO ₂ content determined for an MI may
921	depend on the specific location within the MI that is analyzed. For instance, if during
922	polishing the exposed surface that is produced for SIMS analysis is close to the
923	MI/crystal interface that was present before the host was removed to expose the MI, the
924	analysis would be conducted on glass that was close to the host/MI interface before the
925	host was removed by polishing. In this case, the CO ₂ content could be higher than that
926	which would be obtained if more MI material had been removed during polishing to
927	expose glass located more distant from the MI/crystal interface. The measured CO_2
928	concentration may also depend on the MI morphology, as an MI with irregular walls
929	could result (after polishing) in a flat glass with variably volatile-enriched portions of the
930	MI exposed at the surface. It is important to note that FTIR may provide better results
931	compared to SIMS analysis if the CO ₂ variability is due to heterogeneous distribution
932	within MI, because FTIR samples a larger portion of the total MI in most cases.
933	Post-entrapment diffusive re-equilibration

Another possible explanation for the highly variable CO₂ concentrations recorded by

935 some MIA is post-entrapment re-equilibration involving C diffusion into or out of the

bubble-free MI. However, we are unaware of any studies that document that CO₂

- 937 concentrations of MI can be affected by diffusion. [We acknowledge, however, that the
- 938 CO₂ content of the glass phase in the MI may be affected by H diffusion, as shown by

939	Gaetani et al. (2012)] Conversely, several studies have documented an inverse correlation
940	between crystallization indicator and CO ₂ concentration based on MI (Benjamin et al.,
941	2007; Esposito et al., 2011; Wade et al., 2006; Wallace et al., 1999), suggesting that in
942	these studies CO ₂ has not diffused into or out of the MI following trapping.
943	Summary of Uncertainties Associated with Volatile Analysis of MI using Secondary
944	Ion Mass Spectrometry
945	In this study we have measured the concentrations of CO ₂ , H ₂ O, Cl, S, and F in 29 Melt
946	Inclusion Assemblages (MIA) from the White Island volcano in New Zealand and from
947	the Solchiaro eruption on the Island of Procida (Italy) by Secondary Ion Mass
948	Spectrometry (SIMS). All of the MI within a given MIA were trapped at the same time,
949	and thus all (presumably) trapped a melt of the same composition and at the same PT
950	conditions. Thus, because all of the MI within the MIA have the same volatile
951	concentrations, and any apparent variations in volatile abundances within the MIA
952	represent the uncertainty in volatile determination. Moreover, because the samples were
953	prepared and analyses were conducted in two different laboratories, with similar results,
954	variations in volatile abundances obtained in this study cannot be related to within-
955	laboratory procedures. As such, we suggest that the uncertainties obtained in this study
956	are generally applicable to all analyses of volatiles in MI conducted by SIMS, and thus
957	represent the precision with which volatile contents can be estimated. Below we
958	summarize these uncertainties.
959	• The Relative Standard Deviation (RSD) for H_2O varies from 0% to 23% with one
960	outlier at 77%, with a median RSD of 8% and mean of 13% (Fig. 14). The 1
961	sigma variation in the slope of calibration curves for H_2O is 20%. Thus, the

42

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4574

962	variation in H ₂ O concentration obtained by SIMS is comparable to the variation
963	in calibration curves, and most of the uncertainty is likely related to
964	instrumental fluctuations. These data suggest that the H_2O concentration of MI
965	determined by SIMS has an uncertainty of $\sim 10-15\%$.
966	•The Relative Standard Deviation (RSD) for F varies from 1% to 23%, with a
967	median RSD of 8% and mean of ~10% (Fig. 14). The 1-sigma variation in the
968	slope of calibration curves for F is 12%. Thus, the variation in F concentration
969	obtained by SIMS is comparable to the variation in calibration curves, and most
970	of the uncertainty is likely related to instrumental fluctuations. These data
971	suggest that, in most of the cases, the F concentration of MI determined by
972	SIMS has an uncertainty ~10%.
973	•The Relative Standard Deviation (RSD) for Cl varies from 1% to 35%, with a
974	median RSD of 10% and mean of 13% (Fig. 14). The 1 sigma variation in the
975	slope of calibration curves for Cl is $\sim 11\%$. Thus, the variation in Cl
976	concentration obtained by SIMS is comparable to the variation in calibration
977	curves, and most of the uncertainty is likely related to instrumental fluctuations.
978	These data suggest that , in most of the cases, the Cl concentration of MI
979	determined by SIMS has an uncertainty of $\sim 10-15\%$.
980	•The Relative Standard Deviation (RSD) for S varies from \sim 0% to 84%, with a
981	median RSD of 16% and mean of \sim 22% (Fig. 14). The 1 sigma variation in the
982	slope of calibration curves for S is ~9%. Thus, unlike for H_2O , Cl and F, the
983	variation in S concentration obtained by SIMS is significantly larger than the
984	variation in calibration curves, and some of the uncertainty is likely related to

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4574

985	non-instrumental factors, possibly including the trapping of submicroscopic
986	sulfide blebs in the MI or heterogeneous distribution of S within the MI. These
987	data suggest that the S concentration of MI determined by SIMS has an
988	uncertainty of ~15-25%.
989	•The Relative Standard Deviation (RSD) for CO ₂ shows much more variation than
990	the other four volatile components considered, and ranges from 7% to 137%,
991	with a median RSD of 52% and mean of 65% (Fig. 14). The 1 sigma variation
992	in the slope of calibration curves for CO_2 is ~12%. Thus, similar to S, the
993	variation in CO ₂ concentration obtained by SIMS is significantly larger than the
994	variation in calibration curves, and some of the uncertainty is likely related to
995	non-instrumental factors, possibly including the heterogeneous distribution of
996	CO_2 within the MI. These data suggest that the CO_2 concentration of MI
997	determined by SIMS has an uncertainty of ~60%.
998	SUMMARY
999	Analysis of groups of melt inclusions that were all trapped at the same time (Melt

Inclusion Assemblages, or MIA) and at the same pressure (depth) in an evolving
magmatic system show consistent results for H₂O, F, Cl and, to a lesser extent, S

1002 contents, suggesting that the MI trapped a representative sample of the melt that the host

1003 crystal was growing from and preserved the volatile composition during continued

1004 phenocryst growth, eventual eruption onto the surface, and quenching. Conversely, CO₂

- 1005 contents show much more variability within MIA, although many MIA do show
- 1006 relatively consistent results for CO₂. Several processes could potentially lead to the
- 1007 observed CO₂ variability in MIA, but it is not possible to determine with certainty which

1008	process or processes are responsible. And, although the results presented here do not
1009	identify the cause of the variability, it is clear that the measured CO ₂ contents of MI that
1010	were all trapped at the same time sometimes show large variability. Importantly, CO ₂ -
1011	H ₂ O systematics of MIA that show variability in CO ₂ often define trends that are similar
1012	to trends that would be produced by an ascending, volatile-saturated magma undergoing
1013	degassing (Fig. 9).
1014	It is critical that workers study MIA whenever possible to test the reliability of MI. In
1015	fact, if bubble-free MI within a zonal MIA all record the same volatile concentrations,

1016 strong and defensible evidence is provided that the measured volatile concentration is

1017 reliable and represents the concentration in the melt that was trapped at depth. If CO₂ and

1018 H₂O concentrations in individual MIA define a degassing path, one can be reasonably

1019 confident that the volatile trend does indeed reflect a degassing path. Conversely, a CO₂

1020 vs. H₂O trend based on analyses of individual MI from numerous, randomly-selected

1021 phenocrysts with an unknown temporal or genetic relationship between MI may represent

1022 trapping along a degassing path, but proving such may be difficult in the absence of other

1023 supporting geochemical data.

