1	Te-rich raspite, Pb(W _{0.56} Te _{0.44})O ₄ , from Tombstone, Arizona, USA:
2	the first natural example of Te ⁶⁺ substitution for W ⁶⁺
3	
4	Marcelo B. Andrade*, Hexiong Yang, Robert T. Downs, Robert A. Jenkins, and Isabel
5	Fay
6	Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, USA
7	
8	* Present address: Department of Physics and Informatics, São Carlos Institute of Physics, University of
9	São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
10	Corresponding author: <u>mabadean@terra.com.br</u>
11	
12	
13	Abstract
14	Te-rich raspite, $Pb(W_{0.56}Te_{0.44})O_4$, from the Grand Central mine, Tombstone,
15	Arizona, USA was studied with single-crystal X-ray diffraction, Raman spectroscopy, and
16	electron microprobe analysis. The mineral represents the first natural example of Te^{6+}
17	substitution for W^{6+} . It displays monoclinic symmetry with space group $P2_1/a$ and unit cell
18	parameters $a = 13.621(3)$, $b = 5.019(1)$, $c = 5.586(1)$ Å, $\beta = 107.979(5)^{\circ}$, and $V = 363.2(2)$
19	Å ³ . Its structure consists of distorted MO_6 ($M = W + Te$) octahedra sharing edges to form
20	zigzag chains running parallel to [010]. These octahedral chains are linked together by
21	seven coordinated Pb ²⁺ cations. In addition, a refinement of the regular raspite structure
22	with measured chemistry $Pb_{1.00}W_{1.00}O_{4}$, $P2_{1}/a$ symmetry and unit cell parameters $a =$
23	13.5773(8), $b = 4.9806(3)$, $c = 5.5670(3)$ Å, $\beta = 107.658(3)^{\circ}$, and $V = 358.72(4)$ Å ³ is
24	presented. Compared to regular raspite (PbWO ₄), the partial substitution of the small
25	radius Te^{6+} for larger W^{6+} results in a decrease in the MO ₆ octahedral distortion, with a
26	concomitant increase in the MO_6 octahedral volume and the average Pb-O bond length. In
27	addition, as should be expected for mixed occupancy compounds, most Raman bands for
28	the mixed Te-rich raspite are broader than the corresponding ones for the end-member
29	regular raspite. High-temperature annealing experiments reveal that Te-rich raspite
30	transforms irreversibly to the stolzite structure at 590(10) °C, which is considerably higher
31	than the reported transformation temperature of 395(5) °C for regular raspite.
32	

33	Keywords: Te-rich raspite, lead tungstate, stolzite, crystal structure, X-ray diffraction,		
34	Raman spectra, phase transformation		
35			
36	Introduction		
37	Naturally occurring lead tungstate (PbWO ₄), has been reported to crystallize as the		
38	high-temperature tetragonal $I4_1/a$ stolzite (Plakhov et al. 1970) or the low-temperature		
39	monoclinic $P2_1/a$ raspite (Fujita et al. 1977). These phases are useful as scintillators		
40	compounds and possesses many unique physical properties, such as high density, short		
41	radiation length, short decay constant, and rather high radiation hardness (e.g., Arora and		
42	Chudasama 2007; Yeom and Lim 2012). They have been used as laser host materials		
43	(Chen et al. 2001), scintillators in high-energy physics detectors (Kobayashi et al. 1998;		
44	Annenkov et al. 2002), and an oxide ion conductor (Takai et al. 1999). Furthermore,		
45	considerable efforts have been devoted to synthesize nanobelt or bamboo-leaf-like raspite		
46	to understand its luminescence properties (George et al. 2008; Zheng et al., 2010).		
47	Relative to the tetragonal stolzite, the low-temperature monoclinic raspite is rather		
48	rare in nature and transforms irreversibly to stolzite between 400 and 450 $^{\circ}\mathrm{C}$ (Shaw and		
49	Claringbull 1955; Bastians et al. 2004). In addition, a third monoclinic $(P2_1/n)$ phase,		
50	PbWO ₄ -III, can be synthesized by quench from high-pressure and high-temperature		
51	conditions (Richter et al. 1976). Raspite was originally described by Hlawatsch (1897)		
52	from Broken Hill, New South Wales, Australia. Shaw and Claringbull (1955) conducted		
53	the first X-ray structural analysis on this mineral, but only located the positions of Pb^{2+} and		
54	W ⁶⁺ . A detailed structural model of raspite was reported by Fujita et al. (1977) without		
55	anisotropic displacement parameters for O atoms ($R = 0.080$). This paper reports the		
56	structure determinations of a Te-rich raspite, $Pb(W_{0.56}Te_{0.44})O_4$, and a regular raspite of		
57	ideal composition PbWO4, from single-crystal X-ray diffraction experiments along with		
58	Raman spectra measured before and after heat-treatments, revealing that the substitution of		
59	Te^{6+} for W^{6+} can appreciably expand the phase stability field of raspite as a function of		
60	temperature.		
61			

