1	Revision 2
2	
3	The 2 <i>H</i> and 3 <i>R</i> polytypes of sabieite, $NH_4Fe^{3+}(SO_4)_2$, from a natural fire in an oil-
4	bearing shale near Milan, Ohio
5	
6	ANTHONY R. KAMPF ^{*1} , R. PETER RICHARDS ² AND BARBARA P. NASH ³
7	
8	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900
9	Exposition Boulevard, Los Angeles, CA 90007, U.S.A.
10	² Geology Department, Oberlin College, Oberlin, OH 44074, U.S.A.
11	³ Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112,
12	U.S.A.
13	*Email: akampf@nhm.org
14	
15	
16	Abstract
17	
18	The mineral sabieite, $NH_4Fe^{3+}(SO_4)_2$, was found in 2011 along the banks of the Huron
19	River near Milan, Ohio, where it formed as the result of a natural fire in an oil-bearing shale.
20	The mineral is directly associated with pyracmonite, tschermigite and voltaite and occurs as
21	colorless, pale pink, tan and yellow hexagonal tablets. The streak is white. Crystals are
22	transparent with vitreous luster. Mohs hardness is 21/2, tenacity is brittle, fracture is irregular
23	and cleavage is perfect on $\{001\}$. The measured density is 2.65(2) g·cm ⁻³ . The mineral is
24	optically uniaxial (–) with indices of refraction $\omega = 1.657(3)$ and $\varepsilon = 1.621(5)$ (white light).
25	The empirical formula (based on 2 S apfu) is

3/5

26	$[(NH_4)_{0.73}(H_3O)_{0.22}K_{0.04}Na_{0.01}]_{\Sigma 1.00}(Fe^{3+}_{0.95}Al_{0.02}Mg_{0.01})_{\Sigma 0.98}(SO_4)_2.$ Powder diffraction showed
27	crystals to be combinations of the $2H$ and $3R$ polytypes. The structure of the $2H$ polytype was
28	solved and refined from single-crystal data yielding $R_1 = 0.0694$ for 509 $F_0 > 4\sigma(F)$
29	reflections. The 2 <i>H</i> polytype has space group $P6_3$ and cell parameters $a = 4.83380(17)$, $c =$
30	16.4362(9) Å, $V = 332.59(2)$ Å ³ and $Z = 2$ and the 3 <i>R</i> polytype has space group <i>R</i> -3 and cell
31	parameters $a = 4.835(2)$, $c = 24.496(15)$ Å, $V = 495.9(5)$ Å ³ and $Z = 3$. The sabieite polytypes
32	(including the original sabieite from Sabie, South Africa, which is the 1T polytype) have
33	glaserite-like structures with layers consisting of Fe ³⁺ O ₆ octahedra that share each of their
34	vertices with SO ₄ tetrahedra. NH ₄ groups occupy 12-coordinated sites in the interlayer region,
35	bonding to 6 O atoms in each of the adjacent layers. In the $1T$ polytype, successive layers
36	have identical configuration and orientation, providing a one-layer repeat sequence. In the $2H$
37	polytype, alternate layers are flipped (or rotated), in a two-layer repeat sequence. In the $3R$
38	polytype, successive layers are shifted relative to one another, in a three-layer repeat
39	sequence. The different orientations of adjacent layers in the structures of the $2H$ and $3R$
40	polytypes result in significant changes in the linkages between the $(NH_4)O_{12}$ and $Fe^{3+}O_6$
41	polyhedra.
42	
43	Keywords: sabieite; crystal structure; polytype; glaserite-like structure; Huron Shale burn site,
44	Milan, Ohio.
45	
46	
47	INTRODUCTION
48	
49	The mineral sabieite, $NH_4Fe^{3+}(SO_4)_2$, was described by Martini (1983) from the Lone
50	Creek Fall Cave, near Sabie, Eastern Transvaal, South Africa. It was found along with two

51 other new minerals, lonecreekite and clairite, in a suite of secondary sulfates, most of which 52 contained ammonium. The phases were presumed to have formed at ambient temperature 53 from seepage water, which oxidized pyrite in the chert breccia above the cave and then 54 interacted with ammonia vapors from decaying organic matter (Hyrax excreta). The sabieite was reportedly derived from the dehydration of lonecreekite, $NH_4Fe^{3+}(SO_4)_2 \cdot 12H_2O_2$. 55 Sabieite occurred as a white powder consisting of minute platelets no more than 10 56 57 um in diameter and too small for single-crystal study; however, powder X-ray diffraction confirmed the mineral to be essentially identical to synthetic $NH_4Fe^{3+}(SO_4)_2$ (JCPDS #24-44), 58 59 with the trigonal space group P321 and possessing a glaserite-like structure. Martini (1983) reported the cell parameters a = 4.822 and c = 8.1696 Å (Z = 1) obtained from the powder 60 61 data. The only other descriptive data reported was an electron microprobe analysis that 62 provided the empirical formula $[(NH_4)_{0.83}K_{0.04}]_{\Sigma 0.87}(Fe_{0.94}Al_{0.04})_{\Sigma 0.98}S_{2.03}O_8$. 63 In early 2011 a remarkable suite of minerals was discovered along the Huron River in 64 north-central Ohio. These minerals were actively forming as the result of a fire in an oil-65 bearing shale. Among them were several phases that appeared to be new mineral species. One 66 of these, occurring as well-formed hexagonal plates, possesses the same ideal formula as 67 sabieite, but provides a unique powder X-ray diffraction pattern. Further study showed the pattern to be produced by two different $NH_4Fe^{3+}(SO_4)_2$ polytypes: a 2H polytype with a 68 69 primitive hexagonal space group ($P6_3$) and a 2-layer repeat along c and a 3R polytype with a 70 rhombohedral trigonal space group (R-3) and a 3-layer repeat along c. The original sabieite of 71 Martini (1983), with a 1-layer repeat along c, is the 1T polytype. According to the rules of the 72 Commission on New Minerals Nomenclature and Classification (see Nickel and Grice, 1998), 73 polytypes are not regarded as separate species; thus, these three phases are designated 74 sabieite-1*T*, sabieite-2*H* and sabieite-3*R*.