We suggest that the uncertainties estimated in this study represent the precision of volatile determinations of MI by SIMS under normal operating conditions. As such, any trends or geochemical interpretations based on variations with magnitudes that are equal to, or less than, these uncertainties should be viewed with caution, as the variability may simply represent the natural variability associated with instrumental factors (including location of the primary beam within the MI), as well as the characteristics of the MI

45

1030 being analyzed, such as shape and the proximity of volume being sampled to the MI/host

1031 interface.

1032

1033 ACKNOWLEDGEMENTS

- 1034 The authors would like to thank J. D. Rimstidt, R. J. Tracy, B. De Vivo, A. Lima, and M.
- 1035 Steele-McInnis for valuable discussions and comments that helped to improve this
- 1036 manuscript. We sincerely thank R. Lange for helping with calculations using the
- 1037 plagioclase-silicate melt hygrometer. In addition, we thank P. Wallace, A. Costa and
- 1038 other two anonymous reviewers to have greatly improved this manuscript. R. Esposito
- 1039 thanks N. Jackson for helping with statistical analysis to calculate SIMS calibration
- 1040 curves. This study has been supported by the National Science Foundation under grant
- 1041 no. EAR-1019770.

1042

REFERENCES CITED

1043 Alessio, M., Allegri, L., Azzi, C., Calderoni, G., Cortesi, C., Improta, S., and Petrone, V. (1989) ¹⁴C tephrochronology with different fractions of Paleosol humic matter at 1044 Procida Island, Italy. Radiocarbon, 31, 664-671. 1045 1046 Anderson, A.T., and Brown, G.G. (1993) CO 2 contents and formation pressures of some 1047 Kilauean melt inclusions. American Mineralogist, 78(7-8), 794-803. 1048 Anderson, A.T., Davis, A.M., and Lu, F.Q. (2000) Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. Journal of 1049 1050 Petrology, 41(3), 449-473. 1051 Anderson, A.T., Newman, S., Williams, S.N., Druitt, T.H., Skirius, C., and Stolper, E. 1052 (1989) H2O, CO2, CI, and gas in Plinian and ash-flow Bishop rhyolite. Geology, 1053 17(3), 221-225. 1054 Asimow, P.D., and Ghiorso, M.S. (1998) Algorithmic modifications extending MELTS 1055 to calculate subsolidus phase relations. American Mineralogist, 83(9-10), 1127-1056 1132. 1057 Audétat, A., and Lowenstern, J.B. (2014) 13.6 - Melt Inclusions. In H.D. Holland, and 1058 K.K. Turekian, Eds. Treatise on Geochemistry (Second Edition), p. 143-173. 1059 Elsevier, Oxford.

1060	Bacon, C.R. (1989) Crystallization of accessory phases in magmas by local saturation
1061	adjacent to phenocrysts. Geochimica Et Cosmochimica Acta, 53(5), 1055-1066.
1062	Baker, D. (2008) The fidelity of melt inclusions as records of melt composition.
1063	Contributions to Mineralogy and Petrology, 156(3), 377-395.
1064	Benjamin, E.R., Plank, T., Wade, J.A., Kelley, K.A., Hauri, E.H., and Alvarado, G.E.
1065	(2007) High water contents in basaltic magmas from Irazu Volcano, Costa Rica.
1066	Journal of Volcanology and Geothermal Research, 168(1-4), 68-92.
1067	Bodnar, R.J. (2003) Introduction to fluid inclusions. In I. Samson, A. Anderson, and D.
1068	Marshall, Eds. Fluid Inclusions: Analysis and Interpretation, Short Course, p. 1-8.
1069	Mineralogical Association of Canada.
1070	Bodnar, R.J., Binns, P.R., and Hall, D.L. (1989) Synthetic fluid inclusions - VI.
1071	Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz
1072	at one atmosphere confining pressure. Journal of Metamorphic Geology, 7(2),
1073	229-242.
1074	Bodnar, R.J., and Student, J.J. (2006) Melt inclusions in plutonic rocks: Petrography and
1075	microthermometry. Melt Inclusions in Plutonic Rocks, 36(Short Course), 1-25.
1076	Brey, G.P., and Köhler, T. (1990) Geothermobarometry in Four-phase Lherzolites II.
1077	New Thermobarometers, and Practical Assessment of Existing
1078	Thermobarometers. Journal of Petrology, 31(6), 1353-1378.
1079	Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N. (2013) Post-entrapment
1080	modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions.
1081	Earth and Planetary Science Letters, 374(0), 145-155.
1082	Cecchetti, A., Fulignati, P., Marianelli, P., Proto, N., Sbrana, A. (2001) The feeding
1083	system of Campi Flegrei. Insights from melt and fluid inclusions on Ignimbrite
1084	Campana, Solchiaro and Minopoli eruptions. GNV-INGV Meeting, Abstracts vol,
1085	p. 190–191, Rome, Italy.
1086	Clark, R.H., and Cole, J.W. (1989) Volcanic monitoring and surveillance at White Island
1087	before the 1976-82 eruption sequence. In B.F. Houghton, and I.A. Nairn, Eds.
1088	New Zealand Geological Survey, Wellington.
1089	Clark, R.H., and Otway, P.M. (1989) Deformation monitoring associated with the 1976–
1090	82 White Island eruptive sequence. In B.F. Houghton, and I.A. Nairn, Eds. The
1091	1976–82 Eruption Sequence at White Island Volcano (Whakaari), Bay of Plenty,
1092	New Zealand, 103, p. 69-84. New Zealand Geological Survey Bulletin.
1093	Cole, J.W., Thordarson, T., and Burt, R.M. (2000) Magma Origin and Evolution of White
1094	Island (Whakaari) Volcano, Bay of Plenty, New Zealand. Journal of Petrology,
1095	41(6), 867-895.
1096	D'Antonio, M., Civetta, L., and Di Girolamo, P. (1999) Mantle source heterogeneity in
1097	the Campanian Region (South Italy) as inferred from geochemical and isotopic
1098	features of mafic volcanic rocks with shoshonitic affinity Mineralogy and
1099	Petrology 67, 163–192.
1100	Danyushevsky, L.V., Leslie, R.A.J., Crawford, A.J., Durance, P., Niu, Y., Herzberg, C.,
1101	and Wilson, M. (2004) Melt inclusions in primitive olivine phenocrysts; the role
1102	of localized reaction processes in the origin of anomalous compositions. Journal
1103	of Petrology, 45(12), 2531-2553.
1104	Danyushevsky, L.V., McNeill, A.W., and Sobolev, A.V. (2002) Experimental and
1105	petrological studies of melt inclusions in phenocrysts from mantle-derived