62

Experimental Procedures

63	The Te-rich raspite specimen used in this study is from the Grand Central mine,
64	Tombstone, Arizona, USA, and is in the collection of the RRUFF Project
65	(http://rruff.info/R130514). The crystals are pale yellow-to-colorless, elongated, and
66	prismatic-to-tabular. They are associated with chlorargyrite, emmonsite, ottoite, quartz,
67	and jarosite. The regular raspite specimen is from Broken Hill, New South Wales,
68	Australia (http://rruff.info/R050567) and the crystals display similar morphology to the Te-
69	rich raspite. The chemical compositions of the two samples were analyzed using a Cameca
70	SX100 electron microprobe at 20 kV and 20 nA with a beam size of $<1~\mu m.$ The
71	following standards were used: NBS K458 glass (Pb), scheelite (W), zinc telluride (Te)
72	and anorthite (Al). The average compositions (wt.%) (9 analysis points for both samples)
73	are PbO 50.79(51), WO ₃ 30.93(1.55), TeO ₃ 18.26(1.75), and Al ₂ O ₃ 0.12(4) for Te-rich
74	raspite, and PbO 48.85(28) and WO ₃ 50.93(32) for regular raspite. The resultant empirical
75	formulas are $Pb_{0.96}(W_{0.57}Te_{0.44}Al_{0.01})_{1.02}O_4$ and $Pb_{1.00}W_{1.00}O_4$ for Te-rich and regular raspite,
76	respectively.
77	Single-crystal X-ray diffraction data for Te-rich and regular raspite were collected
78	from nearly equi-dimensional crystals on a Bruker X8 APEX2 CCD X-ray diffractometer
79	equipped with graphite-monochromatized MoKa radiation. Reflections with $I > 2\sigma(I)$ were
80	indexed based on a monoclinic unit cell (Table 1). No satellite or super-lattice reflections
81	were observed. The intensity data were corrected for X-ray absorption using the Bruker
82	program SADABS. The systematic absence of reflections suggest the unique space group
83	$P2_1/a$. The crystal structure was solved and refined using SHELX97 (Sheldrick 2008). The
84	positions of all atoms were refined with anisotropic displacement parameters. For
85	simplicity, during the Te-raspite structure refinements, the Pb site was assumed to be fully
86	occupied by Pb and the M (= W + Te) site by (0.56 W + 0.44 Te). The Pb site occupancy
87	was also varied during the refinement, which produced a refined occupancy of 1.01. A full
88	Pb occupancy model was thus adopted. For the regular raspite, the structure refinement
89	indicated the ideal formula PbWO ₄ . Final atomic coordinates and displacement parameters
90	are listed in Table 2, and selected bond lengths and angles in Table 3.
91	The Raman spectra of Te-rich and regular raspite were recorded on randomly