75	Note that staff members of the Geoscience Museum of the Council for Geoscience,
76	South Africa were unable to confirm the presence of sabieite in the minute and quite
77	heterogeneous sample preserved as the holotype in their collection; therefore additional
78	studies on sabieite-1 T were not possible. The sample used in the present study is deposited in
79	the collections of the Natural History Museum of Los Angeles County, 900 Exposition
80	Boulevard, Los Angeles, CA 90007, USA, catalogue number 64107.
81	
82	
83	OCCURRENCE
84	
85	The crystals composed of sabieite- $2H$ and sabieite- $3R$ occur in a suite of minerals that
86	resulted from a natural fire in an oil-bearing shale exposed at the interface between an eroded
87	stream cliff (up to 7.5 m high) and its talus pile (~4.5 m thick) along the Huron River in north-
88	central Ohio, approximately 1.5 km west of Milan, Ohio (41°16'41.4"N 82°40'27"W). The
89	fire started in early 2010, as the result of spontaneous combustion, and burned until March of
90	2011 (Fig. 1). The occurrence is referred to as the Huron Shale burn site.
91	The rock unit exposed is the late Devonian Huron Shale member of the Ohio Shale
92	formation, a dark grey to black marine, carbon-rich shale containing ironstone concretions,
93	finely divided pyrite and pyrite nodules and >10% organic matter. Exploratory testing at a
94	nearby exposure produced 5.2 gallons of oil per ton. The geometry of the talus slope favors
95	access of oxygen to pyrite, but also the sequestration of heat, which led to the spontaneous
96	combustion. The fire was confined to the interface between talus slope and cliff. It burned to a
97	depth of 3 m, but did not burn over any appreciable area on the surface. The mineral suite
98	formed by sublimation and condensation on the surfaces of rocks within the talus pile (Fig. 2).
99	Temperatures measured in a vent in the talus slope at approximately 1 meter depth were

100	greater than 425°C; the crystallized phases formed as gases from the fire cooled. The cliff and
101	talus slope formed as the result of natural erosion; the fire occurred without any form of
102	human intervention and was sustained naturally by the oil in the shale.
103	Other minerals in the association include alunogen, anhydrite, gypsum, letovicite,
104	mascagnite, metavoltine, pyracmonite, salammoniac, sulfur, tschermigite, voltaite and at least
105	two other potentially new minerals (currently under study). Minerals directly associated with
106	sabieite include pyracmonite, tschermigite and voltaite.
107	The $2H$ and $3R$ polytypes could not be separated for the determination of physical and
108	optical properties and composition, but are expected to be essentially identical in these
109	respects. The physical and optical properties of sabieite- $1T$ are also expected to be essentially
110	the same as those for the $2H$ and $3R$ polytypes.
111	
112	
113	APPEARANCE AND PROPERTIES
114	
115	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick
115 116	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on {001} and bounded by multiple hexagonal pyramids,
115 116 117	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on {001} and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon
115 116 117 118	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on $\{001\}$ and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are $\{001\}$, $\{00-1\}$ and multiple small $\{0kl\}$ forms. Reflecting
 115 116 117 118 119 	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on $\{001\}$ and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are $\{001\}$, $\{00-1\}$ and multiple small $\{0kl\}$ forms. Reflecting goniometer signals are consistent with the following forms: $\{011\}$, $\{012\}$, $\{013\}$, $\{016\}$ and
 115 116 117 118 119 120 	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on $\{001\}$ and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are $\{001\}$, $\{00-1\}$ and multiple small $\{0kl\}$ forms. Reflecting goniometer signals are consistent with the following forms: $\{011\}$, $\{012\}$, $\{013\}$, $\{016\}$ and $\{023\}$ (Fig. 4). Twinning is ubiquitous by reflection on $\{001\}$.
 115 116 117 118 119 120 121 	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on {001} and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are {001}, {00-1} and multiple small {0 <i>kl</i> } forms. Reflecting goniometer signals are consistent with the following forms: {011}, {012}, {013}, {016} and {023} (Fig. 4). Twinning is ubiquitous by reflection on {001}. Crystals are very nearly colorless, but may be tinted pale pink, tan or yellow. The
 115 116 117 118 119 120 121 122 	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on {001} and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are {001}, {00-1} and multiple small {0 <i>kl</i> } forms. Reflecting goniometer signals are consistent with the following forms: {011}, {012}, {013}, {016} and {023} (Fig. 4). Twinning is ubiquitous by reflection on {001}. Crystals are very nearly colorless, but may be tinted pale pink, tan or yellow. The streak is white. Crystals are transparent with vitreous luster and display no fluorescence. The
 115 116 117 118 119 120 121 122 123 	The crystals are hexagonal tablets up to about 0.5 mm in diameter and 0.05 mm thick (Fig. 3). The tablets are flattened on {001} and bounded by multiple hexagonal pyramids, resulting in striated and somewhat rounded pyramid faces. The forms observed, based upon the cell for the 2 <i>H</i> polytype, are {001}, {00-1} and multiple small {0 <i>kl</i> } forms. Reflecting goniometer signals are consistent with the following forms: {011}, {012}, {013}, {016} and {023} (Fig. 4). Twinning is ubiquitous by reflection on {001}. Crystals are very nearly colorless, but may be tinted pale pink, tan or yellow. The streak is white. Crystals are transparent with vitreous luster and display no fluorescence. The Mohs hardness based upon scratch tests is 2½. Tenacity is brittle, fracture is irregular and