1106	magmas: an overview of techniques, advantages and complications. Chemical
1107	Geology, 183(1-4), 5-24.
1108	De Astis, G., Piochi, M., and Pappalardo, L. (2004) Procida Volcanic History: new
1109	insights in the evolution of the Phlegraean Volcanic District (Campania, Italy).
1110	Bulletin of Volcanology, 66, 622-641.
1111	De Vivo, B., and Bodnar, R.J. (2003) Melt inclusions in volcanic systems. Elsevier
1112	Sciences, Amsterdam.
1113	Di Girolamo, P., Ghiara, M.R., Lirer, Munno, R., Rolandi, G., and Stanzione, D. (1984)
1114	Vulcanologia e petrologia dei Campi Flegreei. Volcanology and petrology of
1115	Phlegraean Fields. Bollettino della Società Geologica Italiana 103, 349-413.
1116	Dowty, E. (1980) Crystal growth and nucleation theory and the numerical simulation of
1117	igneous crystallization. In R.B. Hargraves, Ed. Princeton Univ. Press, Princeton.
1118	Esposito, R., Bodnar, R.J., Danyushevsky, L., De Vivo, B., Fedele, L., Hunter, J., Lima,
1119	A., and Shimizu, N. (2011) Volatile Evolution of Magma Associated with the
1120	Solchiaro Eruption in the Phlegrean Volcanic District (Italy). Journal of
1121	Petrology, 52(12), 2431-2460.
1122	Faure, F., and Schiano, P. (2005) Experimental investigation of equilibration conditions
1123	during forsterite growth and melt inclusion formation. Earth and Planetary
1124	Science Letters, 236(3–4), 882-898.
1125	Gaetani, G.A., O'Leary, J.A., Shimizu, N., Bucholz, C.E., and Newville, M. (2012)
1126	Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt
1127	inclusions. Geology, 40(10), 915-918.
1128	Gaetani, G.A., and Watson, E.B. (2002) Modeling the major-element evolution of
1129	olivine-hosted melt inclusions. Chemical Geology, 183(1–4), 25-41.
1130	Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass transfer in magmatic processes IV.
1131	A revised and internally consistent thermodynamic model for the interpolation
1132	and extrapolation of liquid-solid equilibria in magmatic systems at elevated
1133	temperatures and pressures. Contributions to Mineralogy and Petrology, 119(2-3),
1134	197-212.
1135	Giggenbach, W.F., and Matsuo, S. (1991) Evaluation of results from Second and Third
1136	IAVCEI Field Workshops on Volcanic Gases. Mt Usu, Japan, and White Island.
1137	New Zealand, Applied Geochemistry, 6(2), 125-141.
1138	Giggenbach, W.F., and Sheppard, D.S. (1989) Variations in the temperature and
1139	chemistry of White Island fumarole discharges 1972–1985. In B.F. Houghton, and
1140	I.A. Nairn, Eds. The 1976–82 Eruption Sequence at White Island Volcano
1141	(Whakaari), Bay of Plenty, New Zealand, 103, p. 119-126, Rotorua.
1142	Goldstein D.J. and Reynolds D.C. (1994) Systematics of fluid inclusions in diagenetic
1143	minerals SEPM Short Course Notes 31 199
1144	Graham LJ and Cole JW (1991) Petrogenesis of andesites and dacites of White Island
1145	volcano Bay of Plenty New Zealand in the light of new geochemical and
1146	isotopic data New Zealand Journal of Geology and Geophysics 34(3) 303-315
1147	Graham LI Cole JW Briggs R M Gamble IA and Smith JEM (1995) Petrology
1148	and netrogenesis of volcanic rocks from the Tauno Volcanic Zone: a review
1149	Iournal of Volcanology and Geothermal Research 68(1–3) 59-87
1150	Hauri E (2002) SIMS analysis of volatiles in silicate classes 2 isotones and abundances
1151	in Hawaiian melt inclusions Chemical Geology 183(1-4) 115-141

1152	Helo, C., Longpre, MA., Shimizu, N., Clague, D.A., and Stix, J. (2011) Explosive
1153	eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geosci, 4(4),
1154	260-263.
1155	Houghton, B.F., and Nairn, I.A. (1989) A model for the 1976–1982 phreatomagmatic and
1156	strombolian eruption sequence at White Island volcano, New Zealand. In B.F.
1157	Houghton, and I.A. Nairn, Eds. The 1976-82 Eruption Sequence at White Island
1158	volcano (Whakaari), Bay of Plenty, New Zealand, 103, p. 127-136. New Zealand
1159	Geological Survey Bulletin.
1160	Humphreys, M.C.S., Blundy, J.D., and Sparks, R.S.J. (2008a) Shallow-level
1161	decompression crystallisation and deep magma supply at Shiveluch Volcano.
1162	Contributions to Mineralogy and Petrology, 155(1), 45-61.
1163	Humphreys, M.C.S., Menand, T., Blundy, J.D., and Klimm, K. (2008b) Magma ascent
1164	rates in explosive eruptions: Constraints from H2O diffusion in melt inclusions.
1165	Earth and Planetary Science Letters, 270(1–2), 25-40.
1166	Hunter, J.L. (2009) Improving Depth Profile Measurements of Natural Materials:
1167	Lessons Learned from Electronic Materials Depth-Profiling. In M. Fayek, Ed.
1168	Secondary Ion Mass Spectrometry in the Earth Sciences:
1169	Gleaning the Big Picture from a Small Spot, 41, p. 133-148. Mineralogical Association of
1170	Canada, Toronto.
1171	Isacks, B., Oliver, J., and Sykes, L.R. (1968) Seismology and the new global tectonics.
1172	Journal of Geophysical Research, 73(18), 5855-5899.
1173	Jambon, A., Lussiez, P., Clocchiatti, R., Weisz, J., and Hernandez, J. (1992) Olivine
1174	Growth-Rates in a Tholeiitic Basalt - an Experimental-Study of Melt Inclusions in
1175	Plagioclase. Chemical Geology, 96(3-4), 277-287.
1176	Kamenetsky, V.S., Pompilio, M., Métrich, N., Sobolev, A.V., Kuzmin, D.V., and
1177	Thomas, R. (2007) Arrival of extremely volatile-rich high-Mg magmas changes
1178	explosivity of Mount Etna. Geology, 35(3), 255-258.
1179	Kent, A.J.R. (2008) Melt inclusions in basaltic and related volcanic rocks. In K.D.
1180	Putirka, and F.J. Tepley, III, Eds. MInerals, Inclusions and Volcanic Processes,
1181	69, p. 273-331. The Mineralogical Society of America.
1182	Kress, V.C., and Ghiorso, M.S. (2004) Thermodynamic modeling of post-entrapment
1183	crystallization in igneous phases. Journal of Volcanology and Geothermal
1184	Research, 137(4), 247-260.
1185	Lange, R.A., Frey, H.M., and Hector, J. (2009) A thermodynamic model for the
1186	plagioclase-liquid hygrometer/thermometer. American Mineralogist, 94(4), 494-
1187	506.
1188	Le Voyer, M., Newcombe, M., Stolper, E., and Eiler, J.M. (2012) The nanoSIMS as a
1189	Tool to Study Zonation Around/in Melt Inclusions. Mineralogical Magazine,
1190	76(6), 1984.
1191	Lirer, L., Rolandi, G., and Rubin, M. (1991) ¹⁴ C age of the "Museum Breccia" (Campi
1192	Flegrei) and its relevance for the origin of the Campanian Ignimbrite. Journal of
1193	Volcanology and Geothermal Research, 48(1-2), 223-227.
1194	Lowenstern, J.B. (1995) Applications of silicate-melt inclusions to the study of magmatic
1195	volatiles. Short Course Handbook, 23, 71-99.