92 oriented crystals on a Thermo Almega microRaman system, using a solid-state laser with a

93	frequency of 532 nm and a thermoelectrically cooled CCD detector. The laser is partially		
94	polarized with 4 cm ⁻¹ resolution and a spot size of 1 μ m.		
95	To better understand the effect of the Te^{6+} substitution for W^{6+} on the raspite-to-		
96	stolzite transformation, we also carried out high-temperature annealing experiments on		
97	both Te-rich and regular raspite. The two samples were heated at a series of increasing		
98	temperatures from 390 to 600 °C in air in 10 or 20 °C steps for 24 h duration at each		
99	temperature. Both samples were examined by Raman spectroscopy at each step after		
100	cooling to bracket the temperature ranges for the phase transformation.		
101			
102	Results and Discussion		
103	Crystal Structure		
104	The crystal structure of Te-rich raspite is characterized by distorted MO_6 ($M = W +$		
105	Te) octahedra sharing edges to form zigzag chains parallel to [010]. These octahedral		
106	chains are interlinked by Pb atoms coordinated to seven O atoms (Fig. 1, Table 3).		
107	Compared to the MO ₆ octahedron in regular raspite, that in Te-rich raspite is noticeably		
108	less distorted, as measured by the octahedral angle variance (OAV) and quadratic		
109	elongation (OQE) indices (Robinson et al. 1971),85 and 1.029, respectively, for the MO_6		
110	octahedron in Te-rich raspite and 104 and 1.038 for that in regular raspite (Table 3). The		
111	greater distortion of the MO ₆ octahedron in regular raspite stems primarily from the so-		
112	called second order Jahn-Teller (SOJT) effect of W^{6+} , owing to its empty <i>d</i> -shell (e.g., Ra		
113	et al. 2003; Lufaso and Woodward 2004). In contrast, Te^{6+} has a full <i>d</i> -shell, which		
114	suppresses part of the SOJT distortions.		
115	The partial substitution of smaller Te ⁶⁺ ($r = 0.56$ Å) for larger W ⁶⁺ ($r = 0.60$ Å)		
116	(Shannon 1976) results in little change in the average <i>M</i> -O bond distance, but a significant		
117	increase in the average Pb-O bond length from 2.610 Å in regular raspite to 2.635 Å in Te-		
118	rich raspite (Table 3). Nevertheless, due to less distortion, the volume of the MO_6		
119	octahedron in Te-rich raspite (9.472 Å ³) is larger than that in regular raspite (9.426 Å ³)		
120	(Table 3). Thus, it appears that the Te^{6+} substitution for W^{6+} in raspite reduces its structural		
121	packing efficiency, making the unit-cell parameters of Te-rich raspite greater than those of		
122	regular raspite (Table 1). Similar results have been observed for the $LaNi_{0.8}M_{0.2}O_3$ solid		