125	sodium polytungstate is 2.65(2) $g \cdot cm^{-3}$. The density calculated based on the empirical formula
126	using single-crystal cell data for the 2 <i>H</i> polytype is 2.643 g·cm ⁻³ .
127	Crystals are hydrophobic (resist wetting in distilled water). They are very slowly
128	soluble in concentrated HCl (about 2 hours) and 70% HNO ₃ (several hours). They are
129	extremely slowly soluble in concentrated H ₂ SO ₄ (several days).
130	The mineral is optically uniaxial (–) with indices of refraction $\omega = 1.657(3)$ and $\varepsilon =$
131	1.621(5) determined in white light. No pleochroism was observed. The Gladstone-Dale
132	compatibility index $1 - (K_P/K_C)$ is -0.005 for the empirical formula, in the range of superior
133	compatibility, and 0.022 for the ideal formula, in the range of excellent compatibility
134	(Mandarino 2007).
135	
136	
137	CHEMICAL COMPOSITION
138	
139	Analyses of sabieite (11 analyses on three crystals ranging in diameter from 200–360
140	μ m) were performed at the University of Utah on a Cameca SX-50 electron microprobe with
141	four wavelength-dispersive spectrometers. Analytical conditions were 15 KeV accelerating
142	voltage, 20 nA beam current and a beam diameter of 20 μ m. Counting times were 20 seconds
143	for each element. Raw X-ray intensities were corrected for matrix effects with a phi-rho-z
144	algorithm (Pouchou and Pichoir 1991).
145	Electron microprobe analysis of low atomic number elements such as nitrogen is
146	complicated by a low cross-section for ionization and high absorption of the soft X-rays.
147	Nitrogen was analyzed with a 60A W/Si multilayer pseudocrystal (Cameca PC-1) that
148	provides sufficient peak intensities and suppresses spectral interferences by higher order X-
149	ray lines of heavier elements such as Al $K\alpha(IV)$. The standard for nitrogen was synthetic

150	aluminum nitride. The sabieite sample and AlN standard were coated with carbon
151	simultaneously to provide an equal thickness of the carbon coat on each. Other standards
152	employed were sanidine (K), albite (Na), diopside (Mg), hematite (Fe), synthetic YAG (Al)
153	and barite (S). Analyses taken systematically from the core to rim of the largest grain indicate
154	that the sample is homogeneous within analytical precision.
155	The sabieite from Ohio compares favorably with the recalculated composition of the
156	original 1T polytype (Table 1), including similar amounts of minor K ₂ O and Al ₂ O ₃ . Our
157	analytical values for (NH ₄) ₂ O are considerably below that predicted by the structure
158	determination and vary over a considerable range. This may, in part, be due to loss of
159	ammonium under vacuum and it may also indicate some substitution of H_3O^+ for NH_4^+ .
160	Unfortunately, there is insufficient material for direct determination of N or H by CHN
161	analysis. Consequently, we have added sufficient H_2O so that $NH_4^+ + K^+ + Na^+ + H_3O^+ = 1$ in
162	the empirical formula based on $S = 2$. The results are presented in Table 1. The empirical
163	formula (based on 2 S <i>apfu</i>) is $[(NH_4)_{0.73}(H_3O)_{0.22}K_{0.04}Na_{0.01}]_{\Sigma 1.00}(Fe^{3+}_{0.95}Al_{0.02}Mg_{0.01})$
164	$\Sigma_{0.98}(SO_4)_2$. The simplified formula is NH ₄ Fe ³⁺ (SO ₄) ₂ .
165	
166	
167	X-RAY CRYSTALLOGRAPHY AND STRUCTURE DETERMINATION
168	
169	Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis
170	Rapid II curved imaging plate microdiffractometer, with monochromatized MoK α radiation.
171	For the powder-diffraction study, a Gandolfi-like motion on the ϕ and ω axes was used to
172	randomize the sample. The powder pattern is a composite of the patterns from the $2H$ and $3R$
173	polytypes. A whole-pattern-fitting refinement using JADE 2010 (Materials Data, Inc.) and
174	based on the structures of both polytypes indicated the intergrowth to consist of 70% of the

175	2H polytype and 30% of the $3R$ polytype. Figure 5 shows the observed powder pattern
176	compared with those calculated from the structures of the $2H$ and $3R$ polytypes. Observed d
177	values and intensities for the composite pattern were derived by profile fitting using JADE
178	2010 software. Data (in Å for Mo $K\alpha$) are given in Table 2 along with the calculated patterns
179	for each polytype. The whole-pattern-fitting refinement for the $2H$ polytype in space group
180	<i>P</i> 6 ₃ provided the cell parameters $a = 4.8358(18)$, $c = 16.465(8)$ Å and $V = 333.4(3)$ Å ³ and for
181	the 3 <i>R</i> polytype in space group <i>R</i> -3 it provided $a = 4.835(2)$, $c = 24.496(15)$ Å and $V =$
182	495.9(5) Å ³ .