1196	Lowenstern, J.B., and Pitcher, B.W. (2013) Analysis of H2O in silicate glass using
1197	attenuated total reflectance (ATR) micro-FTIR spectroscopy. American
1198	Mineralogist, 98(10), 1660-1668.
1199	Luhr, J. (2001) Glass inclusions and melt volatile contents at Paricutin Volcano, Mexico.
1200	Contributions to Mineralogy and Petrology, 142(3), 261-283.
1201	Mangan, M., Mastin, L., and Sisson, T. (2004) Gas evolution in eruptive conduits:
1202	combining insights from high temperature and pressure decompression
1203	experiments with steady-state flow modeling. Journal of Volcanology and
1204	Geothermal Research, $129(1-3)$, 23-36.
1205	Marty, B., and Giggenbach, W.F. (1990) Major and Rare Gases at White Island Volcano,
1206	New Zealand: Origin and Flux of Volatiles. Geophysical Research Letters, $1/(3)$,
1207	247-250.
1208	Metrich, N., and Wallace, P.J. (2008) Volatile abundances in basaltic magmas and their
1209	Edg Minerala Inclusions and Valagnia Processes (0, n. 262, 402, The
1210	Eds. Minerals, inclusions and voicanic Processes, 69, p. 363-402. The
1211	Maera L. Especite P. Cozel E. Typky P. Welloss P. and Bodner P. I. (2012)
1212	Moole, L., Esposito, K., Gazel, E., Tuolly, K., Wallace, P., and Boullai, K.J. (2013) Howaiian molt inclusion "shrinkage hubbles" contain dance CO. yanar
1213	Individual mentinclusion similage bubbles contain dense CO_2 vapor.
1214	Passarah on Eluid Indusions (ECROEL XXII) Abstract Rook, p. 100,200
1213	Antolyo, Turkov
1210	Allalya, Turkey. Mormona A. Diachi M. Ballatraccia E. Da Actis G. Maratti P. Dalla Vantura G.
1217	Cavallo A and Mangiacanra A (2011) A CO, rich magma source beneath the
1210	Department Volcanic District (Southern Italy): Evidence from a melt inclusion
1217	study. Chemical Geology, 287(1-2), 66-80
1220	Newman S and Lowenstern I.B. (2002) VolatileCalc: a silicate melt-H ₂ O ₂ CO ₂ solution
1221	model written in Visual Basic for Excel Computers & Geosciences 28(5) 597-
1222	604
1223	Papale P Moretti R and Barbato D (2006) The compositional dependence of the
1225	saturation surface of $H_2O + CO_2$ fluids in silicate melts. Chemical Geology
1226	229(1-3) 78-95
1227	Peppard BT Steele IM Davis AM Wallace PJ and Anderson AT (2001)
1228	Zoned guartz phenocrysts from the rhyolitic Bishop Tuff. American Mineralogist.
1229	86(9), 1034-1052.
1230	Putirka, K.D. (2005) Igneous thermometers and barometers based on plagioclase + liquid
1231	equilibria: Tests of some existing models and new calibrations. American
1232	Mineralogist, 90(2-3), 336-346.
1233	(2008) Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy
1234	and Geochemistry, 69(1), 61-120.
1235	Rapien, M.H. (1998) Geochemical Evolution at White Island, New Zealand. department
1236	of Geosciences, Master's, p. 59. Virginia Tech, Blacksburg, VA.
1237	Rapien, M.H., Bodnar, R.J., Simmons, S.F., Szabo, C., and Sutton, S.R. (2003) The
1238	embryonic porphyry copper system at White Island, New Zealand. Society of
1239	Economic Geologists, Special Publication 10, 2003, p. 41-59, 10, 41-59.

1240	Roberge, J., Wallace, P.J., and Kent, A.J.R. (2013) Magmatic processes in the Bishop
1241	Tuff rhyolitic magma based on trace elements in melt inclusions and pumice
1242	matrix glass. Contributions to Mineralogy and Petrology, 165(2), 237-257.
1243	Roedder, E. (1979) Origin and significance of magmatic inclusions. Bulletin de
1244	Mineralogie, 102(5-6, Mineraux et Minerais), 487-510.
1245	Rose, W.I., Chuan, R.L., Giggenbach, W.F., and Symonds, R.B. (1986) Rates of sulphur
1246	dioxide and particle emissions from White Island volcano, New Zealand, and an
1247	estimate of the total flux of major gaseous species. Bulletin of Volcanology,
1248	48(4), 181-188.
1249	Schiffbauer, J.D., and Xiao, S. (2009) Novel application of focused ion beam electron
1250	microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures:
1251	A new view of complexity in early Eukaryotic organisms. PALAIOS, 24(9), 616-
1252	626.
1253	Schiffbauer, J.D., and Xiao, S. (2011) Paleobiological Applications of Focused Ion Beam
1254	Electron Microscopy (FIB-EM): An Ultrastructural Approach to the (Micro)Fossil
1255	Record
1256	Quantifying the Evolution of Early Life. In M. Laflamme, J.D. Schiffbauer, and S.Q.
1257	Dornbos, Eds, 36, p. 321-354. Springer Netherlands.
1258	Severs, M.J., Azbej, T., Thomas, J.B., Mandeville, C.W., and Bodnar, R.J. (2007)
1259	Experimental determination of H2O loss from melt inclusions during laboratory
1260	heating: Evidence from Raman spectroscopy. Chemical Geology, 237(3–4), 358-
1261	371.
1262	Severs, M.J., Beard, J.S., Fedele, L., Hanchar, J.M., Mutchler, S.R., and Bodnar, R.J.
1263	(2009) Partitioning behavior of trace elements between dacitic melt and
1264	plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS
1265	analysis of silicate melt inclusions. Geochimica Et Cosmochimica Acta, 73(7),
1266	2123-2141.
1267	Sherburn, S., Scott, B.J., Nishi, Y., and Sugihara, M. (1998) Seismicity at White Island
1268	volcano, New Zealand: a revised classification and inferences about source
1269	mechanism. Journal of Volcanology and Geothermal Research, 83(3–4), 287-312.
1270	Sisson, T.W., and Bronto, S. (1998) Evidence for pressure-release melting beneath
1271	magmatic arcs from basalt at Galunggung, Indonesia. Nature, 391(6670), 883-
1272	886.
1273	Sisson, T.W., and Lavne, G.D. (1993) H2O in basalt and basaltic andesite glass
1274	inclusions from four subduction-related volcanoes. Earth and Planetary Science
1275	Letters, 117(3–4), 619-635.
1276	Sobolev, A.V., and Kostyuk, V.P. (1976) Magmatic crystallization based on study of
1277	melt inclusions. Fluid inclusion research, 9, 182-253.
1278	Sparks, R.S.J. (1978) The dynamics of bubble formation and growth in magmas: A
1279	review and analysis. Journal of Volcanology and Geothermal Research, 3(1–2), 1-
1280	37.
1281	Spilliaert, N., Allard, P., Métrich, N., and Sobolev, A.V. (2006) Melt inclusion record of
1282	the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt
1283	during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of
1284	Geophysical Research: Solid Earth, 111(B4), B04203.

1285	Steele-MacInnis, M.J., Esposito, R., and Bodnar, R.J. (2011) Thermodynamic model for
1286	the effect of post-entrapment crystallization on the H ₂ O-CO ₂ systematics of
1287	volatile saturated silicate melt inclusions Journal of Petrology, 52(12), 2461-
1288	2482.
1289	Tedesco, D., and Toutain, JP. (1991) Chemistry and emission rate of volatiles from
1290	White Island Volcano (New Zealand). Geophysical Research Letters, 18(1), 113-
1291	116.
1292	Tomiya, A., and Takahashi, E. (2005) Evolution of the magma chamber beneath Usu
1293	Volcano since 1663; a natural laboratory for observing changing phenocryst
1294	compositions and textures. Journal of Petrology, 46(12), 2395-2426.
1295	Vigouroux, N., Wallace, P.J., and Kent, A.J.R. (2008) Volatiles in High-K Magmas from
1296	the Western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and
1297	Extreme Enrichment of the Mantle Wedge by Subduction Processes. Journal of
1298	Petrology, 49(9), 1589-1618.
1299	Wade, J.A., Plank, T., Melson, W.G., Soto, G.J., and Hauri, E.H. (2006) The volatile
1300	content of magmas from Arenal Volcano, Costa Rica. Journal of volcanology and
1301	geothermal research, 157(1-3), 94-120.
1302	Wallace, P.J. (2005) Volatiles in subduction zone magmas: concentrations and fluxes
1303	based on melt inclusion and volcanic gas data. Journal of Volcanology and
1304	Geothermal Research, 140(1–3), 217-240.
1305	Wallace, P.J., Anderson, A.T., and Davis, A.M. (1999) Gradients in H2O, CO2, and
1306	exsolved gas in a large-volume silicic magma system: Interpreting the record
1307	preserved in melt inclusions from the Bishop Tuff. Journal of Geophysical
1308	Research: Solid Earth, 104(B9), 20097-20122.
1309	Wardell, L.J., Kyle, P.R., Dunbar, N., and Christenson, B. (2001) White Island Volcano,
1310	New Zealand; carbon dioxide and sulfur dioxide emission rates and melt inclusion
1311	studies. In D. Bergfeld, F. Goff, and P. Allard, Eds. Chemical Geology, 177, p.
1312	187-200. Elsevier, Amsterdam.
1313	Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P. (2013) Dendritic
1314	Crystallization: A Single Process for all the Textures of Olivine in Basalts?
1315	Journal of Petrology, 54(3), 539-574.
1316	Zhang, Y., and Ni, H. (2010) Diffusion of H, C, and O Components in Silicate Melts.
1317	Reviews in Mineralogy and Geochemistry, 72(1), 171-225.
1318	
1319	
1320	FIGURE CAPTIONS
1520	
1321	
1521	
1322	Fig. 1. Major element compositions of MI from recent eruptions (1977, 1986, 1988, and
1323	1989) at White Island, New Zealand, compared to bulk rock compositions. MI data are