123	solution ($M = Mo^{6+}$, Te ⁶⁺ , W ⁶⁺), in which the unit-cell volume of the Te-bearing phase is
124	larger than that of the W-bearing phase (Alvarez et al. 1995, 1997).
125	From the crystal-chemical point of view, because six-coordinated W^{6+} , Mo^{6+} , and
126	Te ⁶⁺ have similar ionic radii, 0.60, 0.59, and 0.56 Å (Shannon 1976), respectively, one
127	may expect extensive solid solutions among them. This is indeed the case for some
128	synthetic compounds, such as LaNi _{0.8} $M_{0.2}$ O ₃ ($M = Mo^{6+}, Te^{6+}, W^{6+}$) (Alvarez et al. 1995,
129	1997), Pb ₂ Mg(W _{1-x} Te _x)O ₆ (Rivezzi and Sciau 1998), LiY(W _{1-x} Te _x)O ₈ (Wang et al. 2010),
130	and a variety of Mo-Te mixed oxides used as catalysts in the gas phase selective oxidation
131	of hydrocarbons (e.g., López Nieto et al. 2003; Holmberg et al. 2007; Botella et al. 2009).
132	However, there has been no report thus far for the significant substitution of Te^{6+} for W^{6+}
133	or Mo^{6+} in minerals, despite the common substitution between W^{6+} and Mo^{6+} , as in the
134	scheelite group of minerals (Tyson et al. 1988, Zhang et al. 1998) and in stolzite from
135	France (Chiappero et al. 2011). Therefore, our Te-rich raspite represents the first natural
136	example of Te^{6+} substituting for W^{6+} .
137	
138	Raman Spectra
139	Both raspite and stolzite have been previously investigated with Raman
140	spectroscopy (Frost et al. 2004, Bastians et al. 2004; Yang and Huang 2012). Detailed
141	assignments of major Raman bands for raspite have been proposed by Bastians et al.
142	(2004). Figure 2 shows the Raman spectra of Te-rich and regular raspite. Evidently, the
143	two spectra are analogous, but some differences between them are discernible. Specifically,
144	as a consequence of the partial Te^{6+} substitution for W^{6+} (Te-W disordering) in the
145	octahedral site, most Raman bands for Te-rich raspite are considerably broader than the
146	corresponding ones for regular raspite. In particular, between 840 and 920 cm ⁻¹ , there is
147	only one strong, sharp band at 870 cm ⁻¹ for regular raspite, which is ascribable to the W-O
148	symmetrical stretching vibrations within the WO ₆ octahedron (Bastians et al. 2004; Yang
149	and Huang 2012). In contrast, there are two strong overlapped bands in the same region for
150	Te-rich raspite, the major one at 881 cm ⁻¹ and the shoulder at 871 cm ⁻¹ (Fig. 2), which may
151	be assigned to the Te-O and W-O symmetrical stretching vibrations within the MO_6
152	octahedron, respectively, as the Te-O bond is shorter and stronger with more covalent
153	nature than the W-O bond (Wang et al. 2010). The bands between 620 and 750 cm ⁻¹ for the

154	two minerals have been assigned to the M-O anti-symmetrical vibrations (Bastians et al.		
155	2004; Yang and Huang 2012). Similarly, these bands are broader and more complex for		
156	Te-rich raspite than for regular raspite due to the partial Te^{6+} substitution for W^{6+} .		
157	The irreversible transformation from the raspite to stolzite structure has been the		
158	subject of several investigations because it puts operational constraints on high-tech		
159	applications (Shaw and Claringbull, 1955; Bastians et al. 2004; Wang et al. 2010; Yang		
160	and Huang 2012). Te/W are tetrahedrally coordinated in stolzite, in contrast to six		
161	coordinated in raspite. Since the raspite to stolzite transformation is not reversible, our		
162	Raman spectra measured from the annealed samples indicate the temperatures at which the		
163	phase transformation occurred, which is 395(5) °C for regular raspite and 590(10) °C for		
164	Te-rich raspite (Fig. 3). The higher phase transition temperature for Te-rich raspite is a		
165	consequence of the stronger Te^{6^+} -O bond compared to the weaker W^{6^+} -O bond (Wang et		
166	al. 2010), thus requiring more energy to break. In other words, our data indicate that the		
167	phase stability field of raspite as a function of temperature can be markedly increased		
168	through the substitution of Te^{6+} for W^{6+} .		
169			
170	Acknowledgements		
171	We are very grateful to Bruce Murphy for providing the Te-rich raspite sample to		
172	the RRUFF project. This study was supported by the Arizona Science Foundation and		
173	CNPq from the Brazilian government. We are also grateful to the reviewers for their		
174	valuable suggestions, which have improved the quality of our manuscript.		
175			
176			
177	References cited		
178	Annenkov, A.A., Korzhik, M.V., and Lecoq, P. (2002) Lead tungstate scintillation		
179	material. Nuclear Instruments and Methods in Physics Research, A490, 30-50.		
180	Alvarez, I., Veiga, M.I., and Pico, C. (1995) Synthesis and structural characterization of a		
181	new perovskite series derived from $LaNiO_3$: $La_5Ni_4MO_{15}$ (M = Mo, Te, W).		
182	Journal of Materials Chemistry, 5, 1049-1051.		