183 For the single-crystal X-ray study, numerous tablets were cleaved and the split 184 fragments tested until one containing only one of the polytypes was identified. This fragment, 185 measuring $170 \times 170 \times 5 \mu m$, corresponded to the 2H polytype, upon which the subsequent 186 structure determination was conducted. We were unable to separate a fragment containing 187 only the 3R polytype; however, its structure corresponds to that reported by Harlow and Novak (2004) for synthetic $NH_4Fe^{3+}(SO_4)_2$. The relatively large size (in two dimensions) of 188 189 the crystal of the 2*H* polytype used for the structure data collection may have contributed to 190 the rather high R factor; however, the size was necessary in order to obtain a sufficiently large 191 data set.

192 The Rigaku Crystal Clear software package was used for processing of the structure 193 data, including the application of an empirical absorption correction. The structure was solved 194 by direct methods using SIR2004 (Burla et al. 2005). SHELXL-97 software (Sheldrick 2008) 195 was used, with neutral atom scattering factors, for the refinement of the structure. The data 196 quality was only fair, resulting in some instability in the S–O distances, which on average 197 tended to be too long. In the final refinement, soft restraints of 1.43(1) Å were applied to the 198 S-O distances, yielding reasonable results. No clear evidence for H atom positions was seen 199 in the difference Fourier. Details of the sample, data collection, and structure refinement are

200	provided in Table 3, final atom coordinates and displacement parameters in Table 4, selected
201	bond distances in Table 5 and a bond-valence analysis in Table 6.

- 202
- 203
- 204

DISCUSSION OF THE STRUCTURE

205

206 In the glaserite structure type (Moore 1973; Nikolova and Kostov-Kytin 2013) MO₆ 207 octahedra share each of their vertices with TO_4 tetrahedra and each tetrahedron shares three of 208 its vertices with octahedra, yielding a layer of formula $M(TO_4)_2$. The tetrahedra surrounding 209 each octahedron point alternately up and down into the interlayer regions above and below the 210 layer (Fig. 6a). In the glaserite structure type, two kinds of interlayer cation sites may be 211 populated: a 10-coordinated site (Y) nestled into cavities in the layers forming bonds to 9 O 212 atoms in that layer and one O atom in the next, and a 12-coordinated site (X) between the 213 layers forming bonds to six O atoms in each of the adjacent layers. As noted by Moore (1981) 214 and further discussed by other authors (e.g. Lazoryak 1996), in the glaserite structure type, the 215 cations and anions form two kinds of columns along c: column type I containing only cation 216 polyhedra (MO_6 octahedra alternating and sharing faces with XO_{12} polyhedra) and type II 217 containing both cations and anions (TO_4 and YO_{10}). In reference to the glaserite layer depicted 218 in Figure 6a, column type I is centered on the octahedra and column type II is centered on the 219 tetrahedra.

All three of the sabieite polytypes have glaserite-like layers consisting of $Fe^{3+}O_6$ octahedra and SO₄ tetrahedra. Their geometries differ from that of "ideal" glaserite (Fig 6a). In sabieite-1*T*, which is isostructural with godovikovite, NH₄Al(SO₄)₂, (Boujelben et al. 2008) and steklite, KAl(SO₄)₂, (Murashko et al. 2012), the octahedra exhibit trigonal distortion (twisting), being intermediate in geometry between an octahedron and a trigonal prism (Fig. 6b). In both sabieite-2*H* and sabieite-3*R*, the octahedra are relatively undistorted, but are rotated relative to the tetrahedra (Fig. 6c). In each of the sabieite polytypes, the result is a reduction in the space between the octahedra where the *Y* site is located in the glaserite structure. In all three sabieite polytypes, the equivalent of the 12-coordinated *X* site is fully occupied by an NH₄ group and the 10-coordinated *Y* site is vacant.

The sabieite polytypes are mainly distinguished by the stacking sequences of their layers. In the 1*T* polytype, successive layers have identical configuration and orientation, providing a one-layer repeat sequence. In the 2*H* polytype, alternate layers are flipped (or rotated), in a two-layer repeat sequence. In the 3*R* polytype, successive layers are shifted relative to one another, in a three-layer repeat sequence. The layer sequences are shown in Figure 7.

236 It is noteworthy that, in spite of the different stacking sequences involving different 237 successive layer orientations, the coordination polyhedron of the NH₄ group in each polytype appears to be very nearly the same (Fig. 8). Furthermore, the interlayer spacings and packing 238 239 efficiencies are about the same, as indicated by the c cell parameters and calculated densities, 240 respectively (Table 7). However, careful examination of the linkages of the $(NH_4)O_{12}$ 241 polyhedra with the surrounding structural elements reveals a crucial topological difference between the three polytypes. The $(NH_4)O_{12}$ polyhedron in the sabieite-1T structure shares 242 opposite faces with $Fe^{3+}O_6$ octahedra, thereby participating in the type I cation column typical 243 244 of glaserite structures. In contrast, as a result of the different orientations of adjacent layers in the sabieite-2*H* structure, the (NH₄)O₁₂ polyhedron shares only one face with an $Fe^{3+}O_6$ 245 octahedron and the opposite face shares corners with three different Fe³⁺O₆ octahedra. In the 246 sabieite-3*R* structure, (NH₄)O₁₂ polyhedron shares no face with an Fe³⁺O₆ octahedron, but 247 rather shares both opposing faces only with corners of $Fe^{3+}O_6$ octahedra. Thus, the glaserite 248 249 type I column does not exist in the structure of either sabieite-2H or sabieite-3R.