1324 from the literature (Rapien, 1998; Severs et al., 2009; Wardell et al., 2001). The bulk rock

1325	data are from Graham and Cole (1991) and Cole et al. (2000). a, c, e) FeO _{tot} (a), MgO (c)
1326	and CaO (e) vs. SiO_2 for MI classified by the eruption year. b, d, f) FeO_{tot} (b), MgO (d)
1327	and CaO (f) vs. SiO_2 for MI from the 1988 eruption classified according to host phase.
1328	Data for in Figs 1b, d and f are from Severs et al. (2009). Filled symbols refer to MI
1329	analyzed by LA-ICPMS, while open symbols refer to MI analyzed by EMP. Note the
1330	small variation in major element concentrations of the MI, especially for the 1986
1331	eruption. Also, note that the FeO_{tot} content of MI is consistent with the SiO_2 vs. FeO_{tot}
1332	trend defined by the bulk rock, suggesting that the MI have not experienced Fe loss or
1333	gain. MI compositions extend from the bulk rock trend towards more evolved (dacitic)
1334	composition. MI studied by Wardell et al. (2001) (see the arrows in panels a, c, e) show
1335	slightly less evolved compositions compared to MI reported by Rapien (1998) and Severs
1336	et al. (2009).
1337	
1338	Fig. 2. Photomicrograph of MIA hosted in olivine (RESC5-O21) from the Solchiaro
1339	eruption (left) and Al ₂ O ₃ vs. CO ₂ systematics of MI (right) (modified from Esposito et
1340	al., 2011). a) BSE image showing slight normal zonation and a forsterite-rich rim. The
1341	white background represents the indium mount, and the dashed red line represents the
1342	olivine boundary (partially beneath the surface and covered by indium). The solid red

1343 lines identify a growth zone containing the MIA and spinel inclusions parallel to the

1344 olivine border. b) Al₂O₃ vs. CO₂ diagram of MI from sample RESC5 (Esposito et al.,

1345 2011). Note the consistent trend defined by bubble-free MI.

1346

1347 Fig. 3. Photomicrograph of MIA hosted in plagioclase from the White Island volcano in 1348 New Zealand, taken in reflected light, showing laser-drilled holes around exposed MI. 1349 MIA are marked by the red dashed lines and are parallel to the boundaries of the euhedral 1350 phenocryst. Various types of MI and MIA (based on the phases in the MI) can be 1351 observed in this plagioclase phenocryst (see text for more details). 1352 1353 Fig. 4. Clinopyroxene phenocryst from White Island scoriae showing characteristic 1354 growth zones defined by the entrapment of inclusions (MI, mixed MI and solid 1355 inclusions). The white dashed lines highlight a melt inclusion assemblage (MIA). 1356 1357 Fig. 5. FIB-EM image of a MI hosted in plagioclase (plg) from White Island. The sample 1358 surface is titled by 52° from horizontal. The dashed line indicates the MI/host boundary. 1359 A laser ablation pit (laser shot) used to help locate the MI during SIMS analysis is visible 1360 on the left side of the photo. Note the regularity of the MI/host interface in the vertical 1361 section. 1362 1363 Fig. 6. FIB-EM image of a MI hosted in olivine from the Solchiaro eruption, Procida 1364 Island, Italy. Note the irregularity of the MI/host bottom interface (dashed white line). 1365 "Oli" represents the olivine host. 1366

1367 Fig. 7. Box-and-Whisker plots for H₂O, F, and Cl contents of MIA hosted in

1368 clinopyroxene, orthopyroxene and plagioclase from White Island. The box limits are the

1369 25th and 75th percentiles, and the upper and lower limits of the bars represent the

54

1370	maximum and minimum concentrations. Note the consistency of concentrations in MI
1371	within a single MIA. Black squares are data point (MI) relative to single MIA and
1372	diamonds represent the means of each MIA.
1373	
1374	Fig. 8. Box-and-Whisker plots for CO ₂ and S contents of zonal and azonal MIA hosted in
1375	clinopyroxene, orthopyroxene and plagioclase from White Island. The box limits are the
1376	25 th and 75 th percentiles, and the upper and lower limits of the bars represent the
1377	maximum and minimum concentrations. Note the significant scatter in CO ₂ contents
1378	within a single MIA for about half of the all MIA analyzed. Also, note that S
1379	concentrations are consistent in MIA hosted in plagioclase, and that the concentration of
1380	CO_2 is <200 ppm for MIA that show little variability. In addition, it is important to note
1381	that only two zonal MIA show inconsistent results for S contents. Symbols are as in Fig.
1382	7.
1383	

1384 Fig. 9. H₂O-CO₂ systematics of three different zonal MIA. a) degassing paths fit to data

1385 from MI of MIA-08 hosted in plagioclase; b) degassing paths fit to data from MI of MIA-

1386 13 hosted in plagioclase; c) degassing paths fit to data from MI from MIA-16 hosted in

1387 clinopyroxene. The green arrow indicates a closed-system degassing path and the blue-

1388 dashed arrows indicates an open-system degassing path. The degassing paths were

1389 calculated using the VolatileCalc software by Newman and Lowenstern (2002) for a

1390 basaltic composition at 1250°C, based on heating experiments on MI reported by Rapien

1391 et al. (2003). The starting volatile compositions are based on the most CO₂-rich MI

55

1392 obtained from each MIA considered. The closed-system degassing path was calculated

assuming <10% of gas coexisting with the melt.

1394

1395 Fig. 10. Box-and-Whisker plots for (a) H₂O, (b) F, (c) Cl, (d) CO₂ and (e) S

1396 concentrations of MIA hosted in olivine and clinopyroxene from the Solchiaro eruption,

1397 Island of Procida, Italy. The box limits are the 25th and 75th percentiles, and the upper and

1398 lower limits of the bars represent the maximum and minimum concentrations. Note that

1399 the CO₂ variability of MIA from Solchiaro (panel d) is less than that of the White Island

1400 MIA. Also, it is important to note that there is no correlation between the type of MIA

1401 (azonal and zonal) and the degree of CO_2 variability. Symbols are as in Fig. 7.

1402

1403 Fig. 11. Box-and-Whisker plots for CO₂ concentrations of single MI. Data include results

1404 from Esposito et al. (2011). The box limits are the 25^{th} and 75^{th} percentiles, and the upper

1405 and lower limits of the bars represent the maximum and minimum concentrations. a) CO₂

1406 variability of all MI that were measured multiple times; b) enlargement of the low CO₂

1407 portion of the diagram to better illustrate the CO₂-poor MI. Note the y-axes are in

1408 logarithmic scale. Symbols are as in Fig. 7.