183	Alvarez, I., Veiga, M.I., and Pico, C. (1997) Structural characterization and electronic
184	properties of A-substituted $LaNi_{0.8}M_{0.2}O_3$ (A = Ca, Sr; M = Te, W) perovskites.
185	Solid State Ionics, 93, 329-334.
186	Arora, S.K., and Chudasama, B. (2007) Flux Growth and Optoelectronic Study of $PbWO_4$
187	Single Crystals. Crystal Growth & Design, 7, 296-299.
188	Bastians, S., Crump, G., Griffith, W.P., and Withnall, R. (2004) Raspite and studtite:
189	Raman spectra of two unique minerals. Journal of Raman Spectroscopy, 35, 726-
190	731.
191	Botella, P., García-González, E., Solsona, B., Rodríguez-Castellón, E., González-Calbet,
192	J.M., and López Nieto, J.M. (2009) Mo-containing tetragonal tungsten bronzes.
193	The influence of tellurium on catalytic behaviour in selective oxidation of propene.
194	Journal of Catalysis, 265, 43–53.
195	Chen, W., Inagawa, Y., Omatsu, T., Tateda, M., Takeuchi, N., and Usuki, Y. (2001)
196	Diode-pumped, self-stimulating, passively Q-switched Nd ³⁺ : PbWO ₄ Raman
197	laser. Optical Communications, 94, 401-407.
198	Chiappero, PJ., Dietrich, J.E., Galvier, J., Gol, D., Merchadier, Y., Muller, E., and Bayle,
199	LD. (2011) Stolzite from the Sainte Lucie mine, Lozere, France. Mieralogical
200	Record, 42, 9-32.
201	Frost, R.L., Duong, L., and Weier, M. (2004) Raman microscopy of selected tungstate
202	minerals. Spectrochimica Acta, A60, 1853-1859.
203	Fujita, T., Kawada, I., and Kato, K. (1977) Raspite from Broken Hill. Acta
204	Crystallographica, B33, 162-164.
205	George, T., Joseph, S., Sunny, A.T., and Mathew, S. (2008) Fascinating morphologies of
206	lead tungstate nanostructures by chimie douce approach. Journal of Nanoparticle
207	Research, 10, 567-575.
208	Hlawatsch, C. (1897) Ueber den Stolzit und ein neues Mineral Raspit von Brokenhill,
209	Annalen des K.K. Naturhistorischen Hofmuseums, 12, 33-41.
210	Holmberg, J., Wagner, J.B., Haggblad, R., Hansen, S., Wallenberg, L.R., and Andersson,
211	A. (2007) Catalytic and structural effects of W-substitution in M2 Mo-V-Te-oxide
212	for propene ammoxidation. Catalysis Today, 153-160.