- 251
- 252

IMPLICATIONS

253

254 Phases with glaserite-type and glaserite-like structures are of significant scientific 255 interest, and they have been extensively studied for their interesting properties, including 256 temperature-induced phase transitions without changes in topology. As a whole, these phases 257 are remarkable for their compositional diversity, topological versatility and formation in a 258 wide range of conditions (Nikolova and Kostov-Kytin 2013). The discovery of well-formed 259 crystals composed of the 2H and 3R polytypes of sabieite from a unique natural occurrence 260 has afforded the opportunity to better characterize the species and has provided new insights 261 into the polytypic variations possible in glaserite-related structures.

262 As noted above, the crystals from the Huron Shale burn site, which are mixtures of the 263 2H and 3R polytypes of sabieite, formed by sublimation from relatively high-temperature 264 gases, while sabieite-1*T* from the Lone Creek Fall Cave formed by dehydration of 265 lonecreekite at ambient temperatures. This raises the possibility that the sabieite polytypes 266 may exhibit temperature-induced phase transitions from one to another. If so, such phase 267 transitions would differ from those previously reported for glaserite-type structures. For 268 example, as noted by Bregiroux et al. (2009) for $BaM(PO_4)_2$ (M = Ti, Zr, Hf, Sn), the 269 transition between the low-temperature monoclinic $(C2/m) \alpha$ -structure and the high-270 temperature trigonal (P-3m1) β -structure involves an "unfolding" of the glaserite $M(PO_4)_2$ 271 layers in which the MO₆ and PO₄ polyhedra rotate relative to one another. This unfolding 272 serves to increase the volume of the Ba polyhedron, and at the transition, the Ba coordination 273 increases from 10 to 12. In the low-temperature form, the Ba and M polyhedra share edges, 274 while in the high-temperature form they share faces; however, this is not the result of a

275	significant shift in position of the Ba polyhedron relative to the $M(PO_4)_2$ layer, as is the case
276	for the NH ₄ polyhedra relative to $Fe^{3+}(SO_4)_2$ layers in the sabieite polytypes.
277	It seems very likely that polytypic relationships, similar to those for the sabieite
278	polytypes, exist for other glaserite-related structures; however, because they have not been
279	previously reported in studies of the thermal behavior of glaserite-type phases, it may be that
280	they are not generally manifest as temperature-induced phase transitions.
281	
282	
283	ACKNOWLEDGEMENTS

285	Reviewer Joel Grice, an anonymous reviewer and the Technical Editor are thanked for
286	their constructive comments on the manuscript. Will Shewfelt is acknowledged for bringing
287	this mineral occurrence to the attention of the scientific community via the late Ernest Carlson
288	of Kent State University. Ernest Carlson, Lance Kearns of John Madison University and
289	George Robinson of the A.E. Seaman Mineralogical Museum (Michigan Technological
290	University) are acknowledged for initial studies on the minerals from this occurrence. Ellen
291	de Kock of the Council for Geoscience, South Africa is thanked for her efforts in locating the
292	holotype specimen of sabieite and for providing a copy of the Martini (1983) paper. Maria
293	Atanasova of that organization is thanked for efforts to identify sabieite on the holotype
294	specimen by powder diffraction. The electron microprobe laboratory at the University of Utah
295	is supported in part by the National Science Foundation, the College of Mines and Earth
296	Sciences, and the Department of Geology and Geophysics. Wil Mace of that department is
297	acknowledged for assistance with the microprobe analyses. A portion of this investigation was
298	funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the
299	Natural History Museum of Los Angeles County.
300	
301	
302	References
303	
304	Boujelben, M., Toumi, M., and Mhiri, T. (2008) X-ray structure determination of
305	NH ₄ Al(SO ₄) ₂ . Annales de Chimie (Paris), 33, 379–386.
306	Bregiroux, D., Popa, K., Jardin, R., Raison, P.E., Wallez, G., Quarton, M., Brunelli, M.,
307	Ferrero, C., and Caciuffo, R. (2009) Crystal structure and thermal expansion of the low-