1409

1410 Fig. 12. CO₂ depth profiles of exposed and unexposed MI from White Island and

1411 Solchiaro. a) CO₂ depth profiles for MI hosted in plagioclase from White Island. Note the

1412 erratic CO₂ behavior in the shallowest part of the MI. All the profiles refer to exposed MI

1413 with the exception of the blue profile that refers to an unexposed MI (Dec 7_5 MI). The

1414 unexposed MI is the same one shown in Fig.13. The boundary between the melt and the

1415	host is at ~ 5000 sec (see Fig.13) and, thus, is not shown in this figure; b) CO_2 depth
1416	profiles for MI hosted in mafic phenocrysts. The purple, green, and orange profiles refer
1417	to MI from Solchiaro and are hosted in olivine, while the blue and the black profiles refer
1418	to MI from White Island and hosted in orthopyroxene and clinopyroxene respectively.
1419	The shallowest parts of the profiles do not show the same erratic behavior for CO_2
1420	exhibited by MI hosted in plagioclase (panel a). The green and the blue profiles are from
1421	unexposed MI hosted in olivine and in clinopyroxene, respectively. The orange, blue, and
1422	black lines go to essentially zero and are not resolvable on this figure. The MI/host
1423	interface is at around 7000 sec for the MI hosted in olivine and around 4000 sec for the
1424	MI hosted in clinopyroxene. The other three profiles refer to MI exposed at the surface;
1425	c) CO_2 depth profiles for glass standards and blanks used to determine the calibration
1426	curves. Note that CO ₂ concentrations do not show anomalous behavior in the glass
1427	standards. The solid vertical lines indicate the duration of the pre-sputtering and the
1428	analysis that was used most commonly for our MI analyses. Thus, the somewhat erratic
1429	behavior observed in the first few hundred seconds here would normally have been part
1430	of the pre-sputtering to remove surface effects and would not have been included in the
1431	quantification of CO_2 in the MI.
1432	

1433 Fig. 13. a) CO₂ depth profile for an unexposed MI hosted in plagioclase analyzed by

1434 SIMS. Note the anomalous behavior of the CO₂ profile, which shows two enrichments

1435 near the MI/host interface. A profilometer was used to measure the depth of the SIMS

- 1436 crater shown on the right ordinate. The black dashed line represents the inferred position
- 1437 of the host/MI interface. Note that the MI/host interface cannot be a definite line in the

1/15

1438	profile diagram; rather, there is a transition zone where both the glass of the MI and the
1439	host are analyzed together. The pink background represents the part of the profile
1440	interpreted to represent material contaminated with C. The yellow background represents
1441	the plagioclase host. b) FIB-EM image of the analyzed MI hosted in plagioclase. The
1442	dashed red lines represent the open pit on the surface of the plagioclase and the host/MI
1443	interface. Note that the host/MI interface is sub-parallel to the sample polished-section.
1444	
1445	Fig. 14. Box-and-Whisker plots for Relative Standard Deviation (RSD) of MIA hosted in
1446	clinopyroxene, orthopyroxene, plagioclase, and olivine from White Island and Solchiaro.
1447	The box limits are the 25 th and 75 th percentiles, and the upper and lower limits of the bars
1448	represent the maximum and minimum concentrations. Note the wider RSD variability of
1449	CO ₂ relative to that of the other volatiles considered in this study.

1450

1451 **Deposit Item captions**

1452

1453	Deposit Item-01-01.	Calibration curves	for CO ₂ an	alyzed by	SIMS at V	Virginia Tech.
------	---------------------	--------------------	------------------------	-----------	-----------	----------------

1454 Known standard CO_2 concentrations are plotted versus ${}^{12}C/{}^{30}Si$ isotope ratios measured

1455 by SIMS. The ratio is expressed as the ion count per second of 12 C divided by the ion

1456 counts per second of ³⁰Si. In the diagrams we have reported the linear regressions forced

1457 to go through the origin. Data used for the calibration are reported in Appendix Table 1.

- 1458 Panels a, b, c, d, e, and f show calibration curves for each working session at Virginia
- 1459 Tech in May 2008, December 2008, March 2010, December 2010, October 2011, and

1460 March 2012, respectively. Note that CO_2 calibration curves calculated for this study are 1461 consistent with those reported by Helo et al. (2011).

1462

- 1463 Deposit Item-01-02. Calibration curves for H₂O analyzed by SIMS at Virginia Tech.
- 1464 Known standard H₂O concentrations are plotted versus ${}^{16}O^{1}H/{}^{30}Si$ isotope ratios
- 1465 measured by the SIMS. The ratio is expressed as the ion count per second of ${}^{16}O^{1}H$
- 1466 divided by the ion counts per second of 30 Si. In the diagrams we have reported the linear
- 1467 regressions forced to go through the origin. Data used for the calibration are reported in
- 1468 Appendix Table 1. Panels a, b, c, d, and e show calibration curves representative of each
- 1469 working session at Virginia Tech in May 2008, December 2008, March 2010, December
- 1470 2010, October 2011, and March 2012, respectively. Note that H₂O calibration curves
- 1471 calculated for this study are consistent with those reported by Helo et al. (2011).
- 1472
- 1473 Deposit Item-01-03. Calibration curves for F analyzed by SIMS at Virginia Tech. Known
- 1474 standard F concentrations are plotted versus ${}^{19}\text{F}/{}^{30}\text{Si}$ isotope ratios measured by SIMS.
- 1475 The ratio is expressed as the ion count per second of ¹⁹F divided by the ion counts per
- 1476 second of 30 Si. In the diagrams we have reported the linear regressions forced to go
- 1477 through the origin. Data used for the calibration are reported in Appendix Table 1. Panels
- 1478 a, b, c, d, and e show calibration curves representative of each working session at
- 1479 Virginia Tech in May 2008, December 2008, March 2010, December 2010, and October
- 1480 2011 respectively. Note that the F calibration curves calculated for this study are
- 1481 consistent with those reported by Helo et al. (2011).
- 1482

1483	Deposit Item-01-04. Calibration curves of S analyzed by SIMS at Virginia Tech. Known
1484	standard S concentrations are plotted versus ³² S/ ³⁰ Si isotope ratios measured by SIMS.
1485	The ratio is expressed as the ion count per second of ³² S divided by the ion counts per
1486	second of ³⁰ Si. In the diagrams we have reported the linear regressions forced to go
1487	through the origin. Data used for the calibration are reported in Appendix Table 1. Panels
1488	a, b, c, d, and e show calibration curves representative of each working session at
1489	Virginia Tech in May 2008, December 2008, March 2010, December 2010, October
1490	2011, and March 2012, respectively. Note that the S calibration curves calculated for this
1491	study are consistent with those reported by Helo et al. (2011).
1492	
1493	Deposit Item-01-05. Calibration curves for Cl analyzed by SIMS at Virginia Tech.
1494	Known standard Cl concentrations are plotted versus ³⁵ Cl/ ³⁰ Si isotope ratios measured by
1495	SIMS. The ratio is expressed as the ion count per second of ³⁵ Cl divided by the ion counts
1496	per second of ³⁰ Si. In the diagrams we have reported the linear regressions forced to go
1497	through the origin. Data used for the calibration are reported in Appendix Table 1. Panels
1498	a, b, c, d, and e show calibration curves representative of each working session at
1499	Virginia Tech in May 2008, December 2008, March 2010, December 2010, October
1500	2011, and March 2012, respectively. Note that the Cl calibration curves calculated for
1501	this study are consistent with those reported by Helo et al. (2011).
1502	
1503	Deposit Item-01-06. Calibration curves for CO ₂ , H ₂ O, and F analyzed by SIMS at WHOI.