213	Kobayashi, M., Ishii, M., and Usuki, Y. (1998) Comparison of radiation damage in		
214	different PbWO ₄ scintillating crystals. Nuclear Instruments and Methods in Physics		
215	Research, A406, 442-450.		
216	López Nieto, J.M., Botella, P., Solsona, B., and Oliver, J.M. (2003) The selective oxidation		
217	of propane on Mo-V-Te-Nb-O catalysts: The influence of Te-precursor. Catalysis		
218	Today, 81, 87–94.		
219	Lufaso, M.W., and Woodward, P.M. (2004) Jahn-Teller distortions, cation ordering and		
220	octahedral tilting in perovskites. Acta Crystallographica, B60, 10-20.		
221	Plakhov, G.F., Pobedimskaya, E.A., Simonov, M.A., and Belov, N.V. (1970) The crystal		
222	structure of PbWO ₄ . Kristallografiya, 15, 1067-1068.		
223	Ra, H.S., Ok, K.M., and Halasyamani, P.S. (2003) Combining Second-order Jahn-Teller		
224	distorted cations to create highly efficient SHG materials: Synthesis,		
225	characterization, and NLO properties of BaTeMO (M = Mo or W). Journal of the		
226	American Chemical Society, 125, 7764-7765.		
227	Richter, P.W., Kruger, G.J., and Pistorius, C.W.F.T. (1976) PbWO ₄ -III (a high-pressure		
228	form). Acta Crystallographica, B32, 928-929.		
229	Rivezzi, N., and Sciau, P. (1998) Etude de la solution solide entre tungstate et tellurate de		
230	magnesium: Pb ₂ MgW _x Te _(1-x) O ₆ . Journal of Solid State Chemistry, 139, 332-341.		
231	Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic Elongation: A Quantitative		
232	Measure of Distortion in Coordination Polyhedra. Science, 172, 567-570.		
233	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic		
234	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.		
235	Shaw, R., and Claringbull, G.F. (1955) X-ray study of raspite (monoclinic PbWO ₄).		
236	American Mineralogist, 40, 933.		
237	Sheldrick, G.M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112-122.		
238	Takai, S., Sugiura, K., and Esaka, T. (1999) Ionic conduction properties of $Pb_{1-x}M_xWO_{4+\delta}$		
239	(M = Pr, Tb). Materials Research Bulletin 34, 193-202.		
240	Tyson, R.M., Hemphill, W.R., and Theisen, A.F. (1988) Effect of the W:Mo ratio on the		
241	shift of excitation and emission spectra in the scheelite-powellite series. American		
242	Mineralogist, 73(9-10), 1145-1154.		

3/12

243	Wang, L., Bian, J.J., and Guo, G.H. (2010) Phase transition and microwave dielectric
244	properties of LiY($W_{1-x}Te_x$)2O8 ($0.0 \le x \le 0.2$). Materials Chemistry and Physics,
245	124, 748-750.
246	Yang, X., and Huang, J. (2012) Phase transformation of lead tungstate at normal
247	temperature from tetragonal structure to monoclinic structure. Journal of the
248	American Ceramic Society, 95, 3334-3338.
249	Yeom, T.H., and Lim, A.R. (2012) Magnetic resonance studies on ²⁰⁷ Pb nuclei and
250	paramagnetic impurities in PbWO4:Eu, PbWO4:Gd, and pure PbWO4 single
251	crystals. Journal of Molecular Structure, 1027, 44–48.
252	Zhang, Y., Holzwarth, N.A.W., and Williams, R.T. (1998) Electronic band structures of
253	the scheelite materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review
254	B, 57, 12738.
255	Zheng, C., Hu, C., Chen, X., Xiong, Y., Xu, J., Wan, B., and Huang, L. (2010) Raspite
256	PbWO ₄ nanobelts: synthesis and properties. CrystEngComm, 12, 3277-3282.
257	
258	
259	
260	
261	
262	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4823

Revision 1

263 264 265 266	Figure 1. Crystal structure of Te-rich raspite. The octahedra and spheres represent the MO_6 (M = W + Te) groups and Pb atoms, respectively.
267 268 269	Figure 2. Raman spectra of Te-rich and regular raspites at room temperature. The spectra are shown with vertical offset for more clarity.
270 271 272 273 274	Figure 3. Raman spectra of regular and Te-rich raspites annealed at different temperatures. The Raman spectrum of stolzite was taken from the RRUFF Project (http://rruff.info/R050568) for comparison. The spectra are shown with vertical offset for more clarity. Annealing temperatures are indicated on the left.
275 276	Table 1. Crystallographic data and refinement results for Te-rich and regular raspites
277 278	Table 2. Coordinates and displacement parameters of atoms in Te-rich raspite and regular raspite.
279 280 281 282 283 284 285 286 287 288 289 290 291 292	Table 3. Selected bond distances and angles for Te-rich and regular raspites.
293	