- and high-temperature forms of $BaM^{IV}(PO_4)_2$ compounds (M = Ti, Zr, Hf and Sn). Journal of Solid State Chemistry, **182**, 1115–1120.
- 310 Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L.,
- 311 Giacovazzo, C., Polidori, G., and Spagna, R. (2005) SIR2004: an improved tool for crystal
- 312 structure determination and refinement. Journal of Applied Crystallography, 38, 381–388.
- 313 Harlow, R.L. and Novak, J.M. (2004) Iron ammonium bis(sulfate) as by-product of aniline
- 314 production. ICSD Private Communication, ICSD #413817.
- 315 Lazoryak, B.I. (1996) Design of inorganic compounds with tetrahedral anions. Russian
- 316 Chemical Reviews, 65, 287–305.
- 317 Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting
- 318 mineral species for further study. Canadian Mineralogist, 45, 1307–1324.
- 319 Martini, J. E.J. (1983) Lonecreekite, sabieite, and clairite, new secondary ammonium ferric-
- 320 iron sulfates from Lone Creek Fall cave, near Sabie, eastern Transvaal. Annals of the
- 321 Geological Survey (South Africa), 17, 29–34.
- 322 Moore, P.B. (1973) Bracelets and pinwheels: a topological-geometrical approach to the
- 323 calcium orthosilicate and alkali sulfate structures. American Mineralogist 58, 32–42.
- 324 Moore, P.B. (1981) Complex crystal structures related to glaserite, K₃Na(SO₄)₂: evidence for
- 325 very dense packings among oxysalts. Bulletin de la Société Française de Minéralogie et de
- 326 Cristallographie, 104, 536–547.
- 327 Murashko, M.N., Pekov, I.V., Krivovichev, S.V., Chernyatyeva, A.P., Yapaskurt, V.O.,
- 328 Zadov, A.E., and Zelensky, M.E. (2012) Steklite, KAl(SO₄)₂: the find at Tolbachik
- 329 volcano (Kamchatka, Russia), validation as a mineral species and crystal structure.
- 330 Zapiski Rossiiskogo Mineralogicheskogo Obshchestva 141(4), 36–44.

- 331 Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral
- 332 Names: procedures and guidelines on mineral nomenclature, 1998. Canadian
- 333 Mineralogist, 36, 3–16.
- 334 Nikolova, R. and Kostov-Kytin, V. (2013) Crystal chemistry of "glaserite" type compounds.
- Bulgarian Chemical Communications, 45, 418–426.
- 336 Okada, K. and Ossaka, J. (1980) Structures of potassium sodium sulphate and tripotassium
- 337 sodium disulphate. Acta Crystallographica, B36, 919–921.
- 338 Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 339 microvolumes applying the model "PAP." In: K.F.J. Heinrich and D.E. Newbury (eds)
- 340 Electron Probe Quantitation. Plenum Press, New York , pp. 3 1–75.
- 341 Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.

343	FIGURE CAPTIONS
344	
345	Figure 1. Huron Shale burn site along the Huron River near Milan, Ohio in early 2011.
346	Figure 2. Recently-formed minerals near the interface between the cliff face and talus slope.
347	The white dendritic crystals are salammoniac. (FOV = 22 cm)
348	Figure 3. Hexagonal tablet of sabieite- $2H$ /sabieite- $3R$ with pyracmonite needles. (FOV = 0.87
349	mm)
350	Figure 4. Crystal drawing of sabieite twin (clinographic projection in standard orientation).
351	Indexing is based upon the sabieite- $2H$ cell. Note that the $0kl$ faces in the lower half of
352	the drawing are reproduced by the $\{001\}$ twin plane.
353	Figure 5. Observed (obs) powder diffraction pattern of sabieite crystals from Milan, Ohio
354	compared with those simulated from the structures of sabieite- $2H$ and sabieite- $3R$.
355	Figure 6. Polyhedral sheets viewed down [001] in (a) glaserite (aphthitalite; Okada and
356	Ossaka 1980), (b) sabieite-1 <i>T</i> (based on steklite; Murashko et al. 2012) and (c)
357	sabieite-2 <i>H</i> . Views are down [001]. Unit cells are shown by dashed lines. [Note that
358	the atom positions for steklite provided by Murashko et al. (2012) are in error (Sergey
359	Krivovichev, pers. comm.); for the S and O1 sites, the x coordinates given as $3/4$
360	should be 2/3.]
361	Figure 7. Atomic arrangements of sabieite-1 <i>T</i> , $-2H$ and $-3R$, viewed with [001] approximately
362	vertical. Unit cells are outlined.
363	Figure 8. NH ₄ coordinations in sabieite-1 <i>T</i> , -2 <i>H</i> and -3 <i>R</i> , viewed with [001] approximately
364	vertical. N atoms of NH_4^+ groups are shown as dark gray spheres (red online). O
365	atoms are shown as white spheres. NH_4^+ –O bonds are shown as sticks. Edges of
366	coordination polyhedra are shown as thin lines with thicker lines indicating faces
367	shared with $Fe^{3+}O_6$ octahedra.

Oxide	wt%	SD	Norm. wt%	Holotype**	$(NH_4)Fe(SO_4)_2$
(NH ₄) ₂ O	6.83	0.57	7.21	8.18	9.79
K ₂ O	0.68	0.13	0.72	0.70	-
Na ₂ O	0.07	0.02	0.07	-	-
MgO	0.17	0.08	0.19	-	-
Fe ₂ O ₃	27.27	0.63	28.78	28.64	30.02
Al_2O_3	0.28	0.29	0.30	0.68	-
SO_3	57.33	0.94	60.50	61.80	60.19
H_2O^*	2.12		2.24	-	
Total	94.76		100	100.00	100

370	Table 1.	Analytical	results	for	sabieite.
-----	----------	------------	---------	-----	-----------

373 374

* Based on the structure, assuming $NH_4^+ + K^+ + Na^+ + H_3O^+ = 1$. ** Lone Creek Fall Cave, S. Africa; recalculated after deducting 12.77% insoluble in HCl (Martini 1983).