- 1504 Known concentrations of standard glasses are plotted versus ${}^{12}C/{}^{30}Si$, ${}^{16}O^{1}H/{}^{30}Si$, and
- 1505 $^{19}\text{F}/^{30}\text{Si}$ isotope ratios measured using SIMS. The ratio is expressed as the ion count per

1506	second of ¹² C, ¹⁶ O ¹ H, ¹⁹ F divided by the ion counts per second of ³⁰ Si. In the diagrams we
1507	have reported the linear regressions forced to go through the origin. Data used for the
1508	calibration are reported in Appendix Table 1. Panels a, c, e, show calibration curves for
1509	February 2011 working session at WHOI. Panels b, d, f show calibration curves for
1510	January 2013 working session at WHOI. Note that CO ₂ , H ₂ O, and F calibration curves
1511	calculated for this study are consistent with those reported by Helo et al. (2011).
1512	
1513	Deposit Item-01-07. Calibration curves for S and Cl analyzed by SIMS at WHOI. Known
1514	concentrations of standard glasses are plotted versus ${}^{32}S/{}^{30}Si$ and ${}^{35}F/{}^{30}Si$ isotope ratios
1515	measured using SIMS. The ratio is expressed as the ion count per second of 32 S and 35 F
1516	divided by the ion counts per second of ³⁰ Si. In the diagrams we have reported the linear
1517	regressions forced to go through the origin. Data used for the calibration are reported in
1518	Appendix Table 1. Panels a and c show calibration curves for February 2011 working
1519	session at WHOI. Panels b and d show calibration curves for January 2013 working
1520	session at WHOI. Note that S and Cl calibration curves calculated for this study are
1521	consistent with those reported by Helo et al. (2011).
1522	
1523	Deposit Item-01-08. CO ₂ and H ₂ O calibration curves of January 2013 sessions at WHOI
1524	showing the CO ₂ -rich and the H ₂ O-rich standard glasses included for the calibration of

1525 this session. It is important to note that the slopes of calibration curves for the January

1526 2013 session are consistent with the slopes of the previous working sessions both at

- 1527 Virginia Tech and WHOI.
- 1528

- 1529 Deposit Item-02. Photomicrograph of a "pseudosecondary MIA" hosted in pyroxene
- 1530 from White Island observed in transmitted light. Notice the more elongated shape of the
- 1531 MI in this MIA relative to those shown in Figures 3 and 4.
- 1532
- 1533 Deposit Item-03. Variability in H₂O contents observed in different analytical sessions.
- 1534 Note that concentrations from the October 2011 session are slightly higher, and those
- 1535 from March 2010 are slightly lower, than those from the other working sessions. It is
- 1536 important to note that the same MI (RESC5-O27-MF from Solchiaro sample) was
- 1537 measured in different working sessions. The concentration variability likely reflects slight
- 1538 differences in the calibration curves determined for each working session (see
- 1539 Supplementary Material for more details).
- 1540 Deposit Item-04. CO₂-depth profile of one MI (860210-MI-8) from the 1986 eruption at
- 1541 White Island measured at WHOI during the January 2013 session (Table 5). The profile
- 1542 is the compilation of two analyses done on the same spot inside the MI. As reported in
- 1543 the text, it is important to note that the concentration varies from 608 ppm (the shallowest
- 1544 glass analyzed) to 282 ppm (the deepest glass analyzed). The data used for this plot are
- 1545 reported in Appendix Table 1.
- 1546
- 1547

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4574

Fig. 1

Fig. 3

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

Fig. 11

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4574

Plagioclase CO₂-depth profiles

time (sec)

1500

2000

1000

500

	-	
MI_ID	RESC5-O21-MA	RESC5-O21-ME
SiO ₂	50.59	50.89
TiO ₂	1.42	1.39
AI_2O_3	16.85	16.63
Fe_2O_3	1.11	1.11
FeO	7.01	7.02
MnO	0.11	0.07
MgO	6.23	6.25
CaO	11.46	11.43
Na ₂ O	2.60	2.63
K ₂ O	2.17	2.12
P_2O_5	0.44	0.47
Cr_2O_3	0.03	0.00
Ве	bdl	bdl
В	bdl	bdl
V	201.44	166.16
Rb	66.47	69.31
Sr	574.99	454.56
Y	25.27	20.05
Zr	117.09	99.76
Nb	18.15	13.77
Cs	bdl	2.88
Ba	684.98	542.33
La	17.84	16.79
Ce	47.32	33.08
Pr	6.56	4.04
Nd	33.33	19.24
Sm	12.37	4.26

Table1. Corrected MI major-trace elements and volatiles concentrations of bubble-free MI of the same MIA hosted in olivine from Sol

Eu	1.31	1.72
Gd	8.53	6.59
Tb	1.09	0.68
Dy	4.60	4.08
Yb	2.01	1.87
Lu	bdl	0.58
Hf	bdl	1.85
Та	0.41	0.76
Pb	9.39	8.47
Th	4.20	4.01
U	1.84	0.96
CO ₂	1121	869
H ₂ O	1.26	1.26
F	1318	1208
S	1272	1276
CI	1803	1778
X _{ol} %	6	6

bdl= below detection limit

X_{ol} %= PEC (see Esposito et al., 2011 for calculation)

chiaro (data from Esposito et al., 2011)

MI ID	, MIA ID	CO ₂ (ppm)	H ₂ O (wt%)	F (ppm)	S (ppm)	Cl (ppm)	host	woking session
REWI 15 A	MIA-10	172	0.4	401	60	903	срх	March 2010
REWI 15 D	MIA-10	126	0.38	382	50	876	срх	March 2010
 REWI_15_H	MIA-10	106	0.4	415	131	975	срх	 March_2010
REWI_15_I	MIA-10	179	0.38	384	375	964	срх	March_2010
WI_36_A	MIA-23	98	0.33	333	71	1380	орх	December_2010
WI_36_B	MIA-23	122	0.24	220	50	1339	орх	December_2010
WI_36_D	MIA-23	69	0.3	303	65	1266	орх	December_2010
WI_36_E	MIA-23	89	0.31	314	69	1302	орх	December_2010
RE-WI-29-A	MIA-27	46	0.45	305	45	897	plg	February_2011
RE-WI-29-C	MIA-27	52	0.46	340	58	1004	plg	February_2011
RE-WI-29-D	MIA-27	271	0.46	314	55	936	plg	February_2011
RE-WI-29-E	MIA-27	89	0.13	238	41	673	plg	February_2011
RE-WI-29-F	MIA-27	129	0.46	321	60	954	plg	February_2011
WI_25_A	MIA-19	87	0.33	254	45	1010	plg	December_2010
WI_25_C	MIA-19	192	0.3	229	33	748	plg	December_2010
WI_25_D	MIA-19	271	0.33	248	39	840	plg	December_2010
WI_25_F	MIA-19	na	0.34	261	44	837	plg	December_2010
WI_25_G	MIA-19	484	0.28	218	38	682	plg	December_2010
WI_25_I	MIA-19	270	0.3	229	41	769	plg	December_2010
WI_25_B	MIA-19	61	0.35	265	44	1019	plg	December_2010
WI_25_E*	MIA-19	1418	0.34	251	41	827	plg	December_2010
RESC5_O27_F1	MIA-35	447	1.80	1471	1600	2732	olivine	VT_Oct_2011
RESC5_O27_F2	MIA-35	448	1.82	1472	1621	2794	olivine	VT_Oct_2011
RESC5_O27_C	MIA-35	361	1.45	1000	1305	2572	olivine	VT_Oct_2011
RESC5-O27-MG	MIA-35	673	1.31	1210	1266	1824	olivine	WHOI Feb_2011
RESC5-O27-MF	MIA-35	718	0.99	940	995	1229	olivine	WHOI Feb_2011
RESC5-O27-MF	MIA-35	552	1.24	1259	1571	2818	olivine	VT Dec_2010

Table 2. Representative analyses of volatile concentrations of MI from White Island and Solchiaro samples.