Table 1. Crystallographic data and refinement results for Te-rich and regular raspites 294

	Te-rich raspite	Regular raspite
Chemical formula	$Pb(W_{0.56}Te_{0.44})O_4$	PbWO ₄
Crystal size (mm)	$0.05 \times 0.04 \times 0.04$	$0.05 \times 0.05 \times 0.04$
Space group	<i>P</i> 2 ₁ / <i>a</i> (No. 14)	$P2_1/a$ (No. 14)
a (Å)	13.621(3)	13.5773(8)
b (Å)	5.0187(12)	4.9806(3)
<i>c</i> (Å)	5.5858(14)	5.5670(3)
β (°)	107.979(5)	107.658(3)
$V(\text{\AA}^3)$	363.19(15)	358.72(4)
Z	4	4
$\rho_{cal} (g/cm^3)$	7.869	8.426
λ (Å)	0.71073	0.71073
$\mu (\text{mm}^{-1})$	67.40	78.76
2θ range for data collection	≤65.34	≤65.15
No. of reflections collected	5113	8180
Index ranges	$-20 \le h \le 15$ $-7 \le k \le 7$ $-8 \le l \le 8$	$-20 \le h \le 19 \ 0 \le k \le 7 \ 0 \le l \le 8$
No. of independent reflections	1336	1315
No. of reflections with $I > 2\sigma(I)$	1211	1156
No. of parameters refined	57	56
R(int)	0.033	0.048
Final <i>R</i> factors $[I > 2\sigma(I)]$	$R_1 = 0.026, wR_2 = 0.052$	$R_1 = 0.025, wR_2 = 0.053$
Final R factors (all data)	$R_1 = 0.031, wR_2 = 0.054$	$R_1 = 0.032, wR_2 = 0.055$
Goodness-of-fit	1.13	1.06

Relative intensity

	Te-rich raspite	Regular raspite
Chemical formula	$Pb(W_{0.56}Te_{0.44})O_4$	PbWO ₄
Crystal size (mm)	$0.05 \times 0.04 \times 0.04$	$0.05 \times 0.04 \times 0.03$
Space group	<i>P2</i> ₁ / <i>a</i> (No. 14)	<i>P2</i> ₁ / <i>a</i> (No. 14)
<i>a</i> (Å)	13.621(3)	13.5773(8)
b (Å)	5.0187(12)	4.9806(3)
<i>c</i> (Å)	5.5858(14)	5.5670(3)
β (°)	107.979(5)	107.658(3)
$V(\text{\AA}^3)$	363.19(15)	358.72(4)
Z	4	4
$\rho_{cal} (g/cm^3)$	7.869	8.426
λ (Å)	0.71073	0.71073
$\mu (\text{mm}^{-1})$	67.40	78.76
2θ range for data collection	≤65.34	≤65.15
No. of reflections collected	5113	8180
No. of independent reflections	1336	1315
No. of reflections with $I > 2\sigma(I)$	1211	1156
No. of parameters refined	57	56
<i>R</i> (int)	0.033	0.048
Final <i>R</i> factors $[I > 2\sigma(I)]$	$R_1 = 0.026, wR_2 = 0.052$	$R_1 = 0.025, wR_2 = 0.053$
Final <i>R</i> factors (all data)	$R_1 = 0.031, wR_2 = 0.054$	$R_1 = 0.032, wR_2 = 0.055$
Goodness-of-fit	1.13	1.06

Table 1. Crystallographic data and refinement results for Te-rich and regular raspites

Table 2. Coordinates and displacement parameters of atoms in Te-rich raspite and regular raspite.