Table 2. Powder X-ray diffraction	on data for sabieite
-----------------------------------	----------------------

			sabieite-2H			sal	3 <i>R</i>		
Iobs	$d_{\rm obs}$		$d_{\rm calc}$	I_{cale}	h k l	$d_{\rm calc}$	I_{cale}	h k l	
100	8.228(19)		8.2332	70	002	8.1661	23	003	
1.4	4 100(15)	1	4.1880	1	100	4.1272	4	101	
14	4.102(15)	- L	4.0588	8	101	3.9620	2	012	
64	3.733(5)		3.7328	43	102				
62	3.453(6)					3.4565	30	104	
28	3.328(6)		3.3295	34	103		•••		
	0.020(0)		0.0270	υ.	100	3,1831	1	015	
10	2,938(7)		2 9358	10	104	5.1051	1	010	
10	2.950(7)	1	2.7556	2	006	2 7220	1	009	
6	2.717(14)	1	2.7111	2	000	2.7220	2	107	
7	2 587(6)	1	2 5887	10	105	2.0035	2	107	
/	2.387(0)		2.3887	10	105	2 1718	2	018	
		1	2 4170	15	110	2.4/10	5	018	
39	2.419(2)	{	2.41/9	13	110	2.41/4	0	110	
Δ	2.216(5)	(2.3923	2		2 2100	n	112	
9	2.310(3)		2.2954	2	100	2.3180	2	113	
3	2.213(12)		2.2127	1	113	0.1115	4	1.0.10	
		<i></i>	0.0040			2.1145	1	1 0 10	
15	2.082(7)	ł	2.0849	1	114	2.0802	3	116	
10	2.002(7)	1	2.0773	1	201				
4	2.039(13)		2.0510	5	107				
			2.0294	2	202	1.9810	2	024	
22	1 050(5)	1	1.9565	6	203	1.9663	2	0111	
<i></i> _	1.939(3)	1	1.9490	2	115	1.9252	1	205	
0	1.960(0)	1	1.8664	2	204				
ð	1.860(9)	1	1.8473	3	108				
6	1.811(6)		1.8142	2	116	1.8075	1	119	
3	1.765(6)		1.7670	4	205				
2	1.725(8)					1.7283	2	208	
2	1 ((1))	1	1.6766	1	109				
3	1.661(13)	í	1.6647	1	206				
			1 6466	1	0.0.10	1 6332	1	0.0.15	
			1.0.100	•		1 6145	1	0 1 14	
		1	1 5756	2	211	1 5793	1	1 2-1	
		1	1.5750	2 5	118	1.5775	1	1 4-1	
25	1.563(2)	{	1.5675	2	207				
			1 55/1	2	207	1 5507	r	1 1 -12	
		\hat{i}	1.5544	S	<u> </u>	1.5377	∠ 2	171	
14	1.524(2)	{	1 5200	5	212	1.3322	3 1	1 2 - 4	
		2	1.5209	נ ר	213 124	1.3234	1	2011	
3	1.476(6)	{	1.4//4	ے 1	$1 \angle 4$				
	~ /	(1.40/9	1	208	1 4 4 9 0	1	217	
~	1 400(5)		1.4590	1	119	1.4420	1	21/	
2	1.428(5)	<i></i>	1.4267	3	125	1 40 50		a 1 o	
21	1.3957(11)	ł	1.4096	1	1011	1.4059	1	21-8	
-1		l	1.3960	6	300	1.3957	2	300	
			1.3764	2	302	1.3757	1	033	
			1.3722	1	0012				
			1.3712	1	126				
10	1		1 2 (1 0	_	1 1 10	1 2 5 2 2	•		

Calculated intensities have been multiplied by 0.7 for sabieite-2*H* and 0.3 for sabieite-3*R* in accord with the refined proportions of each component in the powder pattern. 379

381 382	Table 3. Sample and crystal dat	a for sabieite-2 <i>H</i> .
383	Diffractometer	Rigaku R-Axis Rapid II
384	X-ray radiation/power	MoK α ($\lambda = 0.71075$ Å)/50 kV, 40 mA
385	Temperature	298(2) K
386	Structural Formula	$NH_4Fe^{3+}(SO_4)_2$
387	Space group	<i>P</i> 6 ₃
388	Unit cell dimensions	a = 4.83380(17) Å
389		c = 16.4362(9) Å
390	V	332.59(2) Å ³
391	Ζ	2
392	Density (for above formula)	$2.656 \text{ g} \cdot \text{cm}^{-3}$
393	Absorption coefficient	2.908 mm ⁻¹
394	<i>F</i> (000)	266
395	Crystal size	170 x 170 x 5 μm
396	θ range	2.48 to 27.37°
397	Index ranges	$-6 \le h \le 6, -6 \le k \le 6, -21 \le l \le 21$
398	Refls collected / unique	7037 / 513; $R_{\rm int} = 0.052$
399	Reflections with $F_{o} > 4\sigma(F)$	509
400	Completeness to $\theta = 27.37^{\circ}$	98.6%
401	Max. and min. transmission	0.9856 and 0.6377
402	Refinement method	Full-matrix least-squares on F^2
403	Parameters refined	38
404	GoF	1.097
405	Final <i>R</i> indices $[F_0 > 4\sigma(F)]$	$R_1 = 0.0694, wR_2 = 0.1892$
406	R indices (all data)	$R_1 = 0.0696, wR_2 = 0.1894$
407	Absolute structure parameter	0.13(13)
408	Largest diff. peak / hole	$+1.99 / -1.10 e/A^{3}$
409 410 411 412	* $R_{\text{int}} = \Sigma F_o^2 - F_o^2(\text{mean}) / \Sigma [F_o^2]$ $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$ 4.7986 and P is $[2F_c^2 + \text{Max}(F_o^2)^2]$. GoF = $S = \{\Sigma[w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}$. $R_1 = \Sigma F_0 - F_c /\Sigma F_0 $. $P_0^2]\}^{1/2}$; $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$ where <i>a</i> is 0.1104, <i>b</i> is P_0^2 , 0)]/3.