RESC5-027_F1	MIA-35	507	1.24	1238	1563	2796	olivine	VT Dec_2010
RESC5-O27_G	MIA-35	490	1.20	1285	1532	2734	olivine	VT Dec_2010
RESC5-O27_E	MIA-35	450	1.23	1286	1134	2916	olivine	VT Dec_2010
RESC5_O27_F	MIA-35	509	1.19	1365	1418	2042	olivine	VT Mar_2010
RESC5_027_F1	MIA-35	493	1.17	1350	1411	2019	olivine	VT Mar_2010
RESC5_027_G	MIA-35	645	1.08	1266	1299	1892	olivine	VT Mar_2010
RESC5-O27_B [#]	MIA-35	358	1.27	1026	1384	2730	olivine	VT Jul_2009

*MI measured more than one time; na = not available; cpx = clinopyroxene; opx = orthopyroxene; plg = plagioclase: oli = olivine. [#]data by Esposito et al. (2011)

type of MI	shape of MI	type of MIA
1	ovoid	azonal/core
1	ovoid	azonal/core
1	ovoid	azonal/core
4	ovoid	azonal/core
1	ovoid	zonal
2	Irregular	azonal/core
2	Irregular	azonal/core
1	Irregular	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	negative crystal shape	azonal/core
1	irregular	azonal/core
1	irregular	azonal/core
1	ovoid	azonal/core
1	ovoid	azonal/core
1	irregular	azonal/core
1	irregular	azonal/core

1	irregular	azonal/core
1	ovoid	azonal/core
1	irregular	azonal/core
1	irregular	azonal/core
1	irregular	azonal/core
1	ovoid	azonal/core
1	ovoid	azonal/core

	CO ₂ (ppm)	H ₂ O (wt%)	F (ppm)	S (ppm)	CI (ppm)	host
RSD-MIA-37	18%	0%	6%	0%	1%	olivine
RSD-MIA-35	32%	10%	13%	3%	12%	olivine
RSD-MIA-33	7%	3%	3%	28%	3%	orthopyroxene
RSD-MIA-32	28%	9%	8%	10%	10%	plagioclase
RSD-MIA-30	na	23%	19%	19%	11%	clinopyroxene
RSD-MIA-28	115%	5%	3%	7%	10%	plagioclase
RSD-MIA-27	26%	77%	21%	27%	24%	plagioclase
RSD-MIA-26	66%	7%	1%	5%	5%	clinopyroxene
RSD-MIA-25	127%	3%	3%	11%	7%	orthopyroxene
RSD-MIA-24	na	7%	1%	8%	4%	plagioclase
RSD-MIA-23	23%	13%	17%	15%	4%	orthopyroxene
RSD-MIA-22	na	2%	1%	1%	1%	plagioclase
RSD-MIA-20	36%	4%	2%	21%	8%	orthopyroxene
RSD-MIA-19	119%	8%	7%	10%	14%	plagioclase
RSD-MIA-18	88%	12%	12%	15%	19%	plagioclase
RSD-MIA-17	132%	18%	18%	24%	26%	plagioclase
RSD-MIA-16	116%	21%	8%	32%	20%	clinopyroxene
RSD-MIA-14	137%	21%	19%	18%	13%	plagioclase
RSD-MIA-13	127%	6%	5%	7%	5%	plagioclase
RSD-MIA-12	28%	7%	10%	84%	25%	clinopyroxene
RSD-MIA-10	25%	3%	4%	55%	6%	clinopyroxene
RSD-MIA-09	47%	14%	16%	19%	15%	plagioclase
RSD-MIA-08	79%	17%	18%	20%	23%	plagioclase
RSD-MIA-05	99%	13%	17%	52%	26%	clinopyroxene
RSD-MIA-04	65%	23%	23%	71%	35%	clinopyroxene
RSD-MIA-03	16%	8%	9%	28%	6%	orthopyroxene
RSD-MIA-02	15%	6%	3%	1%	6%	clinopyroxene
RSD-MIA-01	52%	14%	10%	15%	13%	clinopyroxene

RSD max	137%	77%	23%	84%	35%
RSD min	7%	0%	1%	0%	1%
RSD average	65%	13%	10%	22%	13%
RSD median	52%	8%	8%	16%	10%

Table 3. Volatile compositions of MI from the Solchiaro volcano measured multiple times during different working sessions.

MI-ID	CO ₂	H ₂ O	F	S	Cl
RESC5-O27-MF-WHOI-Feb-2011	718	0.99	940	995	1229
RESC5-O27-MF-VT-Dec-2010	529	1.24	1248	1567	2807
RESC5-O27-MF-VT-Mar-2010	501	1.18	1358	1415	2031
RESC5-O27-MF-VT-Oct-2011	447	1.81	1471	1610	2763
average	549	1.30	1254	1397	2208
stdev	118	0.35	228	280	743
relative stdev	21%	27%	18%	20%	34%
RESC5-O27-MG-WHOI-Feb-2011	673	1.31	1210	1266	1824
RESC5-O27-MG-VT-Dec-2010	490	1.2	1285	1532	2734
RESC5-O27-MG-VT-Mar-2010	645	1.08	1266	1299	1892
average	603	1.20	1254	1366	2150
stdev	99	0.12	39	145	507
relative stdev	16%	10%	3%	11%	24%

Table 4. vol	latile compositi	ions of MI from	n white Islan	d of sample (1986 and 1988 er	uptions) prepared and measured at the woods Hole O
sample id	CO ₂ (ppm)	H ₂ O (wt%)	F (ppm)	S (ppm)	Cl (ppm)	
MI from 198	36-eruption					
MI-1	31	0.61	402	47	855	
MI-3	19	0.49	427	50	959	
MI-5	160	0.55	431	56	1005	
MI-6	91	0.38	406	55	987	
MI-7	21	0.53	381	45	907	
MI-8	512	0.59	413	61	769	
MI-8-2	312	0.61	424	62	798	
MI-9	49	0.53	406	66	982	
MI-11	197	0.53	484	260	1205	
MI-12	50	0.52	402	295	970	
MI-13	145	0.54	417	68	918	
MI-17	46	0.60	501	185	936	
MI-18	81	0.55	459	316	930	
MI from 198	38-eruption					
880-2	194	0.59	378	288	1246	
880-3	51	0.62	392	83	947	
880-4	22	0.56	438	52	827	
880-5	32	0.53	409	129	924	
880-6	58	0.54	337	55	976	
880-7	107	0.69	533	103	740	
880-8	13	0.54	388	677	1010	
880-10	91	0.60	392	79	953	
880-11	47	0.61	402	67	982	
880-12	15	0.48	352	55	1010	
880-13	207	0.63	522	331	804	

Table 4. Volatile compositions of MI from White Island of sample (1986 and 1988 eruptions) prepared and measured at the Woods Hole Oc

880-14	60	0.57	364	141	941
880-15	32	0.52	378	54	936
880-16	35	0.57	406	105	970
880-20	62	0.51	409	316	1114
880-21	29	0.61	399	302	1114
880-22	263	0.61	374	220	947

eanographic Institution SIMS laboratory. In green is the MI (860210-MI-8 and MI8-2) showing the highest CO₂ concentration decreasing wi

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4574 th depth (from 608 to 282 ppm, see Deposit Item-04).