Atom	x	У	Ζ	U _{iso}	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂	
Te-rich raspite (R130514)											
Pb	0.15739 (2)	0.19923 (6)	0.16068 (6)	0.02070 (9)	0.0182(1)	0.0245(2)	0.0206(2)	-0.0067(1)	0.0078(1)	-0.0008(1)	
Μ	0.07414 (2)	0.75045 (6)	0.59996 (6)	0.01008 (9)	0.0106(1)	0.0080(1)	0.0108(1)	0.0013(1)	0.0020(1)	0.0000(1)	
01	0.0195 (4)	0.0548 (10)	0.7274 (9)	0.0131 (9)	0.0136(22)	0.0147(21)	0.0087(21)	-0.0042(17)	0.0001(17)	0.0031(17)	
02	0.0195 (4)	0.4347 (9)	0.3918 (9)	0.0111 (9)	0.0121(21)	0.0082(19)	0.0162(23)	0.0000(16)	0.0091(18)	0.0002(16)	
03	0.1472 (4)	0.6318 (11)	0.9075 (9)	0.0182 (10)	0.0198(25)	0.0213(25)	0.0093(22)	0.0069(19)	-0.0017(19)	-0.0034(20)	
04	0.1847 (4)	0.8853 (10)	0.5273 (10)	0.0150 (9)	0.0103(22)	0.0186(23)	0.0162(23)	0.0083(19)	0.0043(19)	0.0007(18)	
Regular raspite (R050567)											
Pb	0.14961 (2)	0.19458 (6)	0.16665 (5)	0.01241 (9)	0.01146 (14)	0.01554 (15)	0.01123 (14)	-0.00060 (9)	0.00496 (10)	0.00496 (10)	
W	0.07711 (2)	0.74936 (5)	0.61164 (5)	0.00792 (8)	0.00726 (14)	0.00834 (14)	0.00809 (14)	0.00048 (9)	0.00222 (10)	0.00222 (10)	
01	0.0172 (4)	0.0442 (11)	0.7282 (10)	0.0117 (10)	0.011 (2)	0.014 (3)	0.009 (3)	-0.0001 (19)	0.002 (2)	0.002 (2)	
02	0.0627 (4)	0.4416 (11)	0.3930 (10)	0.0112 (10)	0.008 (2)	0.012 (2)	0.017 (3)	-0.003 (2)	0.009 (2)	0.009 (2)	
03	0.1468 (4)	0.6191 (12)	0.9101 (10)	0.0155 (11)	0.014 (3)	0.017 (3)	0.015 (3)	0.002 (2)	0.003 (2)	0.003 (2)	
04	0.1865 (4)	0.8922 (11)	0.5388 (10)	0.0135 (11)	0.010 (3)	0.016 (3)	0.016 (3)	0.004 (2)	0.005 (2)	0.005 (2)	

Note: M = 0.56 W + 0.44 Te.

	$Pb(W_{0.56}Te_{0.44})O_4$	PbWO ₄
W-O1	1.929(5)	1.886 (5)
W-O1'	2.118(5)	2.192 (5)
W-O2	1.941(5)	1.930 (5)
W-O2'	2.080(5)	2.116 (5)
W-O3	1.800(5)	1.767 (6)
W-O4	1.807(5)	1.800 (5)
Average	1.946	1.9450
OV	9.472	9.426
OQE	1.029	1.038
OAV	85.4	104.2
Pb-O1	2.665 (5)	2.663(5)
Pb-O1'	2.958(5)	2.773(6)
Pb-O2	2.412 (4)	2.323 (5)
Pb-O3	2.571 (5)	2.545 (6)
Pb-O3'	2.823(6)	2.946(6)
Pb-O4	2.495 (5)	2.529 (6)
Pb-O4'	2.495 (5)	2.486(5)
Average	2.635	2.610
Polyhedral Volume	24.295	23.923

Table 3. Selected bond distances and angles for Te-rich and regular raspites.

Note: OV--octahedral volume, OQE--octahedral quadratic elongation, OAV-- octahedral angle variance (Robinson et al., 1971).