115	1 4010	1. 1 10111 00	orallities and a	isplacement para		i buolette 211.					
414		x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
415	NH4	0.3333	0.6667	0.1478(17)	0.023(5)	0.019(6)	0.019(6)	0.031(13)	0.000	0.000	0.009(3)
416	Fe	0.6667	0.3333	-0.0980(3)	0.0120(8)	0.0094(10)	0.0094(10)) 0.0173(14)	0.000	0.000	0.0047(5)
417	S 1	0.0000	0.0000	0.0035(3)	0.0128(11)	0.0116(15)	0.0116(15)) 0.015(2)	0.000	0.000	0.0058(7)
418	S2	0.6667	0.3333	0.2990(3)	0.0091(12	0.0070(16)	0.0070(16)) 0.013(3)	0.000	0.000	0.0035(8)
419	01	0.0000	0.0000	0.0910(7)	0.031(5)	0.042(7)	0.042(7)	0.009(9)	0.000	0.000	0.021(4)
420	O2	0.303(2)	0.277(2)	-0.0252(8)	0.027(2)	0.029(6)	0.038(6)	0.016(5)	0.003(6)	0.003(5)	0.019(5)
421	O3	0.6667	0.3333	0.2109(7)	0.015(4)	0.016(6)	0.016(6)	0.013(9)	0.000	0.000	0.008(3)
422	O4	0.622(3)	0.024(2)	0.3305(9)	0.029(3)	0.025(6)	0.019(5)	0.039(7)	-0.005(5)	-0.003(6)	0.009(4)
423											
424											
425				_							
426	Table	5. Selected	bond distances	(Å) for sabieite-2	2 <i>H</i> .						
427											
428	NH ₄ -	O1 (×3)	2.943(10)	Fe–O4 (×3)	1.975(12)	S1	01	1.438(11)	S2–O3	1.44	47 (11)
429	NH ₄ -0	O3 (×3)	2.977(10)	Fe–O2 (×3)	2.027(12)	S1	–O2 (×3)	1.483(9)	S2–O4	(×3) 1.49	93(10)
430	NH ₄ –	O2 (×3)	3.37 (3)	<feo></feo>	2.006	< <u>S</u>	1–O>	1.472	<s2–o< td=""><td>> 1.48</td><td>32</td></s2–o<>	> 1.48	32
431	NH ₄ -0	04 (×3)	3.40(3)								
432	<nh<sub>4</nh<sub>	-0>	3.173								
433											
434											
435											

413 Table 4. Atom coordinates and displacement parameters ($Å^2$) for sabieite-2*H*.

436 437 Table 6. Bond-valence analysis for sabieite-2*H*. Values are expressed in valence units. _____

	O1	O2	O3	O4	$\Sigma_{ m c}$
NH ₄	$0.14 \times 3 \downarrow \rightarrow$	$0.04 \times 3 \rightarrow$	$0.13 \times 3 \downarrow \rightarrow$	$0.04 \times 3 \rightarrow$	1.05
Fe		$0.48 \times 3 \rightarrow$		$0.56 \times 3 \rightarrow$	3.12
S 1	1.65	$1.46 \times 3 \rightarrow$			6.03
S2			1.61	$1.42 \times 3 \rightarrow$	5.87
Σ_{a}	2.07	1.98	2.00	2.02	
Altermatt (1983	5); S1 ⁺⁻ -O bor	id strengths fro	om Brese and O	Keeffe (1991)).
	Sab	ieite-1 <i>T</i> *	Sabieite-2	$2H^{\dagger}$	Sabieite-3R ²
Space group	P32	21	$P6_3$		<i>R</i> -3
a (Å)	4.82	22	4.83380(1	17)	4.835(2)
c(A)	8.16	596	16.4362(9))	24.496(15)
$V(Å^3)$	164	.51	332.59(2)		AO = O(E)
Ζ					495.9(5)
Density (g. cm ⁻³)	1		2		495.9(5) 3
Density (g cm)	1 2.68	35	2 2.656		495.9(5) 3 2.672
* Martini (1983)	$\frac{1}{2.68}$	35	2 2.656		495.9(5) 3 2.672
* Martini (1983) [†] Refined from s	$\frac{1}{2.68}$) single-crystal of	35 data.	2 2.656		495.9(5) 3 2.672
* Martini (1983) [†] Refined from s [‡] Refined from r	$\frac{1}{2.68}$) single-crystal oppowder data	35 Jata.	2 2.656		495.9(5) 3 2.672
* Martini (1983) [†] Refined from s [‡] Refined from p [§] For ideal comm	$\frac{1}{2.68}$) single-crystal oppowder data.	35 data.	2 2.656		495.9(5) 3 2.672
* Martini (1983) [†] Refined from s [‡] Refined from p [§] For ideal comp	1 2.68) single-crystal o powder data.	35 data.	2 2.656		495.9(5) 3 2.672

